dram_ctrl.cc revision 10143
1/*
2 * Copyright (c) 2010-2013 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder.  You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2013 Amin Farmahini-Farahani
15 * All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions are
19 * met: redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer;
21 * redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution;
24 * neither the name of the copyright holders nor the names of its
25 * contributors may be used to endorse or promote products derived from
26 * this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 *
40 * Authors: Andreas Hansson
41 *          Ani Udipi
42 *          Neha Agarwal
43 */
44
45#include "base/trace.hh"
46#include "base/bitfield.hh"
47#include "debug/Drain.hh"
48#include "debug/DRAM.hh"
49#include "mem/simple_dram.hh"
50#include "sim/system.hh"
51
52using namespace std;
53
54SimpleDRAM::SimpleDRAM(const SimpleDRAMParams* p) :
55    AbstractMemory(p),
56    port(name() + ".port", *this),
57    retryRdReq(false), retryWrReq(false),
58    rowHitFlag(false), stopReads(false),
59    writeEvent(this), respondEvent(this),
60    refreshEvent(this), nextReqEvent(this), drainManager(NULL),
61    deviceBusWidth(p->device_bus_width), burstLength(p->burst_length),
62    deviceRowBufferSize(p->device_rowbuffer_size),
63    devicesPerRank(p->devices_per_rank),
64    burstSize((devicesPerRank * burstLength * deviceBusWidth) / 8),
65    rowBufferSize(devicesPerRank * deviceRowBufferSize),
66    columnsPerRowBuffer(rowBufferSize / burstSize),
67    ranksPerChannel(p->ranks_per_channel),
68    banksPerRank(p->banks_per_rank), channels(p->channels), rowsPerBank(0),
69    readBufferSize(p->read_buffer_size),
70    writeBufferSize(p->write_buffer_size),
71    writeHighThreshold(writeBufferSize * p->write_high_thresh_perc / 100.0),
72    writeLowThreshold(writeBufferSize * p->write_low_thresh_perc / 100.0),
73    minWritesPerSwitch(p->min_writes_per_switch), writesThisTime(0),
74    tWTR(p->tWTR), tBURST(p->tBURST),
75    tRCD(p->tRCD), tCL(p->tCL), tRP(p->tRP), tRAS(p->tRAS),
76    tRFC(p->tRFC), tREFI(p->tREFI), tRRD(p->tRRD),
77    tXAW(p->tXAW), activationLimit(p->activation_limit),
78    memSchedPolicy(p->mem_sched_policy), addrMapping(p->addr_mapping),
79    pageMgmt(p->page_policy),
80    maxAccessesPerRow(p->max_accesses_per_row),
81    frontendLatency(p->static_frontend_latency),
82    backendLatency(p->static_backend_latency),
83    busBusyUntil(0),  prevArrival(0),
84    newTime(0), startTickPrechargeAll(0), numBanksActive(0)
85{
86    // create the bank states based on the dimensions of the ranks and
87    // banks
88    banks.resize(ranksPerChannel);
89    actTicks.resize(ranksPerChannel);
90    for (size_t c = 0; c < ranksPerChannel; ++c) {
91        banks[c].resize(banksPerRank);
92        actTicks[c].resize(activationLimit, 0);
93    }
94
95    // perform a basic check of the write thresholds
96    if (p->write_low_thresh_perc >= p->write_high_thresh_perc)
97        fatal("Write buffer low threshold %d must be smaller than the "
98              "high threshold %d\n", p->write_low_thresh_perc,
99              p->write_high_thresh_perc);
100
101    // determine the rows per bank by looking at the total capacity
102    uint64_t capacity = ULL(1) << ceilLog2(AbstractMemory::size());
103
104    DPRINTF(DRAM, "Memory capacity %lld (%lld) bytes\n", capacity,
105            AbstractMemory::size());
106
107    DPRINTF(DRAM, "Row buffer size %d bytes with %d columns per row buffer\n",
108            rowBufferSize, columnsPerRowBuffer);
109
110    rowsPerBank = capacity / (rowBufferSize * banksPerRank * ranksPerChannel);
111
112    if (range.interleaved()) {
113        if (channels != range.stripes())
114            fatal("%s has %d interleaved address stripes but %d channel(s)\n",
115                  name(), range.stripes(), channels);
116
117        if (addrMapping == Enums::RoRaBaChCo) {
118            if (rowBufferSize != range.granularity()) {
119                fatal("Interleaving of %s doesn't match RoRaBaChCo "
120                      "address map\n", name());
121            }
122        } else if (addrMapping == Enums::RoRaBaCoCh) {
123            if (system()->cacheLineSize() != range.granularity()) {
124                fatal("Interleaving of %s doesn't match RoRaBaCoCh "
125                      "address map\n", name());
126            }
127        } else if (addrMapping == Enums::RoCoRaBaCh) {
128            if (system()->cacheLineSize() != range.granularity())
129                fatal("Interleaving of %s doesn't match RoCoRaBaCh "
130                      "address map\n", name());
131        }
132    }
133}
134
135void
136SimpleDRAM::init()
137{
138    if (!port.isConnected()) {
139        fatal("SimpleDRAM %s is unconnected!\n", name());
140    } else {
141        port.sendRangeChange();
142    }
143}
144
145void
146SimpleDRAM::startup()
147{
148    // update the start tick for the precharge accounting to the
149    // current tick
150    startTickPrechargeAll = curTick();
151
152    // print the configuration of the controller
153    printParams();
154
155    // kick off the refresh
156    schedule(refreshEvent, curTick() + tREFI);
157}
158
159Tick
160SimpleDRAM::recvAtomic(PacketPtr pkt)
161{
162    DPRINTF(DRAM, "recvAtomic: %s 0x%x\n", pkt->cmdString(), pkt->getAddr());
163
164    // do the actual memory access and turn the packet into a response
165    access(pkt);
166
167    Tick latency = 0;
168    if (!pkt->memInhibitAsserted() && pkt->hasData()) {
169        // this value is not supposed to be accurate, just enough to
170        // keep things going, mimic a closed page
171        latency = tRP + tRCD + tCL;
172    }
173    return latency;
174}
175
176bool
177SimpleDRAM::readQueueFull(unsigned int neededEntries) const
178{
179    DPRINTF(DRAM, "Read queue limit %d, current size %d, entries needed %d\n",
180            readBufferSize, readQueue.size() + respQueue.size(),
181            neededEntries);
182
183    return
184        (readQueue.size() + respQueue.size() + neededEntries) > readBufferSize;
185}
186
187bool
188SimpleDRAM::writeQueueFull(unsigned int neededEntries) const
189{
190    DPRINTF(DRAM, "Write queue limit %d, current size %d, entries needed %d\n",
191            writeBufferSize, writeQueue.size(), neededEntries);
192    return (writeQueue.size() + neededEntries) > writeBufferSize;
193}
194
195SimpleDRAM::DRAMPacket*
196SimpleDRAM::decodeAddr(PacketPtr pkt, Addr dramPktAddr, unsigned size,
197                       bool isRead)
198{
199    // decode the address based on the address mapping scheme, with
200    // Ro, Ra, Co, Ba and Ch denoting row, rank, column, bank and
201    // channel, respectively
202    uint8_t rank;
203    uint8_t bank;
204    uint16_t row;
205
206    // truncate the address to the access granularity
207    Addr addr = dramPktAddr / burstSize;
208
209    // we have removed the lowest order address bits that denote the
210    // position within the column
211    if (addrMapping == Enums::RoRaBaChCo) {
212        // the lowest order bits denote the column to ensure that
213        // sequential cache lines occupy the same row
214        addr = addr / columnsPerRowBuffer;
215
216        // take out the channel part of the address
217        addr = addr / channels;
218
219        // after the channel bits, get the bank bits to interleave
220        // over the banks
221        bank = addr % banksPerRank;
222        addr = addr / banksPerRank;
223
224        // after the bank, we get the rank bits which thus interleaves
225        // over the ranks
226        rank = addr % ranksPerChannel;
227        addr = addr / ranksPerChannel;
228
229        // lastly, get the row bits
230        row = addr % rowsPerBank;
231        addr = addr / rowsPerBank;
232    } else if (addrMapping == Enums::RoRaBaCoCh) {
233        // take out the channel part of the address
234        addr = addr / channels;
235
236        // next, the column
237        addr = addr / columnsPerRowBuffer;
238
239        // after the column bits, we get the bank bits to interleave
240        // over the banks
241        bank = addr % banksPerRank;
242        addr = addr / banksPerRank;
243
244        // after the bank, we get the rank bits which thus interleaves
245        // over the ranks
246        rank = addr % ranksPerChannel;
247        addr = addr / ranksPerChannel;
248
249        // lastly, get the row bits
250        row = addr % rowsPerBank;
251        addr = addr / rowsPerBank;
252    } else if (addrMapping == Enums::RoCoRaBaCh) {
253        // optimise for closed page mode and utilise maximum
254        // parallelism of the DRAM (at the cost of power)
255
256        // take out the channel part of the address, not that this has
257        // to match with how accesses are interleaved between the
258        // controllers in the address mapping
259        addr = addr / channels;
260
261        // start with the bank bits, as this provides the maximum
262        // opportunity for parallelism between requests
263        bank = addr % banksPerRank;
264        addr = addr / banksPerRank;
265
266        // next get the rank bits
267        rank = addr % ranksPerChannel;
268        addr = addr / ranksPerChannel;
269
270        // next the column bits which we do not need to keep track of
271        // and simply skip past
272        addr = addr / columnsPerRowBuffer;
273
274        // lastly, get the row bits
275        row = addr % rowsPerBank;
276        addr = addr / rowsPerBank;
277    } else
278        panic("Unknown address mapping policy chosen!");
279
280    assert(rank < ranksPerChannel);
281    assert(bank < banksPerRank);
282    assert(row < rowsPerBank);
283
284    DPRINTF(DRAM, "Address: %lld Rank %d Bank %d Row %d\n",
285            dramPktAddr, rank, bank, row);
286
287    // create the corresponding DRAM packet with the entry time and
288    // ready time set to the current tick, the latter will be updated
289    // later
290    uint16_t bank_id = banksPerRank * rank + bank;
291    return new DRAMPacket(pkt, isRead, rank, bank, row, bank_id, dramPktAddr,
292                          size, banks[rank][bank]);
293}
294
295void
296SimpleDRAM::addToReadQueue(PacketPtr pkt, unsigned int pktCount)
297{
298    // only add to the read queue here. whenever the request is
299    // eventually done, set the readyTime, and call schedule()
300    assert(!pkt->isWrite());
301
302    assert(pktCount != 0);
303
304    // if the request size is larger than burst size, the pkt is split into
305    // multiple DRAM packets
306    // Note if the pkt starting address is not aligened to burst size, the
307    // address of first DRAM packet is kept unaliged. Subsequent DRAM packets
308    // are aligned to burst size boundaries. This is to ensure we accurately
309    // check read packets against packets in write queue.
310    Addr addr = pkt->getAddr();
311    unsigned pktsServicedByWrQ = 0;
312    BurstHelper* burst_helper = NULL;
313    for (int cnt = 0; cnt < pktCount; ++cnt) {
314        unsigned size = std::min((addr | (burstSize - 1)) + 1,
315                        pkt->getAddr() + pkt->getSize()) - addr;
316        readPktSize[ceilLog2(size)]++;
317        readBursts++;
318
319        // First check write buffer to see if the data is already at
320        // the controller
321        bool foundInWrQ = false;
322        for (auto i = writeQueue.begin(); i != writeQueue.end(); ++i) {
323            // check if the read is subsumed in the write entry we are
324            // looking at
325            if ((*i)->addr <= addr &&
326                (addr + size) <= ((*i)->addr + (*i)->size)) {
327                foundInWrQ = true;
328                servicedByWrQ++;
329                pktsServicedByWrQ++;
330                DPRINTF(DRAM, "Read to addr %lld with size %d serviced by "
331                        "write queue\n", addr, size);
332                bytesReadWrQ += burstSize;
333                break;
334            }
335        }
336
337        // If not found in the write q, make a DRAM packet and
338        // push it onto the read queue
339        if (!foundInWrQ) {
340
341            // Make the burst helper for split packets
342            if (pktCount > 1 && burst_helper == NULL) {
343                DPRINTF(DRAM, "Read to addr %lld translates to %d "
344                        "dram requests\n", pkt->getAddr(), pktCount);
345                burst_helper = new BurstHelper(pktCount);
346            }
347
348            DRAMPacket* dram_pkt = decodeAddr(pkt, addr, size, true);
349            dram_pkt->burstHelper = burst_helper;
350
351            assert(!readQueueFull(1));
352            rdQLenPdf[readQueue.size() + respQueue.size()]++;
353
354            DPRINTF(DRAM, "Adding to read queue\n");
355
356            readQueue.push_back(dram_pkt);
357
358            // Update stats
359            avgRdQLen = readQueue.size() + respQueue.size();
360        }
361
362        // Starting address of next dram pkt (aligend to burstSize boundary)
363        addr = (addr | (burstSize - 1)) + 1;
364    }
365
366    // If all packets are serviced by write queue, we send the repsonse back
367    if (pktsServicedByWrQ == pktCount) {
368        accessAndRespond(pkt, frontendLatency);
369        return;
370    }
371
372    // Update how many split packets are serviced by write queue
373    if (burst_helper != NULL)
374        burst_helper->burstsServiced = pktsServicedByWrQ;
375
376    // If we are not already scheduled to get the read request out of
377    // the queue, do so now
378    if (!nextReqEvent.scheduled() && !stopReads) {
379        DPRINTF(DRAM, "Request scheduled immediately\n");
380        schedule(nextReqEvent, curTick());
381    }
382}
383
384void
385SimpleDRAM::processWriteEvent()
386{
387    assert(!writeQueue.empty());
388
389    DPRINTF(DRAM, "Beginning DRAM Write\n");
390    Tick temp1 M5_VAR_USED = std::max(curTick(), busBusyUntil);
391    Tick temp2 M5_VAR_USED = std::max(curTick(), maxBankFreeAt());
392
393    chooseNextWrite();
394    DRAMPacket* dram_pkt = writeQueue.front();
395    // sanity check
396    assert(dram_pkt->size <= burstSize);
397    doDRAMAccess(dram_pkt);
398
399    writeQueue.pop_front();
400    delete dram_pkt;
401
402    ++writesThisTime;
403
404    DPRINTF(DRAM, "Writing, bus busy for %lld ticks, banks busy "
405            "for %lld ticks\n", busBusyUntil - temp1, maxBankFreeAt() - temp2);
406
407    // If we emptied the write queue, or got below the threshold and
408    // are not draining, or we have reads waiting and have done enough
409    // writes, then switch to reads. The retry above could already
410    // have caused it to be scheduled, so first check
411    if (writeQueue.empty() ||
412        (writeQueue.size() < writeLowThreshold && !drainManager) ||
413        (!readQueue.empty() && writesThisTime >= minWritesPerSwitch)) {
414        // turn the bus back around for reads again
415        busBusyUntil += tWTR;
416        stopReads = false;
417        writesThisTime = 0;
418
419        if (!nextReqEvent.scheduled())
420            schedule(nextReqEvent, busBusyUntil);
421    } else {
422        assert(!writeEvent.scheduled());
423        DPRINTF(DRAM, "Next write scheduled at %lld\n", newTime);
424        schedule(writeEvent, newTime);
425    }
426
427    if (retryWrReq) {
428        retryWrReq = false;
429        port.sendRetry();
430    }
431
432    // if there is nothing left in any queue, signal a drain
433    if (writeQueue.empty() && readQueue.empty() &&
434        respQueue.empty () && drainManager) {
435        drainManager->signalDrainDone();
436        drainManager = NULL;
437    }
438}
439
440
441void
442SimpleDRAM::triggerWrites()
443{
444    DPRINTF(DRAM, "Writes triggered at %lld\n", curTick());
445    // Flag variable to stop any more read scheduling
446    stopReads = true;
447
448    Tick write_start_time = std::max(busBusyUntil, curTick()) + tWTR;
449
450    DPRINTF(DRAM, "Writes scheduled at %lld\n", write_start_time);
451
452    assert(write_start_time >= curTick());
453    assert(!writeEvent.scheduled());
454    schedule(writeEvent, write_start_time);
455}
456
457void
458SimpleDRAM::addToWriteQueue(PacketPtr pkt, unsigned int pktCount)
459{
460    // only add to the write queue here. whenever the request is
461    // eventually done, set the readyTime, and call schedule()
462    assert(pkt->isWrite());
463
464    // if the request size is larger than burst size, the pkt is split into
465    // multiple DRAM packets
466    Addr addr = pkt->getAddr();
467    for (int cnt = 0; cnt < pktCount; ++cnt) {
468        unsigned size = std::min((addr | (burstSize - 1)) + 1,
469                        pkt->getAddr() + pkt->getSize()) - addr;
470        writePktSize[ceilLog2(size)]++;
471        writeBursts++;
472
473        // see if we can merge with an existing item in the write
474        // queue and keep track of whether we have merged or not so we
475        // can stop at that point and also avoid enqueueing a new
476        // request
477        bool merged = false;
478        auto w = writeQueue.begin();
479
480        while(!merged && w != writeQueue.end()) {
481            // either of the two could be first, if they are the same
482            // it does not matter which way we go
483            if ((*w)->addr >= addr) {
484                // the existing one starts after the new one, figure
485                // out where the new one ends with respect to the
486                // existing one
487                if ((addr + size) >= ((*w)->addr + (*w)->size)) {
488                    // check if the existing one is completely
489                    // subsumed in the new one
490                    DPRINTF(DRAM, "Merging write covering existing burst\n");
491                    merged = true;
492                    // update both the address and the size
493                    (*w)->addr = addr;
494                    (*w)->size = size;
495                } else if ((addr + size) >= (*w)->addr &&
496                           ((*w)->addr + (*w)->size - addr) <= burstSize) {
497                    // the new one is just before or partially
498                    // overlapping with the existing one, and together
499                    // they fit within a burst
500                    DPRINTF(DRAM, "Merging write before existing burst\n");
501                    merged = true;
502                    // the existing queue item needs to be adjusted with
503                    // respect to both address and size
504                    (*w)->size = (*w)->addr + (*w)->size - addr;
505                    (*w)->addr = addr;
506                }
507            } else {
508                // the new one starts after the current one, figure
509                // out where the existing one ends with respect to the
510                // new one
511                if (((*w)->addr + (*w)->size) >= (addr + size)) {
512                    // check if the new one is completely subsumed in the
513                    // existing one
514                    DPRINTF(DRAM, "Merging write into existing burst\n");
515                    merged = true;
516                    // no adjustments necessary
517                } else if (((*w)->addr + (*w)->size) >= addr &&
518                           (addr + size - (*w)->addr) <= burstSize) {
519                    // the existing one is just before or partially
520                    // overlapping with the new one, and together
521                    // they fit within a burst
522                    DPRINTF(DRAM, "Merging write after existing burst\n");
523                    merged = true;
524                    // the address is right, and only the size has
525                    // to be adjusted
526                    (*w)->size = addr + size - (*w)->addr;
527                }
528            }
529            ++w;
530        }
531
532        // if the item was not merged we need to create a new write
533        // and enqueue it
534        if (!merged) {
535            DRAMPacket* dram_pkt = decodeAddr(pkt, addr, size, false);
536
537            assert(writeQueue.size() < writeBufferSize);
538            wrQLenPdf[writeQueue.size()]++;
539
540            DPRINTF(DRAM, "Adding to write queue\n");
541
542            writeQueue.push_back(dram_pkt);
543
544            // Update stats
545            avgWrQLen = writeQueue.size();
546        } else {
547            // keep track of the fact that this burst effectively
548            // disappeared as it was merged with an existing one
549            mergedWrBursts++;
550        }
551
552        // Starting address of next dram pkt (aligend to burstSize boundary)
553        addr = (addr | (burstSize - 1)) + 1;
554    }
555
556    // we do not wait for the writes to be send to the actual memory,
557    // but instead take responsibility for the consistency here and
558    // snoop the write queue for any upcoming reads
559    // @todo, if a pkt size is larger than burst size, we might need a
560    // different front end latency
561    accessAndRespond(pkt, frontendLatency);
562
563    // If your write buffer is starting to fill up, drain it!
564    if (writeQueue.size() >= writeHighThreshold && !stopReads){
565        triggerWrites();
566    }
567}
568
569void
570SimpleDRAM::printParams() const
571{
572    // Sanity check print of important parameters
573    DPRINTF(DRAM,
574            "Memory controller %s physical organization\n"      \
575            "Number of devices per rank   %d\n"                 \
576            "Device bus width (in bits)   %d\n"                 \
577            "DRAM data bus burst (bytes)  %d\n"                 \
578            "Row buffer size (bytes)      %d\n"                 \
579            "Columns per row buffer       %d\n"                 \
580            "Rows    per bank             %d\n"                 \
581            "Banks   per rank             %d\n"                 \
582            "Ranks   per channel          %d\n"                 \
583            "Total mem capacity (bytes)   %u\n",
584            name(), devicesPerRank, deviceBusWidth, burstSize, rowBufferSize,
585            columnsPerRowBuffer, rowsPerBank, banksPerRank, ranksPerChannel,
586            rowBufferSize * rowsPerBank * banksPerRank * ranksPerChannel);
587
588    string scheduler =  memSchedPolicy == Enums::fcfs ? "FCFS" : "FR-FCFS";
589    string address_mapping = addrMapping == Enums::RoRaBaChCo ? "RoRaBaChCo" :
590        (addrMapping == Enums::RoRaBaCoCh ? "RoRaBaCoCh" : "RoCoRaBaCh");
591    string page_policy = pageMgmt == Enums::open ? "OPEN" :
592        (pageMgmt == Enums::open_adaptive ? "OPEN (adaptive)" : "CLOSE");
593
594    DPRINTF(DRAM,
595            "Memory controller %s characteristics\n"    \
596            "Read buffer size     %d\n"                 \
597            "Write buffer size    %d\n"                 \
598            "Write high thresh    %d\n"                 \
599            "Write low thresh     %d\n"                 \
600            "Scheduler            %s\n"                 \
601            "Address mapping      %s\n"                 \
602            "Page policy          %s\n",
603            name(), readBufferSize, writeBufferSize, writeHighThreshold,
604            writeLowThreshold, scheduler, address_mapping, page_policy);
605
606    DPRINTF(DRAM, "Memory controller %s timing specs\n" \
607            "tRCD      %d ticks\n"                        \
608            "tCL       %d ticks\n"                        \
609            "tRP       %d ticks\n"                        \
610            "tBURST    %d ticks\n"                        \
611            "tRFC      %d ticks\n"                        \
612            "tREFI     %d ticks\n"                        \
613            "tWTR      %d ticks\n"                        \
614            "tXAW (%d) %d ticks\n",
615            name(), tRCD, tCL, tRP, tBURST, tRFC, tREFI, tWTR,
616            activationLimit, tXAW);
617}
618
619void
620SimpleDRAM::printQs() const {
621    DPRINTF(DRAM, "===READ QUEUE===\n\n");
622    for (auto i = readQueue.begin() ;  i != readQueue.end() ; ++i) {
623        DPRINTF(DRAM, "Read %lu\n", (*i)->addr);
624    }
625    DPRINTF(DRAM, "\n===RESP QUEUE===\n\n");
626    for (auto i = respQueue.begin() ;  i != respQueue.end() ; ++i) {
627        DPRINTF(DRAM, "Response %lu\n", (*i)->addr);
628    }
629    DPRINTF(DRAM, "\n===WRITE QUEUE===\n\n");
630    for (auto i = writeQueue.begin() ;  i != writeQueue.end() ; ++i) {
631        DPRINTF(DRAM, "Write %lu\n", (*i)->addr);
632    }
633}
634
635bool
636SimpleDRAM::recvTimingReq(PacketPtr pkt)
637{
638    /// @todo temporary hack to deal with memory corruption issues until
639    /// 4-phase transactions are complete
640    for (int x = 0; x < pendingDelete.size(); x++)
641        delete pendingDelete[x];
642    pendingDelete.clear();
643
644    // This is where we enter from the outside world
645    DPRINTF(DRAM, "recvTimingReq: request %s addr %lld size %d\n",
646            pkt->cmdString(), pkt->getAddr(), pkt->getSize());
647
648    // simply drop inhibited packets for now
649    if (pkt->memInhibitAsserted()) {
650        DPRINTF(DRAM, "Inhibited packet -- Dropping it now\n");
651        pendingDelete.push_back(pkt);
652        return true;
653    }
654
655    // Calc avg gap between requests
656    if (prevArrival != 0) {
657        totGap += curTick() - prevArrival;
658    }
659    prevArrival = curTick();
660
661
662    // Find out how many dram packets a pkt translates to
663    // If the burst size is equal or larger than the pkt size, then a pkt
664    // translates to only one dram packet. Otherwise, a pkt translates to
665    // multiple dram packets
666    unsigned size = pkt->getSize();
667    unsigned offset = pkt->getAddr() & (burstSize - 1);
668    unsigned int dram_pkt_count = divCeil(offset + size, burstSize);
669
670    // check local buffers and do not accept if full
671    if (pkt->isRead()) {
672        assert(size != 0);
673        if (readQueueFull(dram_pkt_count)) {
674            DPRINTF(DRAM, "Read queue full, not accepting\n");
675            // remember that we have to retry this port
676            retryRdReq = true;
677            numRdRetry++;
678            return false;
679        } else {
680            addToReadQueue(pkt, dram_pkt_count);
681            readReqs++;
682            bytesReadSys += size;
683        }
684    } else if (pkt->isWrite()) {
685        assert(size != 0);
686        if (writeQueueFull(dram_pkt_count)) {
687            DPRINTF(DRAM, "Write queue full, not accepting\n");
688            // remember that we have to retry this port
689            retryWrReq = true;
690            numWrRetry++;
691            return false;
692        } else {
693            addToWriteQueue(pkt, dram_pkt_count);
694            writeReqs++;
695            bytesWrittenSys += size;
696        }
697    } else {
698        DPRINTF(DRAM,"Neither read nor write, ignore timing\n");
699        neitherReadNorWrite++;
700        accessAndRespond(pkt, 1);
701    }
702
703    return true;
704}
705
706void
707SimpleDRAM::processRespondEvent()
708{
709    DPRINTF(DRAM,
710            "processRespondEvent(): Some req has reached its readyTime\n");
711
712    DRAMPacket* dram_pkt = respQueue.front();
713
714    if (dram_pkt->burstHelper) {
715        // it is a split packet
716        dram_pkt->burstHelper->burstsServiced++;
717        if (dram_pkt->burstHelper->burstsServiced ==
718            dram_pkt->burstHelper->burstCount) {
719            // we have now serviced all children packets of a system packet
720            // so we can now respond to the requester
721            // @todo we probably want to have a different front end and back
722            // end latency for split packets
723            accessAndRespond(dram_pkt->pkt, frontendLatency + backendLatency);
724            delete dram_pkt->burstHelper;
725            dram_pkt->burstHelper = NULL;
726        }
727    } else {
728        // it is not a split packet
729        accessAndRespond(dram_pkt->pkt, frontendLatency + backendLatency);
730    }
731
732    delete respQueue.front();
733    respQueue.pop_front();
734
735    if (!respQueue.empty()) {
736        assert(respQueue.front()->readyTime >= curTick());
737        assert(!respondEvent.scheduled());
738        schedule(respondEvent, respQueue.front()->readyTime);
739    } else {
740        // if there is nothing left in any queue, signal a drain
741        if (writeQueue.empty() && readQueue.empty() &&
742            drainManager) {
743            drainManager->signalDrainDone();
744            drainManager = NULL;
745        }
746    }
747
748    // We have made a location in the queue available at this point,
749    // so if there is a read that was forced to wait, retry now
750    if (retryRdReq) {
751        retryRdReq = false;
752        port.sendRetry();
753    }
754}
755
756void
757SimpleDRAM::chooseNextWrite()
758{
759    // This method does the arbitration between write requests. The
760    // chosen packet is simply moved to the head of the write
761    // queue. The other methods know that this is the place to
762    // look. For example, with FCFS, this method does nothing
763    assert(!writeQueue.empty());
764
765    if (writeQueue.size() == 1) {
766        DPRINTF(DRAM, "Single write request, nothing to do\n");
767        return;
768    }
769
770    if (memSchedPolicy == Enums::fcfs) {
771        // Do nothing, since the correct request is already head
772    } else if (memSchedPolicy == Enums::frfcfs) {
773        reorderQueue(writeQueue);
774    } else
775        panic("No scheduling policy chosen\n");
776
777    DPRINTF(DRAM, "Selected next write request\n");
778}
779
780bool
781SimpleDRAM::chooseNextRead()
782{
783    // This method does the arbitration between read requests. The
784    // chosen packet is simply moved to the head of the queue. The
785    // other methods know that this is the place to look. For example,
786    // with FCFS, this method does nothing
787    if (readQueue.empty()) {
788        DPRINTF(DRAM, "No read request to select\n");
789        return false;
790    }
791
792    // If there is only one request then there is nothing left to do
793    if (readQueue.size() == 1)
794        return true;
795
796    if (memSchedPolicy == Enums::fcfs) {
797        // Do nothing, since the request to serve is already the first
798        // one in the read queue
799    } else if (memSchedPolicy == Enums::frfcfs) {
800        reorderQueue(readQueue);
801    } else
802        panic("No scheduling policy chosen!\n");
803
804    DPRINTF(DRAM, "Selected next read request\n");
805    return true;
806}
807
808void
809SimpleDRAM::reorderQueue(std::deque<DRAMPacket*>& queue)
810{
811    // Only determine this when needed
812    uint64_t earliest_banks = 0;
813
814    // Search for row hits first, if no row hit is found then schedule the
815    // packet to one of the earliest banks available
816    bool found_earliest_pkt = false;
817    auto selected_pkt_it = queue.begin();
818
819    for (auto i = queue.begin(); i != queue.end() ; ++i) {
820        DRAMPacket* dram_pkt = *i;
821        const Bank& bank = dram_pkt->bankRef;
822        // Check if it is a row hit
823        if (bank.openRow == dram_pkt->row) {
824            DPRINTF(DRAM, "Row buffer hit\n");
825            selected_pkt_it = i;
826            break;
827        } else if (!found_earliest_pkt) {
828            // No row hit, go for first ready
829            if (earliest_banks == 0)
830                earliest_banks = minBankFreeAt(queue);
831
832            // Bank is ready or is the first available bank
833            if (bank.freeAt <= curTick() ||
834                bits(earliest_banks, dram_pkt->bankId, dram_pkt->bankId)) {
835                // Remember the packet to be scheduled to one of the earliest
836                // banks available
837                selected_pkt_it = i;
838                found_earliest_pkt = true;
839            }
840        }
841    }
842
843    DRAMPacket* selected_pkt = *selected_pkt_it;
844    queue.erase(selected_pkt_it);
845    queue.push_front(selected_pkt);
846}
847
848void
849SimpleDRAM::accessAndRespond(PacketPtr pkt, Tick static_latency)
850{
851    DPRINTF(DRAM, "Responding to Address %lld.. ",pkt->getAddr());
852
853    bool needsResponse = pkt->needsResponse();
854    // do the actual memory access which also turns the packet into a
855    // response
856    access(pkt);
857
858    // turn packet around to go back to requester if response expected
859    if (needsResponse) {
860        // access already turned the packet into a response
861        assert(pkt->isResponse());
862
863        // @todo someone should pay for this
864        pkt->busFirstWordDelay = pkt->busLastWordDelay = 0;
865
866        // queue the packet in the response queue to be sent out after
867        // the static latency has passed
868        port.schedTimingResp(pkt, curTick() + static_latency);
869    } else {
870        // @todo the packet is going to be deleted, and the DRAMPacket
871        // is still having a pointer to it
872        pendingDelete.push_back(pkt);
873    }
874
875    DPRINTF(DRAM, "Done\n");
876
877    return;
878}
879
880pair<Tick, Tick>
881SimpleDRAM::estimateLatency(DRAMPacket* dram_pkt, Tick inTime)
882{
883    // If a request reaches a bank at tick 'inTime', how much time
884    // *after* that does it take to finish the request, depending
885    // on bank status and page open policy. Note that this method
886    // considers only the time taken for the actual read or write
887    // to complete, NOT any additional time thereafter for tRAS or
888    // tRP.
889    Tick accLat = 0;
890    Tick bankLat = 0;
891    rowHitFlag = false;
892    Tick potentialActTick;
893
894    const Bank& bank = dram_pkt->bankRef;
895     // open-page policy
896    if (pageMgmt == Enums::open || pageMgmt == Enums::open_adaptive) {
897        if (bank.openRow == dram_pkt->row) {
898            // When we have a row-buffer hit,
899            // we don't care about tRAS having expired or not,
900            // but do care about bank being free for access
901            rowHitFlag = true;
902
903            // When a series of requests arrive to the same row,
904            // DDR systems are capable of streaming data continuously
905            // at maximum bandwidth (subject to tCCD). Here, we approximate
906            // this condition, and assume that if whenever a bank is already
907            // busy and a new request comes in, it can be completed with no
908            // penalty beyond waiting for the existing read to complete.
909            if (bank.freeAt > inTime) {
910                accLat += bank.freeAt - inTime;
911                bankLat += 0;
912            } else {
913               // CAS latency only
914               accLat += tCL;
915               bankLat += tCL;
916            }
917
918        } else {
919            // Row-buffer miss, need to close existing row
920            // once tRAS has expired, then open the new one,
921            // then add cas latency.
922            Tick freeTime = std::max(bank.tRASDoneAt, bank.freeAt);
923
924            if (freeTime > inTime)
925               accLat += freeTime - inTime;
926
927            // If the there is no open row (open adaptive), then there
928            // is no precharge delay, otherwise go with tRP
929            Tick precharge_delay = bank.openRow == -1 ? 0 : tRP;
930
931            //The bank is free, and you may be able to activate
932            potentialActTick = inTime + accLat + precharge_delay;
933            if (potentialActTick < bank.actAllowedAt)
934                accLat += bank.actAllowedAt - potentialActTick;
935
936            accLat += precharge_delay + tRCD + tCL;
937            bankLat += precharge_delay + tRCD + tCL;
938        }
939    } else if (pageMgmt == Enums::close) {
940        // With a close page policy, no notion of
941        // bank.tRASDoneAt
942        if (bank.freeAt > inTime)
943            accLat += bank.freeAt - inTime;
944
945        //The bank is free, and you may be able to activate
946        potentialActTick = inTime + accLat;
947        if (potentialActTick < bank.actAllowedAt)
948            accLat += bank.actAllowedAt - potentialActTick;
949
950        // page already closed, simply open the row, and
951        // add cas latency
952        accLat += tRCD + tCL;
953        bankLat += tRCD + tCL;
954    } else
955        panic("No page management policy chosen\n");
956
957    DPRINTF(DRAM, "Returning < %lld, %lld > from estimateLatency()\n",
958            bankLat, accLat);
959
960    return make_pair(bankLat, accLat);
961}
962
963void
964SimpleDRAM::processNextReqEvent()
965{
966    scheduleNextReq();
967}
968
969void
970SimpleDRAM::recordActivate(Tick act_tick, uint8_t rank, uint8_t bank)
971{
972    assert(0 <= rank && rank < ranksPerChannel);
973    assert(actTicks[rank].size() == activationLimit);
974
975    DPRINTF(DRAM, "Activate at tick %d\n", act_tick);
976
977    // Tracking accesses after all banks are precharged.
978    // startTickPrechargeAll: is the tick when all the banks were again
979    // precharged. The difference between act_tick and startTickPrechargeAll
980    // gives the time for which DRAM doesn't get any accesses after refreshing
981    // or after a page is closed in closed-page or open-adaptive-page policy.
982    if ((numBanksActive == 0) && (act_tick > startTickPrechargeAll)) {
983        prechargeAllTime += act_tick - startTickPrechargeAll;
984    }
985
986    // No need to update number of active banks for closed-page policy as only 1
987    // bank will be activated at any given point, which will be instatntly
988    // precharged
989    if (pageMgmt == Enums::open || pageMgmt == Enums::open_adaptive)
990        ++numBanksActive;
991
992    // start by enforcing tRRD
993    for(int i = 0; i < banksPerRank; i++) {
994        // next activate must not happen before tRRD
995        banks[rank][i].actAllowedAt = act_tick + tRRD;
996    }
997    // tRC should be added to activation tick of the bank currently accessed,
998    // where tRC = tRAS + tRP, this is just for a check as actAllowedAt for same
999    // bank is already captured by bank.freeAt and bank.tRASDoneAt
1000    banks[rank][bank].actAllowedAt = act_tick + tRAS + tRP;
1001
1002    // next, we deal with tXAW, if the activation limit is disabled
1003    // then we are done
1004    if (actTicks[rank].empty())
1005        return;
1006
1007    // sanity check
1008    if (actTicks[rank].back() && (act_tick - actTicks[rank].back()) < tXAW) {
1009        // @todo For now, stick with a warning
1010        warn("Got %d activates in window %d (%d - %d) which is smaller "
1011             "than %d\n", activationLimit, act_tick - actTicks[rank].back(),
1012             act_tick, actTicks[rank].back(), tXAW);
1013    }
1014
1015    // shift the times used for the book keeping, the last element
1016    // (highest index) is the oldest one and hence the lowest value
1017    actTicks[rank].pop_back();
1018
1019    // record an new activation (in the future)
1020    actTicks[rank].push_front(act_tick);
1021
1022    // cannot activate more than X times in time window tXAW, push the
1023    // next one (the X + 1'st activate) to be tXAW away from the
1024    // oldest in our window of X
1025    if (actTicks[rank].back() && (act_tick - actTicks[rank].back()) < tXAW) {
1026        DPRINTF(DRAM, "Enforcing tXAW with X = %d, next activate no earlier "
1027                "than %d\n", activationLimit, actTicks[rank].back() + tXAW);
1028            for(int j = 0; j < banksPerRank; j++)
1029                // next activate must not happen before end of window
1030                banks[rank][j].actAllowedAt = actTicks[rank].back() + tXAW;
1031    }
1032}
1033
1034void
1035SimpleDRAM::doDRAMAccess(DRAMPacket* dram_pkt)
1036{
1037
1038    DPRINTF(DRAM, "Timing access to addr %lld, rank/bank/row %d %d %d\n",
1039            dram_pkt->addr, dram_pkt->rank, dram_pkt->bank, dram_pkt->row);
1040
1041    // estimate the bank and access latency
1042    pair<Tick, Tick> lat = estimateLatency(dram_pkt, curTick());
1043    Tick bankLat = lat.first;
1044    Tick accessLat = lat.second;
1045    Tick actTick;
1046
1047    // This request was woken up at this time based on a prior call
1048    // to estimateLatency(). However, between then and now, both the
1049    // accessLatency and/or busBusyUntil may have changed. We need
1050    // to correct for that.
1051
1052    Tick addDelay = (curTick() + accessLat < busBusyUntil) ?
1053        busBusyUntil - (curTick() + accessLat) : 0;
1054
1055    Bank& bank = dram_pkt->bankRef;
1056
1057    // Update bank state
1058    if (pageMgmt == Enums::open || pageMgmt == Enums::open_adaptive) {
1059        bank.freeAt = curTick() + addDelay + accessLat;
1060
1061        // If you activated a new row do to this access, the next access
1062        // will have to respect tRAS for this bank.
1063        if (!rowHitFlag) {
1064            // any waiting for banks account for in freeAt
1065            actTick = bank.freeAt - tCL - tRCD;
1066            bank.tRASDoneAt = actTick + tRAS;
1067            recordActivate(actTick, dram_pkt->rank, dram_pkt->bank);
1068
1069            // if we closed an open row as a result of this access,
1070            // then sample the number of bytes accessed before
1071            // resetting it
1072            if (bank.openRow != -1)
1073                bytesPerActivate.sample(bank.bytesAccessed);
1074
1075            // update the open row
1076            bank.openRow = dram_pkt->row;
1077
1078            // start counting anew, this covers both the case when we
1079            // auto-precharged, and when this access is forced to
1080            // precharge
1081            bank.bytesAccessed = 0;
1082            bank.rowAccesses = 0;
1083        }
1084
1085        // increment the bytes accessed and the accesses per row
1086        bank.bytesAccessed += burstSize;
1087        ++bank.rowAccesses;
1088
1089        // if we reached the max, then issue with an auto-precharge
1090        bool auto_precharge = bank.rowAccesses == maxAccessesPerRow;
1091
1092        // if we did not hit the limit, we might still want to
1093        // auto-precharge
1094        if (!auto_precharge && pageMgmt == Enums::open_adaptive) {
1095            // a twist on the open page policy is to not blindly keep the
1096            // page open, but close it if there are no row hits, and there
1097            // are bank conflicts in the queue
1098            bool got_more_hits = false;
1099            bool got_bank_conflict = false;
1100
1101            // either look at the read queue or write queue
1102            const deque<DRAMPacket*>& queue = dram_pkt->isRead ? readQueue :
1103                writeQueue;
1104            auto p = queue.begin();
1105            // make sure we are not considering the packet that we are
1106            // currently dealing with (which is the head of the queue)
1107            ++p;
1108
1109            // keep on looking until we have found both or reached
1110            // the end
1111            while (!(got_more_hits && got_bank_conflict) &&
1112                   p != queue.end()) {
1113                bool same_rank_bank = (dram_pkt->rank == (*p)->rank) &&
1114                    (dram_pkt->bank == (*p)->bank);
1115                bool same_row = dram_pkt->row == (*p)->row;
1116                got_more_hits |= same_rank_bank && same_row;
1117                got_bank_conflict |= same_rank_bank && !same_row;
1118                ++p;
1119            }
1120
1121            // auto pre-charge if we have not got any more hits, and
1122            // have a bank conflict
1123            auto_precharge = !got_more_hits && got_bank_conflict;
1124        }
1125
1126        // if this access should use auto-precharge, then we are
1127        // closing the row
1128        if (auto_precharge) {
1129            bank.openRow = -1;
1130            bank.freeAt = std::max(bank.freeAt, bank.tRASDoneAt) + tRP;
1131            --numBanksActive;
1132            if (numBanksActive == 0) {
1133                startTickPrechargeAll = std::max(startTickPrechargeAll,
1134                                                 bank.freeAt);
1135                DPRINTF(DRAM, "All banks precharged at tick: %ld\n",
1136                        startTickPrechargeAll);
1137            }
1138
1139            // sample the bytes per activate here since we are closing
1140            // the page
1141            bytesPerActivate.sample(bank.bytesAccessed);
1142
1143            DPRINTF(DRAM, "Auto-precharged bank: %d\n", dram_pkt->bankId);
1144        }
1145
1146        DPRINTF(DRAM, "doDRAMAccess::bank.freeAt is %lld\n", bank.freeAt);
1147    } else if (pageMgmt == Enums::close) {
1148        actTick = curTick() + addDelay + accessLat - tRCD - tCL;
1149        recordActivate(actTick, dram_pkt->rank, dram_pkt->bank);
1150
1151        // If the DRAM has a very quick tRAS, bank can be made free
1152        // after consecutive tCL,tRCD,tRP times. In general, however,
1153        // an additional wait is required to respect tRAS.
1154        bank.freeAt = std::max(actTick + tRAS + tRP,
1155                actTick + tRCD + tCL + tRP);
1156        DPRINTF(DRAM, "doDRAMAccess::bank.freeAt is %lld\n", bank.freeAt);
1157        bytesPerActivate.sample(burstSize);
1158        startTickPrechargeAll = std::max(startTickPrechargeAll, bank.freeAt);
1159    } else
1160        panic("No page management policy chosen\n");
1161
1162    // Update request parameters
1163    dram_pkt->readyTime = curTick() + addDelay + accessLat + tBURST;
1164
1165
1166    DPRINTF(DRAM, "Req %lld: curtick is %lld accessLat is %d " \
1167                  "readytime is %lld busbusyuntil is %lld. " \
1168                  "Scheduling at readyTime\n", dram_pkt->addr,
1169                   curTick(), accessLat, dram_pkt->readyTime, busBusyUntil);
1170
1171    // Make sure requests are not overlapping on the databus
1172    assert (dram_pkt->readyTime - busBusyUntil >= tBURST);
1173
1174    // Update bus state
1175    busBusyUntil = dram_pkt->readyTime;
1176
1177    DPRINTF(DRAM,"Access time is %lld\n",
1178            dram_pkt->readyTime - dram_pkt->entryTime);
1179
1180    // Update the minimum timing between the requests
1181    newTime = (busBusyUntil > tRP + tRCD + tCL) ?
1182        std::max(busBusyUntil - (tRP + tRCD + tCL), curTick()) : curTick();
1183
1184    // Update the access related stats
1185    if (dram_pkt->isRead) {
1186        if (rowHitFlag)
1187            readRowHits++;
1188        bytesReadDRAM += burstSize;
1189        perBankRdBursts[dram_pkt->bankId]++;
1190    } else {
1191        if (rowHitFlag)
1192            writeRowHits++;
1193        bytesWritten += burstSize;
1194        perBankWrBursts[dram_pkt->bankId]++;
1195
1196        // At this point, commonality between reads and writes ends.
1197        // For writes, we are done since we long ago responded to the
1198        // requestor.
1199        return;
1200    }
1201
1202    // Update latency stats
1203    totMemAccLat += dram_pkt->readyTime - dram_pkt->entryTime;
1204    totBankLat += bankLat;
1205    totBusLat += tBURST;
1206    totQLat += dram_pkt->readyTime - dram_pkt->entryTime - bankLat - tBURST;
1207
1208
1209    // At this point we're done dealing with the request
1210    // It will be moved to a separate response queue with a
1211    // correct readyTime, and eventually be sent back at that
1212    //time
1213    moveToRespQ();
1214
1215    // Schedule the next read event
1216    if (!nextReqEvent.scheduled() && !stopReads) {
1217        schedule(nextReqEvent, newTime);
1218    } else {
1219        if (newTime < nextReqEvent.when())
1220            reschedule(nextReqEvent, newTime);
1221    }
1222}
1223
1224void
1225SimpleDRAM::moveToRespQ()
1226{
1227    // Remove from read queue
1228    DRAMPacket* dram_pkt = readQueue.front();
1229    readQueue.pop_front();
1230
1231    // sanity check
1232    assert(dram_pkt->size <= burstSize);
1233
1234    // Insert into response queue sorted by readyTime
1235    // It will be sent back to the requestor at its
1236    // readyTime
1237    if (respQueue.empty()) {
1238        respQueue.push_front(dram_pkt);
1239        assert(!respondEvent.scheduled());
1240        assert(dram_pkt->readyTime >= curTick());
1241        schedule(respondEvent, dram_pkt->readyTime);
1242    } else {
1243        bool done = false;
1244        auto i = respQueue.begin();
1245        while (!done && i != respQueue.end()) {
1246            if ((*i)->readyTime > dram_pkt->readyTime) {
1247                respQueue.insert(i, dram_pkt);
1248                done = true;
1249            }
1250            ++i;
1251        }
1252
1253        if (!done)
1254            respQueue.push_back(dram_pkt);
1255
1256        assert(respondEvent.scheduled());
1257
1258        if (respQueue.front()->readyTime < respondEvent.when()) {
1259            assert(respQueue.front()->readyTime >= curTick());
1260            reschedule(respondEvent, respQueue.front()->readyTime);
1261        }
1262    }
1263}
1264
1265void
1266SimpleDRAM::scheduleNextReq()
1267{
1268    DPRINTF(DRAM, "Reached scheduleNextReq()\n");
1269
1270    // Figure out which read request goes next, and move it to the
1271    // front of the read queue
1272    if (!chooseNextRead()) {
1273        // In the case there is no read request to go next, trigger
1274        // writes if we have passed the low threshold (or if we are
1275        // draining)
1276        if (!writeQueue.empty() && !writeEvent.scheduled() &&
1277            (writeQueue.size() > writeLowThreshold || drainManager))
1278            triggerWrites();
1279    } else {
1280        doDRAMAccess(readQueue.front());
1281    }
1282}
1283
1284Tick
1285SimpleDRAM::maxBankFreeAt() const
1286{
1287    Tick banksFree = 0;
1288
1289    for(int i = 0; i < ranksPerChannel; i++)
1290        for(int j = 0; j < banksPerRank; j++)
1291            banksFree = std::max(banks[i][j].freeAt, banksFree);
1292
1293    return banksFree;
1294}
1295
1296uint64_t
1297SimpleDRAM::minBankFreeAt(const deque<DRAMPacket*>& queue) const
1298{
1299    uint64_t bank_mask = 0;
1300    Tick freeAt = MaxTick;
1301
1302    // detemrine if we have queued transactions targetting the
1303    // bank in question
1304    vector<bool> got_waiting(ranksPerChannel * banksPerRank, false);
1305    for (auto p = queue.begin(); p != queue.end(); ++p) {
1306        got_waiting[(*p)->bankId] = true;
1307    }
1308
1309    for (int i = 0; i < ranksPerChannel; i++) {
1310        for (int j = 0; j < banksPerRank; j++) {
1311            // if we have waiting requests for the bank, and it is
1312            // amongst the first available, update the mask
1313            if (got_waiting[i * banksPerRank + j] &&
1314                banks[i][j].freeAt <= freeAt) {
1315                // reset bank mask if new minimum is found
1316                if (banks[i][j].freeAt < freeAt)
1317                    bank_mask = 0;
1318                // set the bit corresponding to the available bank
1319                uint8_t bit_index = i * ranksPerChannel + j;
1320                replaceBits(bank_mask, bit_index, bit_index, 1);
1321                freeAt = banks[i][j].freeAt;
1322            }
1323        }
1324    }
1325    return bank_mask;
1326}
1327
1328void
1329SimpleDRAM::processRefreshEvent()
1330{
1331    DPRINTF(DRAM, "Refreshing at tick %ld\n", curTick());
1332
1333    Tick banksFree = std::max(curTick(), maxBankFreeAt()) + tRFC;
1334
1335    for(int i = 0; i < ranksPerChannel; i++)
1336        for(int j = 0; j < banksPerRank; j++) {
1337            banks[i][j].freeAt = banksFree;
1338            banks[i][j].openRow = -1;
1339        }
1340
1341    // updating startTickPrechargeAll, isprechargeAll
1342    numBanksActive = 0;
1343    startTickPrechargeAll = banksFree;
1344
1345    schedule(refreshEvent, curTick() + tREFI);
1346}
1347
1348void
1349SimpleDRAM::regStats()
1350{
1351    using namespace Stats;
1352
1353    AbstractMemory::regStats();
1354
1355    readReqs
1356        .name(name() + ".readReqs")
1357        .desc("Number of read requests accepted");
1358
1359    writeReqs
1360        .name(name() + ".writeReqs")
1361        .desc("Number of write requests accepted");
1362
1363    readBursts
1364        .name(name() + ".readBursts")
1365        .desc("Number of DRAM read bursts, "
1366              "including those serviced by the write queue");
1367
1368    writeBursts
1369        .name(name() + ".writeBursts")
1370        .desc("Number of DRAM write bursts, "
1371              "including those merged in the write queue");
1372
1373    servicedByWrQ
1374        .name(name() + ".servicedByWrQ")
1375        .desc("Number of DRAM read bursts serviced by the write queue");
1376
1377    mergedWrBursts
1378        .name(name() + ".mergedWrBursts")
1379        .desc("Number of DRAM write bursts merged with an existing one");
1380
1381    neitherReadNorWrite
1382        .name(name() + ".neitherReadNorWriteReqs")
1383        .desc("Number of requests that are neither read nor write");
1384
1385    perBankRdBursts
1386        .init(banksPerRank * ranksPerChannel)
1387        .name(name() + ".perBankRdBursts")
1388        .desc("Per bank write bursts");
1389
1390    perBankWrBursts
1391        .init(banksPerRank * ranksPerChannel)
1392        .name(name() + ".perBankWrBursts")
1393        .desc("Per bank write bursts");
1394
1395    avgRdQLen
1396        .name(name() + ".avgRdQLen")
1397        .desc("Average read queue length when enqueuing")
1398        .precision(2);
1399
1400    avgWrQLen
1401        .name(name() + ".avgWrQLen")
1402        .desc("Average write queue length when enqueuing")
1403        .precision(2);
1404
1405    totQLat
1406        .name(name() + ".totQLat")
1407        .desc("Total ticks spent queuing");
1408
1409    totBankLat
1410        .name(name() + ".totBankLat")
1411        .desc("Total ticks spent accessing banks");
1412
1413    totBusLat
1414        .name(name() + ".totBusLat")
1415        .desc("Total ticks spent in databus transfers");
1416
1417    totMemAccLat
1418        .name(name() + ".totMemAccLat")
1419        .desc("Total ticks spent from burst creation until serviced "
1420              "by the DRAM");
1421
1422    avgQLat
1423        .name(name() + ".avgQLat")
1424        .desc("Average queueing delay per DRAM burst")
1425        .precision(2);
1426
1427    avgQLat = totQLat / (readBursts - servicedByWrQ);
1428
1429    avgBankLat
1430        .name(name() + ".avgBankLat")
1431        .desc("Average bank access latency per DRAM burst")
1432        .precision(2);
1433
1434    avgBankLat = totBankLat / (readBursts - servicedByWrQ);
1435
1436    avgBusLat
1437        .name(name() + ".avgBusLat")
1438        .desc("Average bus latency per DRAM burst")
1439        .precision(2);
1440
1441    avgBusLat = totBusLat / (readBursts - servicedByWrQ);
1442
1443    avgMemAccLat
1444        .name(name() + ".avgMemAccLat")
1445        .desc("Average memory access latency per DRAM burst")
1446        .precision(2);
1447
1448    avgMemAccLat = totMemAccLat / (readBursts - servicedByWrQ);
1449
1450    numRdRetry
1451        .name(name() + ".numRdRetry")
1452        .desc("Number of times read queue was full causing retry");
1453
1454    numWrRetry
1455        .name(name() + ".numWrRetry")
1456        .desc("Number of times write queue was full causing retry");
1457
1458    readRowHits
1459        .name(name() + ".readRowHits")
1460        .desc("Number of row buffer hits during reads");
1461
1462    writeRowHits
1463        .name(name() + ".writeRowHits")
1464        .desc("Number of row buffer hits during writes");
1465
1466    readRowHitRate
1467        .name(name() + ".readRowHitRate")
1468        .desc("Row buffer hit rate for reads")
1469        .precision(2);
1470
1471    readRowHitRate = (readRowHits / (readBursts - servicedByWrQ)) * 100;
1472
1473    writeRowHitRate
1474        .name(name() + ".writeRowHitRate")
1475        .desc("Row buffer hit rate for writes")
1476        .precision(2);
1477
1478    writeRowHitRate = (writeRowHits / (writeBursts - mergedWrBursts)) * 100;
1479
1480    readPktSize
1481        .init(ceilLog2(burstSize) + 1)
1482        .name(name() + ".readPktSize")
1483        .desc("Read request sizes (log2)");
1484
1485     writePktSize
1486        .init(ceilLog2(burstSize) + 1)
1487        .name(name() + ".writePktSize")
1488        .desc("Write request sizes (log2)");
1489
1490     rdQLenPdf
1491        .init(readBufferSize)
1492        .name(name() + ".rdQLenPdf")
1493        .desc("What read queue length does an incoming req see");
1494
1495     wrQLenPdf
1496        .init(writeBufferSize)
1497        .name(name() + ".wrQLenPdf")
1498        .desc("What write queue length does an incoming req see");
1499
1500     bytesPerActivate
1501         .init(maxAccessesPerRow)
1502         .name(name() + ".bytesPerActivate")
1503         .desc("Bytes accessed per row activation")
1504         .flags(nozero);
1505
1506    bytesReadDRAM
1507        .name(name() + ".bytesReadDRAM")
1508        .desc("Total number of bytes read from DRAM");
1509
1510    bytesReadWrQ
1511        .name(name() + ".bytesReadWrQ")
1512        .desc("Total number of bytes read from write queue");
1513
1514    bytesWritten
1515        .name(name() + ".bytesWritten")
1516        .desc("Total number of bytes written to DRAM");
1517
1518    bytesReadSys
1519        .name(name() + ".bytesReadSys")
1520        .desc("Total read bytes from the system interface side");
1521
1522    bytesWrittenSys
1523        .name(name() + ".bytesWrittenSys")
1524        .desc("Total written bytes from the system interface side");
1525
1526    avgRdBW
1527        .name(name() + ".avgRdBW")
1528        .desc("Average DRAM read bandwidth in MiByte/s")
1529        .precision(2);
1530
1531    avgRdBW = (bytesReadDRAM / 1000000) / simSeconds;
1532
1533    avgWrBW
1534        .name(name() + ".avgWrBW")
1535        .desc("Average achieved write bandwidth in MiByte/s")
1536        .precision(2);
1537
1538    avgWrBW = (bytesWritten / 1000000) / simSeconds;
1539
1540    avgRdBWSys
1541        .name(name() + ".avgRdBWSys")
1542        .desc("Average system read bandwidth in MiByte/s")
1543        .precision(2);
1544
1545    avgRdBWSys = (bytesReadSys / 1000000) / simSeconds;
1546
1547    avgWrBWSys
1548        .name(name() + ".avgWrBWSys")
1549        .desc("Average system write bandwidth in MiByte/s")
1550        .precision(2);
1551
1552    avgWrBWSys = (bytesWrittenSys / 1000000) / simSeconds;
1553
1554    peakBW
1555        .name(name() + ".peakBW")
1556        .desc("Theoretical peak bandwidth in MiByte/s")
1557        .precision(2);
1558
1559    peakBW = (SimClock::Frequency / tBURST) * burstSize / 1000000;
1560
1561    busUtil
1562        .name(name() + ".busUtil")
1563        .desc("Data bus utilization in percentage")
1564        .precision(2);
1565
1566    busUtil = (avgRdBW + avgWrBW) / peakBW * 100;
1567
1568    totGap
1569        .name(name() + ".totGap")
1570        .desc("Total gap between requests");
1571
1572    avgGap
1573        .name(name() + ".avgGap")
1574        .desc("Average gap between requests")
1575        .precision(2);
1576
1577    avgGap = totGap / (readReqs + writeReqs);
1578
1579    // Stats for DRAM Power calculation based on Micron datasheet
1580    busUtilRead
1581        .name(name() + ".busUtilRead")
1582        .desc("Data bus utilization in percentage for reads")
1583        .precision(2);
1584
1585    busUtilRead = avgRdBW / peakBW * 100;
1586
1587    busUtilWrite
1588        .name(name() + ".busUtilWrite")
1589        .desc("Data bus utilization in percentage for writes")
1590        .precision(2);
1591
1592    busUtilWrite = avgWrBW / peakBW * 100;
1593
1594    pageHitRate
1595        .name(name() + ".pageHitRate")
1596        .desc("Row buffer hit rate, read and write combined")
1597        .precision(2);
1598
1599    pageHitRate = (writeRowHits + readRowHits) /
1600        (writeBursts - mergedWrBursts + readBursts - servicedByWrQ) * 100;
1601
1602    prechargeAllPercent
1603        .name(name() + ".prechargeAllPercent")
1604        .desc("Percentage of time for which DRAM has all the banks in "
1605              "precharge state")
1606        .precision(2);
1607
1608    prechargeAllPercent = prechargeAllTime / simTicks * 100;
1609}
1610
1611void
1612SimpleDRAM::recvFunctional(PacketPtr pkt)
1613{
1614    // rely on the abstract memory
1615    functionalAccess(pkt);
1616}
1617
1618BaseSlavePort&
1619SimpleDRAM::getSlavePort(const string &if_name, PortID idx)
1620{
1621    if (if_name != "port") {
1622        return MemObject::getSlavePort(if_name, idx);
1623    } else {
1624        return port;
1625    }
1626}
1627
1628unsigned int
1629SimpleDRAM::drain(DrainManager *dm)
1630{
1631    unsigned int count = port.drain(dm);
1632
1633    // if there is anything in any of our internal queues, keep track
1634    // of that as well
1635    if (!(writeQueue.empty() && readQueue.empty() &&
1636          respQueue.empty())) {
1637        DPRINTF(Drain, "DRAM controller not drained, write: %d, read: %d,"
1638                " resp: %d\n", writeQueue.size(), readQueue.size(),
1639                respQueue.size());
1640        ++count;
1641        drainManager = dm;
1642        // the only part that is not drained automatically over time
1643        // is the write queue, thus trigger writes if there are any
1644        // waiting and no reads waiting, otherwise wait until the
1645        // reads are done
1646        if (readQueue.empty() && !writeQueue.empty() &&
1647            !writeEvent.scheduled())
1648            triggerWrites();
1649    }
1650
1651    if (count)
1652        setDrainState(Drainable::Draining);
1653    else
1654        setDrainState(Drainable::Drained);
1655    return count;
1656}
1657
1658SimpleDRAM::MemoryPort::MemoryPort(const std::string& name, SimpleDRAM& _memory)
1659    : QueuedSlavePort(name, &_memory, queue), queue(_memory, *this),
1660      memory(_memory)
1661{ }
1662
1663AddrRangeList
1664SimpleDRAM::MemoryPort::getAddrRanges() const
1665{
1666    AddrRangeList ranges;
1667    ranges.push_back(memory.getAddrRange());
1668    return ranges;
1669}
1670
1671void
1672SimpleDRAM::MemoryPort::recvFunctional(PacketPtr pkt)
1673{
1674    pkt->pushLabel(memory.name());
1675
1676    if (!queue.checkFunctional(pkt)) {
1677        // Default implementation of SimpleTimingPort::recvFunctional()
1678        // calls recvAtomic() and throws away the latency; we can save a
1679        // little here by just not calculating the latency.
1680        memory.recvFunctional(pkt);
1681    }
1682
1683    pkt->popLabel();
1684}
1685
1686Tick
1687SimpleDRAM::MemoryPort::recvAtomic(PacketPtr pkt)
1688{
1689    return memory.recvAtomic(pkt);
1690}
1691
1692bool
1693SimpleDRAM::MemoryPort::recvTimingReq(PacketPtr pkt)
1694{
1695    // pass it to the memory controller
1696    return memory.recvTimingReq(pkt);
1697}
1698
1699SimpleDRAM*
1700SimpleDRAMParams::create()
1701{
1702    return new SimpleDRAM(this);
1703}
1704