1/* 2 * Copyright (c) 2011-2019 ARM Limited 3 * All rights reserved 4 * 5 * The license below extends only to copyright in the software and shall 6 * not be construed as granting a license to any other intellectual 7 * property including but not limited to intellectual property relating 8 * to a hardware implementation of the functionality of the software 9 * licensed hereunder. You may use the software subject to the license 10 * terms below provided that you ensure that this notice is replicated 11 * unmodified and in its entirety in all distributions of the software, 12 * modified or unmodified, in source code or in binary form. 13 * 14 * Copyright (c) 2006 The Regents of The University of Michigan 15 * All rights reserved. 16 * 17 * Redistribution and use in source and binary forms, with or without 18 * modification, are permitted provided that the following conditions are 19 * met: redistributions of source code must retain the above copyright 20 * notice, this list of conditions and the following disclaimer; 21 * redistributions in binary form must reproduce the above copyright 22 * notice, this list of conditions and the following disclaimer in the 23 * documentation and/or other materials provided with the distribution; 24 * neither the name of the copyright holders nor the names of its 25 * contributors may be used to endorse or promote products derived from 26 * this software without specific prior written permission. 27 * 28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 39 * 40 * Authors: Ali Saidi 41 * Andreas Hansson 42 * William Wang 43 * Nikos Nikoleris 44 */ 45 46/** 47 * @file 48 * Definition of a crossbar object. 49 */ 50 51#include "mem/coherent_xbar.hh" 52 53#include "base/logging.hh" 54#include "base/trace.hh" 55#include "debug/AddrRanges.hh" 56#include "debug/CoherentXBar.hh" 57#include "sim/system.hh" 58 59CoherentXBar::CoherentXBar(const CoherentXBarParams *p) 60 : BaseXBar(p), system(p->system), snoopFilter(p->snoop_filter), 61 snoopResponseLatency(p->snoop_response_latency), 62 maxOutstandingSnoopCheck(p->max_outstanding_snoops), 63 maxRoutingTableSizeCheck(p->max_routing_table_size), 64 pointOfCoherency(p->point_of_coherency), 65 pointOfUnification(p->point_of_unification) 66{ 67 // create the ports based on the size of the master and slave 68 // vector ports, and the presence of the default port, the ports 69 // are enumerated starting from zero 70 for (int i = 0; i < p->port_master_connection_count; ++i) { 71 std::string portName = csprintf("%s.master[%d]", name(), i); 72 MasterPort* bp = new CoherentXBarMasterPort(portName, *this, i); 73 masterPorts.push_back(bp); 74 reqLayers.push_back(new ReqLayer(*bp, *this, 75 csprintf(".reqLayer%d", i))); 76 snoopLayers.push_back( 77 new SnoopRespLayer(*bp, *this, csprintf(".snoopLayer%d", i))); 78 } 79 80 // see if we have a default slave device connected and if so add 81 // our corresponding master port 82 if (p->port_default_connection_count) { 83 defaultPortID = masterPorts.size(); 84 std::string portName = name() + ".default"; 85 MasterPort* bp = new CoherentXBarMasterPort(portName, *this, 86 defaultPortID); 87 masterPorts.push_back(bp); 88 reqLayers.push_back(new ReqLayer(*bp, *this, csprintf(".reqLayer%d", 89 defaultPortID))); 90 snoopLayers.push_back(new SnoopRespLayer(*bp, *this, 91 csprintf(".snoopLayer%d", 92 defaultPortID))); 93 } 94 95 // create the slave ports, once again starting at zero 96 for (int i = 0; i < p->port_slave_connection_count; ++i) { 97 std::string portName = csprintf("%s.slave[%d]", name(), i); 98 QueuedSlavePort* bp = new CoherentXBarSlavePort(portName, *this, i); 99 slavePorts.push_back(bp); 100 respLayers.push_back(new RespLayer(*bp, *this, 101 csprintf(".respLayer%d", i))); 102 snoopRespPorts.push_back(new SnoopRespPort(*bp, *this)); 103 } 104} 105 106CoherentXBar::~CoherentXBar() 107{ 108 for (auto l: reqLayers) 109 delete l; 110 for (auto l: respLayers) 111 delete l; 112 for (auto l: snoopLayers) 113 delete l; 114 for (auto p: snoopRespPorts) 115 delete p; 116} 117 118void 119CoherentXBar::init() 120{ 121 BaseXBar::init(); 122 123 // iterate over our slave ports and determine which of our 124 // neighbouring master ports are snooping and add them as snoopers 125 for (const auto& p: slavePorts) { 126 // check if the connected master port is snooping 127 if (p->isSnooping()) { 128 DPRINTF(AddrRanges, "Adding snooping master %s\n", p->getPeer()); 129 snoopPorts.push_back(p); 130 } 131 } 132 133 if (snoopPorts.empty()) 134 warn("CoherentXBar %s has no snooping ports attached!\n", name()); 135 136 // inform the snoop filter about the slave ports so it can create 137 // its own internal representation 138 if (snoopFilter) 139 snoopFilter->setSlavePorts(slavePorts); 140} 141 142bool 143CoherentXBar::recvTimingReq(PacketPtr pkt, PortID slave_port_id) 144{ 145 // determine the source port based on the id 146 SlavePort *src_port = slavePorts[slave_port_id]; 147 148 // remember if the packet is an express snoop 149 bool is_express_snoop = pkt->isExpressSnoop(); 150 bool cache_responding = pkt->cacheResponding(); 151 // for normal requests, going downstream, the express snoop flag 152 // and the cache responding flag should always be the same 153 assert(is_express_snoop == cache_responding); 154 155 // determine the destination based on the destination address range 156 PortID master_port_id = findPort(pkt->getAddrRange()); 157 158 // test if the crossbar should be considered occupied for the current 159 // port, and exclude express snoops from the check 160 if (!is_express_snoop && !reqLayers[master_port_id]->tryTiming(src_port)) { 161 DPRINTF(CoherentXBar, "%s: src %s packet %s BUSY\n", __func__, 162 src_port->name(), pkt->print()); 163 return false; 164 } 165 166 DPRINTF(CoherentXBar, "%s: src %s packet %s\n", __func__, 167 src_port->name(), pkt->print()); 168 169 // store size and command as they might be modified when 170 // forwarding the packet 171 unsigned int pkt_size = pkt->hasData() ? pkt->getSize() : 0; 172 unsigned int pkt_cmd = pkt->cmdToIndex(); 173 174 // store the old header delay so we can restore it if needed 175 Tick old_header_delay = pkt->headerDelay; 176 177 // a request sees the frontend and forward latency 178 Tick xbar_delay = (frontendLatency + forwardLatency) * clockPeriod(); 179 180 // set the packet header and payload delay 181 calcPacketTiming(pkt, xbar_delay); 182 183 // determine how long to be crossbar layer is busy 184 Tick packetFinishTime = clockEdge(Cycles(1)) + pkt->payloadDelay; 185 186 // is this the destination point for this packet? (e.g. true if 187 // this xbar is the PoC for a cache maintenance operation to the 188 // PoC) otherwise the destination is any cache that can satisfy 189 // the request 190 const bool is_destination = isDestination(pkt); 191 192 const bool snoop_caches = !system->bypassCaches() && 193 pkt->cmd != MemCmd::WriteClean; 194 if (snoop_caches) { 195 assert(pkt->snoopDelay == 0); 196 197 if (pkt->isClean() && !is_destination) { 198 // before snooping we need to make sure that the memory 199 // below is not busy and the cache clean request can be 200 // forwarded to it 201 if (!masterPorts[master_port_id]->tryTiming(pkt)) { 202 DPRINTF(CoherentXBar, "%s: src %s packet %s RETRY\n", __func__, 203 src_port->name(), pkt->print()); 204 205 // update the layer state and schedule an idle event 206 reqLayers[master_port_id]->failedTiming(src_port, 207 clockEdge(Cycles(1))); 208 return false; 209 } 210 } 211 212 213 // the packet is a memory-mapped request and should be 214 // broadcasted to our snoopers but the source 215 if (snoopFilter) { 216 // check with the snoop filter where to forward this packet 217 auto sf_res = snoopFilter->lookupRequest(pkt, *src_port); 218 // the time required by a packet to be delivered through 219 // the xbar has to be charged also with to lookup latency 220 // of the snoop filter 221 pkt->headerDelay += sf_res.second * clockPeriod(); 222 DPRINTF(CoherentXBar, "%s: src %s packet %s SF size: %i lat: %i\n", 223 __func__, src_port->name(), pkt->print(), 224 sf_res.first.size(), sf_res.second); 225 226 if (pkt->isEviction()) { 227 // for block-evicting packets, i.e. writebacks and 228 // clean evictions, there is no need to snoop up, as 229 // all we do is determine if the block is cached or 230 // not, instead just set it here based on the snoop 231 // filter result 232 if (!sf_res.first.empty()) 233 pkt->setBlockCached(); 234 } else { 235 forwardTiming(pkt, slave_port_id, sf_res.first); 236 } 237 } else { 238 forwardTiming(pkt, slave_port_id); 239 } 240 241 // add the snoop delay to our header delay, and then reset it 242 pkt->headerDelay += pkt->snoopDelay; 243 pkt->snoopDelay = 0; 244 } 245 246 // set up a sensible starting point 247 bool success = true; 248 249 // remember if the packet will generate a snoop response by 250 // checking if a cache set the cacheResponding flag during the 251 // snooping above 252 const bool expect_snoop_resp = !cache_responding && pkt->cacheResponding(); 253 bool expect_response = pkt->needsResponse() && !pkt->cacheResponding(); 254 255 const bool sink_packet = sinkPacket(pkt); 256 257 // in certain cases the crossbar is responsible for responding 258 bool respond_directly = false; 259 // store the original address as an address mapper could possibly 260 // modify the address upon a sendTimingRequest 261 const Addr addr(pkt->getAddr()); 262 if (sink_packet) { 263 DPRINTF(CoherentXBar, "%s: Not forwarding %s\n", __func__, 264 pkt->print()); 265 } else { 266 // determine if we are forwarding the packet, or responding to 267 // it 268 if (forwardPacket(pkt)) { 269 // if we are passing on, rather than sinking, a packet to 270 // which an upstream cache has committed to responding, 271 // the line was needs writable, and the responding only 272 // had an Owned copy, so we need to immidiately let the 273 // downstream caches know, bypass any flow control 274 if (pkt->cacheResponding()) { 275 pkt->setExpressSnoop(); 276 } 277 278 // make sure that the write request (e.g., WriteClean) 279 // will stop at the memory below if this crossbar is its 280 // destination 281 if (pkt->isWrite() && is_destination) { 282 pkt->clearWriteThrough(); 283 } 284 285 // since it is a normal request, attempt to send the packet 286 success = masterPorts[master_port_id]->sendTimingReq(pkt); 287 } else { 288 // no need to forward, turn this packet around and respond 289 // directly 290 assert(pkt->needsResponse()); 291 292 respond_directly = true; 293 assert(!expect_snoop_resp); 294 expect_response = false; 295 } 296 } 297 298 if (snoopFilter && snoop_caches) { 299 // Let the snoop filter know about the success of the send operation 300 snoopFilter->finishRequest(!success, addr, pkt->isSecure()); 301 } 302 303 // check if we were successful in sending the packet onwards 304 if (!success) { 305 // express snoops should never be forced to retry 306 assert(!is_express_snoop); 307 308 // restore the header delay 309 pkt->headerDelay = old_header_delay; 310 311 DPRINTF(CoherentXBar, "%s: src %s packet %s RETRY\n", __func__, 312 src_port->name(), pkt->print()); 313 314 // update the layer state and schedule an idle event 315 reqLayers[master_port_id]->failedTiming(src_port, 316 clockEdge(Cycles(1))); 317 } else { 318 // express snoops currently bypass the crossbar state entirely 319 if (!is_express_snoop) { 320 // if this particular request will generate a snoop 321 // response 322 if (expect_snoop_resp) { 323 // we should never have an exsiting request outstanding 324 assert(outstandingSnoop.find(pkt->req) == 325 outstandingSnoop.end()); 326 outstandingSnoop.insert(pkt->req); 327 328 // basic sanity check on the outstanding snoops 329 panic_if(outstandingSnoop.size() > maxOutstandingSnoopCheck, 330 "%s: Outstanding snoop requests exceeded %d\n", 331 name(), maxOutstandingSnoopCheck); 332 } 333 334 // remember where to route the normal response to 335 if (expect_response || expect_snoop_resp) { 336 assert(routeTo.find(pkt->req) == routeTo.end()); 337 routeTo[pkt->req] = slave_port_id; 338 339 panic_if(routeTo.size() > maxRoutingTableSizeCheck, 340 "%s: Routing table exceeds %d packets\n", 341 name(), maxRoutingTableSizeCheck); 342 } 343 344 // update the layer state and schedule an idle event 345 reqLayers[master_port_id]->succeededTiming(packetFinishTime); 346 } 347 348 // stats updates only consider packets that were successfully sent 349 pktCount[slave_port_id][master_port_id]++; 350 pktSize[slave_port_id][master_port_id] += pkt_size; 351 transDist[pkt_cmd]++; 352 353 if (is_express_snoop) { 354 snoops++; 355 snoopTraffic += pkt_size; 356 } 357 } 358 359 if (sink_packet) 360 // queue the packet for deletion 361 pendingDelete.reset(pkt); 362 363 // normally we respond to the packet we just received if we need to 364 PacketPtr rsp_pkt = pkt; 365 PortID rsp_port_id = slave_port_id; 366 367 // If this is the destination of the cache clean operation the 368 // crossbar is responsible for responding. This crossbar will 369 // respond when the cache clean is complete. A cache clean 370 // is complete either: 371 // * direcly, if no cache above had a dirty copy of the block 372 // as indicated by the satisfied flag of the packet, or 373 // * when the crossbar has seen both the cache clean request 374 // (CleanSharedReq, CleanInvalidReq) and the corresponding 375 // write (WriteClean) which updates the block in the memory 376 // below. 377 if (success && 378 ((pkt->isClean() && pkt->satisfied()) || 379 pkt->cmd == MemCmd::WriteClean) && 380 is_destination) { 381 PacketPtr deferred_rsp = pkt->isWrite() ? nullptr : pkt; 382 auto cmo_lookup = outstandingCMO.find(pkt->id); 383 if (cmo_lookup != outstandingCMO.end()) { 384 // the cache clean request has already reached this xbar 385 respond_directly = true; 386 if (pkt->isWrite()) { 387 rsp_pkt = cmo_lookup->second; 388 assert(rsp_pkt); 389 390 // determine the destination 391 const auto route_lookup = routeTo.find(rsp_pkt->req); 392 assert(route_lookup != routeTo.end()); 393 rsp_port_id = route_lookup->second; 394 assert(rsp_port_id != InvalidPortID); 395 assert(rsp_port_id < respLayers.size()); 396 // remove the request from the routing table 397 routeTo.erase(route_lookup); 398 } 399 outstandingCMO.erase(cmo_lookup); 400 } else { 401 respond_directly = false; 402 outstandingCMO.emplace(pkt->id, deferred_rsp); 403 if (!pkt->isWrite()) { 404 assert(routeTo.find(pkt->req) == routeTo.end()); 405 routeTo[pkt->req] = slave_port_id; 406 407 panic_if(routeTo.size() > maxRoutingTableSizeCheck, 408 "%s: Routing table exceeds %d packets\n", 409 name(), maxRoutingTableSizeCheck); 410 } 411 } 412 } 413 414 415 if (respond_directly) { 416 assert(rsp_pkt->needsResponse()); 417 assert(success); 418 419 rsp_pkt->makeResponse(); 420 421 if (snoopFilter && !system->bypassCaches()) { 422 // let the snoop filter inspect the response and update its state 423 snoopFilter->updateResponse(rsp_pkt, *slavePorts[rsp_port_id]); 424 } 425 426 // we send the response after the current packet, even if the 427 // response is not for this packet (e.g. cache clean operation 428 // where both the request and the write packet have to cross 429 // the destination xbar before the response is sent.) 430 Tick response_time = clockEdge() + pkt->headerDelay; 431 rsp_pkt->headerDelay = 0; 432 433 slavePorts[rsp_port_id]->schedTimingResp(rsp_pkt, response_time); 434 } 435 436 return success; 437} 438 439bool 440CoherentXBar::recvTimingResp(PacketPtr pkt, PortID master_port_id) 441{ 442 // determine the source port based on the id 443 MasterPort *src_port = masterPorts[master_port_id]; 444 445 // determine the destination 446 const auto route_lookup = routeTo.find(pkt->req); 447 assert(route_lookup != routeTo.end()); 448 const PortID slave_port_id = route_lookup->second; 449 assert(slave_port_id != InvalidPortID); 450 assert(slave_port_id < respLayers.size()); 451 452 // test if the crossbar should be considered occupied for the 453 // current port 454 if (!respLayers[slave_port_id]->tryTiming(src_port)) { 455 DPRINTF(CoherentXBar, "%s: src %s packet %s BUSY\n", __func__, 456 src_port->name(), pkt->print()); 457 return false; 458 } 459 460 DPRINTF(CoherentXBar, "%s: src %s packet %s\n", __func__, 461 src_port->name(), pkt->print()); 462 463 // store size and command as they might be modified when 464 // forwarding the packet 465 unsigned int pkt_size = pkt->hasData() ? pkt->getSize() : 0; 466 unsigned int pkt_cmd = pkt->cmdToIndex(); 467 468 // a response sees the response latency 469 Tick xbar_delay = responseLatency * clockPeriod(); 470 471 // set the packet header and payload delay 472 calcPacketTiming(pkt, xbar_delay); 473 474 // determine how long to be crossbar layer is busy 475 Tick packetFinishTime = clockEdge(Cycles(1)) + pkt->payloadDelay; 476 477 if (snoopFilter && !system->bypassCaches()) { 478 // let the snoop filter inspect the response and update its state 479 snoopFilter->updateResponse(pkt, *slavePorts[slave_port_id]); 480 } 481 482 // send the packet through the destination slave port and pay for 483 // any outstanding header delay 484 Tick latency = pkt->headerDelay; 485 pkt->headerDelay = 0; 486 slavePorts[slave_port_id]->schedTimingResp(pkt, curTick() + latency); 487 488 // remove the request from the routing table 489 routeTo.erase(route_lookup); 490 491 respLayers[slave_port_id]->succeededTiming(packetFinishTime); 492 493 // stats updates 494 pktCount[slave_port_id][master_port_id]++; 495 pktSize[slave_port_id][master_port_id] += pkt_size; 496 transDist[pkt_cmd]++; 497 498 return true; 499} 500 501void 502CoherentXBar::recvTimingSnoopReq(PacketPtr pkt, PortID master_port_id) 503{ 504 DPRINTF(CoherentXBar, "%s: src %s packet %s\n", __func__, 505 masterPorts[master_port_id]->name(), pkt->print()); 506 507 // update stats here as we know the forwarding will succeed 508 unsigned int pkt_size = pkt->hasData() ? pkt->getSize() : 0; 509 transDist[pkt->cmdToIndex()]++; 510 snoops++; 511 snoopTraffic += pkt_size; 512 513 // we should only see express snoops from caches 514 assert(pkt->isExpressSnoop()); 515 516 // set the packet header and payload delay, for now use forward latency 517 // @todo Assess the choice of latency further 518 calcPacketTiming(pkt, forwardLatency * clockPeriod()); 519 520 // remember if a cache has already committed to responding so we 521 // can see if it changes during the snooping 522 const bool cache_responding = pkt->cacheResponding(); 523 524 assert(pkt->snoopDelay == 0); 525 526 if (snoopFilter) { 527 // let the Snoop Filter work its magic and guide probing 528 auto sf_res = snoopFilter->lookupSnoop(pkt); 529 // the time required by a packet to be delivered through 530 // the xbar has to be charged also with to lookup latency 531 // of the snoop filter 532 pkt->headerDelay += sf_res.second * clockPeriod(); 533 DPRINTF(CoherentXBar, "%s: src %s packet %s SF size: %i lat: %i\n", 534 __func__, masterPorts[master_port_id]->name(), pkt->print(), 535 sf_res.first.size(), sf_res.second); 536 537 // forward to all snoopers 538 forwardTiming(pkt, InvalidPortID, sf_res.first); 539 } else { 540 forwardTiming(pkt, InvalidPortID); 541 } 542 543 // add the snoop delay to our header delay, and then reset it 544 pkt->headerDelay += pkt->snoopDelay; 545 pkt->snoopDelay = 0; 546 547 // if we can expect a response, remember how to route it 548 if (!cache_responding && pkt->cacheResponding()) { 549 assert(routeTo.find(pkt->req) == routeTo.end()); 550 routeTo[pkt->req] = master_port_id; 551 } 552 553 // a snoop request came from a connected slave device (one of 554 // our master ports), and if it is not coming from the slave 555 // device responsible for the address range something is 556 // wrong, hence there is nothing further to do as the packet 557 // would be going back to where it came from 558 assert(findPort(pkt->getAddrRange()) == master_port_id); 559} 560 561bool 562CoherentXBar::recvTimingSnoopResp(PacketPtr pkt, PortID slave_port_id) 563{ 564 // determine the source port based on the id 565 SlavePort* src_port = slavePorts[slave_port_id]; 566 567 // get the destination 568 const auto route_lookup = routeTo.find(pkt->req); 569 assert(route_lookup != routeTo.end()); 570 const PortID dest_port_id = route_lookup->second; 571 assert(dest_port_id != InvalidPortID); 572 573 // determine if the response is from a snoop request we 574 // created as the result of a normal request (in which case it 575 // should be in the outstandingSnoop), or if we merely forwarded 576 // someone else's snoop request 577 const bool forwardAsSnoop = outstandingSnoop.find(pkt->req) == 578 outstandingSnoop.end(); 579 580 // test if the crossbar should be considered occupied for the 581 // current port, note that the check is bypassed if the response 582 // is being passed on as a normal response since this is occupying 583 // the response layer rather than the snoop response layer 584 if (forwardAsSnoop) { 585 assert(dest_port_id < snoopLayers.size()); 586 if (!snoopLayers[dest_port_id]->tryTiming(src_port)) { 587 DPRINTF(CoherentXBar, "%s: src %s packet %s BUSY\n", __func__, 588 src_port->name(), pkt->print()); 589 return false; 590 } 591 } else { 592 // get the master port that mirrors this slave port internally 593 MasterPort* snoop_port = snoopRespPorts[slave_port_id]; 594 assert(dest_port_id < respLayers.size()); 595 if (!respLayers[dest_port_id]->tryTiming(snoop_port)) { 596 DPRINTF(CoherentXBar, "%s: src %s packet %s BUSY\n", __func__, 597 snoop_port->name(), pkt->print()); 598 return false; 599 } 600 } 601 602 DPRINTF(CoherentXBar, "%s: src %s packet %s\n", __func__, 603 src_port->name(), pkt->print()); 604 605 // store size and command as they might be modified when 606 // forwarding the packet 607 unsigned int pkt_size = pkt->hasData() ? pkt->getSize() : 0; 608 unsigned int pkt_cmd = pkt->cmdToIndex(); 609 610 // responses are never express snoops 611 assert(!pkt->isExpressSnoop()); 612 613 // a snoop response sees the snoop response latency, and if it is 614 // forwarded as a normal response, the response latency 615 Tick xbar_delay = 616 (forwardAsSnoop ? snoopResponseLatency : responseLatency) * 617 clockPeriod(); 618 619 // set the packet header and payload delay 620 calcPacketTiming(pkt, xbar_delay); 621 622 // determine how long to be crossbar layer is busy 623 Tick packetFinishTime = clockEdge(Cycles(1)) + pkt->payloadDelay; 624 625 // forward it either as a snoop response or a normal response 626 if (forwardAsSnoop) { 627 // this is a snoop response to a snoop request we forwarded, 628 // e.g. coming from the L1 and going to the L2, and it should 629 // be forwarded as a snoop response 630 631 if (snoopFilter) { 632 // update the probe filter so that it can properly track the line 633 snoopFilter->updateSnoopForward(pkt, *slavePorts[slave_port_id], 634 *masterPorts[dest_port_id]); 635 } 636 637 bool success M5_VAR_USED = 638 masterPorts[dest_port_id]->sendTimingSnoopResp(pkt); 639 pktCount[slave_port_id][dest_port_id]++; 640 pktSize[slave_port_id][dest_port_id] += pkt_size; 641 assert(success); 642 643 snoopLayers[dest_port_id]->succeededTiming(packetFinishTime); 644 } else { 645 // we got a snoop response on one of our slave ports, 646 // i.e. from a coherent master connected to the crossbar, and 647 // since we created the snoop request as part of recvTiming, 648 // this should now be a normal response again 649 outstandingSnoop.erase(pkt->req); 650 651 // this is a snoop response from a coherent master, hence it 652 // should never go back to where the snoop response came from, 653 // but instead to where the original request came from 654 assert(slave_port_id != dest_port_id); 655 656 if (snoopFilter) { 657 // update the probe filter so that it can properly track the line 658 snoopFilter->updateSnoopResponse(pkt, *slavePorts[slave_port_id], 659 *slavePorts[dest_port_id]); 660 } 661 662 DPRINTF(CoherentXBar, "%s: src %s packet %s FWD RESP\n", __func__, 663 src_port->name(), pkt->print()); 664 665 // as a normal response, it should go back to a master through 666 // one of our slave ports, we also pay for any outstanding 667 // header latency 668 Tick latency = pkt->headerDelay; 669 pkt->headerDelay = 0; 670 slavePorts[dest_port_id]->schedTimingResp(pkt, curTick() + latency); 671 672 respLayers[dest_port_id]->succeededTiming(packetFinishTime); 673 } 674 675 // remove the request from the routing table 676 routeTo.erase(route_lookup); 677 678 // stats updates 679 transDist[pkt_cmd]++; 680 snoops++; 681 snoopTraffic += pkt_size; 682 683 return true; 684} 685 686 687void 688CoherentXBar::forwardTiming(PacketPtr pkt, PortID exclude_slave_port_id, 689 const std::vector<QueuedSlavePort*>& dests) 690{ 691 DPRINTF(CoherentXBar, "%s for %s\n", __func__, pkt->print()); 692 693 // snoops should only happen if the system isn't bypassing caches 694 assert(!system->bypassCaches()); 695 696 unsigned fanout = 0; 697 698 for (const auto& p: dests) { 699 // we could have gotten this request from a snooping master 700 // (corresponding to our own slave port that is also in 701 // snoopPorts) and should not send it back to where it came 702 // from 703 if (exclude_slave_port_id == InvalidPortID || 704 p->getId() != exclude_slave_port_id) { 705 // cache is not allowed to refuse snoop 706 p->sendTimingSnoopReq(pkt); 707 fanout++; 708 } 709 } 710 711 // Stats for fanout of this forward operation 712 snoopFanout.sample(fanout); 713} 714 715void 716CoherentXBar::recvReqRetry(PortID master_port_id) 717{ 718 // responses and snoop responses never block on forwarding them, 719 // so the retry will always be coming from a port to which we 720 // tried to forward a request 721 reqLayers[master_port_id]->recvRetry(); 722} 723 724Tick 725CoherentXBar::recvAtomicBackdoor(PacketPtr pkt, PortID slave_port_id, 726 MemBackdoorPtr *backdoor) 727{ 728 DPRINTF(CoherentXBar, "%s: src %s packet %s\n", __func__, 729 slavePorts[slave_port_id]->name(), pkt->print()); 730 731 unsigned int pkt_size = pkt->hasData() ? pkt->getSize() : 0; 732 unsigned int pkt_cmd = pkt->cmdToIndex(); 733 734 MemCmd snoop_response_cmd = MemCmd::InvalidCmd; 735 Tick snoop_response_latency = 0; 736 737 // is this the destination point for this packet? (e.g. true if 738 // this xbar is the PoC for a cache maintenance operation to the 739 // PoC) otherwise the destination is any cache that can satisfy 740 // the request 741 const bool is_destination = isDestination(pkt); 742 743 const bool snoop_caches = !system->bypassCaches() && 744 pkt->cmd != MemCmd::WriteClean; 745 if (snoop_caches) { 746 // forward to all snoopers but the source 747 std::pair<MemCmd, Tick> snoop_result; 748 if (snoopFilter) { 749 // check with the snoop filter where to forward this packet 750 auto sf_res = 751 snoopFilter->lookupRequest(pkt, *slavePorts[slave_port_id]); 752 snoop_response_latency += sf_res.second * clockPeriod(); 753 DPRINTF(CoherentXBar, "%s: src %s packet %s SF size: %i lat: %i\n", 754 __func__, slavePorts[slave_port_id]->name(), pkt->print(), 755 sf_res.first.size(), sf_res.second); 756 757 // let the snoop filter know about the success of the send 758 // operation, and do it even before sending it onwards to 759 // avoid situations where atomic upward snoops sneak in 760 // between and change the filter state 761 snoopFilter->finishRequest(false, pkt->getAddr(), pkt->isSecure()); 762 763 if (pkt->isEviction()) { 764 // for block-evicting packets, i.e. writebacks and 765 // clean evictions, there is no need to snoop up, as 766 // all we do is determine if the block is cached or 767 // not, instead just set it here based on the snoop 768 // filter result 769 if (!sf_res.first.empty()) 770 pkt->setBlockCached(); 771 } else { 772 snoop_result = forwardAtomic(pkt, slave_port_id, InvalidPortID, 773 sf_res.first); 774 } 775 } else { 776 snoop_result = forwardAtomic(pkt, slave_port_id); 777 } 778 snoop_response_cmd = snoop_result.first; 779 snoop_response_latency += snoop_result.second; 780 } 781 782 // set up a sensible default value 783 Tick response_latency = 0; 784 785 const bool sink_packet = sinkPacket(pkt); 786 787 // even if we had a snoop response, we must continue and also 788 // perform the actual request at the destination 789 PortID master_port_id = findPort(pkt->getAddrRange()); 790 791 if (sink_packet) { 792 DPRINTF(CoherentXBar, "%s: Not forwarding %s\n", __func__, 793 pkt->print()); 794 } else { 795 if (forwardPacket(pkt)) { 796 // make sure that the write request (e.g., WriteClean) 797 // will stop at the memory below if this crossbar is its 798 // destination 799 if (pkt->isWrite() && is_destination) { 800 pkt->clearWriteThrough(); 801 } 802 803 // forward the request to the appropriate destination 804 auto master = masterPorts[master_port_id]; 805 response_latency = backdoor ? 806 master->sendAtomicBackdoor(pkt, *backdoor) : 807 master->sendAtomic(pkt); 808 } else { 809 // if it does not need a response we sink the packet above 810 assert(pkt->needsResponse()); 811 812 pkt->makeResponse(); 813 } 814 } 815 816 // stats updates for the request 817 pktCount[slave_port_id][master_port_id]++; 818 pktSize[slave_port_id][master_port_id] += pkt_size; 819 transDist[pkt_cmd]++; 820 821 822 // if lower levels have replied, tell the snoop filter 823 if (!system->bypassCaches() && snoopFilter && pkt->isResponse()) { 824 snoopFilter->updateResponse(pkt, *slavePorts[slave_port_id]); 825 } 826 827 // if we got a response from a snooper, restore it here 828 if (snoop_response_cmd != MemCmd::InvalidCmd) { 829 // no one else should have responded 830 assert(!pkt->isResponse()); 831 pkt->cmd = snoop_response_cmd; 832 response_latency = snoop_response_latency; 833 } 834 835 // If this is the destination of the cache clean operation the 836 // crossbar is responsible for responding. This crossbar will 837 // respond when the cache clean is complete. An atomic cache clean 838 // is complete when the crossbars receives the cache clean 839 // request (CleanSharedReq, CleanInvalidReq), as either: 840 // * no cache above had a dirty copy of the block as indicated by 841 // the satisfied flag of the packet, or 842 // * the crossbar has already seen the corresponding write 843 // (WriteClean) which updates the block in the memory below. 844 if (pkt->isClean() && isDestination(pkt) && pkt->satisfied()) { 845 auto it = outstandingCMO.find(pkt->id); 846 assert(it != outstandingCMO.end()); 847 // we are responding right away 848 outstandingCMO.erase(it); 849 } else if (pkt->cmd == MemCmd::WriteClean && isDestination(pkt)) { 850 // if this is the destination of the operation, the xbar 851 // sends the responce to the cache clean operation only 852 // after having encountered the cache clean request 853 auto M5_VAR_USED ret = outstandingCMO.emplace(pkt->id, nullptr); 854 // in atomic mode we know that the WriteClean packet should 855 // precede the clean request 856 assert(ret.second); 857 } 858 859 // add the response data 860 if (pkt->isResponse()) { 861 pkt_size = pkt->hasData() ? pkt->getSize() : 0; 862 pkt_cmd = pkt->cmdToIndex(); 863 864 // stats updates 865 pktCount[slave_port_id][master_port_id]++; 866 pktSize[slave_port_id][master_port_id] += pkt_size; 867 transDist[pkt_cmd]++; 868 } 869 870 // @todo: Not setting header time 871 pkt->payloadDelay = response_latency; 872 return response_latency; 873} 874 875Tick 876CoherentXBar::recvAtomicSnoop(PacketPtr pkt, PortID master_port_id) 877{ 878 DPRINTF(CoherentXBar, "%s: src %s packet %s\n", __func__, 879 masterPorts[master_port_id]->name(), pkt->print()); 880 881 // add the request snoop data 882 unsigned int pkt_size = pkt->hasData() ? pkt->getSize() : 0; 883 snoops++; 884 snoopTraffic += pkt_size; 885 886 // forward to all snoopers 887 std::pair<MemCmd, Tick> snoop_result; 888 Tick snoop_response_latency = 0; 889 if (snoopFilter) { 890 auto sf_res = snoopFilter->lookupSnoop(pkt); 891 snoop_response_latency += sf_res.second * clockPeriod(); 892 DPRINTF(CoherentXBar, "%s: src %s packet %s SF size: %i lat: %i\n", 893 __func__, masterPorts[master_port_id]->name(), pkt->print(), 894 sf_res.first.size(), sf_res.second); 895 snoop_result = forwardAtomic(pkt, InvalidPortID, master_port_id, 896 sf_res.first); 897 } else { 898 snoop_result = forwardAtomic(pkt, InvalidPortID); 899 } 900 MemCmd snoop_response_cmd = snoop_result.first; 901 snoop_response_latency += snoop_result.second; 902 903 if (snoop_response_cmd != MemCmd::InvalidCmd) 904 pkt->cmd = snoop_response_cmd; 905 906 // add the response snoop data 907 if (pkt->isResponse()) { 908 snoops++; 909 } 910 911 // @todo: Not setting header time 912 pkt->payloadDelay = snoop_response_latency; 913 return snoop_response_latency; 914} 915 916std::pair<MemCmd, Tick> 917CoherentXBar::forwardAtomic(PacketPtr pkt, PortID exclude_slave_port_id, 918 PortID source_master_port_id, 919 const std::vector<QueuedSlavePort*>& dests) 920{ 921 // the packet may be changed on snoops, record the original 922 // command to enable us to restore it between snoops so that 923 // additional snoops can take place properly 924 MemCmd orig_cmd = pkt->cmd; 925 MemCmd snoop_response_cmd = MemCmd::InvalidCmd; 926 Tick snoop_response_latency = 0; 927 928 // snoops should only happen if the system isn't bypassing caches 929 assert(!system->bypassCaches()); 930 931 unsigned fanout = 0; 932 933 for (const auto& p: dests) { 934 // we could have gotten this request from a snooping master 935 // (corresponding to our own slave port that is also in 936 // snoopPorts) and should not send it back to where it came 937 // from 938 if (exclude_slave_port_id != InvalidPortID && 939 p->getId() == exclude_slave_port_id) 940 continue; 941 942 Tick latency = p->sendAtomicSnoop(pkt); 943 fanout++; 944 945 // in contrast to a functional access, we have to keep on 946 // going as all snoopers must be updated even if we get a 947 // response 948 if (!pkt->isResponse()) 949 continue; 950 951 // response from snoop agent 952 assert(pkt->cmd != orig_cmd); 953 assert(pkt->cacheResponding()); 954 // should only happen once 955 assert(snoop_response_cmd == MemCmd::InvalidCmd); 956 // save response state 957 snoop_response_cmd = pkt->cmd; 958 snoop_response_latency = latency; 959 960 if (snoopFilter) { 961 // Handle responses by the snoopers and differentiate between 962 // responses to requests from above and snoops from below 963 if (source_master_port_id != InvalidPortID) { 964 // Getting a response for a snoop from below 965 assert(exclude_slave_port_id == InvalidPortID); 966 snoopFilter->updateSnoopForward(pkt, *p, 967 *masterPorts[source_master_port_id]); 968 } else { 969 // Getting a response for a request from above 970 assert(source_master_port_id == InvalidPortID); 971 snoopFilter->updateSnoopResponse(pkt, *p, 972 *slavePorts[exclude_slave_port_id]); 973 } 974 } 975 // restore original packet state for remaining snoopers 976 pkt->cmd = orig_cmd; 977 } 978 979 // Stats for fanout 980 snoopFanout.sample(fanout); 981 982 // the packet is restored as part of the loop and any potential 983 // snoop response is part of the returned pair 984 return std::make_pair(snoop_response_cmd, snoop_response_latency); 985} 986 987void 988CoherentXBar::recvFunctional(PacketPtr pkt, PortID slave_port_id) 989{ 990 if (!pkt->isPrint()) { 991 // don't do DPRINTFs on PrintReq as it clutters up the output 992 DPRINTF(CoherentXBar, "%s: src %s packet %s\n", __func__, 993 slavePorts[slave_port_id]->name(), pkt->print()); 994 } 995 996 if (!system->bypassCaches()) { 997 // forward to all snoopers but the source 998 forwardFunctional(pkt, slave_port_id); 999 } 1000 1001 // there is no need to continue if the snooping has found what we 1002 // were looking for and the packet is already a response 1003 if (!pkt->isResponse()) { 1004 // since our slave ports are queued ports we need to check them as well 1005 for (const auto& p : slavePorts) { 1006 // if we find a response that has the data, then the 1007 // downstream caches/memories may be out of date, so simply stop 1008 // here 1009 if (p->trySatisfyFunctional(pkt)) { 1010 if (pkt->needsResponse()) 1011 pkt->makeResponse(); 1012 return; 1013 } 1014 } 1015 1016 PortID dest_id = findPort(pkt->getAddrRange()); 1017 1018 masterPorts[dest_id]->sendFunctional(pkt); 1019 } 1020} 1021 1022void 1023CoherentXBar::recvFunctionalSnoop(PacketPtr pkt, PortID master_port_id) 1024{ 1025 if (!pkt->isPrint()) { 1026 // don't do DPRINTFs on PrintReq as it clutters up the output 1027 DPRINTF(CoherentXBar, "%s: src %s packet %s\n", __func__, 1028 masterPorts[master_port_id]->name(), pkt->print()); 1029 } 1030 1031 for (const auto& p : slavePorts) { 1032 if (p->trySatisfyFunctional(pkt)) { 1033 if (pkt->needsResponse()) 1034 pkt->makeResponse(); 1035 return; 1036 } 1037 } 1038 1039 // forward to all snoopers 1040 forwardFunctional(pkt, InvalidPortID); 1041} 1042 1043void 1044CoherentXBar::forwardFunctional(PacketPtr pkt, PortID exclude_slave_port_id) 1045{ 1046 // snoops should only happen if the system isn't bypassing caches 1047 assert(!system->bypassCaches()); 1048 1049 for (const auto& p: snoopPorts) { 1050 // we could have gotten this request from a snooping master 1051 // (corresponding to our own slave port that is also in 1052 // snoopPorts) and should not send it back to where it came 1053 // from 1054 if (exclude_slave_port_id == InvalidPortID || 1055 p->getId() != exclude_slave_port_id) 1056 p->sendFunctionalSnoop(pkt); 1057 1058 // if we get a response we are done 1059 if (pkt->isResponse()) { 1060 break; 1061 } 1062 } 1063} 1064 1065bool 1066CoherentXBar::sinkPacket(const PacketPtr pkt) const 1067{ 1068 // we can sink the packet if: 1069 // 1) the crossbar is the point of coherency, and a cache is 1070 // responding after being snooped 1071 // 2) the crossbar is the point of coherency, and the packet is a 1072 // coherency packet (not a read or a write) that does not 1073 // require a response 1074 // 3) this is a clean evict or clean writeback, but the packet is 1075 // found in a cache above this crossbar 1076 // 4) a cache is responding after being snooped, and the packet 1077 // either does not need the block to be writable, or the cache 1078 // that has promised to respond (setting the cache responding 1079 // flag) is providing writable and thus had a Modified block, 1080 // and no further action is needed 1081 return (pointOfCoherency && pkt->cacheResponding()) || 1082 (pointOfCoherency && !(pkt->isRead() || pkt->isWrite()) && 1083 !pkt->needsResponse()) || 1084 (pkt->isCleanEviction() && pkt->isBlockCached()) || 1085 (pkt->cacheResponding() && 1086 (!pkt->needsWritable() || pkt->responderHadWritable())); 1087} 1088 1089bool 1090CoherentXBar::forwardPacket(const PacketPtr pkt) 1091{ 1092 // we are forwarding the packet if: 1093 // 1) this is a cache clean request to the PoU/PoC and this 1094 // crossbar is above the PoU/PoC 1095 // 2) this is a read or a write 1096 // 3) this crossbar is above the point of coherency 1097 if (pkt->isClean()) { 1098 return !isDestination(pkt); 1099 } 1100 return pkt->isRead() || pkt->isWrite() || !pointOfCoherency; 1101} 1102 1103 1104void 1105CoherentXBar::regStats() 1106{ 1107 // register the stats of the base class and our layers 1108 BaseXBar::regStats(); 1109 for (auto l: reqLayers) 1110 l->regStats(); 1111 for (auto l: respLayers) 1112 l->regStats(); 1113 for (auto l: snoopLayers) 1114 l->regStats(); 1115 1116 snoops 1117 .name(name() + ".snoops") 1118 .desc("Total snoops (count)") 1119 ; 1120 1121 snoopTraffic 1122 .name(name() + ".snoopTraffic") 1123 .desc("Total snoop traffic (bytes)") 1124 ; 1125 1126 snoopFanout 1127 .init(0, snoopPorts.size(), 1) 1128 .name(name() + ".snoop_fanout") 1129 .desc("Request fanout histogram") 1130 ; 1131} 1132 1133CoherentXBar * 1134CoherentXBarParams::create() 1135{ 1136 return new CoherentXBar(this); 1137} 1138