coherent_xbar.cc revision 13847
1/*
2 * Copyright (c) 2011-2018 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder.  You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2006 The Regents of The University of Michigan
15 * All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions are
19 * met: redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer;
21 * redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution;
24 * neither the name of the copyright holders nor the names of its
25 * contributors may be used to endorse or promote products derived from
26 * this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 *
40 * Authors: Ali Saidi
41 *          Andreas Hansson
42 *          William Wang
43 *          Nikos Nikoleris
44 */
45
46/**
47 * @file
48 * Definition of a crossbar object.
49 */
50
51#include "mem/coherent_xbar.hh"
52
53#include "base/logging.hh"
54#include "base/trace.hh"
55#include "debug/AddrRanges.hh"
56#include "debug/CoherentXBar.hh"
57#include "sim/system.hh"
58
59CoherentXBar::CoherentXBar(const CoherentXBarParams *p)
60    : BaseXBar(p), system(p->system), snoopFilter(p->snoop_filter),
61      snoopResponseLatency(p->snoop_response_latency),
62      pointOfCoherency(p->point_of_coherency),
63      pointOfUnification(p->point_of_unification)
64{
65    // create the ports based on the size of the master and slave
66    // vector ports, and the presence of the default port, the ports
67    // are enumerated starting from zero
68    for (int i = 0; i < p->port_master_connection_count; ++i) {
69        std::string portName = csprintf("%s.master[%d]", name(), i);
70        MasterPort* bp = new CoherentXBarMasterPort(portName, *this, i);
71        masterPorts.push_back(bp);
72        reqLayers.push_back(new ReqLayer(*bp, *this,
73                                         csprintf(".reqLayer%d", i)));
74        snoopLayers.push_back(
75                new SnoopRespLayer(*bp, *this, csprintf(".snoopLayer%d", i)));
76    }
77
78    // see if we have a default slave device connected and if so add
79    // our corresponding master port
80    if (p->port_default_connection_count) {
81        defaultPortID = masterPorts.size();
82        std::string portName = name() + ".default";
83        MasterPort* bp = new CoherentXBarMasterPort(portName, *this,
84                                                    defaultPortID);
85        masterPorts.push_back(bp);
86        reqLayers.push_back(new ReqLayer(*bp, *this, csprintf(".reqLayer%d",
87                                         defaultPortID)));
88        snoopLayers.push_back(new SnoopRespLayer(*bp, *this,
89                                                 csprintf(".snoopLayer%d",
90                                                          defaultPortID)));
91    }
92
93    // create the slave ports, once again starting at zero
94    for (int i = 0; i < p->port_slave_connection_count; ++i) {
95        std::string portName = csprintf("%s.slave[%d]", name(), i);
96        QueuedSlavePort* bp = new CoherentXBarSlavePort(portName, *this, i);
97        slavePorts.push_back(bp);
98        respLayers.push_back(new RespLayer(*bp, *this,
99                                           csprintf(".respLayer%d", i)));
100        snoopRespPorts.push_back(new SnoopRespPort(*bp, *this));
101    }
102}
103
104CoherentXBar::~CoherentXBar()
105{
106    for (auto l: reqLayers)
107        delete l;
108    for (auto l: respLayers)
109        delete l;
110    for (auto l: snoopLayers)
111        delete l;
112    for (auto p: snoopRespPorts)
113        delete p;
114}
115
116void
117CoherentXBar::init()
118{
119    BaseXBar::init();
120
121    // iterate over our slave ports and determine which of our
122    // neighbouring master ports are snooping and add them as snoopers
123    for (const auto& p: slavePorts) {
124        // check if the connected master port is snooping
125        if (p->isSnooping()) {
126            DPRINTF(AddrRanges, "Adding snooping master %s\n",
127                    p->getMasterPort().name());
128            snoopPorts.push_back(p);
129        }
130    }
131
132    if (snoopPorts.empty())
133        warn("CoherentXBar %s has no snooping ports attached!\n", name());
134
135    // inform the snoop filter about the slave ports so it can create
136    // its own internal representation
137    if (snoopFilter)
138        snoopFilter->setSlavePorts(slavePorts);
139}
140
141bool
142CoherentXBar::recvTimingReq(PacketPtr pkt, PortID slave_port_id)
143{
144    // determine the source port based on the id
145    SlavePort *src_port = slavePorts[slave_port_id];
146
147    // remember if the packet is an express snoop
148    bool is_express_snoop = pkt->isExpressSnoop();
149    bool cache_responding = pkt->cacheResponding();
150    // for normal requests, going downstream, the express snoop flag
151    // and the cache responding flag should always be the same
152    assert(is_express_snoop == cache_responding);
153
154    // determine the destination based on the destination address range
155    AddrRange addr_range = RangeSize(pkt->getAddr(), pkt->getSize());
156    PortID master_port_id = findPort(addr_range);
157
158    // test if the crossbar should be considered occupied for the current
159    // port, and exclude express snoops from the check
160    if (!is_express_snoop && !reqLayers[master_port_id]->tryTiming(src_port)) {
161        DPRINTF(CoherentXBar, "%s: src %s packet %s BUSY\n", __func__,
162                src_port->name(), pkt->print());
163        return false;
164    }
165
166    DPRINTF(CoherentXBar, "%s: src %s packet %s\n", __func__,
167            src_port->name(), pkt->print());
168
169    // store size and command as they might be modified when
170    // forwarding the packet
171    unsigned int pkt_size = pkt->hasData() ? pkt->getSize() : 0;
172    unsigned int pkt_cmd = pkt->cmdToIndex();
173
174    // store the old header delay so we can restore it if needed
175    Tick old_header_delay = pkt->headerDelay;
176
177    // a request sees the frontend and forward latency
178    Tick xbar_delay = (frontendLatency + forwardLatency) * clockPeriod();
179
180    // set the packet header and payload delay
181    calcPacketTiming(pkt, xbar_delay);
182
183    // determine how long to be crossbar layer is busy
184    Tick packetFinishTime = clockEdge(Cycles(1)) + pkt->payloadDelay;
185
186    // is this the destination point for this packet? (e.g. true if
187    // this xbar is the PoC for a cache maintenance operation to the
188    // PoC) otherwise the destination is any cache that can satisfy
189    // the request
190    const bool is_destination = isDestination(pkt);
191
192    const bool snoop_caches = !system->bypassCaches() &&
193        pkt->cmd != MemCmd::WriteClean;
194    if (snoop_caches) {
195        assert(pkt->snoopDelay == 0);
196
197        if (pkt->isClean() && !is_destination) {
198            // before snooping we need to make sure that the memory
199            // below is not busy and the cache clean request can be
200            // forwarded to it
201            if (!masterPorts[master_port_id]->tryTiming(pkt)) {
202                DPRINTF(CoherentXBar, "%s: src %s packet %s RETRY\n", __func__,
203                        src_port->name(), pkt->print());
204
205                // update the layer state and schedule an idle event
206                reqLayers[master_port_id]->failedTiming(src_port,
207                                                        clockEdge(Cycles(1)));
208                return false;
209            }
210        }
211
212
213        // the packet is a memory-mapped request and should be
214        // broadcasted to our snoopers but the source
215        if (snoopFilter) {
216            // check with the snoop filter where to forward this packet
217            auto sf_res = snoopFilter->lookupRequest(pkt, *src_port);
218            // the time required by a packet to be delivered through
219            // the xbar has to be charged also with to lookup latency
220            // of the snoop filter
221            pkt->headerDelay += sf_res.second * clockPeriod();
222            DPRINTF(CoherentXBar, "%s: src %s packet %s SF size: %i lat: %i\n",
223                    __func__, src_port->name(), pkt->print(),
224                    sf_res.first.size(), sf_res.second);
225
226            if (pkt->isEviction()) {
227                // for block-evicting packets, i.e. writebacks and
228                // clean evictions, there is no need to snoop up, as
229                // all we do is determine if the block is cached or
230                // not, instead just set it here based on the snoop
231                // filter result
232                if (!sf_res.first.empty())
233                    pkt->setBlockCached();
234            } else {
235                forwardTiming(pkt, slave_port_id, sf_res.first);
236            }
237        } else {
238            forwardTiming(pkt, slave_port_id);
239        }
240
241        // add the snoop delay to our header delay, and then reset it
242        pkt->headerDelay += pkt->snoopDelay;
243        pkt->snoopDelay = 0;
244    }
245
246    // set up a sensible starting point
247    bool success = true;
248
249    // remember if the packet will generate a snoop response by
250    // checking if a cache set the cacheResponding flag during the
251    // snooping above
252    const bool expect_snoop_resp = !cache_responding && pkt->cacheResponding();
253    bool expect_response = pkt->needsResponse() && !pkt->cacheResponding();
254
255    const bool sink_packet = sinkPacket(pkt);
256
257    // in certain cases the crossbar is responsible for responding
258    bool respond_directly = false;
259    // store the original address as an address mapper could possibly
260    // modify the address upon a sendTimingRequest
261    const Addr addr(pkt->getAddr());
262    if (sink_packet) {
263        DPRINTF(CoherentXBar, "%s: Not forwarding %s\n", __func__,
264                pkt->print());
265    } else {
266        // determine if we are forwarding the packet, or responding to
267        // it
268        if (forwardPacket(pkt)) {
269            // if we are passing on, rather than sinking, a packet to
270            // which an upstream cache has committed to responding,
271            // the line was needs writable, and the responding only
272            // had an Owned copy, so we need to immidiately let the
273            // downstream caches know, bypass any flow control
274            if (pkt->cacheResponding()) {
275                pkt->setExpressSnoop();
276            }
277
278            // make sure that the write request (e.g., WriteClean)
279            // will stop at the memory below if this crossbar is its
280            // destination
281            if (pkt->isWrite() && is_destination) {
282                pkt->clearWriteThrough();
283            }
284
285            // since it is a normal request, attempt to send the packet
286            success = masterPorts[master_port_id]->sendTimingReq(pkt);
287        } else {
288            // no need to forward, turn this packet around and respond
289            // directly
290            assert(pkt->needsResponse());
291
292            respond_directly = true;
293            assert(!expect_snoop_resp);
294            expect_response = false;
295        }
296    }
297
298    if (snoopFilter && snoop_caches) {
299        // Let the snoop filter know about the success of the send operation
300        snoopFilter->finishRequest(!success, addr, pkt->isSecure());
301    }
302
303    // check if we were successful in sending the packet onwards
304    if (!success)  {
305        // express snoops should never be forced to retry
306        assert(!is_express_snoop);
307
308        // restore the header delay
309        pkt->headerDelay = old_header_delay;
310
311        DPRINTF(CoherentXBar, "%s: src %s packet %s RETRY\n", __func__,
312                src_port->name(), pkt->print());
313
314        // update the layer state and schedule an idle event
315        reqLayers[master_port_id]->failedTiming(src_port,
316                                                clockEdge(Cycles(1)));
317    } else {
318        // express snoops currently bypass the crossbar state entirely
319        if (!is_express_snoop) {
320            // if this particular request will generate a snoop
321            // response
322            if (expect_snoop_resp) {
323                // we should never have an exsiting request outstanding
324                assert(outstandingSnoop.find(pkt->req) ==
325                       outstandingSnoop.end());
326                outstandingSnoop.insert(pkt->req);
327
328                // basic sanity check on the outstanding snoops
329                panic_if(outstandingSnoop.size() > 512,
330                         "Outstanding snoop requests exceeded 512\n");
331            }
332
333            // remember where to route the normal response to
334            if (expect_response || expect_snoop_resp) {
335                assert(routeTo.find(pkt->req) == routeTo.end());
336                routeTo[pkt->req] = slave_port_id;
337
338                panic_if(routeTo.size() > 512,
339                         "Routing table exceeds 512 packets\n");
340            }
341
342            // update the layer state and schedule an idle event
343            reqLayers[master_port_id]->succeededTiming(packetFinishTime);
344        }
345
346        // stats updates only consider packets that were successfully sent
347        pktCount[slave_port_id][master_port_id]++;
348        pktSize[slave_port_id][master_port_id] += pkt_size;
349        transDist[pkt_cmd]++;
350
351        if (is_express_snoop) {
352            snoops++;
353            snoopTraffic += pkt_size;
354        }
355    }
356
357    if (sink_packet)
358        // queue the packet for deletion
359        pendingDelete.reset(pkt);
360
361    // normally we respond to the packet we just received if we need to
362    PacketPtr rsp_pkt = pkt;
363    PortID rsp_port_id = slave_port_id;
364
365    // If this is the destination of the cache clean operation the
366    // crossbar is responsible for responding. This crossbar will
367    // respond when the cache clean is complete. A cache clean
368    // is complete either:
369    // * direcly, if no cache above had a dirty copy of the block
370    //   as indicated by the satisfied flag of the packet, or
371    // * when the crossbar has seen both the cache clean request
372    //   (CleanSharedReq, CleanInvalidReq) and the corresponding
373    //   write (WriteClean) which updates the block in the memory
374    //   below.
375    if (success &&
376        ((pkt->isClean() && pkt->satisfied()) ||
377         pkt->cmd == MemCmd::WriteClean) &&
378        is_destination) {
379        PacketPtr deferred_rsp = pkt->isWrite() ? nullptr : pkt;
380        auto cmo_lookup = outstandingCMO.find(pkt->id);
381        if (cmo_lookup != outstandingCMO.end()) {
382            // the cache clean request has already reached this xbar
383            respond_directly = true;
384            if (pkt->isWrite()) {
385                rsp_pkt = cmo_lookup->second;
386                assert(rsp_pkt);
387
388                // determine the destination
389                const auto route_lookup = routeTo.find(rsp_pkt->req);
390                assert(route_lookup != routeTo.end());
391                rsp_port_id = route_lookup->second;
392                assert(rsp_port_id != InvalidPortID);
393                assert(rsp_port_id < respLayers.size());
394                // remove the request from the routing table
395                routeTo.erase(route_lookup);
396            }
397            outstandingCMO.erase(cmo_lookup);
398        } else {
399            respond_directly = false;
400            outstandingCMO.emplace(pkt->id, deferred_rsp);
401            if (!pkt->isWrite()) {
402                assert(routeTo.find(pkt->req) == routeTo.end());
403                routeTo[pkt->req] = slave_port_id;
404
405                panic_if(routeTo.size() > 512,
406                         "Routing table exceeds 512 packets\n");
407            }
408        }
409    }
410
411
412    if (respond_directly) {
413        assert(rsp_pkt->needsResponse());
414        assert(success);
415
416        rsp_pkt->makeResponse();
417
418        if (snoopFilter && !system->bypassCaches()) {
419            // let the snoop filter inspect the response and update its state
420            snoopFilter->updateResponse(rsp_pkt, *slavePorts[rsp_port_id]);
421        }
422
423        // we send the response after the current packet, even if the
424        // response is not for this packet (e.g. cache clean operation
425        // where both the request and the write packet have to cross
426        // the destination xbar before the response is sent.)
427        Tick response_time = clockEdge() + pkt->headerDelay;
428        rsp_pkt->headerDelay = 0;
429
430        slavePorts[rsp_port_id]->schedTimingResp(rsp_pkt, response_time);
431    }
432
433    return success;
434}
435
436bool
437CoherentXBar::recvTimingResp(PacketPtr pkt, PortID master_port_id)
438{
439    // determine the source port based on the id
440    MasterPort *src_port = masterPorts[master_port_id];
441
442    // determine the destination
443    const auto route_lookup = routeTo.find(pkt->req);
444    assert(route_lookup != routeTo.end());
445    const PortID slave_port_id = route_lookup->second;
446    assert(slave_port_id != InvalidPortID);
447    assert(slave_port_id < respLayers.size());
448
449    // test if the crossbar should be considered occupied for the
450    // current port
451    if (!respLayers[slave_port_id]->tryTiming(src_port)) {
452        DPRINTF(CoherentXBar, "%s: src %s packet %s BUSY\n", __func__,
453                src_port->name(), pkt->print());
454        return false;
455    }
456
457    DPRINTF(CoherentXBar, "%s: src %s packet %s\n", __func__,
458            src_port->name(), pkt->print());
459
460    // store size and command as they might be modified when
461    // forwarding the packet
462    unsigned int pkt_size = pkt->hasData() ? pkt->getSize() : 0;
463    unsigned int pkt_cmd = pkt->cmdToIndex();
464
465    // a response sees the response latency
466    Tick xbar_delay = responseLatency * clockPeriod();
467
468    // set the packet header and payload delay
469    calcPacketTiming(pkt, xbar_delay);
470
471    // determine how long to be crossbar layer is busy
472    Tick packetFinishTime = clockEdge(Cycles(1)) + pkt->payloadDelay;
473
474    if (snoopFilter && !system->bypassCaches()) {
475        // let the snoop filter inspect the response and update its state
476        snoopFilter->updateResponse(pkt, *slavePorts[slave_port_id]);
477    }
478
479    // send the packet through the destination slave port and pay for
480    // any outstanding header delay
481    Tick latency = pkt->headerDelay;
482    pkt->headerDelay = 0;
483    slavePorts[slave_port_id]->schedTimingResp(pkt, curTick() + latency);
484
485    // remove the request from the routing table
486    routeTo.erase(route_lookup);
487
488    respLayers[slave_port_id]->succeededTiming(packetFinishTime);
489
490    // stats updates
491    pktCount[slave_port_id][master_port_id]++;
492    pktSize[slave_port_id][master_port_id] += pkt_size;
493    transDist[pkt_cmd]++;
494
495    return true;
496}
497
498void
499CoherentXBar::recvTimingSnoopReq(PacketPtr pkt, PortID master_port_id)
500{
501    DPRINTF(CoherentXBar, "%s: src %s packet %s\n", __func__,
502            masterPorts[master_port_id]->name(), pkt->print());
503
504    // update stats here as we know the forwarding will succeed
505    unsigned int pkt_size = pkt->hasData() ? pkt->getSize() : 0;
506    transDist[pkt->cmdToIndex()]++;
507    snoops++;
508    snoopTraffic += pkt_size;
509
510    // we should only see express snoops from caches
511    assert(pkt->isExpressSnoop());
512
513    // set the packet header and payload delay, for now use forward latency
514    // @todo Assess the choice of latency further
515    calcPacketTiming(pkt, forwardLatency * clockPeriod());
516
517    // remember if a cache has already committed to responding so we
518    // can see if it changes during the snooping
519    const bool cache_responding = pkt->cacheResponding();
520
521    assert(pkt->snoopDelay == 0);
522
523    if (snoopFilter) {
524        // let the Snoop Filter work its magic and guide probing
525        auto sf_res = snoopFilter->lookupSnoop(pkt);
526        // the time required by a packet to be delivered through
527        // the xbar has to be charged also with to lookup latency
528        // of the snoop filter
529        pkt->headerDelay += sf_res.second * clockPeriod();
530        DPRINTF(CoherentXBar, "%s: src %s packet %s SF size: %i lat: %i\n",
531                __func__, masterPorts[master_port_id]->name(), pkt->print(),
532                sf_res.first.size(), sf_res.second);
533
534        // forward to all snoopers
535        forwardTiming(pkt, InvalidPortID, sf_res.first);
536    } else {
537        forwardTiming(pkt, InvalidPortID);
538    }
539
540    // add the snoop delay to our header delay, and then reset it
541    pkt->headerDelay += pkt->snoopDelay;
542    pkt->snoopDelay = 0;
543
544    // if we can expect a response, remember how to route it
545    if (!cache_responding && pkt->cacheResponding()) {
546        assert(routeTo.find(pkt->req) == routeTo.end());
547        routeTo[pkt->req] = master_port_id;
548    }
549
550    // a snoop request came from a connected slave device (one of
551    // our master ports), and if it is not coming from the slave
552    // device responsible for the address range something is
553    // wrong, hence there is nothing further to do as the packet
554    // would be going back to where it came from
555    AddrRange addr_range M5_VAR_USED =
556        RangeSize(pkt->getAddr(), pkt->getSize());
557    assert(findPort(addr_range) == master_port_id);
558}
559
560bool
561CoherentXBar::recvTimingSnoopResp(PacketPtr pkt, PortID slave_port_id)
562{
563    // determine the source port based on the id
564    SlavePort* src_port = slavePorts[slave_port_id];
565
566    // get the destination
567    const auto route_lookup = routeTo.find(pkt->req);
568    assert(route_lookup != routeTo.end());
569    const PortID dest_port_id = route_lookup->second;
570    assert(dest_port_id != InvalidPortID);
571
572    // determine if the response is from a snoop request we
573    // created as the result of a normal request (in which case it
574    // should be in the outstandingSnoop), or if we merely forwarded
575    // someone else's snoop request
576    const bool forwardAsSnoop = outstandingSnoop.find(pkt->req) ==
577        outstandingSnoop.end();
578
579    // test if the crossbar should be considered occupied for the
580    // current port, note that the check is bypassed if the response
581    // is being passed on as a normal response since this is occupying
582    // the response layer rather than the snoop response layer
583    if (forwardAsSnoop) {
584        assert(dest_port_id < snoopLayers.size());
585        if (!snoopLayers[dest_port_id]->tryTiming(src_port)) {
586            DPRINTF(CoherentXBar, "%s: src %s packet %s BUSY\n", __func__,
587                    src_port->name(), pkt->print());
588            return false;
589        }
590    } else {
591        // get the master port that mirrors this slave port internally
592        MasterPort* snoop_port = snoopRespPorts[slave_port_id];
593        assert(dest_port_id < respLayers.size());
594        if (!respLayers[dest_port_id]->tryTiming(snoop_port)) {
595            DPRINTF(CoherentXBar, "%s: src %s packet %s BUSY\n", __func__,
596                    snoop_port->name(), pkt->print());
597            return false;
598        }
599    }
600
601    DPRINTF(CoherentXBar, "%s: src %s packet %s\n", __func__,
602            src_port->name(), pkt->print());
603
604    // store size and command as they might be modified when
605    // forwarding the packet
606    unsigned int pkt_size = pkt->hasData() ? pkt->getSize() : 0;
607    unsigned int pkt_cmd = pkt->cmdToIndex();
608
609    // responses are never express snoops
610    assert(!pkt->isExpressSnoop());
611
612    // a snoop response sees the snoop response latency, and if it is
613    // forwarded as a normal response, the response latency
614    Tick xbar_delay =
615        (forwardAsSnoop ? snoopResponseLatency : responseLatency) *
616        clockPeriod();
617
618    // set the packet header and payload delay
619    calcPacketTiming(pkt, xbar_delay);
620
621    // determine how long to be crossbar layer is busy
622    Tick packetFinishTime = clockEdge(Cycles(1)) + pkt->payloadDelay;
623
624    // forward it either as a snoop response or a normal response
625    if (forwardAsSnoop) {
626        // this is a snoop response to a snoop request we forwarded,
627        // e.g. coming from the L1 and going to the L2, and it should
628        // be forwarded as a snoop response
629
630        if (snoopFilter) {
631            // update the probe filter so that it can properly track the line
632            snoopFilter->updateSnoopForward(pkt, *slavePorts[slave_port_id],
633                                            *masterPorts[dest_port_id]);
634        }
635
636        bool success M5_VAR_USED =
637            masterPorts[dest_port_id]->sendTimingSnoopResp(pkt);
638        pktCount[slave_port_id][dest_port_id]++;
639        pktSize[slave_port_id][dest_port_id] += pkt_size;
640        assert(success);
641
642        snoopLayers[dest_port_id]->succeededTiming(packetFinishTime);
643    } else {
644        // we got a snoop response on one of our slave ports,
645        // i.e. from a coherent master connected to the crossbar, and
646        // since we created the snoop request as part of recvTiming,
647        // this should now be a normal response again
648        outstandingSnoop.erase(pkt->req);
649
650        // this is a snoop response from a coherent master, hence it
651        // should never go back to where the snoop response came from,
652        // but instead to where the original request came from
653        assert(slave_port_id != dest_port_id);
654
655        if (snoopFilter) {
656            // update the probe filter so that it can properly track the line
657            snoopFilter->updateSnoopResponse(pkt, *slavePorts[slave_port_id],
658                                    *slavePorts[dest_port_id]);
659        }
660
661        DPRINTF(CoherentXBar, "%s: src %s packet %s FWD RESP\n", __func__,
662                src_port->name(), pkt->print());
663
664        // as a normal response, it should go back to a master through
665        // one of our slave ports, we also pay for any outstanding
666        // header latency
667        Tick latency = pkt->headerDelay;
668        pkt->headerDelay = 0;
669        slavePorts[dest_port_id]->schedTimingResp(pkt, curTick() + latency);
670
671        respLayers[dest_port_id]->succeededTiming(packetFinishTime);
672    }
673
674    // remove the request from the routing table
675    routeTo.erase(route_lookup);
676
677    // stats updates
678    transDist[pkt_cmd]++;
679    snoops++;
680    snoopTraffic += pkt_size;
681
682    return true;
683}
684
685
686void
687CoherentXBar::forwardTiming(PacketPtr pkt, PortID exclude_slave_port_id,
688                           const std::vector<QueuedSlavePort*>& dests)
689{
690    DPRINTF(CoherentXBar, "%s for %s\n", __func__, pkt->print());
691
692    // snoops should only happen if the system isn't bypassing caches
693    assert(!system->bypassCaches());
694
695    unsigned fanout = 0;
696
697    for (const auto& p: dests) {
698        // we could have gotten this request from a snooping master
699        // (corresponding to our own slave port that is also in
700        // snoopPorts) and should not send it back to where it came
701        // from
702        if (exclude_slave_port_id == InvalidPortID ||
703            p->getId() != exclude_slave_port_id) {
704            // cache is not allowed to refuse snoop
705            p->sendTimingSnoopReq(pkt);
706            fanout++;
707        }
708    }
709
710    // Stats for fanout of this forward operation
711    snoopFanout.sample(fanout);
712}
713
714void
715CoherentXBar::recvReqRetry(PortID master_port_id)
716{
717    // responses and snoop responses never block on forwarding them,
718    // so the retry will always be coming from a port to which we
719    // tried to forward a request
720    reqLayers[master_port_id]->recvRetry();
721}
722
723Tick
724CoherentXBar::recvAtomicBackdoor(PacketPtr pkt, PortID slave_port_id,
725                                 MemBackdoorPtr *backdoor)
726{
727    DPRINTF(CoherentXBar, "%s: src %s packet %s\n", __func__,
728            slavePorts[slave_port_id]->name(), pkt->print());
729
730    unsigned int pkt_size = pkt->hasData() ? pkt->getSize() : 0;
731    unsigned int pkt_cmd = pkt->cmdToIndex();
732
733    MemCmd snoop_response_cmd = MemCmd::InvalidCmd;
734    Tick snoop_response_latency = 0;
735
736    // is this the destination point for this packet? (e.g. true if
737    // this xbar is the PoC for a cache maintenance operation to the
738    // PoC) otherwise the destination is any cache that can satisfy
739    // the request
740    const bool is_destination = isDestination(pkt);
741
742    const bool snoop_caches = !system->bypassCaches() &&
743        pkt->cmd != MemCmd::WriteClean;
744    if (snoop_caches) {
745        // forward to all snoopers but the source
746        std::pair<MemCmd, Tick> snoop_result;
747        if (snoopFilter) {
748            // check with the snoop filter where to forward this packet
749            auto sf_res =
750                snoopFilter->lookupRequest(pkt, *slavePorts[slave_port_id]);
751            snoop_response_latency += sf_res.second * clockPeriod();
752            DPRINTF(CoherentXBar, "%s: src %s packet %s SF size: %i lat: %i\n",
753                    __func__, slavePorts[slave_port_id]->name(), pkt->print(),
754                    sf_res.first.size(), sf_res.second);
755
756            // let the snoop filter know about the success of the send
757            // operation, and do it even before sending it onwards to
758            // avoid situations where atomic upward snoops sneak in
759            // between and change the filter state
760            snoopFilter->finishRequest(false, pkt->getAddr(), pkt->isSecure());
761
762            if (pkt->isEviction()) {
763                // for block-evicting packets, i.e. writebacks and
764                // clean evictions, there is no need to snoop up, as
765                // all we do is determine if the block is cached or
766                // not, instead just set it here based on the snoop
767                // filter result
768                if (!sf_res.first.empty())
769                    pkt->setBlockCached();
770            } else {
771                snoop_result = forwardAtomic(pkt, slave_port_id, InvalidPortID,
772                                             sf_res.first);
773            }
774        } else {
775            snoop_result = forwardAtomic(pkt, slave_port_id);
776        }
777        snoop_response_cmd = snoop_result.first;
778        snoop_response_latency += snoop_result.second;
779    }
780
781    // set up a sensible default value
782    Tick response_latency = 0;
783
784    const bool sink_packet = sinkPacket(pkt);
785
786    // even if we had a snoop response, we must continue and also
787    // perform the actual request at the destination
788    AddrRange addr_range = RangeSize(pkt->getAddr(), pkt->getSize());
789    PortID master_port_id = findPort(addr_range);
790
791    if (sink_packet) {
792        DPRINTF(CoherentXBar, "%s: Not forwarding %s\n", __func__,
793                pkt->print());
794    } else {
795        if (forwardPacket(pkt)) {
796            // make sure that the write request (e.g., WriteClean)
797            // will stop at the memory below if this crossbar is its
798            // destination
799            if (pkt->isWrite() && is_destination) {
800                pkt->clearWriteThrough();
801            }
802
803            // forward the request to the appropriate destination
804            auto master = masterPorts[master_port_id];
805            response_latency = backdoor ?
806                master->sendAtomicBackdoor(pkt, *backdoor) :
807                master->sendAtomic(pkt);
808        } else {
809            // if it does not need a response we sink the packet above
810            assert(pkt->needsResponse());
811
812            pkt->makeResponse();
813        }
814    }
815
816    // stats updates for the request
817    pktCount[slave_port_id][master_port_id]++;
818    pktSize[slave_port_id][master_port_id] += pkt_size;
819    transDist[pkt_cmd]++;
820
821
822    // if lower levels have replied, tell the snoop filter
823    if (!system->bypassCaches() && snoopFilter && pkt->isResponse()) {
824        snoopFilter->updateResponse(pkt, *slavePorts[slave_port_id]);
825    }
826
827    // if we got a response from a snooper, restore it here
828    if (snoop_response_cmd != MemCmd::InvalidCmd) {
829        // no one else should have responded
830        assert(!pkt->isResponse());
831        pkt->cmd = snoop_response_cmd;
832        response_latency = snoop_response_latency;
833    }
834
835    // If this is the destination of the cache clean operation the
836    // crossbar is responsible for responding. This crossbar will
837    // respond when the cache clean is complete. An atomic cache clean
838    // is complete when the crossbars receives the cache clean
839    // request (CleanSharedReq, CleanInvalidReq), as either:
840    // * no cache above had a dirty copy of the block as indicated by
841    //   the satisfied flag of the packet, or
842    // * the crossbar has already seen the corresponding write
843    //   (WriteClean) which updates the block in the memory below.
844    if (pkt->isClean() && isDestination(pkt) && pkt->satisfied()) {
845        auto it = outstandingCMO.find(pkt->id);
846        assert(it != outstandingCMO.end());
847        // we are responding right away
848        outstandingCMO.erase(it);
849    } else if (pkt->cmd == MemCmd::WriteClean && isDestination(pkt)) {
850        // if this is the destination of the operation, the xbar
851        // sends the responce to the cache clean operation only
852        // after having encountered the cache clean request
853        auto M5_VAR_USED ret = outstandingCMO.emplace(pkt->id, nullptr);
854        // in atomic mode we know that the WriteClean packet should
855        // precede the clean request
856        assert(ret.second);
857    }
858
859    // add the response data
860    if (pkt->isResponse()) {
861        pkt_size = pkt->hasData() ? pkt->getSize() : 0;
862        pkt_cmd = pkt->cmdToIndex();
863
864        // stats updates
865        pktCount[slave_port_id][master_port_id]++;
866        pktSize[slave_port_id][master_port_id] += pkt_size;
867        transDist[pkt_cmd]++;
868    }
869
870    // @todo: Not setting header time
871    pkt->payloadDelay = response_latency;
872    return response_latency;
873}
874
875Tick
876CoherentXBar::recvAtomicSnoop(PacketPtr pkt, PortID master_port_id)
877{
878    DPRINTF(CoherentXBar, "%s: src %s packet %s\n", __func__,
879            masterPorts[master_port_id]->name(), pkt->print());
880
881    // add the request snoop data
882    unsigned int pkt_size = pkt->hasData() ? pkt->getSize() : 0;
883    snoops++;
884    snoopTraffic += pkt_size;
885
886    // forward to all snoopers
887    std::pair<MemCmd, Tick> snoop_result;
888    Tick snoop_response_latency = 0;
889    if (snoopFilter) {
890        auto sf_res = snoopFilter->lookupSnoop(pkt);
891        snoop_response_latency += sf_res.second * clockPeriod();
892        DPRINTF(CoherentXBar, "%s: src %s packet %s SF size: %i lat: %i\n",
893                __func__, masterPorts[master_port_id]->name(), pkt->print(),
894                sf_res.first.size(), sf_res.second);
895        snoop_result = forwardAtomic(pkt, InvalidPortID, master_port_id,
896                                     sf_res.first);
897    } else {
898        snoop_result = forwardAtomic(pkt, InvalidPortID);
899    }
900    MemCmd snoop_response_cmd = snoop_result.first;
901    snoop_response_latency += snoop_result.second;
902
903    if (snoop_response_cmd != MemCmd::InvalidCmd)
904        pkt->cmd = snoop_response_cmd;
905
906    // add the response snoop data
907    if (pkt->isResponse()) {
908        snoops++;
909    }
910
911    // @todo: Not setting header time
912    pkt->payloadDelay = snoop_response_latency;
913    return snoop_response_latency;
914}
915
916std::pair<MemCmd, Tick>
917CoherentXBar::forwardAtomic(PacketPtr pkt, PortID exclude_slave_port_id,
918                           PortID source_master_port_id,
919                           const std::vector<QueuedSlavePort*>& dests)
920{
921    // the packet may be changed on snoops, record the original
922    // command to enable us to restore it between snoops so that
923    // additional snoops can take place properly
924    MemCmd orig_cmd = pkt->cmd;
925    MemCmd snoop_response_cmd = MemCmd::InvalidCmd;
926    Tick snoop_response_latency = 0;
927
928    // snoops should only happen if the system isn't bypassing caches
929    assert(!system->bypassCaches());
930
931    unsigned fanout = 0;
932
933    for (const auto& p: dests) {
934        // we could have gotten this request from a snooping master
935        // (corresponding to our own slave port that is also in
936        // snoopPorts) and should not send it back to where it came
937        // from
938        if (exclude_slave_port_id != InvalidPortID &&
939            p->getId() == exclude_slave_port_id)
940            continue;
941
942        Tick latency = p->sendAtomicSnoop(pkt);
943        fanout++;
944
945        // in contrast to a functional access, we have to keep on
946        // going as all snoopers must be updated even if we get a
947        // response
948        if (!pkt->isResponse())
949            continue;
950
951        // response from snoop agent
952        assert(pkt->cmd != orig_cmd);
953        assert(pkt->cacheResponding());
954        // should only happen once
955        assert(snoop_response_cmd == MemCmd::InvalidCmd);
956        // save response state
957        snoop_response_cmd = pkt->cmd;
958        snoop_response_latency = latency;
959
960        if (snoopFilter) {
961            // Handle responses by the snoopers and differentiate between
962            // responses to requests from above and snoops from below
963            if (source_master_port_id != InvalidPortID) {
964                // Getting a response for a snoop from below
965                assert(exclude_slave_port_id == InvalidPortID);
966                snoopFilter->updateSnoopForward(pkt, *p,
967                             *masterPorts[source_master_port_id]);
968            } else {
969                // Getting a response for a request from above
970                assert(source_master_port_id == InvalidPortID);
971                snoopFilter->updateSnoopResponse(pkt, *p,
972                             *slavePorts[exclude_slave_port_id]);
973            }
974        }
975        // restore original packet state for remaining snoopers
976        pkt->cmd = orig_cmd;
977    }
978
979    // Stats for fanout
980    snoopFanout.sample(fanout);
981
982    // the packet is restored as part of the loop and any potential
983    // snoop response is part of the returned pair
984    return std::make_pair(snoop_response_cmd, snoop_response_latency);
985}
986
987void
988CoherentXBar::recvFunctional(PacketPtr pkt, PortID slave_port_id)
989{
990    if (!pkt->isPrint()) {
991        // don't do DPRINTFs on PrintReq as it clutters up the output
992        DPRINTF(CoherentXBar, "%s: src %s packet %s\n", __func__,
993                slavePorts[slave_port_id]->name(), pkt->print());
994    }
995
996    if (!system->bypassCaches()) {
997        // forward to all snoopers but the source
998        forwardFunctional(pkt, slave_port_id);
999    }
1000
1001    // there is no need to continue if the snooping has found what we
1002    // were looking for and the packet is already a response
1003    if (!pkt->isResponse()) {
1004        // since our slave ports are queued ports we need to check them as well
1005        for (const auto& p : slavePorts) {
1006            // if we find a response that has the data, then the
1007            // downstream caches/memories may be out of date, so simply stop
1008            // here
1009            if (p->trySatisfyFunctional(pkt)) {
1010                if (pkt->needsResponse())
1011                    pkt->makeResponse();
1012                return;
1013            }
1014        }
1015
1016        PortID dest_id = findPort(RangeSize(pkt->getAddr(), pkt->getSize()));
1017
1018        masterPorts[dest_id]->sendFunctional(pkt);
1019    }
1020}
1021
1022void
1023CoherentXBar::recvFunctionalSnoop(PacketPtr pkt, PortID master_port_id)
1024{
1025    if (!pkt->isPrint()) {
1026        // don't do DPRINTFs on PrintReq as it clutters up the output
1027        DPRINTF(CoherentXBar, "%s: src %s packet %s\n", __func__,
1028                masterPorts[master_port_id]->name(), pkt->print());
1029    }
1030
1031    for (const auto& p : slavePorts) {
1032        if (p->trySatisfyFunctional(pkt)) {
1033            if (pkt->needsResponse())
1034                pkt->makeResponse();
1035            return;
1036        }
1037    }
1038
1039    // forward to all snoopers
1040    forwardFunctional(pkt, InvalidPortID);
1041}
1042
1043void
1044CoherentXBar::forwardFunctional(PacketPtr pkt, PortID exclude_slave_port_id)
1045{
1046    // snoops should only happen if the system isn't bypassing caches
1047    assert(!system->bypassCaches());
1048
1049    for (const auto& p: snoopPorts) {
1050        // we could have gotten this request from a snooping master
1051        // (corresponding to our own slave port that is also in
1052        // snoopPorts) and should not send it back to where it came
1053        // from
1054        if (exclude_slave_port_id == InvalidPortID ||
1055            p->getId() != exclude_slave_port_id)
1056            p->sendFunctionalSnoop(pkt);
1057
1058        // if we get a response we are done
1059        if (pkt->isResponse()) {
1060            break;
1061        }
1062    }
1063}
1064
1065bool
1066CoherentXBar::sinkPacket(const PacketPtr pkt) const
1067{
1068    // we can sink the packet if:
1069    // 1) the crossbar is the point of coherency, and a cache is
1070    //    responding after being snooped
1071    // 2) the crossbar is the point of coherency, and the packet is a
1072    //    coherency packet (not a read or a write) that does not
1073    //    require a response
1074    // 3) this is a clean evict or clean writeback, but the packet is
1075    //    found in a cache above this crossbar
1076    // 4) a cache is responding after being snooped, and the packet
1077    //    either does not need the block to be writable, or the cache
1078    //    that has promised to respond (setting the cache responding
1079    //    flag) is providing writable and thus had a Modified block,
1080    //    and no further action is needed
1081    return (pointOfCoherency && pkt->cacheResponding()) ||
1082        (pointOfCoherency && !(pkt->isRead() || pkt->isWrite()) &&
1083         !pkt->needsResponse()) ||
1084        (pkt->isCleanEviction() && pkt->isBlockCached()) ||
1085        (pkt->cacheResponding() &&
1086         (!pkt->needsWritable() || pkt->responderHadWritable()));
1087}
1088
1089bool
1090CoherentXBar::forwardPacket(const PacketPtr pkt)
1091{
1092    // we are forwarding the packet if:
1093    // 1) this is a cache clean request to the PoU/PoC and this
1094    //    crossbar is above the PoU/PoC
1095    // 2) this is a read or a write
1096    // 3) this crossbar is above the point of coherency
1097    if (pkt->isClean()) {
1098        return !isDestination(pkt);
1099    }
1100    return pkt->isRead() || pkt->isWrite() || !pointOfCoherency;
1101}
1102
1103
1104void
1105CoherentXBar::regStats()
1106{
1107    // register the stats of the base class and our layers
1108    BaseXBar::regStats();
1109    for (auto l: reqLayers)
1110        l->regStats();
1111    for (auto l: respLayers)
1112        l->regStats();
1113    for (auto l: snoopLayers)
1114        l->regStats();
1115
1116    snoops
1117        .name(name() + ".snoops")
1118        .desc("Total snoops (count)")
1119    ;
1120
1121    snoopTraffic
1122        .name(name() + ".snoopTraffic")
1123        .desc("Total snoop traffic (bytes)")
1124    ;
1125
1126    snoopFanout
1127        .init(0, snoopPorts.size(), 1)
1128        .name(name() + ".snoop_fanout")
1129        .desc("Request fanout histogram")
1130    ;
1131}
1132
1133CoherentXBar *
1134CoherentXBarParams::create()
1135{
1136    return new CoherentXBar(this);
1137}
1138