dram_ctrl.cc revision 9243
1/*
2 * Copyright (c) 2010-2012 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder.  You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions are
16 * met: redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer;
18 * redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution;
21 * neither the name of the copyright holders nor the names of its
22 * contributors may be used to endorse or promote products derived from
23 * this software without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
26 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
27 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
28 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
29 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
30 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
31 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
32 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
33 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
34 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
35 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
36 *
37 * Authors: Andreas Hansson
38 *          Ani Udipi
39 */
40
41#include "debug/DRAM.hh"
42#include "debug/DRAMWR.hh"
43#include "mem/simple_dram.hh"
44#include "sim/stat_control.hh"
45
46using namespace std;
47
48SimpleDRAM::SimpleDRAM(const SimpleDRAMParams* p) :
49    AbstractMemory(p),
50    port(name() + ".port", *this),
51    retryRdReq(false), retryWrReq(false),
52    rowHitFlag(false), stopReads(false),
53    writeEvent(this), respondEvent(this),
54    refreshEvent(this), nextReqEvent(this), drainEvent(NULL),
55    bytesPerCacheLine(0),
56    linesPerRowBuffer(p->lines_per_rowbuffer),
57    ranksPerChannel(p->ranks_per_channel),
58    banksPerRank(p->banks_per_rank), rowsPerBank(0),
59    readBufferSize(p->read_buffer_size),
60    writeBufferSize(p->write_buffer_size),
61    writeThresholdPerc(p->write_thresh_perc),
62    tWTR(p->tWTR), tBURST(p->tBURST),
63    tRCD(p->tRCD), tCL(p->tCL), tRP(p->tRP),
64    tRFC(p->tRFC), tREFI(p->tREFI),
65    memSchedPolicy(p->mem_sched_policy), addrMapping(p->addr_mapping),
66    pageMgmt(p->page_policy),
67    busBusyUntil(0), prevdramaccess(0), writeStartTime(0),
68    prevArrival(0), numReqs(0)
69{
70    // create the bank states based on the dimensions of the ranks and
71    // banks
72    banks.resize(ranksPerChannel);
73    for (size_t c = 0; c < ranksPerChannel; ++c) {
74        banks[c].resize(banksPerRank);
75    }
76
77    // round the write threshold percent to a whole number of entries
78    // in the buffer
79    writeThreshold = writeBufferSize * writeThresholdPerc / 100.0;
80}
81
82void
83SimpleDRAM::init()
84{
85    if (!port.isConnected()) {
86        fatal("SimpleDRAM %s is unconnected!\n", name());
87    } else {
88        port.sendRangeChange();
89    }
90
91    // get the cache line size from the connected port
92    bytesPerCacheLine = port.peerBlockSize();
93
94    // we could deal with plenty options here, but for now do a quick
95    // sanity check
96    if (bytesPerCacheLine != 64 && bytesPerCacheLine != 32)
97        panic("Unexpected cache line size %d", bytesPerCacheLine);
98
99    // determine the rows per bank by looking at the total capacity
100    uint64_t capacity = AbstractMemory::size();
101    uint64_t i = 1;
102    while (i < 64 && capacity > ((1 << i))) {
103        ++i;
104    }
105
106    // rounded up to nearest power of two
107    DPRINTF(DRAM, "i is %lld\n", i);
108    capacity = 1 << i;
109
110    DPRINTF(DRAM, "Memory capacity %lld (%lld) bytes\n", capacity,
111            AbstractMemory::size());
112    rowsPerBank = capacity / (bytesPerCacheLine * linesPerRowBuffer *
113                              banksPerRank * ranksPerChannel);
114
115}
116
117void
118SimpleDRAM::startup()
119{
120    // print the configuration of the controller
121    printParams();
122
123    // kick off the refresh
124    schedule(&refreshEvent, curTick() + tREFI);
125}
126
127
128Tick
129SimpleDRAM::recvAtomic(PacketPtr pkt)
130{
131    DPRINTF(DRAM, "recvAtomic: %s 0x%x\n", pkt->cmdString(), pkt->getAddr());
132
133    // do the actual memory access and turn the packet into a response
134    access(pkt);
135
136    Tick latency = 0;
137    if (!pkt->memInhibitAsserted() && pkt->hasData()) {
138        // this value is not supposed to be accurate, just enough to
139        // keep things going, mimic a closed page
140        latency = tRP + tRCD + tCL;
141    }
142    return latency;
143}
144
145bool
146SimpleDRAM::readQueueFull() const
147{
148    DPRINTF(DRAM, "Read queue limit %d current size %d\n",
149            readBufferSize, dramReadQueue.size() + dramRespQueue.size());
150
151    return (dramReadQueue.size() + dramRespQueue.size()) == readBufferSize;
152}
153
154bool
155SimpleDRAM::writeQueueFull() const
156{
157    DPRINTF(DRAM, "Write queue limit %d current size %d\n",
158            writeBufferSize, dramWriteQueue.size());
159    return dramWriteQueue.size() == writeBufferSize;
160}
161
162
163SimpleDRAM::DRAMPacket*
164SimpleDRAM::decodeAddr(PacketPtr pkt)
165{
166    uint8_t rank;
167    uint16_t bank;
168    uint16_t row;
169
170    Addr addr = pkt->getAddr();
171    Addr temp = addr;
172
173    // truncate the address to the access granularity
174    addr = addr / bytesPerCacheLine;
175
176    if (addrMapping == Enums::openmap) {
177        addr = addr / linesPerRowBuffer;
178
179        bank = addr % banksPerRank;
180        addr = addr / banksPerRank;
181
182        rank = addr % ranksPerChannel;
183        addr = addr / ranksPerChannel;
184
185        row = addr % rowsPerBank;
186        addr = addr / rowsPerBank;
187    } else if (addrMapping == Enums::closemap) {
188        bank = addr % banksPerRank;
189        addr = addr / banksPerRank;
190
191        rank = addr % ranksPerChannel;
192        addr = addr / ranksPerChannel;
193
194        addr = addr / linesPerRowBuffer;
195
196        row = addr % rowsPerBank;
197        addr = addr / rowsPerBank;
198    } else
199        panic("Unknown address mapping policy chosen!");
200
201    assert(rank < ranksPerChannel);
202    assert(bank < banksPerRank);
203    assert(row < rowsPerBank);
204
205    DPRINTF(DRAM, "Address: %lld Rank %d Bank %d Row %d\n",
206            temp, rank, bank, row);
207
208    // create the corresponding DRAM packet with the entry time and
209    // ready time set to the current tick, they will be updated later
210    DRAMPacket* dram_pkt = new DRAMPacket(pkt, rank, bank, row, temp,
211                                          banks[rank][bank]);
212
213    return dram_pkt;
214}
215
216void
217SimpleDRAM::addToReadQueue(PacketPtr pkt)
218{
219    // only add to the read queue here. whenever the request is
220    // eventually done, set the readyTime, and call schedule()
221    assert(!pkt->isWrite());
222
223    // First check write buffer to see if the data is already at
224    // the controller
225    std::list<DRAMPacket*>::const_iterator i;
226    Addr addr = pkt->getAddr();
227
228    // @todo: add size check
229    for (i = dramWriteQueue.begin();  i != dramWriteQueue.end(); ++i) {
230        if ((*i)->addr == addr){
231            servicedByWrQ++;
232            DPRINTF(DRAM,"Serviced by write Q\n");
233            bytesRead += bytesPerCacheLine;
234            bytesConsumedRd += pkt->getSize();
235            accessAndRespond(pkt);
236            return;
237        }
238    }
239
240    DRAMPacket* dram_pkt = decodeAddr(pkt);
241
242    assert(dramReadQueue.size() + dramRespQueue.size() < readBufferSize);
243    rdQLenPdf[dramReadQueue.size() + dramRespQueue.size()]++;
244
245    DPRINTF(DRAM, "Adding to read queue\n");
246
247    dramReadQueue.push_back(dram_pkt);
248
249    // Update stats
250    uint32_t bank_id = banksPerRank * dram_pkt->rank + dram_pkt->bank;
251    assert(bank_id < ranksPerChannel * banksPerRank);
252    perBankRdReqs[bank_id]++;
253
254    avgRdQLen = dramReadQueue.size() + dramRespQueue.size();
255
256    // Special case where no arbitration is required between requests
257    if (!nextReqEvent.scheduled() && !stopReads) {
258        DPRINTF(DRAM, "Request %lld - need to schedule immediately");
259        schedule(&nextReqEvent, curTick() + 1);
260    }
261}
262
263void
264SimpleDRAM::processWriteEvent()
265{
266    assert(!dramWriteQueue.empty());
267    uint32_t numWritesThisTime = 0;
268
269    DPRINTF(DRAMWR, "Beginning DRAM Writes\n");
270    Tick temp1 M5_VAR_USED = std::max(curTick(), busBusyUntil);
271    Tick temp2 M5_VAR_USED = std::max(curTick(), maxBankFreeAt());
272
273    // @todo: are there any dangers with the untimed while loop?
274    while (!dramWriteQueue.empty()) {
275        if (numWritesThisTime > writeThreshold)
276            break;
277
278        chooseNextWrite();
279        DRAMPacket* dram_pkt = dramWriteQueue.front();
280        // What's the earlier the request can be put on the bus
281        Tick schedTime = std::max(curTick(), busBusyUntil);
282
283        DPRINTF(DRAMWR, "Asking for latency estimate at %lld\n",
284                schedTime + tBURST);
285
286        pair<Tick, Tick> lat = estimateLatency(dram_pkt, schedTime + tBURST);
287        Tick accessLat = lat.second;
288
289        // look at the rowHitFlag set by estimateLatency
290
291        // @todo: Race condition here where another packet gives rise
292        // to another call to estimateLatency in the meanwhile?
293        if (rowHitFlag)
294            writeRowHits++;
295
296        Bank& bank = dram_pkt->bank_ref;
297
298        if (pageMgmt == Enums::open) {
299            bank.openRow = dram_pkt->row;
300            bank.freeAt = schedTime + tBURST + accessLat;
301
302            if (!rowHitFlag)
303                bank.tRASDoneAt = bank.freeAt + tRP;
304
305        } else if (pageMgmt == Enums::close) {
306            bank.freeAt = schedTime + tBURST + accessLat + tRP + tRP;
307            DPRINTF(DRAMWR, "processWriteEvent::bank.freeAt for "
308                    "banks_id %d is %lld\n",
309                    dram_pkt->rank * banksPerRank + dram_pkt->bank,
310                    bank.freeAt);
311        } else
312            panic("Unknown page management policy chosen\n");
313
314        // @todo: As of now, write goes on the databus asap, maybe
315        // be held up at bank. May want to change it to delay the
316        // schedTime itself.
317        busBusyUntil = schedTime + tBURST;
318        DPRINTF(DRAMWR,"Done writing to address %lld\n",dram_pkt->addr);
319
320
321        DPRINTF(DRAMWR,"schedtime is %lld, tBURST is %lld, "
322                "busbusyuntil is %lld\n",
323                schedTime, tBURST, busBusyUntil);
324
325        dramWriteQueue.pop_front();
326        delete dram_pkt;
327
328        numWritesThisTime++;
329    }
330
331    DPRINTF(DRAMWR, "Completed %d writes, bus busy for %lld ticks,"\
332            "banks busy for %lld ticks\n", numWritesThisTime,
333            busBusyUntil - temp1, maxBankFreeAt() - temp2);
334
335    // Update stats
336    avgWrQLen = dramWriteQueue.size();
337
338    // turn the bus back around for reads again
339    busBusyUntil += tWTR;
340    stopReads = false;
341
342    if (retryWrReq) {
343        retryWrReq = false;
344        port.sendRetry();
345    }
346
347    // if there is nothing left in any queue, signal a drain
348    if (dramWriteQueue.empty() && dramReadQueue.empty() &&
349        dramRespQueue.empty () && drainEvent) {
350        drainEvent->process();
351        drainEvent = NULL;
352    }
353
354    // Once you're done emptying the write queue, check if there's
355    // anything in the read queue, and call schedule if required
356    schedule(&nextReqEvent, busBusyUntil);
357}
358
359void
360SimpleDRAM::triggerWrites()
361{
362    DPRINTF(DRAM, "Writes triggered at %lld\n", curTick());
363    // Flag variable to stop any more read scheduling
364    stopReads = true;
365
366    writeStartTime = std::max(busBusyUntil, curTick()) + tWTR;
367
368    DPRINTF(DRAM, "Writes scheduled at %lld\n", writeStartTime);
369
370    assert(writeStartTime >= curTick());
371    assert(!writeEvent.scheduled());
372    schedule(&writeEvent, writeStartTime);
373}
374
375void
376SimpleDRAM::addToWriteQueue(PacketPtr pkt)
377{
378    // only add to the write queue here. whenever the request is
379    // eventually done, set the readyTime, and call schedule()
380    assert(pkt->isWrite());
381
382    DRAMPacket* dram_pkt = decodeAddr(pkt);
383
384    assert(dramWriteQueue.size() < writeBufferSize);
385    wrQLenPdf[dramWriteQueue.size()]++;
386
387    DPRINTF(DRAM, "Adding to write queue\n");
388
389    dramWriteQueue.push_back(dram_pkt);
390
391    // Update stats
392    uint32_t bank_id = banksPerRank * dram_pkt->rank + dram_pkt->bank;
393    assert(bank_id < ranksPerChannel * banksPerRank);
394    perBankWrReqs[bank_id]++;
395
396    avgWrQLen = dramWriteQueue.size();
397
398    // we do not wait for the writes to be send to the actual memory,
399    // but instead take responsibility for the consistency here and
400    // snoop the write queue for any upcoming reads
401
402    bytesConsumedWr += pkt->getSize();
403    bytesWritten += bytesPerCacheLine;
404    accessAndRespond(pkt);
405
406    // If your write buffer is starting to fill up, drain it!
407    if (dramWriteQueue.size() > writeThreshold  && !stopReads){
408        triggerWrites();
409    }
410}
411
412void
413SimpleDRAM::printParams() const
414{
415    // Sanity check print of important parameters
416    DPRINTF(DRAM,
417            "Memory controller %s physical organization\n"      \
418            "Bytes per cacheline  %d\n"                         \
419            "Lines per row buffer %d\n"                         \
420            "Rows  per bank       %d\n"                         \
421            "Banks per rank       %d\n"                         \
422            "Ranks per channel    %d\n"                         \
423            "Total mem capacity   %u\n",
424            name(), bytesPerCacheLine ,linesPerRowBuffer, rowsPerBank,
425            banksPerRank, ranksPerChannel, bytesPerCacheLine *
426            linesPerRowBuffer * rowsPerBank * banksPerRank * ranksPerChannel);
427
428    string scheduler =  memSchedPolicy == Enums::fcfs ? "FCFS" : "FR-FCFS";
429    string address_mapping = addrMapping == Enums::openmap ? "OPENMAP" :
430        "CLOSEMAP";
431    string page_policy = pageMgmt == Enums::open ? "OPEN" : "CLOSE";
432
433    DPRINTF(DRAM,
434            "Memory controller %s characteristics\n"    \
435            "Read buffer size     %d\n"                 \
436            "Write buffer size    %d\n"                 \
437            "Write buffer thresh  %d\n"                 \
438            "Scheduler            %s\n"                 \
439            "Address mapping      %s\n"                 \
440            "Page policy          %s\n",
441            name(), readBufferSize, writeBufferSize, writeThreshold,
442            scheduler, address_mapping, page_policy);
443
444    DPRINTF(DRAM, "Memory controller %s timing specs\n" \
445            "tRCD    %d ticks\n"                        \
446            "tCL     %d ticks\n"                        \
447            "tRP     %d ticks\n"                        \
448            "tBURST  %d ticks\n"                        \
449            "tRFC    %d ticks\n"                        \
450            "tREFI   %d ticks\n"                        \
451            "tWTR    %d ticks\n",
452            name(), tRCD, tCL, tRP, tBURST, tRFC, tREFI, tWTR);
453}
454
455void
456SimpleDRAM::printQs() const {
457
458    list<DRAMPacket*>::const_iterator i;
459
460    DPRINTF(DRAM, "===READ QUEUE===\n\n");
461    for (i = dramReadQueue.begin() ;  i != dramReadQueue.end() ; ++i) {
462        DPRINTF(DRAM, "Read %lu\n", (*i)->addr);
463    }
464    DPRINTF(DRAM, "\n===RESP QUEUE===\n\n");
465    for (i = dramRespQueue.begin() ;  i != dramRespQueue.end() ; ++i) {
466        DPRINTF(DRAM, "Response %lu\n", (*i)->addr);
467    }
468    DPRINTF(DRAM, "\n===WRITE QUEUE===\n\n");
469    for (i = dramWriteQueue.begin() ;  i != dramWriteQueue.end() ; ++i) {
470        DPRINTF(DRAM, "Write %lu\n", (*i)->addr);
471    }
472}
473
474bool
475SimpleDRAM::recvTimingReq(PacketPtr pkt)
476{
477    // This is where we enter from the outside world
478    DPRINTF(DRAM, "Inside recvTimingReq: request %s addr %lld size %d\n",
479            pkt->cmdString(),pkt->getAddr(), pkt->getSize());
480
481   int index;
482
483   if (pkt->getSize() == bytesPerCacheLine)
484       cpuReqs++;
485
486   if (numReqs % 1000000 == 0)
487       printQs();
488
489    // Calc avg gap between requests
490    if (prevArrival != 0) {
491        totGap += curTick() - prevArrival;
492    }
493    prevArrival = curTick();
494
495    // simply drop inhibited packets for now
496    if (pkt->memInhibitAsserted()) {
497        DPRINTF(DRAM,"Inhibited packet -- Dropping it now\n");
498        delete pkt;
499        return true;
500    }
501
502    unsigned size = pkt->getSize();
503    if (size > bytesPerCacheLine)
504        panic("Request size %d is greater than cache line size %d",
505              size, bytesPerCacheLine);
506
507    if (size == 0)
508        index = log2(bytesPerCacheLine) + 1;
509    else
510        index = log2(size);
511
512    if (size != 0 && (1 << index) != size)
513        index = log2(bytesPerCacheLine) + 2;
514
515    // @todo: Do we really want to do all this before the packet is
516    // actually accepted?
517
518    /* Index 0 - Size 1 byte
519       Index 1 - Size 2 bytes
520       Index 2 - Size 4 bytes
521         .
522         .
523       Index 6 - Size 64 bytes
524       Index 7 - Size 0 bytes
525       Index 8 - Non-power-of-2 size */
526
527    if (pkt->isRead())
528        readPktSize[index]++;
529    else if (pkt->isWrite())
530        writePktSize[index]++;
531    else
532        neitherPktSize[index]++;
533
534    // check local buffers and do not accept if full
535    if (pkt->isRead()) {
536        if (readQueueFull()) {
537            DPRINTF(DRAM,"Read queue full, not accepting\n");
538            // remember that we have to retry this port
539            retryRdReq = true;
540            numRdRetry++;
541            return false;
542        } else {
543            addToReadQueue(pkt);
544            readReqs++;
545            numReqs++;
546        }
547    } else if (pkt->isWrite()) {
548        if (writeQueueFull()) {
549            DPRINTF(DRAM,"Write queue full, not accepting\n");
550            // remember that we have to retry this port
551            retryWrReq = true;
552            numWrRetry++;
553            return false;
554        } else {
555            addToWriteQueue(pkt);
556            writeReqs++;
557            numReqs++;
558        }
559    } else {
560        DPRINTF(DRAM,"Neither read nor write, ignore timing\n");
561        neitherReadNorWrite++;
562        accessAndRespond(pkt);
563    }
564
565
566    retryRdReq = false;
567    retryWrReq = false;
568    return true;
569}
570
571void
572SimpleDRAM::processRespondEvent()
573{
574    DPRINTF(DRAM,
575            "processRespondEvent(): Some req has reached its readyTime\n");
576
577     PacketPtr pkt = dramRespQueue.front()->pkt;
578
579     // Actually responds to the requestor
580     bytesConsumedRd += pkt->getSize();
581     bytesRead += bytesPerCacheLine;
582     accessAndRespond(pkt);
583
584     DRAMPacket* dram_pkt = dramRespQueue.front();
585     dramRespQueue.pop_front();
586     delete dram_pkt;
587
588     // Update stats
589     avgRdQLen = dramReadQueue.size() + dramRespQueue.size();
590
591     if (!dramRespQueue.empty()){
592         assert(dramRespQueue.front()->readyTime >= curTick());
593         assert(!respondEvent.scheduled());
594         schedule(&respondEvent, dramRespQueue.front()->readyTime);
595     } else {
596         // if there is nothing left in any queue, signal a drain
597         if (dramWriteQueue.empty() && dramReadQueue.empty() &&
598             drainEvent) {
599             drainEvent->process();
600             drainEvent = NULL;
601         }
602     }
603}
604
605void
606SimpleDRAM::chooseNextWrite()
607{
608    // This method does the arbitration between requests. The chosen
609    // packet is simply moved to the head of the queue. The other
610    // methods know that this is the place to look. For example, with
611    // FCFS, this method does nothing
612    assert(!dramWriteQueue.empty());
613
614    if (dramWriteQueue.size() == 1) {
615        DPRINTF(DRAMWR, "chooseNextWrite(): Single element, nothing to do\n");
616        return;
617    }
618
619    if (memSchedPolicy == Enums::fcfs) {
620
621        // Do nothing, since the correct request is already head
622
623    } else if (memSchedPolicy == Enums::frfcfs) {
624
625        list<DRAMPacket*>::iterator i = dramWriteQueue.begin();
626        bool foundRowHit = false;
627        while (!foundRowHit && i != dramWriteQueue.end()) {
628            DRAMPacket* dram_pkt = *i;
629            const Bank& bank = dram_pkt->bank_ref;
630            if (bank.openRow == dram_pkt->row) { //FR part
631                DPRINTF(DRAMWR,"Row buffer hit\n");
632                dramWriteQueue.erase(i);
633                dramWriteQueue.push_front(dram_pkt);
634                foundRowHit = true;
635            } else { //FCFS part
636                ;
637            }
638            ++i;
639        }
640
641    } else
642        panic("No scheduling policy chosen\n");
643
644    DPRINTF(DRAMWR, "chooseNextWrite(): Something chosen\n");
645}
646
647bool
648SimpleDRAM::chooseNextReq()
649{
650    // This method does the arbitration between requests.
651    // The chosen packet is simply moved to the head of the
652    // queue. The other methods know that this is the place
653    // to look. For example, with FCFS, this method does nothing
654    list<DRAMPacket*>::iterator i;
655    DRAMPacket* dram_pkt;
656
657    if (dramReadQueue.empty()){
658        DPRINTF(DRAM, "chooseNextReq(): Returning False\n");
659        return false;
660    }
661
662    if (dramReadQueue.size() == 1)
663        return true;
664
665    if (memSchedPolicy == Enums::fcfs) {
666
667        // Do nothing, since the correct request is already head
668
669    } else if (memSchedPolicy == Enums::frfcfs) {
670
671        for (i = dramReadQueue.begin() ; i != dramReadQueue.end() ; ++i) {
672            dram_pkt = *i;
673            const Bank& bank = dram_pkt->bank_ref;
674            if (bank.openRow == dram_pkt->row) { //FR part
675                DPRINTF(DRAM, "Row buffer hit\n");
676                dramReadQueue.erase(i);
677                dramReadQueue.push_front(dram_pkt);
678                break;
679            } else { //FCFS part
680                ;
681            }
682
683        }
684
685    } else
686        panic("No scheduling policy chosen!\n");
687
688
689    DPRINTF(DRAM,"chooseNextReq(): Chosen something, returning True\n");
690    return true;
691}
692
693void
694SimpleDRAM::accessAndRespond(PacketPtr pkt)
695{
696    DPRINTF(DRAM, "Responding to Address %lld.. ",pkt->getAddr());
697
698    bool needsResponse = pkt->needsResponse();
699    // do the actual memory access which also turns the packet into a
700    // response
701    access(pkt);
702
703    // turn packet around to go back to requester if response expected
704    if (needsResponse) {
705        // access already turned the packet into a response
706        assert(pkt->isResponse());
707
708        // queue the packet in the response queue to be sent out the
709        // next tick
710        port.schedTimingResp(pkt, curTick() + 1);
711    } else {
712    }
713
714    DPRINTF(DRAM, "Done\n");
715
716    return;
717}
718
719pair<Tick, Tick>
720SimpleDRAM::estimateLatency(DRAMPacket* dram_pkt, Tick inTime)
721{
722    // If a request reaches a bank at tick 'inTime', how much time
723    // *after* that does it take to finish the request, depending
724    // on bank status and page open policy. Note that this method
725    // considers only the time taken for the actual read or write
726    // to complete, NOT any additional time thereafter for tRAS or
727    // tRP.
728    Tick accLat = 0;
729    Tick bankLat = 0;
730    rowHitFlag = false;
731
732    const Bank& bank = dram_pkt->bank_ref;
733    if (pageMgmt == Enums::open) { // open-page policy
734        if (bank.openRow == dram_pkt->row) {
735            // When we have a row-buffer hit,
736            // we don't care about tRAS having expired or not,
737            // but do care about bank being free for access
738            rowHitFlag = true;
739
740            if (bank.freeAt < inTime) {
741               // CAS latency only
742               accLat += tCL;
743               bankLat += tCL;
744            } else {
745                accLat += 0;
746                bankLat += 0;
747            }
748
749        } else {
750            // Row-buffer miss, need to close existing row
751            // once tRAS has expired, then open the new one,
752            // then add cas latency.
753            Tick freeTime = std::max(bank.tRASDoneAt, bank.freeAt);
754
755            if (freeTime > inTime)
756               accLat += freeTime - inTime;
757
758            accLat += tRP + tRCD + tCL;
759            bankLat += tRP + tRCD + tCL;
760        }
761    } else if (pageMgmt == Enums::close) {
762
763        // With a close page policy, no notion of
764        // bank.tRASDoneAt
765        if (bank.freeAt > inTime)
766            accLat += bank.freeAt - inTime;
767
768        // page already closed, simply open the row, and
769        // add cas latency
770        accLat += tRCD + tCL;
771        bankLat += tRCD + tCL;
772    } else
773        panic("No page management policy chosen\n");
774
775    DPRINTF(DRAM, "Returning %lld from estimateLatency()\n",accLat);
776
777    return make_pair(bankLat, accLat);
778}
779
780void
781SimpleDRAM::processNextReqEvent()
782{
783    scheduleNextReq();
784}
785
786void
787SimpleDRAM::doDRAMAccess(DRAMPacket* dram_pkt)
788{
789
790    DPRINTF(DRAM, "Timing access to addr %lld, rank/bank/row %d %d %d\n",
791            dram_pkt->addr, dram_pkt->rank, dram_pkt->bank, dram_pkt->row);
792
793    assert(curTick() >= prevdramaccess);
794    prevdramaccess = curTick();
795
796    // estimate the bank and access latency
797    pair<Tick, Tick> lat = estimateLatency(dram_pkt, curTick());
798    Tick bankLat = lat.first;
799    Tick accessLat = lat.second;
800
801    // This request was woken up at this time based on a prior call
802    // to estimateLatency(). However, between then and now, both the
803    // accessLatency and/or busBusyUntil may have changed. We need
804    // to correct for that.
805
806    Tick addDelay = (curTick() + accessLat < busBusyUntil) ?
807        busBusyUntil - (curTick() + accessLat) : 0;
808
809    Bank& bank = dram_pkt->bank_ref;
810
811    // Update bank state
812    if (pageMgmt == Enums::open) {
813        bank.openRow = dram_pkt->row;
814        bank.freeAt = curTick() + addDelay + accessLat;
815        // If you activated a new row do to this access, the next access
816        // will have to respect tRAS for this bank. Assume tRAS ~= 3 * tRP
817        if (!rowHitFlag)
818            bank.tRASDoneAt = bank.freeAt + tRP;
819
820    } else if (pageMgmt == Enums::close) { // accounting for tRAS also
821        // assuming that tRAS ~= 3 * tRP, and tRAS ~= 4 * tRP, as is common
822        // (refer Jacob/Ng/Wang and Micron datasheets)
823        bank.freeAt = curTick() + addDelay + accessLat + tRP + tRP;
824        DPRINTF(DRAM,"doDRAMAccess::bank.freeAt is %lld\n",bank.freeAt);
825    } else
826        panic("No page management policy chosen\n");
827
828    // Update request parameters
829    dram_pkt->readyTime = curTick() + addDelay + accessLat + tBURST;
830
831
832    DPRINTF(DRAM, "Req %lld: curtick is %lld accessLat is %d " \
833                  "readytime is %lld busbusyuntil is %lld. " \
834                  "Scheduling at readyTime\n", dram_pkt->addr,
835                   curTick(), accessLat, dram_pkt->readyTime, busBusyUntil);
836
837    // Make sure requests are not overlapping on the databus
838    assert (dram_pkt->readyTime - busBusyUntil >= tBURST);
839
840    // Update bus state
841    busBusyUntil = dram_pkt->readyTime;
842
843    DPRINTF(DRAM,"Access time is %lld\n",
844            dram_pkt->readyTime - dram_pkt->entryTime);
845
846    // Update stats
847    totMemAccLat += dram_pkt->readyTime - dram_pkt->entryTime;
848    totBankLat += bankLat;
849    totBusLat += tBURST;
850    totQLat += dram_pkt->readyTime - dram_pkt->entryTime - bankLat - tBURST;
851
852    if (rowHitFlag)
853        readRowHits++;
854
855    // At this point we're done dealing with the request
856    // It will be moved to a separate response queue with a
857    // correct readyTime, and eventually be sent back at that
858    //time
859    moveToRespQ();
860
861    // The absolute soonest you have to start thinking about the
862    // next request is the longest access time that can occur before
863    // busBusyUntil. Assuming you need to meet tRAS, then precharge,
864    // open a new row, and access, it is ~4*tRCD.
865
866
867    Tick newTime = (busBusyUntil > 4 * tRCD) ?
868                   std::max(busBusyUntil - 4 * tRCD, curTick()) :
869                   curTick();
870
871    if (!nextReqEvent.scheduled() && !stopReads){
872        schedule(&nextReqEvent, newTime);
873    } else {
874        if (newTime < nextReqEvent.when())
875            reschedule(&nextReqEvent, newTime);
876    }
877
878
879}
880
881void
882SimpleDRAM::moveToRespQ()
883{
884    // Remove from read queue
885    DRAMPacket* dram_pkt = dramReadQueue.front();
886    dramReadQueue.pop_front();
887
888    // Insert into response queue sorted by readyTime
889    // It will be sent back to the requestor at its
890    // readyTime
891    if (dramRespQueue.empty()) {
892        dramRespQueue.push_front(dram_pkt);
893        assert(!respondEvent.scheduled());
894        assert(dram_pkt->readyTime >= curTick());
895        schedule(&respondEvent, dram_pkt->readyTime);
896    } else {
897        bool done = false;
898        std::list<DRAMPacket*>::iterator i = dramRespQueue.begin();
899        while (!done && i != dramRespQueue.end()) {
900            if ((*i)->readyTime > dram_pkt->readyTime) {
901                dramRespQueue.insert(i, dram_pkt);
902                done = true;
903            }
904            ++i;
905        }
906
907        if (!done)
908            dramRespQueue.push_back(dram_pkt);
909
910        assert(respondEvent.scheduled());
911
912        if (dramRespQueue.front()->readyTime < respondEvent.when()) {
913            assert(dramRespQueue.front()->readyTime >= curTick());
914            reschedule(&respondEvent, dramRespQueue.front()->readyTime);
915        }
916    }
917
918    if (retryRdReq) {
919         retryRdReq = false;
920         port.sendRetry();
921     }
922}
923
924void
925SimpleDRAM::scheduleNextReq()
926{
927    DPRINTF(DRAM, "Reached scheduleNextReq()\n");
928
929    // Figure out which request goes next, and move it to front()
930    if (!chooseNextReq())
931        return;
932
933    doDRAMAccess(dramReadQueue.front());
934}
935
936
937
938
939Tick
940SimpleDRAM::maxBankFreeAt() const
941{
942    Tick banksFree = 0;
943
944    for(int i = 0; i < ranksPerChannel; i++)
945        for(int j = 0; j < banksPerRank; j++)
946            banksFree = std::max(banks[i][j].freeAt, banksFree);
947
948    return banksFree;
949}
950
951void
952SimpleDRAM::processRefreshEvent()
953{
954    DPRINTF(DRAM, "Refreshing at tick %ld\n", curTick());
955
956    Tick banksFree = std::max(curTick(), maxBankFreeAt()) + tRFC;
957
958    for(int i = 0; i < ranksPerChannel; i++)
959        for(int j = 0; j < banksPerRank; j++)
960            banks[i][j].freeAt = banksFree;
961
962    schedule(&refreshEvent, curTick() + tREFI);
963}
964
965void
966SimpleDRAM::regStats()
967{
968    using namespace Stats;
969
970    AbstractMemory::regStats();
971
972    readReqs
973        .name(name() + ".readReqs")
974        .desc("Total number of read requests seen");
975
976    writeReqs
977        .name(name() + ".writeReqs")
978        .desc("Total number of write requests seen");
979
980    servicedByWrQ
981        .name(name() + ".servicedByWrQ")
982        .desc("Number of read reqs serviced by write Q");
983
984    cpuReqs
985        .name(name() + ".cpureqs")
986        .desc("Reqs generatd by CPU via cache - shady");
987
988    neitherReadNorWrite
989        .name(name() + ".neitherReadNorWrite")
990        .desc("Reqs where no action is needed");
991
992    perBankRdReqs
993        .init(banksPerRank * ranksPerChannel)
994        .name(name() + ".perBankRdReqs")
995        .desc("Track reads on a per bank basis");
996
997    perBankWrReqs
998        .init(banksPerRank * ranksPerChannel)
999        .name(name() + ".perBankWrReqs")
1000        .desc("Track writes on a per bank basis");
1001
1002    avgRdQLen
1003        .name(name() + ".avgRdQLen")
1004        .desc("Average read queue length over time")
1005        .precision(2);
1006
1007    avgWrQLen
1008        .name(name() + ".avgWrQLen")
1009        .desc("Average write queue length over time")
1010        .precision(2);
1011
1012    totQLat
1013        .name(name() + ".totQLat")
1014        .desc("Total cycles spent in queuing delays");
1015
1016    totBankLat
1017        .name(name() + ".totBankLat")
1018        .desc("Total cycles spent in bank access");
1019
1020    totBusLat
1021        .name(name() + ".totBusLat")
1022        .desc("Total cycles spent in databus access");
1023
1024    totMemAccLat
1025        .name(name() + ".totMemAccLat")
1026        .desc("Sum of mem lat for all requests");
1027
1028    avgQLat
1029        .name(name() + ".avgQLat")
1030        .desc("Average queueing delay per request")
1031        .precision(2);
1032
1033    avgQLat = totQLat / (readReqs - servicedByWrQ);
1034
1035    avgBankLat
1036        .name(name() + ".avgBankLat")
1037        .desc("Average bank access latency per request")
1038        .precision(2);
1039
1040    avgBankLat = totBankLat / (readReqs - servicedByWrQ);
1041
1042    avgBusLat
1043        .name(name() + ".avgBusLat")
1044        .desc("Average bus latency per request")
1045        .precision(2);
1046
1047    avgBusLat = totBusLat / (readReqs - servicedByWrQ);
1048
1049    avgMemAccLat
1050        .name(name() + ".avgMemAccLat")
1051        .desc("Average memory access latency")
1052        .precision(2);
1053
1054    avgMemAccLat = totMemAccLat / (readReqs - servicedByWrQ);
1055
1056    numRdRetry
1057        .name(name() + ".numRdRetry")
1058        .desc("Number of times rd buffer was full causing retry");
1059
1060    numWrRetry
1061        .name(name() + ".numWrRetry")
1062        .desc("Number of times wr buffer was full causing retry");
1063
1064    readRowHits
1065        .name(name() + ".readRowHits")
1066        .desc("Number of row buffer hits during reads");
1067
1068    writeRowHits
1069        .name(name() + ".writeRowHits")
1070        .desc("Number of row buffer hits during writes");
1071
1072    readRowHitRate
1073        .name(name() + ".readRowHitRate")
1074        .desc("Row buffer hit rate for reads")
1075        .precision(2);
1076
1077    readRowHitRate = (readRowHits / (readReqs - servicedByWrQ)) * 100;
1078
1079    writeRowHitRate
1080        .name(name() + ".writeRowHitRate")
1081        .desc("Row buffer hit rate for writes")
1082        .precision(2);
1083
1084    writeRowHitRate = (writeRowHits / writeReqs) * 100;
1085
1086    readPktSize
1087        .init(log2(bytesPerCacheLine)+3)
1088        .name(name() + ".readPktSize")
1089        .desc("Categorize read packet sizes");
1090
1091     writePktSize
1092        .init(log2(bytesPerCacheLine)+3)
1093        .name(name() + ".writePktSize")
1094        .desc("categorize write packet sizes");
1095
1096     neitherPktSize
1097        .init(log2(bytesPerCacheLine)+3)
1098        .name(name() + ".neitherpktsize")
1099        .desc("categorize neither packet sizes");
1100
1101     rdQLenPdf
1102        .init(readBufferSize + 1)
1103        .name(name() + ".rdQLenPdf")
1104        .desc("What read queue length does an incoming req see");
1105
1106     wrQLenPdf
1107        .init(writeBufferSize + 1)
1108        .name(name() + ".wrQLenPdf")
1109        .desc("What write queue length does an incoming req see");
1110
1111
1112    bytesRead
1113        .name(name() + ".bytesRead")
1114        .desc("Total number of bytes read from memory");
1115
1116    bytesWritten
1117        .name(name() + ".bytesWritten")
1118        .desc("Total number of bytes written to memory");
1119
1120    bytesConsumedRd
1121        .name(name() + ".bytesConsumedRd")
1122        .desc("bytesRead derated as per pkt->getSize()");
1123
1124    bytesConsumedWr
1125        .name(name() + ".bytesConsumedWr")
1126        .desc("bytesWritten derated as per pkt->getSize()");
1127
1128    avgRdBW
1129        .name(name() + ".avgRdBW")
1130        .desc("Average achieved read bandwidth in MB/s")
1131        .precision(2);
1132
1133    avgRdBW = (bytesRead / 1000000) / simSeconds;
1134
1135    avgWrBW
1136        .name(name() + ".avgWrBW")
1137        .desc("Average achieved write bandwidth in MB/s")
1138        .precision(2);
1139
1140    avgWrBW = (bytesWritten / 1000000) / simSeconds;
1141
1142    avgConsumedRdBW
1143        .name(name() + ".avgConsumedRdBW")
1144        .desc("Average consumed read bandwidth in MB/s")
1145        .precision(2);
1146
1147    avgConsumedRdBW = (bytesConsumedRd / 1000000) / simSeconds;
1148
1149    avgConsumedWrBW
1150        .name(name() + ".avgConsumedWrBW")
1151        .desc("Average consumed write bandwidth in MB/s")
1152        .precision(2);
1153
1154    avgConsumedWrBW = (bytesConsumedWr / 1000000) / simSeconds;
1155
1156    peakBW
1157        .name(name() + ".peakBW")
1158        .desc("Theoretical peak bandwidth in MB/s")
1159        .precision(2);
1160
1161    peakBW = (SimClock::Frequency / tBURST) * bytesPerCacheLine / 1000000;
1162
1163    busUtil
1164        .name(name() + ".busUtil")
1165        .desc("Data bus utilization in percentage")
1166        .precision(2);
1167
1168    busUtil = (avgRdBW + avgWrBW) / peakBW * 100;
1169
1170    totGap
1171        .name(name() + ".totGap")
1172        .desc("Total gap between requests");
1173
1174    avgGap
1175        .name(name() + ".avgGap")
1176        .desc("Average gap between requests")
1177        .precision(2);
1178
1179    avgGap = totGap / (readReqs + writeReqs);
1180}
1181
1182void
1183SimpleDRAM::recvFunctional(PacketPtr pkt)
1184{
1185    // rely on the abstract memory
1186    functionalAccess(pkt);
1187}
1188
1189SlavePort&
1190SimpleDRAM::getSlavePort(const string &if_name, int idx)
1191{
1192    if (if_name != "port") {
1193        return MemObject::getSlavePort(if_name, idx);
1194    } else {
1195        return port;
1196    }
1197}
1198
1199unsigned int
1200SimpleDRAM::drain(Event *de)
1201{
1202    unsigned int count = port.drain(de);
1203
1204    // if there is anything in any of our internal queues, keep track
1205    // of that as well
1206    if (!(dramWriteQueue.empty() && dramReadQueue.empty() &&
1207          dramRespQueue.empty())) {
1208        ++count;
1209        drainEvent = de;
1210    }
1211
1212    if (count)
1213        changeState(Draining);
1214    else
1215        changeState(Drained);
1216    return count;
1217}
1218
1219SimpleDRAM::MemoryPort::MemoryPort(const std::string& name, SimpleDRAM& _memory)
1220    : QueuedSlavePort(name, &_memory, queue), queue(_memory, *this),
1221      memory(_memory)
1222{ }
1223
1224AddrRangeList
1225SimpleDRAM::MemoryPort::getAddrRanges() const
1226{
1227    AddrRangeList ranges;
1228    ranges.push_back(memory.getAddrRange());
1229    return ranges;
1230}
1231
1232void
1233SimpleDRAM::MemoryPort::recvFunctional(PacketPtr pkt)
1234{
1235    pkt->pushLabel(memory.name());
1236
1237    if (!queue.checkFunctional(pkt)) {
1238        // Default implementation of SimpleTimingPort::recvFunctional()
1239        // calls recvAtomic() and throws away the latency; we can save a
1240        // little here by just not calculating the latency.
1241        memory.recvFunctional(pkt);
1242    }
1243
1244    pkt->popLabel();
1245}
1246
1247Tick
1248SimpleDRAM::MemoryPort::recvAtomic(PacketPtr pkt)
1249{
1250    return memory.recvAtomic(pkt);
1251}
1252
1253bool
1254SimpleDRAM::MemoryPort::recvTimingReq(PacketPtr pkt)
1255{
1256    // pass it to the memory controller
1257    return memory.recvTimingReq(pkt);
1258}
1259
1260SimpleDRAM*
1261SimpleDRAMParams::create()
1262{
1263    return new SimpleDRAM(this);
1264}
1265