dram_ctrl.cc revision 10214
19243SN/A/*
210206Sandreas.hansson@arm.com * Copyright (c) 2010-2014 ARM Limited
39243SN/A * All rights reserved
49243SN/A *
59243SN/A * The license below extends only to copyright in the software and shall
69243SN/A * not be construed as granting a license to any other intellectual
79243SN/A * property including but not limited to intellectual property relating
89243SN/A * to a hardware implementation of the functionality of the software
99243SN/A * licensed hereunder.  You may use the software subject to the license
109243SN/A * terms below provided that you ensure that this notice is replicated
119243SN/A * unmodified and in its entirety in all distributions of the software,
129243SN/A * modified or unmodified, in source code or in binary form.
139243SN/A *
149831SN/A * Copyright (c) 2013 Amin Farmahini-Farahani
159831SN/A * All rights reserved.
169831SN/A *
179243SN/A * Redistribution and use in source and binary forms, with or without
189243SN/A * modification, are permitted provided that the following conditions are
199243SN/A * met: redistributions of source code must retain the above copyright
209243SN/A * notice, this list of conditions and the following disclaimer;
219243SN/A * redistributions in binary form must reproduce the above copyright
229243SN/A * notice, this list of conditions and the following disclaimer in the
239243SN/A * documentation and/or other materials provided with the distribution;
249243SN/A * neither the name of the copyright holders nor the names of its
259243SN/A * contributors may be used to endorse or promote products derived from
269243SN/A * this software without specific prior written permission.
279243SN/A *
289243SN/A * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
299243SN/A * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
309243SN/A * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
319243SN/A * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
329243SN/A * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
339243SN/A * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
349243SN/A * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
359243SN/A * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
369243SN/A * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
379243SN/A * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
389243SN/A * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
399243SN/A *
409243SN/A * Authors: Andreas Hansson
419243SN/A *          Ani Udipi
429967SN/A *          Neha Agarwal
439243SN/A */
449243SN/A
4510146Sandreas.hansson@arm.com#include "base/bitfield.hh"
469356SN/A#include "base/trace.hh"
4710146Sandreas.hansson@arm.com#include "debug/DRAM.hh"
4810208Sandreas.hansson@arm.com#include "debug/DRAMState.hh"
499352SN/A#include "debug/Drain.hh"
5010146Sandreas.hansson@arm.com#include "mem/dram_ctrl.hh"
519814SN/A#include "sim/system.hh"
529243SN/A
539243SN/Ausing namespace std;
549243SN/A
5510146Sandreas.hansson@arm.comDRAMCtrl::DRAMCtrl(const DRAMCtrlParams* p) :
569243SN/A    AbstractMemory(p),
579243SN/A    port(name() + ".port", *this),
589243SN/A    retryRdReq(false), retryWrReq(false),
5910211Sandreas.hansson@arm.com    busState(READ),
6010208Sandreas.hansson@arm.com    nextReqEvent(this), respondEvent(this), activateEvent(this),
6110208Sandreas.hansson@arm.com    prechargeEvent(this), refreshEvent(this), powerEvent(this),
6210208Sandreas.hansson@arm.com    drainManager(NULL),
639831SN/A    deviceBusWidth(p->device_bus_width), burstLength(p->burst_length),
649831SN/A    deviceRowBufferSize(p->device_rowbuffer_size),
659831SN/A    devicesPerRank(p->devices_per_rank),
669831SN/A    burstSize((devicesPerRank * burstLength * deviceBusWidth) / 8),
679831SN/A    rowBufferSize(devicesPerRank * deviceRowBufferSize),
6810140SN/A    columnsPerRowBuffer(rowBufferSize / burstSize),
699243SN/A    ranksPerChannel(p->ranks_per_channel),
709566SN/A    banksPerRank(p->banks_per_rank), channels(p->channels), rowsPerBank(0),
719243SN/A    readBufferSize(p->read_buffer_size),
729243SN/A    writeBufferSize(p->write_buffer_size),
7310140SN/A    writeHighThreshold(writeBufferSize * p->write_high_thresh_perc / 100.0),
7410140SN/A    writeLowThreshold(writeBufferSize * p->write_low_thresh_perc / 100.0),
7510147Sandreas.hansson@arm.com    minWritesPerSwitch(p->min_writes_per_switch),
7610147Sandreas.hansson@arm.com    writesThisTime(0), readsThisTime(0),
7710206Sandreas.hansson@arm.com    tWTR(p->tWTR), tRTW(p->tRTW), tBURST(p->tBURST),
7810210Sandreas.hansson@arm.com    tRCD(p->tRCD), tCL(p->tCL), tRP(p->tRP), tRAS(p->tRAS), tWR(p->tWR),
7910212Sandreas.hansson@arm.com    tRTP(p->tRTP), tRFC(p->tRFC), tREFI(p->tREFI), tRRD(p->tRRD),
809488SN/A    tXAW(p->tXAW), activationLimit(p->activation_limit),
819243SN/A    memSchedPolicy(p->mem_sched_policy), addrMapping(p->addr_mapping),
829243SN/A    pageMgmt(p->page_policy),
8310141SN/A    maxAccessesPerRow(p->max_accesses_per_row),
849726SN/A    frontendLatency(p->static_frontend_latency),
859726SN/A    backendLatency(p->static_backend_latency),
8610208Sandreas.hansson@arm.com    busBusyUntil(0), refreshDueAt(0), refreshState(REF_IDLE),
8710208Sandreas.hansson@arm.com    pwrStateTrans(PWR_IDLE), pwrState(PWR_IDLE), prevArrival(0),
8810208Sandreas.hansson@arm.com    nextReqTime(0), pwrStateTick(0), numBanksActive(0)
899243SN/A{
909243SN/A    // create the bank states based on the dimensions of the ranks and
919243SN/A    // banks
929243SN/A    banks.resize(ranksPerChannel);
939969SN/A    actTicks.resize(ranksPerChannel);
949243SN/A    for (size_t c = 0; c < ranksPerChannel; ++c) {
959243SN/A        banks[c].resize(banksPerRank);
969969SN/A        actTicks[c].resize(activationLimit, 0);
979243SN/A    }
989243SN/A
9910140SN/A    // perform a basic check of the write thresholds
10010140SN/A    if (p->write_low_thresh_perc >= p->write_high_thresh_perc)
10110140SN/A        fatal("Write buffer low threshold %d must be smaller than the "
10210140SN/A              "high threshold %d\n", p->write_low_thresh_perc,
10310140SN/A              p->write_high_thresh_perc);
1049243SN/A
1059243SN/A    // determine the rows per bank by looking at the total capacity
1069567SN/A    uint64_t capacity = ULL(1) << ceilLog2(AbstractMemory::size());
1079243SN/A
1089243SN/A    DPRINTF(DRAM, "Memory capacity %lld (%lld) bytes\n", capacity,
1099243SN/A            AbstractMemory::size());
1109831SN/A
1119831SN/A    DPRINTF(DRAM, "Row buffer size %d bytes with %d columns per row buffer\n",
1129831SN/A            rowBufferSize, columnsPerRowBuffer);
1139831SN/A
1149831SN/A    rowsPerBank = capacity / (rowBufferSize * banksPerRank * ranksPerChannel);
1159243SN/A
1169566SN/A    if (range.interleaved()) {
1179566SN/A        if (channels != range.stripes())
11810143SN/A            fatal("%s has %d interleaved address stripes but %d channel(s)\n",
1199566SN/A                  name(), range.stripes(), channels);
1209566SN/A
12110136SN/A        if (addrMapping == Enums::RoRaBaChCo) {
1229831SN/A            if (rowBufferSize != range.granularity()) {
12310143SN/A                fatal("Interleaving of %s doesn't match RoRaBaChCo "
12410136SN/A                      "address map\n", name());
1259566SN/A            }
12610136SN/A        } else if (addrMapping == Enums::RoRaBaCoCh) {
12710136SN/A            if (system()->cacheLineSize() != range.granularity()) {
12810143SN/A                fatal("Interleaving of %s doesn't match RoRaBaCoCh "
12910136SN/A                      "address map\n", name());
1309669SN/A            }
13110136SN/A        } else if (addrMapping == Enums::RoCoRaBaCh) {
13210136SN/A            if (system()->cacheLineSize() != range.granularity())
13310143SN/A                fatal("Interleaving of %s doesn't match RoCoRaBaCh "
13410136SN/A                      "address map\n", name());
1359566SN/A        }
1369566SN/A    }
13710207Sandreas.hansson@arm.com
13810207Sandreas.hansson@arm.com    // some basic sanity checks
13910207Sandreas.hansson@arm.com    if (tREFI <= tRP || tREFI <= tRFC) {
14010207Sandreas.hansson@arm.com        fatal("tREFI (%d) must be larger than tRP (%d) and tRFC (%d)\n",
14110207Sandreas.hansson@arm.com              tREFI, tRP, tRFC);
14210207Sandreas.hansson@arm.com    }
1439243SN/A}
1449243SN/A
1459243SN/Avoid
14610146Sandreas.hansson@arm.comDRAMCtrl::init()
14710140SN/A{
14810140SN/A    if (!port.isConnected()) {
14910146Sandreas.hansson@arm.com        fatal("DRAMCtrl %s is unconnected!\n", name());
15010140SN/A    } else {
15110140SN/A        port.sendRangeChange();
15210140SN/A    }
15310140SN/A}
15410140SN/A
15510140SN/Avoid
15610146Sandreas.hansson@arm.comDRAMCtrl::startup()
1579243SN/A{
15810143SN/A    // update the start tick for the precharge accounting to the
15910143SN/A    // current tick
16010208Sandreas.hansson@arm.com    pwrStateTick = curTick();
16110143SN/A
16210206Sandreas.hansson@arm.com    // shift the bus busy time sufficiently far ahead that we never
16310206Sandreas.hansson@arm.com    // have to worry about negative values when computing the time for
16410206Sandreas.hansson@arm.com    // the next request, this will add an insignificant bubble at the
16510206Sandreas.hansson@arm.com    // start of simulation
16610206Sandreas.hansson@arm.com    busBusyUntil = curTick() + tRP + tRCD + tCL;
16710206Sandreas.hansson@arm.com
16810207Sandreas.hansson@arm.com    // kick off the refresh, and give ourselves enough time to
16910207Sandreas.hansson@arm.com    // precharge
17010207Sandreas.hansson@arm.com    schedule(refreshEvent, curTick() + tREFI - tRP);
1719243SN/A}
1729243SN/A
1739243SN/ATick
17410146Sandreas.hansson@arm.comDRAMCtrl::recvAtomic(PacketPtr pkt)
1759243SN/A{
1769243SN/A    DPRINTF(DRAM, "recvAtomic: %s 0x%x\n", pkt->cmdString(), pkt->getAddr());
1779243SN/A
1789243SN/A    // do the actual memory access and turn the packet into a response
1799243SN/A    access(pkt);
1809243SN/A
1819243SN/A    Tick latency = 0;
1829243SN/A    if (!pkt->memInhibitAsserted() && pkt->hasData()) {
1839243SN/A        // this value is not supposed to be accurate, just enough to
1849243SN/A        // keep things going, mimic a closed page
1859243SN/A        latency = tRP + tRCD + tCL;
1869243SN/A    }
1879243SN/A    return latency;
1889243SN/A}
1899243SN/A
1909243SN/Abool
19110146Sandreas.hansson@arm.comDRAMCtrl::readQueueFull(unsigned int neededEntries) const
1929243SN/A{
1939831SN/A    DPRINTF(DRAM, "Read queue limit %d, current size %d, entries needed %d\n",
1949831SN/A            readBufferSize, readQueue.size() + respQueue.size(),
1959831SN/A            neededEntries);
1969243SN/A
1979831SN/A    return
1989831SN/A        (readQueue.size() + respQueue.size() + neededEntries) > readBufferSize;
1999243SN/A}
2009243SN/A
2019243SN/Abool
20210146Sandreas.hansson@arm.comDRAMCtrl::writeQueueFull(unsigned int neededEntries) const
2039243SN/A{
2049831SN/A    DPRINTF(DRAM, "Write queue limit %d, current size %d, entries needed %d\n",
2059831SN/A            writeBufferSize, writeQueue.size(), neededEntries);
2069831SN/A    return (writeQueue.size() + neededEntries) > writeBufferSize;
2079243SN/A}
2089243SN/A
20910146Sandreas.hansson@arm.comDRAMCtrl::DRAMPacket*
21010146Sandreas.hansson@arm.comDRAMCtrl::decodeAddr(PacketPtr pkt, Addr dramPktAddr, unsigned size,
21110143SN/A                       bool isRead)
2129243SN/A{
2139669SN/A    // decode the address based on the address mapping scheme, with
21410136SN/A    // Ro, Ra, Co, Ba and Ch denoting row, rank, column, bank and
21510136SN/A    // channel, respectively
2169243SN/A    uint8_t rank;
2179967SN/A    uint8_t bank;
2189243SN/A    uint16_t row;
2199243SN/A
2209243SN/A    // truncate the address to the access granularity
2219831SN/A    Addr addr = dramPktAddr / burstSize;
2229243SN/A
2239491SN/A    // we have removed the lowest order address bits that denote the
2249831SN/A    // position within the column
22510136SN/A    if (addrMapping == Enums::RoRaBaChCo) {
2269491SN/A        // the lowest order bits denote the column to ensure that
2279491SN/A        // sequential cache lines occupy the same row
2289831SN/A        addr = addr / columnsPerRowBuffer;
2299243SN/A
2309669SN/A        // take out the channel part of the address
2319566SN/A        addr = addr / channels;
2329566SN/A
2339669SN/A        // after the channel bits, get the bank bits to interleave
2349669SN/A        // over the banks
2359669SN/A        bank = addr % banksPerRank;
2369669SN/A        addr = addr / banksPerRank;
2379669SN/A
2389669SN/A        // after the bank, we get the rank bits which thus interleaves
2399669SN/A        // over the ranks
2409669SN/A        rank = addr % ranksPerChannel;
2419669SN/A        addr = addr / ranksPerChannel;
2429669SN/A
2439669SN/A        // lastly, get the row bits
2449669SN/A        row = addr % rowsPerBank;
2459669SN/A        addr = addr / rowsPerBank;
24610136SN/A    } else if (addrMapping == Enums::RoRaBaCoCh) {
2479669SN/A        // take out the channel part of the address
2489669SN/A        addr = addr / channels;
2499669SN/A
2509669SN/A        // next, the column
2519831SN/A        addr = addr / columnsPerRowBuffer;
2529669SN/A
2539669SN/A        // after the column bits, we get the bank bits to interleave
2549491SN/A        // over the banks
2559243SN/A        bank = addr % banksPerRank;
2569243SN/A        addr = addr / banksPerRank;
2579243SN/A
2589491SN/A        // after the bank, we get the rank bits which thus interleaves
2599491SN/A        // over the ranks
2609243SN/A        rank = addr % ranksPerChannel;
2619243SN/A        addr = addr / ranksPerChannel;
2629243SN/A
2639491SN/A        // lastly, get the row bits
2649243SN/A        row = addr % rowsPerBank;
2659243SN/A        addr = addr / rowsPerBank;
26610136SN/A    } else if (addrMapping == Enums::RoCoRaBaCh) {
2679491SN/A        // optimise for closed page mode and utilise maximum
2689491SN/A        // parallelism of the DRAM (at the cost of power)
2699491SN/A
2709566SN/A        // take out the channel part of the address, not that this has
2719566SN/A        // to match with how accesses are interleaved between the
2729566SN/A        // controllers in the address mapping
2739566SN/A        addr = addr / channels;
2749566SN/A
2759491SN/A        // start with the bank bits, as this provides the maximum
2769491SN/A        // opportunity for parallelism between requests
2779243SN/A        bank = addr % banksPerRank;
2789243SN/A        addr = addr / banksPerRank;
2799243SN/A
2809491SN/A        // next get the rank bits
2819243SN/A        rank = addr % ranksPerChannel;
2829243SN/A        addr = addr / ranksPerChannel;
2839243SN/A
2849491SN/A        // next the column bits which we do not need to keep track of
2859491SN/A        // and simply skip past
2869831SN/A        addr = addr / columnsPerRowBuffer;
2879243SN/A
2889491SN/A        // lastly, get the row bits
2899243SN/A        row = addr % rowsPerBank;
2909243SN/A        addr = addr / rowsPerBank;
2919243SN/A    } else
2929243SN/A        panic("Unknown address mapping policy chosen!");
2939243SN/A
2949243SN/A    assert(rank < ranksPerChannel);
2959243SN/A    assert(bank < banksPerRank);
2969243SN/A    assert(row < rowsPerBank);
2979243SN/A
2989243SN/A    DPRINTF(DRAM, "Address: %lld Rank %d Bank %d Row %d\n",
2999831SN/A            dramPktAddr, rank, bank, row);
3009243SN/A
3019243SN/A    // create the corresponding DRAM packet with the entry time and
3029567SN/A    // ready time set to the current tick, the latter will be updated
3039567SN/A    // later
3049967SN/A    uint16_t bank_id = banksPerRank * rank + bank;
3059967SN/A    return new DRAMPacket(pkt, isRead, rank, bank, row, bank_id, dramPktAddr,
3069967SN/A                          size, banks[rank][bank]);
3079243SN/A}
3089243SN/A
3099243SN/Avoid
31010146Sandreas.hansson@arm.comDRAMCtrl::addToReadQueue(PacketPtr pkt, unsigned int pktCount)
3119243SN/A{
3129243SN/A    // only add to the read queue here. whenever the request is
3139243SN/A    // eventually done, set the readyTime, and call schedule()
3149243SN/A    assert(!pkt->isWrite());
3159243SN/A
3169831SN/A    assert(pktCount != 0);
3179831SN/A
3189831SN/A    // if the request size is larger than burst size, the pkt is split into
3199831SN/A    // multiple DRAM packets
3209831SN/A    // Note if the pkt starting address is not aligened to burst size, the
3219831SN/A    // address of first DRAM packet is kept unaliged. Subsequent DRAM packets
3229831SN/A    // are aligned to burst size boundaries. This is to ensure we accurately
3239831SN/A    // check read packets against packets in write queue.
3249243SN/A    Addr addr = pkt->getAddr();
3259831SN/A    unsigned pktsServicedByWrQ = 0;
3269831SN/A    BurstHelper* burst_helper = NULL;
3279831SN/A    for (int cnt = 0; cnt < pktCount; ++cnt) {
3289831SN/A        unsigned size = std::min((addr | (burstSize - 1)) + 1,
3299831SN/A                        pkt->getAddr() + pkt->getSize()) - addr;
3309831SN/A        readPktSize[ceilLog2(size)]++;
3319831SN/A        readBursts++;
3329243SN/A
3339831SN/A        // First check write buffer to see if the data is already at
3349831SN/A        // the controller
3359831SN/A        bool foundInWrQ = false;
3369833SN/A        for (auto i = writeQueue.begin(); i != writeQueue.end(); ++i) {
3379832SN/A            // check if the read is subsumed in the write entry we are
3389832SN/A            // looking at
3399832SN/A            if ((*i)->addr <= addr &&
3409832SN/A                (addr + size) <= ((*i)->addr + (*i)->size)) {
3419831SN/A                foundInWrQ = true;
3429831SN/A                servicedByWrQ++;
3439831SN/A                pktsServicedByWrQ++;
3449831SN/A                DPRINTF(DRAM, "Read to addr %lld with size %d serviced by "
3459831SN/A                        "write queue\n", addr, size);
3469975SN/A                bytesReadWrQ += burstSize;
3479831SN/A                break;
3489831SN/A            }
3499243SN/A        }
3509831SN/A
3519831SN/A        // If not found in the write q, make a DRAM packet and
3529831SN/A        // push it onto the read queue
3539831SN/A        if (!foundInWrQ) {
3549831SN/A
3559831SN/A            // Make the burst helper for split packets
3569831SN/A            if (pktCount > 1 && burst_helper == NULL) {
3579831SN/A                DPRINTF(DRAM, "Read to addr %lld translates to %d "
3589831SN/A                        "dram requests\n", pkt->getAddr(), pktCount);
3599831SN/A                burst_helper = new BurstHelper(pktCount);
3609831SN/A            }
3619831SN/A
3629966SN/A            DRAMPacket* dram_pkt = decodeAddr(pkt, addr, size, true);
3639831SN/A            dram_pkt->burstHelper = burst_helper;
3649831SN/A
3659831SN/A            assert(!readQueueFull(1));
3669831SN/A            rdQLenPdf[readQueue.size() + respQueue.size()]++;
3679831SN/A
3689831SN/A            DPRINTF(DRAM, "Adding to read queue\n");
3699831SN/A
3709831SN/A            readQueue.push_back(dram_pkt);
3719831SN/A
3729831SN/A            // Update stats
3739831SN/A            avgRdQLen = readQueue.size() + respQueue.size();
3749831SN/A        }
3759831SN/A
3769831SN/A        // Starting address of next dram pkt (aligend to burstSize boundary)
3779831SN/A        addr = (addr | (burstSize - 1)) + 1;
3789243SN/A    }
3799243SN/A
3809831SN/A    // If all packets are serviced by write queue, we send the repsonse back
3819831SN/A    if (pktsServicedByWrQ == pktCount) {
3829831SN/A        accessAndRespond(pkt, frontendLatency);
3839831SN/A        return;
3849831SN/A    }
3859243SN/A
3869831SN/A    // Update how many split packets are serviced by write queue
3879831SN/A    if (burst_helper != NULL)
3889831SN/A        burst_helper->burstsServiced = pktsServicedByWrQ;
3899243SN/A
39010206Sandreas.hansson@arm.com    // If we are not already scheduled to get a request out of the
39110206Sandreas.hansson@arm.com    // queue, do so now
39210206Sandreas.hansson@arm.com    if (!nextReqEvent.scheduled()) {
3939567SN/A        DPRINTF(DRAM, "Request scheduled immediately\n");
3949567SN/A        schedule(nextReqEvent, curTick());
3959243SN/A    }
3969243SN/A}
3979243SN/A
3989243SN/Avoid
39910146Sandreas.hansson@arm.comDRAMCtrl::addToWriteQueue(PacketPtr pkt, unsigned int pktCount)
4009243SN/A{
4019243SN/A    // only add to the write queue here. whenever the request is
4029243SN/A    // eventually done, set the readyTime, and call schedule()
4039243SN/A    assert(pkt->isWrite());
4049243SN/A
4059831SN/A    // if the request size is larger than burst size, the pkt is split into
4069831SN/A    // multiple DRAM packets
4079831SN/A    Addr addr = pkt->getAddr();
4089831SN/A    for (int cnt = 0; cnt < pktCount; ++cnt) {
4099831SN/A        unsigned size = std::min((addr | (burstSize - 1)) + 1,
4109831SN/A                        pkt->getAddr() + pkt->getSize()) - addr;
4119831SN/A        writePktSize[ceilLog2(size)]++;
4129831SN/A        writeBursts++;
4139243SN/A
4149832SN/A        // see if we can merge with an existing item in the write
4159838SN/A        // queue and keep track of whether we have merged or not so we
4169838SN/A        // can stop at that point and also avoid enqueueing a new
4179838SN/A        // request
4189832SN/A        bool merged = false;
4199832SN/A        auto w = writeQueue.begin();
4209243SN/A
4219832SN/A        while(!merged && w != writeQueue.end()) {
4229832SN/A            // either of the two could be first, if they are the same
4239832SN/A            // it does not matter which way we go
4249832SN/A            if ((*w)->addr >= addr) {
4259838SN/A                // the existing one starts after the new one, figure
4269838SN/A                // out where the new one ends with respect to the
4279838SN/A                // existing one
4289832SN/A                if ((addr + size) >= ((*w)->addr + (*w)->size)) {
4299832SN/A                    // check if the existing one is completely
4309832SN/A                    // subsumed in the new one
4319832SN/A                    DPRINTF(DRAM, "Merging write covering existing burst\n");
4329832SN/A                    merged = true;
4339832SN/A                    // update both the address and the size
4349832SN/A                    (*w)->addr = addr;
4359832SN/A                    (*w)->size = size;
4369832SN/A                } else if ((addr + size) >= (*w)->addr &&
4379832SN/A                           ((*w)->addr + (*w)->size - addr) <= burstSize) {
4389832SN/A                    // the new one is just before or partially
4399832SN/A                    // overlapping with the existing one, and together
4409832SN/A                    // they fit within a burst
4419832SN/A                    DPRINTF(DRAM, "Merging write before existing burst\n");
4429832SN/A                    merged = true;
4439832SN/A                    // the existing queue item needs to be adjusted with
4449832SN/A                    // respect to both address and size
44510047SN/A                    (*w)->size = (*w)->addr + (*w)->size - addr;
4469832SN/A                    (*w)->addr = addr;
4479832SN/A                }
4489832SN/A            } else {
4499838SN/A                // the new one starts after the current one, figure
4509838SN/A                // out where the existing one ends with respect to the
4519838SN/A                // new one
4529832SN/A                if (((*w)->addr + (*w)->size) >= (addr + size)) {
4539832SN/A                    // check if the new one is completely subsumed in the
4549832SN/A                    // existing one
4559832SN/A                    DPRINTF(DRAM, "Merging write into existing burst\n");
4569832SN/A                    merged = true;
4579832SN/A                    // no adjustments necessary
4589832SN/A                } else if (((*w)->addr + (*w)->size) >= addr &&
4599832SN/A                           (addr + size - (*w)->addr) <= burstSize) {
4609832SN/A                    // the existing one is just before or partially
4619832SN/A                    // overlapping with the new one, and together
4629832SN/A                    // they fit within a burst
4639832SN/A                    DPRINTF(DRAM, "Merging write after existing burst\n");
4649832SN/A                    merged = true;
4659832SN/A                    // the address is right, and only the size has
4669832SN/A                    // to be adjusted
4679832SN/A                    (*w)->size = addr + size - (*w)->addr;
4689832SN/A                }
4699832SN/A            }
4709832SN/A            ++w;
4719832SN/A        }
4729243SN/A
4739832SN/A        // if the item was not merged we need to create a new write
4749832SN/A        // and enqueue it
4759832SN/A        if (!merged) {
4769966SN/A            DRAMPacket* dram_pkt = decodeAddr(pkt, addr, size, false);
4779243SN/A
4789832SN/A            assert(writeQueue.size() < writeBufferSize);
4799832SN/A            wrQLenPdf[writeQueue.size()]++;
4809243SN/A
4819832SN/A            DPRINTF(DRAM, "Adding to write queue\n");
4829831SN/A
4839832SN/A            writeQueue.push_back(dram_pkt);
4849831SN/A
4859832SN/A            // Update stats
4869832SN/A            avgWrQLen = writeQueue.size();
4879977SN/A        } else {
4889977SN/A            // keep track of the fact that this burst effectively
4899977SN/A            // disappeared as it was merged with an existing one
4909977SN/A            mergedWrBursts++;
4919832SN/A        }
4929832SN/A
4939831SN/A        // Starting address of next dram pkt (aligend to burstSize boundary)
4949831SN/A        addr = (addr | (burstSize - 1)) + 1;
4959831SN/A    }
4969243SN/A
4979243SN/A    // we do not wait for the writes to be send to the actual memory,
4989243SN/A    // but instead take responsibility for the consistency here and
4999243SN/A    // snoop the write queue for any upcoming reads
5009831SN/A    // @todo, if a pkt size is larger than burst size, we might need a
5019831SN/A    // different front end latency
5029726SN/A    accessAndRespond(pkt, frontendLatency);
5039243SN/A
50410206Sandreas.hansson@arm.com    // If we are not already scheduled to get a request out of the
50510206Sandreas.hansson@arm.com    // queue, do so now
50610206Sandreas.hansson@arm.com    if (!nextReqEvent.scheduled()) {
50710206Sandreas.hansson@arm.com        DPRINTF(DRAM, "Request scheduled immediately\n");
50810206Sandreas.hansson@arm.com        schedule(nextReqEvent, curTick());
5099243SN/A    }
5109243SN/A}
5119243SN/A
5129243SN/Avoid
51310146Sandreas.hansson@arm.comDRAMCtrl::printQs() const {
5149243SN/A    DPRINTF(DRAM, "===READ QUEUE===\n\n");
5159833SN/A    for (auto i = readQueue.begin() ;  i != readQueue.end() ; ++i) {
5169243SN/A        DPRINTF(DRAM, "Read %lu\n", (*i)->addr);
5179243SN/A    }
5189243SN/A    DPRINTF(DRAM, "\n===RESP QUEUE===\n\n");
5199833SN/A    for (auto i = respQueue.begin() ;  i != respQueue.end() ; ++i) {
5209243SN/A        DPRINTF(DRAM, "Response %lu\n", (*i)->addr);
5219243SN/A    }
5229243SN/A    DPRINTF(DRAM, "\n===WRITE QUEUE===\n\n");
5239833SN/A    for (auto i = writeQueue.begin() ;  i != writeQueue.end() ; ++i) {
5249243SN/A        DPRINTF(DRAM, "Write %lu\n", (*i)->addr);
5259243SN/A    }
5269243SN/A}
5279243SN/A
5289243SN/Abool
52910146Sandreas.hansson@arm.comDRAMCtrl::recvTimingReq(PacketPtr pkt)
5309243SN/A{
5319349SN/A    /// @todo temporary hack to deal with memory corruption issues until
5329349SN/A    /// 4-phase transactions are complete
5339349SN/A    for (int x = 0; x < pendingDelete.size(); x++)
5349349SN/A        delete pendingDelete[x];
5359349SN/A    pendingDelete.clear();
5369349SN/A
5379243SN/A    // This is where we enter from the outside world
5389567SN/A    DPRINTF(DRAM, "recvTimingReq: request %s addr %lld size %d\n",
5399831SN/A            pkt->cmdString(), pkt->getAddr(), pkt->getSize());
5409243SN/A
5419567SN/A    // simply drop inhibited packets for now
5429567SN/A    if (pkt->memInhibitAsserted()) {
54310143SN/A        DPRINTF(DRAM, "Inhibited packet -- Dropping it now\n");
5449567SN/A        pendingDelete.push_back(pkt);
5459567SN/A        return true;
5469567SN/A    }
5479243SN/A
5489243SN/A    // Calc avg gap between requests
5499243SN/A    if (prevArrival != 0) {
5509243SN/A        totGap += curTick() - prevArrival;
5519243SN/A    }
5529243SN/A    prevArrival = curTick();
5539243SN/A
5549831SN/A
5559831SN/A    // Find out how many dram packets a pkt translates to
5569831SN/A    // If the burst size is equal or larger than the pkt size, then a pkt
5579831SN/A    // translates to only one dram packet. Otherwise, a pkt translates to
5589831SN/A    // multiple dram packets
5599243SN/A    unsigned size = pkt->getSize();
5609831SN/A    unsigned offset = pkt->getAddr() & (burstSize - 1);
5619831SN/A    unsigned int dram_pkt_count = divCeil(offset + size, burstSize);
5629243SN/A
5639243SN/A    // check local buffers and do not accept if full
5649243SN/A    if (pkt->isRead()) {
5659567SN/A        assert(size != 0);
5669831SN/A        if (readQueueFull(dram_pkt_count)) {
5679567SN/A            DPRINTF(DRAM, "Read queue full, not accepting\n");
5689243SN/A            // remember that we have to retry this port
5699243SN/A            retryRdReq = true;
5709243SN/A            numRdRetry++;
5719243SN/A            return false;
5729243SN/A        } else {
5739831SN/A            addToReadQueue(pkt, dram_pkt_count);
5749243SN/A            readReqs++;
5759977SN/A            bytesReadSys += size;
5769243SN/A        }
5779243SN/A    } else if (pkt->isWrite()) {
5789567SN/A        assert(size != 0);
5799831SN/A        if (writeQueueFull(dram_pkt_count)) {
5809567SN/A            DPRINTF(DRAM, "Write queue full, not accepting\n");
5819243SN/A            // remember that we have to retry this port
5829243SN/A            retryWrReq = true;
5839243SN/A            numWrRetry++;
5849243SN/A            return false;
5859243SN/A        } else {
5869831SN/A            addToWriteQueue(pkt, dram_pkt_count);
5879243SN/A            writeReqs++;
5889977SN/A            bytesWrittenSys += size;
5899243SN/A        }
5909243SN/A    } else {
5919243SN/A        DPRINTF(DRAM,"Neither read nor write, ignore timing\n");
5929243SN/A        neitherReadNorWrite++;
5939726SN/A        accessAndRespond(pkt, 1);
5949243SN/A    }
5959243SN/A
5969243SN/A    return true;
5979243SN/A}
5989243SN/A
5999243SN/Avoid
60010146Sandreas.hansson@arm.comDRAMCtrl::processRespondEvent()
6019243SN/A{
6029243SN/A    DPRINTF(DRAM,
6039243SN/A            "processRespondEvent(): Some req has reached its readyTime\n");
6049243SN/A
6059831SN/A    DRAMPacket* dram_pkt = respQueue.front();
6069243SN/A
6079831SN/A    if (dram_pkt->burstHelper) {
6089831SN/A        // it is a split packet
6099831SN/A        dram_pkt->burstHelper->burstsServiced++;
6109831SN/A        if (dram_pkt->burstHelper->burstsServiced ==
61110143SN/A            dram_pkt->burstHelper->burstCount) {
6129831SN/A            // we have now serviced all children packets of a system packet
6139831SN/A            // so we can now respond to the requester
6149831SN/A            // @todo we probably want to have a different front end and back
6159831SN/A            // end latency for split packets
6169831SN/A            accessAndRespond(dram_pkt->pkt, frontendLatency + backendLatency);
6179831SN/A            delete dram_pkt->burstHelper;
6189831SN/A            dram_pkt->burstHelper = NULL;
6199831SN/A        }
6209831SN/A    } else {
6219831SN/A        // it is not a split packet
6229831SN/A        accessAndRespond(dram_pkt->pkt, frontendLatency + backendLatency);
6239831SN/A    }
6249243SN/A
6259831SN/A    delete respQueue.front();
6269831SN/A    respQueue.pop_front();
6279243SN/A
6289831SN/A    if (!respQueue.empty()) {
6299831SN/A        assert(respQueue.front()->readyTime >= curTick());
6309831SN/A        assert(!respondEvent.scheduled());
6319831SN/A        schedule(respondEvent, respQueue.front()->readyTime);
6329831SN/A    } else {
6339831SN/A        // if there is nothing left in any queue, signal a drain
6349831SN/A        if (writeQueue.empty() && readQueue.empty() &&
6359831SN/A            drainManager) {
6369831SN/A            drainManager->signalDrainDone();
6379831SN/A            drainManager = NULL;
6389831SN/A        }
6399831SN/A    }
6409567SN/A
6419831SN/A    // We have made a location in the queue available at this point,
6429831SN/A    // so if there is a read that was forced to wait, retry now
6439831SN/A    if (retryRdReq) {
6449831SN/A        retryRdReq = false;
6459831SN/A        port.sendRetry();
6469831SN/A    }
6479243SN/A}
6489243SN/A
6499243SN/Avoid
65010206Sandreas.hansson@arm.comDRAMCtrl::chooseNext(std::deque<DRAMPacket*>& queue)
6519243SN/A{
65210206Sandreas.hansson@arm.com    // This method does the arbitration between requests. The chosen
65310206Sandreas.hansson@arm.com    // packet is simply moved to the head of the queue. The other
65410206Sandreas.hansson@arm.com    // methods know that this is the place to look. For example, with
65510206Sandreas.hansson@arm.com    // FCFS, this method does nothing
65610206Sandreas.hansson@arm.com    assert(!queue.empty());
6579243SN/A
65810206Sandreas.hansson@arm.com    if (queue.size() == 1) {
65910206Sandreas.hansson@arm.com        DPRINTF(DRAM, "Single request, nothing to do\n");
6609243SN/A        return;
6619243SN/A    }
6629243SN/A
6639243SN/A    if (memSchedPolicy == Enums::fcfs) {
6649243SN/A        // Do nothing, since the correct request is already head
6659243SN/A    } else if (memSchedPolicy == Enums::frfcfs) {
66610206Sandreas.hansson@arm.com        reorderQueue(queue);
6679243SN/A    } else
6689243SN/A        panic("No scheduling policy chosen\n");
6699243SN/A}
6709243SN/A
6719243SN/Avoid
67210146Sandreas.hansson@arm.comDRAMCtrl::reorderQueue(std::deque<DRAMPacket*>& queue)
6739974SN/A{
6749974SN/A    // Only determine this when needed
6759974SN/A    uint64_t earliest_banks = 0;
6769974SN/A
6779974SN/A    // Search for row hits first, if no row hit is found then schedule the
6789974SN/A    // packet to one of the earliest banks available
6799974SN/A    bool found_earliest_pkt = false;
6809974SN/A    auto selected_pkt_it = queue.begin();
6819974SN/A
6829974SN/A    for (auto i = queue.begin(); i != queue.end() ; ++i) {
6839974SN/A        DRAMPacket* dram_pkt = *i;
6849974SN/A        const Bank& bank = dram_pkt->bankRef;
6859974SN/A        // Check if it is a row hit
6869974SN/A        if (bank.openRow == dram_pkt->row) {
68710211Sandreas.hansson@arm.com            // FCFS within the hits
6889974SN/A            DPRINTF(DRAM, "Row buffer hit\n");
6899974SN/A            selected_pkt_it = i;
6909974SN/A            break;
6919974SN/A        } else if (!found_earliest_pkt) {
6929974SN/A            // No row hit, go for first ready
6939974SN/A            if (earliest_banks == 0)
69410211Sandreas.hansson@arm.com                earliest_banks = minBankActAt(queue);
69510211Sandreas.hansson@arm.com
69610211Sandreas.hansson@arm.com            // simplistic approximation of when the bank can issue an
69710211Sandreas.hansson@arm.com            // activate, this is calculated in minBankActAt and could
69810211Sandreas.hansson@arm.com            // be cached
69910211Sandreas.hansson@arm.com            Tick act_at = bank.openRow == Bank::NO_ROW ?
70010211Sandreas.hansson@arm.com                bank.actAllowedAt :
70110211Sandreas.hansson@arm.com                std::max(bank.preAllowedAt, curTick()) + tRP;
7029974SN/A
7039974SN/A            // Bank is ready or is the first available bank
70410211Sandreas.hansson@arm.com            if (act_at <= curTick() ||
7059974SN/A                bits(earliest_banks, dram_pkt->bankId, dram_pkt->bankId)) {
7069974SN/A                // Remember the packet to be scheduled to one of the earliest
70710211Sandreas.hansson@arm.com                // banks available, FCFS amongst the earliest banks
7089974SN/A                selected_pkt_it = i;
7099974SN/A                found_earliest_pkt = true;
7109974SN/A            }
7119974SN/A        }
7129974SN/A    }
7139974SN/A
7149974SN/A    DRAMPacket* selected_pkt = *selected_pkt_it;
7159974SN/A    queue.erase(selected_pkt_it);
7169974SN/A    queue.push_front(selected_pkt);
7179974SN/A}
7189974SN/A
7199974SN/Avoid
72010146Sandreas.hansson@arm.comDRAMCtrl::accessAndRespond(PacketPtr pkt, Tick static_latency)
7219243SN/A{
7229243SN/A    DPRINTF(DRAM, "Responding to Address %lld.. ",pkt->getAddr());
7239243SN/A
7249243SN/A    bool needsResponse = pkt->needsResponse();
7259243SN/A    // do the actual memory access which also turns the packet into a
7269243SN/A    // response
7279243SN/A    access(pkt);
7289243SN/A
7299243SN/A    // turn packet around to go back to requester if response expected
7309243SN/A    if (needsResponse) {
7319243SN/A        // access already turned the packet into a response
7329243SN/A        assert(pkt->isResponse());
7339243SN/A
7349549SN/A        // @todo someone should pay for this
7359549SN/A        pkt->busFirstWordDelay = pkt->busLastWordDelay = 0;
7369549SN/A
7379726SN/A        // queue the packet in the response queue to be sent out after
7389726SN/A        // the static latency has passed
7399726SN/A        port.schedTimingResp(pkt, curTick() + static_latency);
7409243SN/A    } else {
7419587SN/A        // @todo the packet is going to be deleted, and the DRAMPacket
7429587SN/A        // is still having a pointer to it
7439587SN/A        pendingDelete.push_back(pkt);
7449243SN/A    }
7459243SN/A
7469243SN/A    DPRINTF(DRAM, "Done\n");
7479243SN/A
7489243SN/A    return;
7499243SN/A}
7509243SN/A
7519243SN/Avoid
75210210Sandreas.hansson@arm.comDRAMCtrl::activateBank(Tick act_tick, uint8_t rank, uint8_t bank,
75310210Sandreas.hansson@arm.com                       uint16_t row, Bank& bank_ref)
7549488SN/A{
7559969SN/A    assert(0 <= rank && rank < ranksPerChannel);
7569969SN/A    assert(actTicks[rank].size() == activationLimit);
7579488SN/A
7589488SN/A    DPRINTF(DRAM, "Activate at tick %d\n", act_tick);
7599488SN/A
76010207Sandreas.hansson@arm.com    // update the open row
76110210Sandreas.hansson@arm.com    assert(bank_ref.openRow == Bank::NO_ROW);
76210210Sandreas.hansson@arm.com    bank_ref.openRow = row;
76310207Sandreas.hansson@arm.com
76410207Sandreas.hansson@arm.com    // start counting anew, this covers both the case when we
76510207Sandreas.hansson@arm.com    // auto-precharged, and when this access is forced to
76610207Sandreas.hansson@arm.com    // precharge
76710210Sandreas.hansson@arm.com    bank_ref.bytesAccessed = 0;
76810210Sandreas.hansson@arm.com    bank_ref.rowAccesses = 0;
76910207Sandreas.hansson@arm.com
77010207Sandreas.hansson@arm.com    ++numBanksActive;
77110207Sandreas.hansson@arm.com    assert(numBanksActive <= banksPerRank * ranksPerChannel);
77210207Sandreas.hansson@arm.com
77310207Sandreas.hansson@arm.com    DPRINTF(DRAM, "Activate bank at tick %lld, now got %d active\n",
77410207Sandreas.hansson@arm.com            act_tick, numBanksActive);
7759975SN/A
77610211Sandreas.hansson@arm.com    // The next access has to respect tRAS for this bank
77710211Sandreas.hansson@arm.com    bank_ref.preAllowedAt = act_tick + tRAS;
77810211Sandreas.hansson@arm.com
77910211Sandreas.hansson@arm.com    // Respect the row-to-column command delay
78010211Sandreas.hansson@arm.com    bank_ref.colAllowedAt = act_tick + tRCD;
78110211Sandreas.hansson@arm.com
7829971SN/A    // start by enforcing tRRD
7839971SN/A    for(int i = 0; i < banksPerRank; i++) {
78410210Sandreas.hansson@arm.com        // next activate to any bank in this rank must not happen
78510210Sandreas.hansson@arm.com        // before tRRD
78610210Sandreas.hansson@arm.com        banks[rank][i].actAllowedAt = std::max(act_tick + tRRD,
78710210Sandreas.hansson@arm.com                                               banks[rank][i].actAllowedAt);
7889971SN/A    }
78910208Sandreas.hansson@arm.com
7909971SN/A    // next, we deal with tXAW, if the activation limit is disabled
7919971SN/A    // then we are done
7929969SN/A    if (actTicks[rank].empty())
7939824SN/A        return;
7949824SN/A
7959488SN/A    // sanity check
7969969SN/A    if (actTicks[rank].back() && (act_tick - actTicks[rank].back()) < tXAW) {
79710210Sandreas.hansson@arm.com        panic("Got %d activates in window %d (%llu - %llu) which is smaller "
79810210Sandreas.hansson@arm.com              "than %llu\n", activationLimit, act_tick - actTicks[rank].back(),
79910210Sandreas.hansson@arm.com              act_tick, actTicks[rank].back(), tXAW);
8009488SN/A    }
8019488SN/A
8029488SN/A    // shift the times used for the book keeping, the last element
8039488SN/A    // (highest index) is the oldest one and hence the lowest value
8049969SN/A    actTicks[rank].pop_back();
8059488SN/A
8069488SN/A    // record an new activation (in the future)
8079969SN/A    actTicks[rank].push_front(act_tick);
8089488SN/A
8099488SN/A    // cannot activate more than X times in time window tXAW, push the
8109488SN/A    // next one (the X + 1'st activate) to be tXAW away from the
8119488SN/A    // oldest in our window of X
8129969SN/A    if (actTicks[rank].back() && (act_tick - actTicks[rank].back()) < tXAW) {
8139488SN/A        DPRINTF(DRAM, "Enforcing tXAW with X = %d, next activate no earlier "
81410210Sandreas.hansson@arm.com                "than %llu\n", activationLimit, actTicks[rank].back() + tXAW);
8159488SN/A            for(int j = 0; j < banksPerRank; j++)
8169488SN/A                // next activate must not happen before end of window
81710210Sandreas.hansson@arm.com                banks[rank][j].actAllowedAt =
81810210Sandreas.hansson@arm.com                    std::max(actTicks[rank].back() + tXAW,
81910210Sandreas.hansson@arm.com                             banks[rank][j].actAllowedAt);
8209488SN/A    }
82110208Sandreas.hansson@arm.com
82210208Sandreas.hansson@arm.com    // at the point when this activate takes place, make sure we
82310208Sandreas.hansson@arm.com    // transition to the active power state
82410208Sandreas.hansson@arm.com    if (!activateEvent.scheduled())
82510208Sandreas.hansson@arm.com        schedule(activateEvent, act_tick);
82610208Sandreas.hansson@arm.com    else if (activateEvent.when() > act_tick)
82710208Sandreas.hansson@arm.com        // move it sooner in time
82810208Sandreas.hansson@arm.com        reschedule(activateEvent, act_tick);
82910208Sandreas.hansson@arm.com}
83010208Sandreas.hansson@arm.com
83110208Sandreas.hansson@arm.comvoid
83210208Sandreas.hansson@arm.comDRAMCtrl::processActivateEvent()
83310208Sandreas.hansson@arm.com{
83410208Sandreas.hansson@arm.com    // we should transition to the active state as soon as any bank is active
83510208Sandreas.hansson@arm.com    if (pwrState != PWR_ACT)
83610208Sandreas.hansson@arm.com        // note that at this point numBanksActive could be back at
83710208Sandreas.hansson@arm.com        // zero again due to a precharge scheduled in the future
83810208Sandreas.hansson@arm.com        schedulePowerEvent(PWR_ACT, curTick());
8399488SN/A}
8409488SN/A
8419488SN/Avoid
84210211Sandreas.hansson@arm.comDRAMCtrl::prechargeBank(Bank& bank, Tick pre_at)
84310207Sandreas.hansson@arm.com{
84410207Sandreas.hansson@arm.com    // make sure the bank has an open row
84510207Sandreas.hansson@arm.com    assert(bank.openRow != Bank::NO_ROW);
84610207Sandreas.hansson@arm.com
84710207Sandreas.hansson@arm.com    // sample the bytes per activate here since we are closing
84810207Sandreas.hansson@arm.com    // the page
84910207Sandreas.hansson@arm.com    bytesPerActivate.sample(bank.bytesAccessed);
85010207Sandreas.hansson@arm.com
85110207Sandreas.hansson@arm.com    bank.openRow = Bank::NO_ROW;
85210207Sandreas.hansson@arm.com
85310214Sandreas.hansson@arm.com    // no precharge allowed before this one
85410214Sandreas.hansson@arm.com    bank.preAllowedAt = pre_at;
85510214Sandreas.hansson@arm.com
85610211Sandreas.hansson@arm.com    Tick pre_done_at = pre_at + tRP;
85710211Sandreas.hansson@arm.com
85810211Sandreas.hansson@arm.com    bank.actAllowedAt = std::max(bank.actAllowedAt, pre_done_at);
85910207Sandreas.hansson@arm.com
86010207Sandreas.hansson@arm.com    assert(numBanksActive != 0);
86110207Sandreas.hansson@arm.com    --numBanksActive;
86210207Sandreas.hansson@arm.com
86310211Sandreas.hansson@arm.com    DPRINTF(DRAM, "Precharging bank at tick %lld, now got %d active\n",
86410211Sandreas.hansson@arm.com            pre_at, numBanksActive);
86510207Sandreas.hansson@arm.com
86610208Sandreas.hansson@arm.com    // if we look at the current number of active banks we might be
86710208Sandreas.hansson@arm.com    // tempted to think the DRAM is now idle, however this can be
86810208Sandreas.hansson@arm.com    // undone by an activate that is scheduled to happen before we
86910208Sandreas.hansson@arm.com    // would have reached the idle state, so schedule an event and
87010208Sandreas.hansson@arm.com    // rather check once we actually make it to the point in time when
87110208Sandreas.hansson@arm.com    // the (last) precharge takes place
87210208Sandreas.hansson@arm.com    if (!prechargeEvent.scheduled())
87310211Sandreas.hansson@arm.com        schedule(prechargeEvent, pre_done_at);
87410211Sandreas.hansson@arm.com    else if (prechargeEvent.when() < pre_done_at)
87510211Sandreas.hansson@arm.com        reschedule(prechargeEvent, pre_done_at);
87610208Sandreas.hansson@arm.com}
87710208Sandreas.hansson@arm.com
87810208Sandreas.hansson@arm.comvoid
87910208Sandreas.hansson@arm.comDRAMCtrl::processPrechargeEvent()
88010208Sandreas.hansson@arm.com{
88110207Sandreas.hansson@arm.com    // if we reached zero, then special conditions apply as we track
88210207Sandreas.hansson@arm.com    // if all banks are precharged for the power models
88310207Sandreas.hansson@arm.com    if (numBanksActive == 0) {
88410208Sandreas.hansson@arm.com        // we should transition to the idle state when the last bank
88510208Sandreas.hansson@arm.com        // is precharged
88610208Sandreas.hansson@arm.com        schedulePowerEvent(PWR_IDLE, curTick());
88710207Sandreas.hansson@arm.com    }
88810207Sandreas.hansson@arm.com}
88910207Sandreas.hansson@arm.com
89010207Sandreas.hansson@arm.comvoid
89110146Sandreas.hansson@arm.comDRAMCtrl::doDRAMAccess(DRAMPacket* dram_pkt)
8929243SN/A{
8939243SN/A    DPRINTF(DRAM, "Timing access to addr %lld, rank/bank/row %d %d %d\n",
8949243SN/A            dram_pkt->addr, dram_pkt->rank, dram_pkt->bank, dram_pkt->row);
8959243SN/A
89610211Sandreas.hansson@arm.com    // get the bank
8979967SN/A    Bank& bank = dram_pkt->bankRef;
8989243SN/A
89910211Sandreas.hansson@arm.com    // for the state we need to track if it is a row hit or not
90010211Sandreas.hansson@arm.com    bool row_hit = true;
90110211Sandreas.hansson@arm.com
90210211Sandreas.hansson@arm.com    // respect any constraints on the command (e.g. tRCD or tCCD)
90310211Sandreas.hansson@arm.com    Tick cmd_at = std::max(bank.colAllowedAt, curTick());
90410211Sandreas.hansson@arm.com
90510211Sandreas.hansson@arm.com    // Determine the access latency and update the bank state
90610211Sandreas.hansson@arm.com    if (bank.openRow == dram_pkt->row) {
90710211Sandreas.hansson@arm.com        // nothing to do
90810209Sandreas.hansson@arm.com    } else {
90910211Sandreas.hansson@arm.com        row_hit = false;
91010211Sandreas.hansson@arm.com
91110209Sandreas.hansson@arm.com        // If there is a page open, precharge it.
91210209Sandreas.hansson@arm.com        if (bank.openRow != Bank::NO_ROW) {
91310211Sandreas.hansson@arm.com            prechargeBank(bank, std::max(bank.preAllowedAt, curTick()));
9149488SN/A        }
9159973SN/A
91610211Sandreas.hansson@arm.com        // next we need to account for the delay in activating the
91710211Sandreas.hansson@arm.com        // page
91810211Sandreas.hansson@arm.com        Tick act_tick = std::max(bank.actAllowedAt, curTick());
9199973SN/A
92010210Sandreas.hansson@arm.com        // Record the activation and deal with all the global timing
92110210Sandreas.hansson@arm.com        // constraints caused be a new activation (tRRD and tXAW)
92210211Sandreas.hansson@arm.com        activateBank(act_tick, dram_pkt->rank, dram_pkt->bank,
92310210Sandreas.hansson@arm.com                     dram_pkt->row, bank);
92410210Sandreas.hansson@arm.com
92510211Sandreas.hansson@arm.com        // issue the command as early as possible
92610211Sandreas.hansson@arm.com        cmd_at = bank.colAllowedAt;
92710209Sandreas.hansson@arm.com    }
92810209Sandreas.hansson@arm.com
92910211Sandreas.hansson@arm.com    // we need to wait until the bus is available before we can issue
93010211Sandreas.hansson@arm.com    // the command
93110211Sandreas.hansson@arm.com    cmd_at = std::max(cmd_at, busBusyUntil - tCL);
93210211Sandreas.hansson@arm.com
93310211Sandreas.hansson@arm.com    // update the packet ready time
93410211Sandreas.hansson@arm.com    dram_pkt->readyTime = cmd_at + tCL + tBURST;
93510211Sandreas.hansson@arm.com
93610211Sandreas.hansson@arm.com    // only one burst can use the bus at any one point in time
93710211Sandreas.hansson@arm.com    assert(dram_pkt->readyTime - busBusyUntil >= tBURST);
93810211Sandreas.hansson@arm.com
93910211Sandreas.hansson@arm.com    // not strictly necessary, but update the time for the next
94010211Sandreas.hansson@arm.com    // read/write (add a max with tCCD here)
94110211Sandreas.hansson@arm.com    bank.colAllowedAt = cmd_at + tBURST;
94210211Sandreas.hansson@arm.com
94310212Sandreas.hansson@arm.com    // If this is a write, we also need to respect the write recovery
94410212Sandreas.hansson@arm.com    // time before a precharge, in the case of a read, respect the
94510212Sandreas.hansson@arm.com    // read to precharge constraint
94610212Sandreas.hansson@arm.com    bank.preAllowedAt = std::max(bank.preAllowedAt,
94710212Sandreas.hansson@arm.com                                 dram_pkt->isRead ? cmd_at + tRTP :
94810212Sandreas.hansson@arm.com                                 dram_pkt->readyTime + tWR);
94910210Sandreas.hansson@arm.com
95010209Sandreas.hansson@arm.com    // increment the bytes accessed and the accesses per row
95110209Sandreas.hansson@arm.com    bank.bytesAccessed += burstSize;
95210209Sandreas.hansson@arm.com    ++bank.rowAccesses;
95310209Sandreas.hansson@arm.com
95410209Sandreas.hansson@arm.com    // if we reached the max, then issue with an auto-precharge
95510209Sandreas.hansson@arm.com    bool auto_precharge = pageMgmt == Enums::close ||
95610209Sandreas.hansson@arm.com        bank.rowAccesses == maxAccessesPerRow;
95710209Sandreas.hansson@arm.com
95810209Sandreas.hansson@arm.com    // if we did not hit the limit, we might still want to
95910209Sandreas.hansson@arm.com    // auto-precharge
96010209Sandreas.hansson@arm.com    if (!auto_precharge &&
96110209Sandreas.hansson@arm.com        (pageMgmt == Enums::open_adaptive ||
96210209Sandreas.hansson@arm.com         pageMgmt == Enums::close_adaptive)) {
96310209Sandreas.hansson@arm.com        // a twist on the open and close page policies:
96410209Sandreas.hansson@arm.com        // 1) open_adaptive page policy does not blindly keep the
96510209Sandreas.hansson@arm.com        // page open, but close it if there are no row hits, and there
96610209Sandreas.hansson@arm.com        // are bank conflicts in the queue
96710209Sandreas.hansson@arm.com        // 2) close_adaptive page policy does not blindly close the
96810209Sandreas.hansson@arm.com        // page, but closes it only if there are no row hits in the queue.
96910209Sandreas.hansson@arm.com        // In this case, only force an auto precharge when there
97010209Sandreas.hansson@arm.com        // are no same page hits in the queue
97110209Sandreas.hansson@arm.com        bool got_more_hits = false;
97210209Sandreas.hansson@arm.com        bool got_bank_conflict = false;
97310209Sandreas.hansson@arm.com
97410209Sandreas.hansson@arm.com        // either look at the read queue or write queue
97510209Sandreas.hansson@arm.com        const deque<DRAMPacket*>& queue = dram_pkt->isRead ? readQueue :
97610209Sandreas.hansson@arm.com            writeQueue;
97710209Sandreas.hansson@arm.com        auto p = queue.begin();
97810209Sandreas.hansson@arm.com        // make sure we are not considering the packet that we are
97910209Sandreas.hansson@arm.com        // currently dealing with (which is the head of the queue)
98010209Sandreas.hansson@arm.com        ++p;
98110209Sandreas.hansson@arm.com
98210209Sandreas.hansson@arm.com        // keep on looking until we have found required condition or
98310209Sandreas.hansson@arm.com        // reached the end
98410209Sandreas.hansson@arm.com        while (!(got_more_hits &&
98510209Sandreas.hansson@arm.com                 (got_bank_conflict || pageMgmt == Enums::close_adaptive)) &&
98610209Sandreas.hansson@arm.com               p != queue.end()) {
98710209Sandreas.hansson@arm.com            bool same_rank_bank = (dram_pkt->rank == (*p)->rank) &&
98810209Sandreas.hansson@arm.com                (dram_pkt->bank == (*p)->bank);
98910209Sandreas.hansson@arm.com            bool same_row = dram_pkt->row == (*p)->row;
99010209Sandreas.hansson@arm.com            got_more_hits |= same_rank_bank && same_row;
99110209Sandreas.hansson@arm.com            got_bank_conflict |= same_rank_bank && !same_row;
9929973SN/A            ++p;
99310141SN/A        }
99410141SN/A
99510209Sandreas.hansson@arm.com        // auto pre-charge when either
99610209Sandreas.hansson@arm.com        // 1) open_adaptive policy, we have not got any more hits, and
99710209Sandreas.hansson@arm.com        //    have a bank conflict
99810209Sandreas.hansson@arm.com        // 2) close_adaptive policy and we have not got any more hits
99910209Sandreas.hansson@arm.com        auto_precharge = !got_more_hits &&
100010209Sandreas.hansson@arm.com            (got_bank_conflict || pageMgmt == Enums::close_adaptive);
100110209Sandreas.hansson@arm.com    }
100210142SN/A
100310209Sandreas.hansson@arm.com    // if this access should use auto-precharge, then we are
100410209Sandreas.hansson@arm.com    // closing the row
100510209Sandreas.hansson@arm.com    if (auto_precharge) {
100610211Sandreas.hansson@arm.com        prechargeBank(bank, std::max(curTick(), bank.preAllowedAt));
10079973SN/A
100810209Sandreas.hansson@arm.com        DPRINTF(DRAM, "Auto-precharged bank: %d\n", dram_pkt->bankId);
100910209Sandreas.hansson@arm.com    }
10109963SN/A
10119243SN/A    // Update bus state
10129243SN/A    busBusyUntil = dram_pkt->readyTime;
10139243SN/A
101410211Sandreas.hansson@arm.com    DPRINTF(DRAM, "Access to %lld, ready at %lld bus busy until %lld.\n",
101510211Sandreas.hansson@arm.com            dram_pkt->addr, dram_pkt->readyTime, busBusyUntil);
10169243SN/A
101710206Sandreas.hansson@arm.com    // Update the minimum timing between the requests, this is a
101810206Sandreas.hansson@arm.com    // conservative estimate of when we have to schedule the next
101910206Sandreas.hansson@arm.com    // request to not introduce any unecessary bubbles. In most cases
102010206Sandreas.hansson@arm.com    // we will wake up sooner than we have to.
102110206Sandreas.hansson@arm.com    nextReqTime = busBusyUntil - (tRP + tRCD + tCL);
10229972SN/A
102310206Sandreas.hansson@arm.com    // Update the stats and schedule the next request
10249977SN/A    if (dram_pkt->isRead) {
102510147Sandreas.hansson@arm.com        ++readsThisTime;
102610211Sandreas.hansson@arm.com        if (row_hit)
10279977SN/A            readRowHits++;
10289977SN/A        bytesReadDRAM += burstSize;
10299977SN/A        perBankRdBursts[dram_pkt->bankId]++;
103010206Sandreas.hansson@arm.com
103110206Sandreas.hansson@arm.com        // Update latency stats
103210206Sandreas.hansson@arm.com        totMemAccLat += dram_pkt->readyTime - dram_pkt->entryTime;
103310206Sandreas.hansson@arm.com        totBusLat += tBURST;
103410211Sandreas.hansson@arm.com        totQLat += cmd_at - dram_pkt->entryTime;
10359977SN/A    } else {
103610147Sandreas.hansson@arm.com        ++writesThisTime;
103710211Sandreas.hansson@arm.com        if (row_hit)
10389977SN/A            writeRowHits++;
10399977SN/A        bytesWritten += burstSize;
10409977SN/A        perBankWrBursts[dram_pkt->bankId]++;
10419243SN/A    }
10429243SN/A}
10439243SN/A
10449243SN/Avoid
104510146Sandreas.hansson@arm.comDRAMCtrl::moveToRespQ()
10469243SN/A{
10479243SN/A    // Remove from read queue
10489567SN/A    DRAMPacket* dram_pkt = readQueue.front();
10499567SN/A    readQueue.pop_front();
10509243SN/A
10519832SN/A    // sanity check
10529832SN/A    assert(dram_pkt->size <= burstSize);
10539832SN/A
10549243SN/A    // Insert into response queue sorted by readyTime
10559243SN/A    // It will be sent back to the requestor at its
10569243SN/A    // readyTime
10579567SN/A    if (respQueue.empty()) {
10589567SN/A        respQueue.push_front(dram_pkt);
10599243SN/A        assert(!respondEvent.scheduled());
10609243SN/A        assert(dram_pkt->readyTime >= curTick());
10619567SN/A        schedule(respondEvent, dram_pkt->readyTime);
10629243SN/A    } else {
10639243SN/A        bool done = false;
10649833SN/A        auto i = respQueue.begin();
10659567SN/A        while (!done && i != respQueue.end()) {
10669243SN/A            if ((*i)->readyTime > dram_pkt->readyTime) {
10679567SN/A                respQueue.insert(i, dram_pkt);
10689243SN/A                done = true;
10699243SN/A            }
10709243SN/A            ++i;
10719243SN/A        }
10729243SN/A
10739243SN/A        if (!done)
10749567SN/A            respQueue.push_back(dram_pkt);
10759243SN/A
10769243SN/A        assert(respondEvent.scheduled());
10779243SN/A
10789567SN/A        if (respQueue.front()->readyTime < respondEvent.when()) {
10799567SN/A            assert(respQueue.front()->readyTime >= curTick());
10809567SN/A            reschedule(respondEvent, respQueue.front()->readyTime);
10819243SN/A        }
10829243SN/A    }
10839243SN/A}
10849243SN/A
10859243SN/Avoid
108610206Sandreas.hansson@arm.comDRAMCtrl::processNextReqEvent()
10879243SN/A{
108810206Sandreas.hansson@arm.com    if (busState == READ_TO_WRITE) {
108910206Sandreas.hansson@arm.com        DPRINTF(DRAM, "Switching to writes after %d reads with %d reads "
109010206Sandreas.hansson@arm.com                "waiting\n", readsThisTime, readQueue.size());
10919243SN/A
109210206Sandreas.hansson@arm.com        // sample and reset the read-related stats as we are now
109310206Sandreas.hansson@arm.com        // transitioning to writes, and all reads are done
109410206Sandreas.hansson@arm.com        rdPerTurnAround.sample(readsThisTime);
109510206Sandreas.hansson@arm.com        readsThisTime = 0;
109610206Sandreas.hansson@arm.com
109710206Sandreas.hansson@arm.com        // now proceed to do the actual writes
109810206Sandreas.hansson@arm.com        busState = WRITE;
109910206Sandreas.hansson@arm.com    } else if (busState == WRITE_TO_READ) {
110010206Sandreas.hansson@arm.com        DPRINTF(DRAM, "Switching to reads after %d writes with %d writes "
110110206Sandreas.hansson@arm.com                "waiting\n", writesThisTime, writeQueue.size());
110210206Sandreas.hansson@arm.com
110310206Sandreas.hansson@arm.com        wrPerTurnAround.sample(writesThisTime);
110410206Sandreas.hansson@arm.com        writesThisTime = 0;
110510206Sandreas.hansson@arm.com
110610206Sandreas.hansson@arm.com        busState = READ;
110710206Sandreas.hansson@arm.com    }
110810206Sandreas.hansson@arm.com
110910207Sandreas.hansson@arm.com    if (refreshState != REF_IDLE) {
111010207Sandreas.hansson@arm.com        // if a refresh waiting for this event loop to finish, then hand
111110207Sandreas.hansson@arm.com        // over now, and do not schedule a new nextReqEvent
111210207Sandreas.hansson@arm.com        if (refreshState == REF_DRAIN) {
111310207Sandreas.hansson@arm.com            DPRINTF(DRAM, "Refresh drain done, now precharging\n");
111410207Sandreas.hansson@arm.com
111510207Sandreas.hansson@arm.com            refreshState = REF_PRE;
111610207Sandreas.hansson@arm.com
111710207Sandreas.hansson@arm.com            // hand control back to the refresh event loop
111810207Sandreas.hansson@arm.com            schedule(refreshEvent, curTick());
111910207Sandreas.hansson@arm.com        }
112010207Sandreas.hansson@arm.com
112110207Sandreas.hansson@arm.com        // let the refresh finish before issuing any further requests
112210207Sandreas.hansson@arm.com        return;
112310207Sandreas.hansson@arm.com    }
112410207Sandreas.hansson@arm.com
112510206Sandreas.hansson@arm.com    // when we get here it is either a read or a write
112610206Sandreas.hansson@arm.com    if (busState == READ) {
112710206Sandreas.hansson@arm.com
112810206Sandreas.hansson@arm.com        // track if we should switch or not
112910206Sandreas.hansson@arm.com        bool switch_to_writes = false;
113010206Sandreas.hansson@arm.com
113110206Sandreas.hansson@arm.com        if (readQueue.empty()) {
113210206Sandreas.hansson@arm.com            // In the case there is no read request to go next,
113310206Sandreas.hansson@arm.com            // trigger writes if we have passed the low threshold (or
113410206Sandreas.hansson@arm.com            // if we are draining)
113510206Sandreas.hansson@arm.com            if (!writeQueue.empty() &&
113610206Sandreas.hansson@arm.com                (drainManager || writeQueue.size() > writeLowThreshold)) {
113710206Sandreas.hansson@arm.com
113810206Sandreas.hansson@arm.com                switch_to_writes = true;
113910206Sandreas.hansson@arm.com            } else {
114010206Sandreas.hansson@arm.com                // check if we are drained
114110206Sandreas.hansson@arm.com                if (respQueue.empty () && drainManager) {
114210206Sandreas.hansson@arm.com                    drainManager->signalDrainDone();
114310206Sandreas.hansson@arm.com                    drainManager = NULL;
114410206Sandreas.hansson@arm.com                }
114510206Sandreas.hansson@arm.com
114610206Sandreas.hansson@arm.com                // nothing to do, not even any point in scheduling an
114710206Sandreas.hansson@arm.com                // event for the next request
114810206Sandreas.hansson@arm.com                return;
114910206Sandreas.hansson@arm.com            }
115010206Sandreas.hansson@arm.com        } else {
115110206Sandreas.hansson@arm.com            // Figure out which read request goes next, and move it to the
115210206Sandreas.hansson@arm.com            // front of the read queue
115310206Sandreas.hansson@arm.com            chooseNext(readQueue);
115410206Sandreas.hansson@arm.com
115510206Sandreas.hansson@arm.com            doDRAMAccess(readQueue.front());
115610206Sandreas.hansson@arm.com
115710206Sandreas.hansson@arm.com            // At this point we're done dealing with the request
115810206Sandreas.hansson@arm.com            // It will be moved to a separate response queue with a
115910206Sandreas.hansson@arm.com            // correct readyTime, and eventually be sent back at that
116010206Sandreas.hansson@arm.com            // time
116110206Sandreas.hansson@arm.com            moveToRespQ();
116210206Sandreas.hansson@arm.com
116310206Sandreas.hansson@arm.com            // we have so many writes that we have to transition
116410206Sandreas.hansson@arm.com            if (writeQueue.size() > writeHighThreshold) {
116510206Sandreas.hansson@arm.com                switch_to_writes = true;
116610206Sandreas.hansson@arm.com            }
116710206Sandreas.hansson@arm.com        }
116810206Sandreas.hansson@arm.com
116910206Sandreas.hansson@arm.com        // switching to writes, either because the read queue is empty
117010206Sandreas.hansson@arm.com        // and the writes have passed the low threshold (or we are
117110206Sandreas.hansson@arm.com        // draining), or because the writes hit the hight threshold
117210206Sandreas.hansson@arm.com        if (switch_to_writes) {
117310206Sandreas.hansson@arm.com            // transition to writing
117410206Sandreas.hansson@arm.com            busState = READ_TO_WRITE;
117510206Sandreas.hansson@arm.com
117610206Sandreas.hansson@arm.com            // add a bubble to the data bus, as defined by the
117710206Sandreas.hansson@arm.com            // tRTW parameter
117810206Sandreas.hansson@arm.com            busBusyUntil += tRTW;
117910206Sandreas.hansson@arm.com
118010206Sandreas.hansson@arm.com            // update the minimum timing between the requests,
118110206Sandreas.hansson@arm.com            // this shifts us back in time far enough to do any
118210206Sandreas.hansson@arm.com            // bank preparation
118310206Sandreas.hansson@arm.com            nextReqTime = busBusyUntil - (tRP + tRCD + tCL);
118410206Sandreas.hansson@arm.com        }
11859352SN/A    } else {
118610206Sandreas.hansson@arm.com        chooseNext(writeQueue);
118710206Sandreas.hansson@arm.com        DRAMPacket* dram_pkt = writeQueue.front();
118810206Sandreas.hansson@arm.com        // sanity check
118910206Sandreas.hansson@arm.com        assert(dram_pkt->size <= burstSize);
119010206Sandreas.hansson@arm.com        doDRAMAccess(dram_pkt);
119110206Sandreas.hansson@arm.com
119210206Sandreas.hansson@arm.com        writeQueue.pop_front();
119310206Sandreas.hansson@arm.com        delete dram_pkt;
119410206Sandreas.hansson@arm.com
119510206Sandreas.hansson@arm.com        // If we emptied the write queue, or got sufficiently below the
119610206Sandreas.hansson@arm.com        // threshold (using the minWritesPerSwitch as the hysteresis) and
119710206Sandreas.hansson@arm.com        // are not draining, or we have reads waiting and have done enough
119810206Sandreas.hansson@arm.com        // writes, then switch to reads.
119910206Sandreas.hansson@arm.com        if (writeQueue.empty() ||
120010206Sandreas.hansson@arm.com            (writeQueue.size() + minWritesPerSwitch < writeLowThreshold &&
120110206Sandreas.hansson@arm.com             !drainManager) ||
120210206Sandreas.hansson@arm.com            (!readQueue.empty() && writesThisTime >= minWritesPerSwitch)) {
120310206Sandreas.hansson@arm.com            // turn the bus back around for reads again
120410206Sandreas.hansson@arm.com            busState = WRITE_TO_READ;
120510206Sandreas.hansson@arm.com
120610206Sandreas.hansson@arm.com            // note that the we switch back to reads also in the idle
120710206Sandreas.hansson@arm.com            // case, which eventually will check for any draining and
120810206Sandreas.hansson@arm.com            // also pause any further scheduling if there is really
120910206Sandreas.hansson@arm.com            // nothing to do
121010206Sandreas.hansson@arm.com
121110206Sandreas.hansson@arm.com            // here we get a bit creative and shift the bus busy time not
121210206Sandreas.hansson@arm.com            // just the tWTR, but also a CAS latency to capture the fact
121310206Sandreas.hansson@arm.com            // that we are allowed to prepare a new bank, but not issue a
121410206Sandreas.hansson@arm.com            // read command until after tWTR, in essence we capture a
121510206Sandreas.hansson@arm.com            // bubble on the data bus that is tWTR + tCL
121610206Sandreas.hansson@arm.com            busBusyUntil += tWTR + tCL;
121710206Sandreas.hansson@arm.com
121810206Sandreas.hansson@arm.com            // update the minimum timing between the requests, this shifts
121910206Sandreas.hansson@arm.com            // us back in time far enough to do any bank preparation
122010206Sandreas.hansson@arm.com            nextReqTime = busBusyUntil - (tRP + tRCD + tCL);
122110206Sandreas.hansson@arm.com        }
122210206Sandreas.hansson@arm.com    }
122310206Sandreas.hansson@arm.com
122410206Sandreas.hansson@arm.com    schedule(nextReqEvent, std::max(nextReqTime, curTick()));
122510206Sandreas.hansson@arm.com
122610206Sandreas.hansson@arm.com    // If there is space available and we have writes waiting then let
122710206Sandreas.hansson@arm.com    // them retry. This is done here to ensure that the retry does not
122810206Sandreas.hansson@arm.com    // cause a nextReqEvent to be scheduled before we do so as part of
122910206Sandreas.hansson@arm.com    // the next request processing
123010206Sandreas.hansson@arm.com    if (retryWrReq && writeQueue.size() < writeBufferSize) {
123110206Sandreas.hansson@arm.com        retryWrReq = false;
123210206Sandreas.hansson@arm.com        port.sendRetry();
12339352SN/A    }
12349243SN/A}
12359243SN/A
12369967SN/Auint64_t
123710211Sandreas.hansson@arm.comDRAMCtrl::minBankActAt(const deque<DRAMPacket*>& queue) const
12389967SN/A{
12399967SN/A    uint64_t bank_mask = 0;
124010211Sandreas.hansson@arm.com    Tick min_act_at = MaxTick;
12419967SN/A
124210211Sandreas.hansson@arm.com    // deterimne if we have queued transactions targetting a
12439967SN/A    // bank in question
12449967SN/A    vector<bool> got_waiting(ranksPerChannel * banksPerRank, false);
12459967SN/A    for (auto p = queue.begin(); p != queue.end(); ++p) {
12469967SN/A        got_waiting[(*p)->bankId] = true;
12479967SN/A    }
12489967SN/A
12499967SN/A    for (int i = 0; i < ranksPerChannel; i++) {
12509967SN/A        for (int j = 0; j < banksPerRank; j++) {
125110211Sandreas.hansson@arm.com            uint8_t bank_id = i * banksPerRank + j;
125210211Sandreas.hansson@arm.com
12539967SN/A            // if we have waiting requests for the bank, and it is
12549967SN/A            // amongst the first available, update the mask
125510211Sandreas.hansson@arm.com            if (got_waiting[bank_id]) {
125610211Sandreas.hansson@arm.com                // simplistic approximation of when the bank can issue
125710211Sandreas.hansson@arm.com                // an activate, ignoring any rank-to-rank switching
125810211Sandreas.hansson@arm.com                // cost
125910211Sandreas.hansson@arm.com                Tick act_at = banks[i][j].openRow == Bank::NO_ROW ?
126010211Sandreas.hansson@arm.com                    banks[i][j].actAllowedAt :
126110211Sandreas.hansson@arm.com                    std::max(banks[i][j].preAllowedAt, curTick()) + tRP;
126210211Sandreas.hansson@arm.com
126310211Sandreas.hansson@arm.com                if (act_at <= min_act_at) {
126410211Sandreas.hansson@arm.com                    // reset bank mask if new minimum is found
126510211Sandreas.hansson@arm.com                    if (act_at < min_act_at)
126610211Sandreas.hansson@arm.com                        bank_mask = 0;
126710211Sandreas.hansson@arm.com                    // set the bit corresponding to the available bank
126810211Sandreas.hansson@arm.com                    replaceBits(bank_mask, bank_id, bank_id, 1);
126910211Sandreas.hansson@arm.com                    min_act_at = act_at;
127010211Sandreas.hansson@arm.com                }
12719967SN/A            }
12729967SN/A        }
12739967SN/A    }
127410211Sandreas.hansson@arm.com
12759967SN/A    return bank_mask;
12769967SN/A}
12779967SN/A
12789243SN/Avoid
127910146Sandreas.hansson@arm.comDRAMCtrl::processRefreshEvent()
12809243SN/A{
128110207Sandreas.hansson@arm.com    // when first preparing the refresh, remember when it was due
128210207Sandreas.hansson@arm.com    if (refreshState == REF_IDLE) {
128310207Sandreas.hansson@arm.com        // remember when the refresh is due
128410207Sandreas.hansson@arm.com        refreshDueAt = curTick();
12859243SN/A
128610207Sandreas.hansson@arm.com        // proceed to drain
128710207Sandreas.hansson@arm.com        refreshState = REF_DRAIN;
12889243SN/A
128910207Sandreas.hansson@arm.com        DPRINTF(DRAM, "Refresh due\n");
129010207Sandreas.hansson@arm.com    }
129110207Sandreas.hansson@arm.com
129210207Sandreas.hansson@arm.com    // let any scheduled read or write go ahead, after which it will
129310207Sandreas.hansson@arm.com    // hand control back to this event loop
129410207Sandreas.hansson@arm.com    if (refreshState == REF_DRAIN) {
129510207Sandreas.hansson@arm.com        if (nextReqEvent.scheduled()) {
129610207Sandreas.hansson@arm.com            // hand control over to the request loop until it is
129710207Sandreas.hansson@arm.com            // evaluated next
129810207Sandreas.hansson@arm.com            DPRINTF(DRAM, "Refresh awaiting draining\n");
129910207Sandreas.hansson@arm.com
130010207Sandreas.hansson@arm.com            return;
130110207Sandreas.hansson@arm.com        } else {
130210207Sandreas.hansson@arm.com            refreshState = REF_PRE;
130310207Sandreas.hansson@arm.com        }
130410207Sandreas.hansson@arm.com    }
130510207Sandreas.hansson@arm.com
130610207Sandreas.hansson@arm.com    // at this point, ensure that all banks are precharged
130710207Sandreas.hansson@arm.com    if (refreshState == REF_PRE) {
130810208Sandreas.hansson@arm.com        // precharge any active bank if we are not already in the idle
130910208Sandreas.hansson@arm.com        // state
131010208Sandreas.hansson@arm.com        if (pwrState != PWR_IDLE) {
131110214Sandreas.hansson@arm.com            // at the moment, we use a precharge all even if there is
131210214Sandreas.hansson@arm.com            // only a single bank open
131310208Sandreas.hansson@arm.com            DPRINTF(DRAM, "Precharging all\n");
131410214Sandreas.hansson@arm.com
131510214Sandreas.hansson@arm.com            // first determine when we can precharge
131610214Sandreas.hansson@arm.com            Tick pre_at = curTick();
131710214Sandreas.hansson@arm.com            for (int i = 0; i < ranksPerChannel; i++) {
131810214Sandreas.hansson@arm.com                for (int j = 0; j < banksPerRank; j++) {
131910214Sandreas.hansson@arm.com                    // respect both causality and any existing bank
132010214Sandreas.hansson@arm.com                    // constraints, some banks could already have a
132110214Sandreas.hansson@arm.com                    // (auto) precharge scheduled
132210214Sandreas.hansson@arm.com                    pre_at = std::max(banks[i][j].preAllowedAt, pre_at);
132310214Sandreas.hansson@arm.com                }
132410214Sandreas.hansson@arm.com            }
132510214Sandreas.hansson@arm.com
132610214Sandreas.hansson@arm.com            // make sure all banks are precharged, and for those that
132710214Sandreas.hansson@arm.com            // already are, update their availability
132810214Sandreas.hansson@arm.com            Tick act_allowed_at = pre_at + tRP;
132910214Sandreas.hansson@arm.com
133010208Sandreas.hansson@arm.com            for (int i = 0; i < ranksPerChannel; i++) {
133110208Sandreas.hansson@arm.com                for (int j = 0; j < banksPerRank; j++) {
133210208Sandreas.hansson@arm.com                    if (banks[i][j].openRow != Bank::NO_ROW) {
133310211Sandreas.hansson@arm.com                        prechargeBank(banks[i][j], pre_at);
133410214Sandreas.hansson@arm.com                    } else {
133510214Sandreas.hansson@arm.com                        banks[i][j].actAllowedAt =
133610214Sandreas.hansson@arm.com                            std::max(banks[i][j].actAllowedAt, act_allowed_at);
133710214Sandreas.hansson@arm.com                        banks[i][j].preAllowedAt =
133810214Sandreas.hansson@arm.com                            std::max(banks[i][j].preAllowedAt, pre_at);
133910208Sandreas.hansson@arm.com                    }
134010207Sandreas.hansson@arm.com                }
134110207Sandreas.hansson@arm.com            }
134210208Sandreas.hansson@arm.com        } else {
134310208Sandreas.hansson@arm.com            DPRINTF(DRAM, "All banks already precharged, starting refresh\n");
134410208Sandreas.hansson@arm.com
134510208Sandreas.hansson@arm.com            // go ahead and kick the power state machine into gear if
134610208Sandreas.hansson@arm.com            // we are already idle
134710208Sandreas.hansson@arm.com            schedulePowerEvent(PWR_REF, curTick());
13489975SN/A        }
13499975SN/A
135010208Sandreas.hansson@arm.com        refreshState = REF_RUN;
135110208Sandreas.hansson@arm.com        assert(numBanksActive == 0);
13529243SN/A
135310208Sandreas.hansson@arm.com        // wait for all banks to be precharged, at which point the
135410208Sandreas.hansson@arm.com        // power state machine will transition to the idle state, and
135510208Sandreas.hansson@arm.com        // automatically move to a refresh, at that point it will also
135610208Sandreas.hansson@arm.com        // call this method to get the refresh event loop going again
135710207Sandreas.hansson@arm.com        return;
135810207Sandreas.hansson@arm.com    }
135910207Sandreas.hansson@arm.com
136010207Sandreas.hansson@arm.com    // last but not least we perform the actual refresh
136110207Sandreas.hansson@arm.com    if (refreshState == REF_RUN) {
136210207Sandreas.hansson@arm.com        // should never get here with any banks active
136310207Sandreas.hansson@arm.com        assert(numBanksActive == 0);
136410208Sandreas.hansson@arm.com        assert(pwrState == PWR_REF);
136510207Sandreas.hansson@arm.com
136610211Sandreas.hansson@arm.com        Tick ref_done_at = curTick() + tRFC;
136710207Sandreas.hansson@arm.com
136810207Sandreas.hansson@arm.com        for (int i = 0; i < ranksPerChannel; i++) {
136910207Sandreas.hansson@arm.com            for (int j = 0; j < banksPerRank; j++) {
137010211Sandreas.hansson@arm.com                banks[i][j].actAllowedAt = ref_done_at;
137110207Sandreas.hansson@arm.com            }
137210207Sandreas.hansson@arm.com        }
137310207Sandreas.hansson@arm.com
137410207Sandreas.hansson@arm.com        // make sure we did not wait so long that we cannot make up
137510207Sandreas.hansson@arm.com        // for it
137610211Sandreas.hansson@arm.com        if (refreshDueAt + tREFI < ref_done_at) {
137710207Sandreas.hansson@arm.com            fatal("Refresh was delayed so long we cannot catch up\n");
137810207Sandreas.hansson@arm.com        }
137910207Sandreas.hansson@arm.com
138010207Sandreas.hansson@arm.com        // compensate for the delay in actually performing the refresh
138110207Sandreas.hansson@arm.com        // when scheduling the next one
138210207Sandreas.hansson@arm.com        schedule(refreshEvent, refreshDueAt + tREFI - tRP);
138310207Sandreas.hansson@arm.com
138410208Sandreas.hansson@arm.com        assert(!powerEvent.scheduled());
138510207Sandreas.hansson@arm.com
138610208Sandreas.hansson@arm.com        // move to the idle power state once the refresh is done, this
138710208Sandreas.hansson@arm.com        // will also move the refresh state machine to the refresh
138810208Sandreas.hansson@arm.com        // idle state
138910211Sandreas.hansson@arm.com        schedulePowerEvent(PWR_IDLE, ref_done_at);
139010207Sandreas.hansson@arm.com
139110208Sandreas.hansson@arm.com        DPRINTF(DRAMState, "Refresh done at %llu and next refresh at %llu\n",
139210211Sandreas.hansson@arm.com                ref_done_at, refreshDueAt + tREFI);
139310208Sandreas.hansson@arm.com    }
139410208Sandreas.hansson@arm.com}
139510208Sandreas.hansson@arm.com
139610208Sandreas.hansson@arm.comvoid
139710208Sandreas.hansson@arm.comDRAMCtrl::schedulePowerEvent(PowerState pwr_state, Tick tick)
139810208Sandreas.hansson@arm.com{
139910208Sandreas.hansson@arm.com    // respect causality
140010208Sandreas.hansson@arm.com    assert(tick >= curTick());
140110208Sandreas.hansson@arm.com
140210208Sandreas.hansson@arm.com    if (!powerEvent.scheduled()) {
140310208Sandreas.hansson@arm.com        DPRINTF(DRAMState, "Scheduling power event at %llu to state %d\n",
140410208Sandreas.hansson@arm.com                tick, pwr_state);
140510208Sandreas.hansson@arm.com
140610208Sandreas.hansson@arm.com        // insert the new transition
140710208Sandreas.hansson@arm.com        pwrStateTrans = pwr_state;
140810208Sandreas.hansson@arm.com
140910208Sandreas.hansson@arm.com        schedule(powerEvent, tick);
141010208Sandreas.hansson@arm.com    } else {
141110208Sandreas.hansson@arm.com        panic("Scheduled power event at %llu to state %d, "
141210208Sandreas.hansson@arm.com              "with scheduled event at %llu to %d\n", tick, pwr_state,
141310208Sandreas.hansson@arm.com              powerEvent.when(), pwrStateTrans);
141410208Sandreas.hansson@arm.com    }
141510208Sandreas.hansson@arm.com}
141610208Sandreas.hansson@arm.com
141710208Sandreas.hansson@arm.comvoid
141810208Sandreas.hansson@arm.comDRAMCtrl::processPowerEvent()
141910208Sandreas.hansson@arm.com{
142010208Sandreas.hansson@arm.com    // remember where we were, and for how long
142110208Sandreas.hansson@arm.com    Tick duration = curTick() - pwrStateTick;
142210208Sandreas.hansson@arm.com    PowerState prev_state = pwrState;
142310208Sandreas.hansson@arm.com
142410208Sandreas.hansson@arm.com    // update the accounting
142510208Sandreas.hansson@arm.com    pwrStateTime[prev_state] += duration;
142610208Sandreas.hansson@arm.com
142710208Sandreas.hansson@arm.com    pwrState = pwrStateTrans;
142810208Sandreas.hansson@arm.com    pwrStateTick = curTick();
142910208Sandreas.hansson@arm.com
143010208Sandreas.hansson@arm.com    if (pwrState == PWR_IDLE) {
143110208Sandreas.hansson@arm.com        DPRINTF(DRAMState, "All banks precharged\n");
143210208Sandreas.hansson@arm.com
143310208Sandreas.hansson@arm.com        // if we were refreshing, make sure we start scheduling requests again
143410208Sandreas.hansson@arm.com        if (prev_state == PWR_REF) {
143510208Sandreas.hansson@arm.com            DPRINTF(DRAMState, "Was refreshing for %llu ticks\n", duration);
143610208Sandreas.hansson@arm.com            assert(pwrState == PWR_IDLE);
143710208Sandreas.hansson@arm.com
143810208Sandreas.hansson@arm.com            // kick things into action again
143910208Sandreas.hansson@arm.com            refreshState = REF_IDLE;
144010208Sandreas.hansson@arm.com            assert(!nextReqEvent.scheduled());
144110208Sandreas.hansson@arm.com            schedule(nextReqEvent, curTick());
144210208Sandreas.hansson@arm.com        } else {
144310208Sandreas.hansson@arm.com            assert(prev_state == PWR_ACT);
144410208Sandreas.hansson@arm.com
144510208Sandreas.hansson@arm.com            // if we have a pending refresh, and are now moving to
144610208Sandreas.hansson@arm.com            // the idle state, direclty transition to a refresh
144710208Sandreas.hansson@arm.com            if (refreshState == REF_RUN) {
144810208Sandreas.hansson@arm.com                // there should be nothing waiting at this point
144910208Sandreas.hansson@arm.com                assert(!powerEvent.scheduled());
145010208Sandreas.hansson@arm.com
145110208Sandreas.hansson@arm.com                // update the state in zero time and proceed below
145210208Sandreas.hansson@arm.com                pwrState = PWR_REF;
145310208Sandreas.hansson@arm.com            }
145410208Sandreas.hansson@arm.com        }
145510208Sandreas.hansson@arm.com    }
145610208Sandreas.hansson@arm.com
145710208Sandreas.hansson@arm.com    // we transition to the refresh state, let the refresh state
145810208Sandreas.hansson@arm.com    // machine know of this state update and let it deal with the
145910208Sandreas.hansson@arm.com    // scheduling of the next power state transition as well as the
146010208Sandreas.hansson@arm.com    // following refresh
146110208Sandreas.hansson@arm.com    if (pwrState == PWR_REF) {
146210208Sandreas.hansson@arm.com        DPRINTF(DRAMState, "Refreshing\n");
146310208Sandreas.hansson@arm.com        // kick the refresh event loop into action again, and that
146410208Sandreas.hansson@arm.com        // in turn will schedule a transition to the idle power
146510208Sandreas.hansson@arm.com        // state once the refresh is done
146610208Sandreas.hansson@arm.com        assert(refreshState == REF_RUN);
146710208Sandreas.hansson@arm.com        processRefreshEvent();
146810207Sandreas.hansson@arm.com    }
14699243SN/A}
14709243SN/A
14719243SN/Avoid
147210146Sandreas.hansson@arm.comDRAMCtrl::regStats()
14739243SN/A{
14749243SN/A    using namespace Stats;
14759243SN/A
14769243SN/A    AbstractMemory::regStats();
14779243SN/A
14789243SN/A    readReqs
14799243SN/A        .name(name() + ".readReqs")
14809977SN/A        .desc("Number of read requests accepted");
14819243SN/A
14829243SN/A    writeReqs
14839243SN/A        .name(name() + ".writeReqs")
14849977SN/A        .desc("Number of write requests accepted");
14859831SN/A
14869831SN/A    readBursts
14879831SN/A        .name(name() + ".readBursts")
14889977SN/A        .desc("Number of DRAM read bursts, "
14899977SN/A              "including those serviced by the write queue");
14909831SN/A
14919831SN/A    writeBursts
14929831SN/A        .name(name() + ".writeBursts")
14939977SN/A        .desc("Number of DRAM write bursts, "
14949977SN/A              "including those merged in the write queue");
14959243SN/A
14969243SN/A    servicedByWrQ
14979243SN/A        .name(name() + ".servicedByWrQ")
14989977SN/A        .desc("Number of DRAM read bursts serviced by the write queue");
14999977SN/A
15009977SN/A    mergedWrBursts
15019977SN/A        .name(name() + ".mergedWrBursts")
15029977SN/A        .desc("Number of DRAM write bursts merged with an existing one");
15039243SN/A
15049243SN/A    neitherReadNorWrite
15059977SN/A        .name(name() + ".neitherReadNorWriteReqs")
15069977SN/A        .desc("Number of requests that are neither read nor write");
15079243SN/A
15089977SN/A    perBankRdBursts
15099243SN/A        .init(banksPerRank * ranksPerChannel)
15109977SN/A        .name(name() + ".perBankRdBursts")
15119977SN/A        .desc("Per bank write bursts");
15129243SN/A
15139977SN/A    perBankWrBursts
15149243SN/A        .init(banksPerRank * ranksPerChannel)
15159977SN/A        .name(name() + ".perBankWrBursts")
15169977SN/A        .desc("Per bank write bursts");
15179243SN/A
15189243SN/A    avgRdQLen
15199243SN/A        .name(name() + ".avgRdQLen")
15209977SN/A        .desc("Average read queue length when enqueuing")
15219243SN/A        .precision(2);
15229243SN/A
15239243SN/A    avgWrQLen
15249243SN/A        .name(name() + ".avgWrQLen")
15259977SN/A        .desc("Average write queue length when enqueuing")
15269243SN/A        .precision(2);
15279243SN/A
15289243SN/A    totQLat
15299243SN/A        .name(name() + ".totQLat")
15309977SN/A        .desc("Total ticks spent queuing");
15319243SN/A
15329243SN/A    totBusLat
15339243SN/A        .name(name() + ".totBusLat")
15349977SN/A        .desc("Total ticks spent in databus transfers");
15359243SN/A
15369243SN/A    totMemAccLat
15379243SN/A        .name(name() + ".totMemAccLat")
15389977SN/A        .desc("Total ticks spent from burst creation until serviced "
15399977SN/A              "by the DRAM");
15409243SN/A
15419243SN/A    avgQLat
15429243SN/A        .name(name() + ".avgQLat")
15439977SN/A        .desc("Average queueing delay per DRAM burst")
15449243SN/A        .precision(2);
15459243SN/A
15469831SN/A    avgQLat = totQLat / (readBursts - servicedByWrQ);
15479243SN/A
15489243SN/A    avgBusLat
15499243SN/A        .name(name() + ".avgBusLat")
15509977SN/A        .desc("Average bus latency per DRAM burst")
15519243SN/A        .precision(2);
15529243SN/A
15539831SN/A    avgBusLat = totBusLat / (readBursts - servicedByWrQ);
15549243SN/A
15559243SN/A    avgMemAccLat
15569243SN/A        .name(name() + ".avgMemAccLat")
15579977SN/A        .desc("Average memory access latency per DRAM burst")
15589243SN/A        .precision(2);
15599243SN/A
15609831SN/A    avgMemAccLat = totMemAccLat / (readBursts - servicedByWrQ);
15619243SN/A
15629243SN/A    numRdRetry
15639243SN/A        .name(name() + ".numRdRetry")
15649977SN/A        .desc("Number of times read queue was full causing retry");
15659243SN/A
15669243SN/A    numWrRetry
15679243SN/A        .name(name() + ".numWrRetry")
15689977SN/A        .desc("Number of times write queue was full causing retry");
15699243SN/A
15709243SN/A    readRowHits
15719243SN/A        .name(name() + ".readRowHits")
15729243SN/A        .desc("Number of row buffer hits during reads");
15739243SN/A
15749243SN/A    writeRowHits
15759243SN/A        .name(name() + ".writeRowHits")
15769243SN/A        .desc("Number of row buffer hits during writes");
15779243SN/A
15789243SN/A    readRowHitRate
15799243SN/A        .name(name() + ".readRowHitRate")
15809243SN/A        .desc("Row buffer hit rate for reads")
15819243SN/A        .precision(2);
15829243SN/A
15839831SN/A    readRowHitRate = (readRowHits / (readBursts - servicedByWrQ)) * 100;
15849243SN/A
15859243SN/A    writeRowHitRate
15869243SN/A        .name(name() + ".writeRowHitRate")
15879243SN/A        .desc("Row buffer hit rate for writes")
15889243SN/A        .precision(2);
15899243SN/A
15909977SN/A    writeRowHitRate = (writeRowHits / (writeBursts - mergedWrBursts)) * 100;
15919243SN/A
15929243SN/A    readPktSize
15939831SN/A        .init(ceilLog2(burstSize) + 1)
15949243SN/A        .name(name() + ".readPktSize")
15959977SN/A        .desc("Read request sizes (log2)");
15969243SN/A
15979243SN/A     writePktSize
15989831SN/A        .init(ceilLog2(burstSize) + 1)
15999243SN/A        .name(name() + ".writePktSize")
16009977SN/A        .desc("Write request sizes (log2)");
16019243SN/A
16029243SN/A     rdQLenPdf
16039567SN/A        .init(readBufferSize)
16049243SN/A        .name(name() + ".rdQLenPdf")
16059243SN/A        .desc("What read queue length does an incoming req see");
16069243SN/A
16079243SN/A     wrQLenPdf
16089567SN/A        .init(writeBufferSize)
16099243SN/A        .name(name() + ".wrQLenPdf")
16109243SN/A        .desc("What write queue length does an incoming req see");
16119243SN/A
16129727SN/A     bytesPerActivate
161310141SN/A         .init(maxAccessesPerRow)
16149727SN/A         .name(name() + ".bytesPerActivate")
16159727SN/A         .desc("Bytes accessed per row activation")
16169727SN/A         .flags(nozero);
16179243SN/A
161810147Sandreas.hansson@arm.com     rdPerTurnAround
161910147Sandreas.hansson@arm.com         .init(readBufferSize)
162010147Sandreas.hansson@arm.com         .name(name() + ".rdPerTurnAround")
162110147Sandreas.hansson@arm.com         .desc("Reads before turning the bus around for writes")
162210147Sandreas.hansson@arm.com         .flags(nozero);
162310147Sandreas.hansson@arm.com
162410147Sandreas.hansson@arm.com     wrPerTurnAround
162510147Sandreas.hansson@arm.com         .init(writeBufferSize)
162610147Sandreas.hansson@arm.com         .name(name() + ".wrPerTurnAround")
162710147Sandreas.hansson@arm.com         .desc("Writes before turning the bus around for reads")
162810147Sandreas.hansson@arm.com         .flags(nozero);
162910147Sandreas.hansson@arm.com
16309975SN/A    bytesReadDRAM
16319975SN/A        .name(name() + ".bytesReadDRAM")
16329975SN/A        .desc("Total number of bytes read from DRAM");
16339975SN/A
16349975SN/A    bytesReadWrQ
16359975SN/A        .name(name() + ".bytesReadWrQ")
16369975SN/A        .desc("Total number of bytes read from write queue");
16379243SN/A
16389243SN/A    bytesWritten
16399243SN/A        .name(name() + ".bytesWritten")
16409977SN/A        .desc("Total number of bytes written to DRAM");
16419243SN/A
16429977SN/A    bytesReadSys
16439977SN/A        .name(name() + ".bytesReadSys")
16449977SN/A        .desc("Total read bytes from the system interface side");
16459243SN/A
16469977SN/A    bytesWrittenSys
16479977SN/A        .name(name() + ".bytesWrittenSys")
16489977SN/A        .desc("Total written bytes from the system interface side");
16499243SN/A
16509243SN/A    avgRdBW
16519243SN/A        .name(name() + ".avgRdBW")
16529977SN/A        .desc("Average DRAM read bandwidth in MiByte/s")
16539243SN/A        .precision(2);
16549243SN/A
16559977SN/A    avgRdBW = (bytesReadDRAM / 1000000) / simSeconds;
16569243SN/A
16579243SN/A    avgWrBW
16589243SN/A        .name(name() + ".avgWrBW")
16599977SN/A        .desc("Average achieved write bandwidth in MiByte/s")
16609243SN/A        .precision(2);
16619243SN/A
16629243SN/A    avgWrBW = (bytesWritten / 1000000) / simSeconds;
16639243SN/A
16649977SN/A    avgRdBWSys
16659977SN/A        .name(name() + ".avgRdBWSys")
16669977SN/A        .desc("Average system read bandwidth in MiByte/s")
16679243SN/A        .precision(2);
16689243SN/A
16699977SN/A    avgRdBWSys = (bytesReadSys / 1000000) / simSeconds;
16709243SN/A
16719977SN/A    avgWrBWSys
16729977SN/A        .name(name() + ".avgWrBWSys")
16739977SN/A        .desc("Average system write bandwidth in MiByte/s")
16749243SN/A        .precision(2);
16759243SN/A
16769977SN/A    avgWrBWSys = (bytesWrittenSys / 1000000) / simSeconds;
16779243SN/A
16789243SN/A    peakBW
16799243SN/A        .name(name() + ".peakBW")
16809977SN/A        .desc("Theoretical peak bandwidth in MiByte/s")
16819243SN/A        .precision(2);
16829243SN/A
16839831SN/A    peakBW = (SimClock::Frequency / tBURST) * burstSize / 1000000;
16849243SN/A
16859243SN/A    busUtil
16869243SN/A        .name(name() + ".busUtil")
16879243SN/A        .desc("Data bus utilization in percentage")
16889243SN/A        .precision(2);
16899243SN/A
16909243SN/A    busUtil = (avgRdBW + avgWrBW) / peakBW * 100;
16919243SN/A
16929243SN/A    totGap
16939243SN/A        .name(name() + ".totGap")
16949243SN/A        .desc("Total gap between requests");
16959243SN/A
16969243SN/A    avgGap
16979243SN/A        .name(name() + ".avgGap")
16989243SN/A        .desc("Average gap between requests")
16999243SN/A        .precision(2);
17009243SN/A
17019243SN/A    avgGap = totGap / (readReqs + writeReqs);
17029975SN/A
17039975SN/A    // Stats for DRAM Power calculation based on Micron datasheet
17049975SN/A    busUtilRead
17059975SN/A        .name(name() + ".busUtilRead")
17069975SN/A        .desc("Data bus utilization in percentage for reads")
17079975SN/A        .precision(2);
17089975SN/A
17099975SN/A    busUtilRead = avgRdBW / peakBW * 100;
17109975SN/A
17119975SN/A    busUtilWrite
17129975SN/A        .name(name() + ".busUtilWrite")
17139975SN/A        .desc("Data bus utilization in percentage for writes")
17149975SN/A        .precision(2);
17159975SN/A
17169975SN/A    busUtilWrite = avgWrBW / peakBW * 100;
17179975SN/A
17189975SN/A    pageHitRate
17199975SN/A        .name(name() + ".pageHitRate")
17209975SN/A        .desc("Row buffer hit rate, read and write combined")
17219975SN/A        .precision(2);
17229975SN/A
17239977SN/A    pageHitRate = (writeRowHits + readRowHits) /
17249977SN/A        (writeBursts - mergedWrBursts + readBursts - servicedByWrQ) * 100;
17259975SN/A
172610208Sandreas.hansson@arm.com    pwrStateTime
172710208Sandreas.hansson@arm.com        .init(5)
172810208Sandreas.hansson@arm.com        .name(name() + ".memoryStateTime")
172910208Sandreas.hansson@arm.com        .desc("Time in different power states");
173010208Sandreas.hansson@arm.com    pwrStateTime.subname(0, "IDLE");
173110208Sandreas.hansson@arm.com    pwrStateTime.subname(1, "REF");
173210208Sandreas.hansson@arm.com    pwrStateTime.subname(2, "PRE_PDN");
173310208Sandreas.hansson@arm.com    pwrStateTime.subname(3, "ACT");
173410208Sandreas.hansson@arm.com    pwrStateTime.subname(4, "ACT_PDN");
17359243SN/A}
17369243SN/A
17379243SN/Avoid
173810146Sandreas.hansson@arm.comDRAMCtrl::recvFunctional(PacketPtr pkt)
17399243SN/A{
17409243SN/A    // rely on the abstract memory
17419243SN/A    functionalAccess(pkt);
17429243SN/A}
17439243SN/A
17449294SN/ABaseSlavePort&
174510146Sandreas.hansson@arm.comDRAMCtrl::getSlavePort(const string &if_name, PortID idx)
17469243SN/A{
17479243SN/A    if (if_name != "port") {
17489243SN/A        return MemObject::getSlavePort(if_name, idx);
17499243SN/A    } else {
17509243SN/A        return port;
17519243SN/A    }
17529243SN/A}
17539243SN/A
17549243SN/Aunsigned int
175510146Sandreas.hansson@arm.comDRAMCtrl::drain(DrainManager *dm)
17569243SN/A{
17579342SN/A    unsigned int count = port.drain(dm);
17589243SN/A
17599243SN/A    // if there is anything in any of our internal queues, keep track
17609243SN/A    // of that as well
17619567SN/A    if (!(writeQueue.empty() && readQueue.empty() &&
17629567SN/A          respQueue.empty())) {
17639352SN/A        DPRINTF(Drain, "DRAM controller not drained, write: %d, read: %d,"
17649567SN/A                " resp: %d\n", writeQueue.size(), readQueue.size(),
17659567SN/A                respQueue.size());
17669243SN/A        ++count;
17679342SN/A        drainManager = dm;
176810206Sandreas.hansson@arm.com
17699352SN/A        // the only part that is not drained automatically over time
177010206Sandreas.hansson@arm.com        // is the write queue, thus kick things into action if needed
177110206Sandreas.hansson@arm.com        if (!writeQueue.empty() && !nextReqEvent.scheduled()) {
177210206Sandreas.hansson@arm.com            schedule(nextReqEvent, curTick());
177310206Sandreas.hansson@arm.com        }
17749243SN/A    }
17759243SN/A
17769243SN/A    if (count)
17779342SN/A        setDrainState(Drainable::Draining);
17789243SN/A    else
17799342SN/A        setDrainState(Drainable::Drained);
17809243SN/A    return count;
17819243SN/A}
17829243SN/A
178310146Sandreas.hansson@arm.comDRAMCtrl::MemoryPort::MemoryPort(const std::string& name, DRAMCtrl& _memory)
17849243SN/A    : QueuedSlavePort(name, &_memory, queue), queue(_memory, *this),
17859243SN/A      memory(_memory)
17869243SN/A{ }
17879243SN/A
17889243SN/AAddrRangeList
178910146Sandreas.hansson@arm.comDRAMCtrl::MemoryPort::getAddrRanges() const
17909243SN/A{
17919243SN/A    AddrRangeList ranges;
17929243SN/A    ranges.push_back(memory.getAddrRange());
17939243SN/A    return ranges;
17949243SN/A}
17959243SN/A
17969243SN/Avoid
179710146Sandreas.hansson@arm.comDRAMCtrl::MemoryPort::recvFunctional(PacketPtr pkt)
17989243SN/A{
17999243SN/A    pkt->pushLabel(memory.name());
18009243SN/A
18019243SN/A    if (!queue.checkFunctional(pkt)) {
18029243SN/A        // Default implementation of SimpleTimingPort::recvFunctional()
18039243SN/A        // calls recvAtomic() and throws away the latency; we can save a
18049243SN/A        // little here by just not calculating the latency.
18059243SN/A        memory.recvFunctional(pkt);
18069243SN/A    }
18079243SN/A
18089243SN/A    pkt->popLabel();
18099243SN/A}
18109243SN/A
18119243SN/ATick
181210146Sandreas.hansson@arm.comDRAMCtrl::MemoryPort::recvAtomic(PacketPtr pkt)
18139243SN/A{
18149243SN/A    return memory.recvAtomic(pkt);
18159243SN/A}
18169243SN/A
18179243SN/Abool
181810146Sandreas.hansson@arm.comDRAMCtrl::MemoryPort::recvTimingReq(PacketPtr pkt)
18199243SN/A{
18209243SN/A    // pass it to the memory controller
18219243SN/A    return memory.recvTimingReq(pkt);
18229243SN/A}
18239243SN/A
182410146Sandreas.hansson@arm.comDRAMCtrl*
182510146Sandreas.hansson@arm.comDRAMCtrlParams::create()
18269243SN/A{
182710146Sandreas.hansson@arm.com    return new DRAMCtrl(this);
18289243SN/A}
1829