coherent_xbar.cc revision 12346
1/*
2 * Copyright (c) 2011-2017 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder.  You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2006 The Regents of The University of Michigan
15 * All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions are
19 * met: redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer;
21 * redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution;
24 * neither the name of the copyright holders nor the names of its
25 * contributors may be used to endorse or promote products derived from
26 * this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 *
40 * Authors: Ali Saidi
41 *          Andreas Hansson
42 *          William Wang
43 */
44
45/**
46 * @file
47 * Definition of a crossbar object.
48 */
49
50#include "mem/coherent_xbar.hh"
51
52#include "base/logging.hh"
53#include "base/trace.hh"
54#include "debug/AddrRanges.hh"
55#include "debug/CoherentXBar.hh"
56#include "sim/system.hh"
57
58CoherentXBar::CoherentXBar(const CoherentXBarParams *p)
59    : BaseXBar(p), system(p->system), snoopFilter(p->snoop_filter),
60      snoopResponseLatency(p->snoop_response_latency),
61      pointOfCoherency(p->point_of_coherency),
62      pointOfUnification(p->point_of_unification)
63{
64    // create the ports based on the size of the master and slave
65    // vector ports, and the presence of the default port, the ports
66    // are enumerated starting from zero
67    for (int i = 0; i < p->port_master_connection_count; ++i) {
68        std::string portName = csprintf("%s.master[%d]", name(), i);
69        MasterPort* bp = new CoherentXBarMasterPort(portName, *this, i);
70        masterPorts.push_back(bp);
71        reqLayers.push_back(new ReqLayer(*bp, *this,
72                                         csprintf(".reqLayer%d", i)));
73        snoopLayers.push_back(new SnoopRespLayer(*bp, *this,
74                                                 csprintf(".snoopLayer%d", i)));
75    }
76
77    // see if we have a default slave device connected and if so add
78    // our corresponding master port
79    if (p->port_default_connection_count) {
80        defaultPortID = masterPorts.size();
81        std::string portName = name() + ".default";
82        MasterPort* bp = new CoherentXBarMasterPort(portName, *this,
83                                                   defaultPortID);
84        masterPorts.push_back(bp);
85        reqLayers.push_back(new ReqLayer(*bp, *this, csprintf(".reqLayer%d",
86                                             defaultPortID)));
87        snoopLayers.push_back(new SnoopRespLayer(*bp, *this,
88                                                 csprintf(".snoopLayer%d",
89                                                          defaultPortID)));
90    }
91
92    // create the slave ports, once again starting at zero
93    for (int i = 0; i < p->port_slave_connection_count; ++i) {
94        std::string portName = csprintf("%s.slave[%d]", name(), i);
95        QueuedSlavePort* bp = new CoherentXBarSlavePort(portName, *this, i);
96        slavePorts.push_back(bp);
97        respLayers.push_back(new RespLayer(*bp, *this,
98                                           csprintf(".respLayer%d", i)));
99        snoopRespPorts.push_back(new SnoopRespPort(*bp, *this));
100    }
101
102    clearPortCache();
103}
104
105CoherentXBar::~CoherentXBar()
106{
107    for (auto l: reqLayers)
108        delete l;
109    for (auto l: respLayers)
110        delete l;
111    for (auto l: snoopLayers)
112        delete l;
113    for (auto p: snoopRespPorts)
114        delete p;
115}
116
117void
118CoherentXBar::init()
119{
120    BaseXBar::init();
121
122    // iterate over our slave ports and determine which of our
123    // neighbouring master ports are snooping and add them as snoopers
124    for (const auto& p: slavePorts) {
125        // check if the connected master port is snooping
126        if (p->isSnooping()) {
127            DPRINTF(AddrRanges, "Adding snooping master %s\n",
128                    p->getMasterPort().name());
129            snoopPorts.push_back(p);
130        }
131    }
132
133    if (snoopPorts.empty())
134        warn("CoherentXBar %s has no snooping ports attached!\n", name());
135
136    // inform the snoop filter about the slave ports so it can create
137    // its own internal representation
138    if (snoopFilter)
139        snoopFilter->setSlavePorts(slavePorts);
140}
141
142bool
143CoherentXBar::recvTimingReq(PacketPtr pkt, PortID slave_port_id)
144{
145    // determine the source port based on the id
146    SlavePort *src_port = slavePorts[slave_port_id];
147
148    // remember if the packet is an express snoop
149    bool is_express_snoop = pkt->isExpressSnoop();
150    bool cache_responding = pkt->cacheResponding();
151    // for normal requests, going downstream, the express snoop flag
152    // and the cache responding flag should always be the same
153    assert(is_express_snoop == cache_responding);
154
155    // determine the destination based on the address
156    PortID master_port_id = findPort(pkt->getAddr());
157
158    // test if the crossbar should be considered occupied for the current
159    // port, and exclude express snoops from the check
160    if (!is_express_snoop && !reqLayers[master_port_id]->tryTiming(src_port)) {
161        DPRINTF(CoherentXBar, "%s: src %s packet %s BUSY\n", __func__,
162                src_port->name(), pkt->print());
163        return false;
164    }
165
166    DPRINTF(CoherentXBar, "%s: src %s packet %s\n", __func__,
167            src_port->name(), pkt->print());
168
169    // store size and command as they might be modified when
170    // forwarding the packet
171    unsigned int pkt_size = pkt->hasData() ? pkt->getSize() : 0;
172    unsigned int pkt_cmd = pkt->cmdToIndex();
173
174    // store the old header delay so we can restore it if needed
175    Tick old_header_delay = pkt->headerDelay;
176
177    // a request sees the frontend and forward latency
178    Tick xbar_delay = (frontendLatency + forwardLatency) * clockPeriod();
179
180    // set the packet header and payload delay
181    calcPacketTiming(pkt, xbar_delay);
182
183    // determine how long to be crossbar layer is busy
184    Tick packetFinishTime = clockEdge(Cycles(1)) + pkt->payloadDelay;
185
186    // is this the destination point for this packet? (e.g. true if
187    // this xbar is the PoC for a cache maintenance operation to the
188    // PoC) otherwise the destination is any cache that can satisfy
189    // the request
190    const bool is_destination = isDestination(pkt);
191
192    const bool snoop_caches = !system->bypassCaches() &&
193        pkt->cmd != MemCmd::WriteClean;
194    if (snoop_caches) {
195        assert(pkt->snoopDelay == 0);
196
197        // the packet is a memory-mapped request and should be
198        // broadcasted to our snoopers but the source
199        if (snoopFilter) {
200            // check with the snoop filter where to forward this packet
201            auto sf_res = snoopFilter->lookupRequest(pkt, *src_port);
202            // the time required by a packet to be delivered through
203            // the xbar has to be charged also with to lookup latency
204            // of the snoop filter
205            pkt->headerDelay += sf_res.second * clockPeriod();
206            DPRINTF(CoherentXBar, "%s: src %s packet %s SF size: %i lat: %i\n",
207                    __func__, src_port->name(), pkt->print(),
208                    sf_res.first.size(), sf_res.second);
209
210            if (pkt->isEviction()) {
211                // for block-evicting packets, i.e. writebacks and
212                // clean evictions, there is no need to snoop up, as
213                // all we do is determine if the block is cached or
214                // not, instead just set it here based on the snoop
215                // filter result
216                if (!sf_res.first.empty())
217                    pkt->setBlockCached();
218            } else {
219                forwardTiming(pkt, slave_port_id, sf_res.first);
220            }
221        } else {
222            forwardTiming(pkt, slave_port_id);
223        }
224
225        // add the snoop delay to our header delay, and then reset it
226        pkt->headerDelay += pkt->snoopDelay;
227        pkt->snoopDelay = 0;
228    }
229
230    // set up a sensible starting point
231    bool success = true;
232
233    // remember if the packet will generate a snoop response by
234    // checking if a cache set the cacheResponding flag during the
235    // snooping above
236    const bool expect_snoop_resp = !cache_responding && pkt->cacheResponding();
237    bool expect_response = pkt->needsResponse() && !pkt->cacheResponding();
238
239    const bool sink_packet = sinkPacket(pkt);
240
241    // in certain cases the crossbar is responsible for responding
242    bool respond_directly = false;
243    // store the original address as an address mapper could possibly
244    // modify the address upon a sendTimingRequest
245    const Addr addr(pkt->getAddr());
246    if (sink_packet) {
247        DPRINTF(CoherentXBar, "%s: Not forwarding %s\n", __func__,
248                pkt->print());
249    } else {
250        // determine if we are forwarding the packet, or responding to
251        // it
252        if (forwardPacket(pkt)) {
253            // if we are passing on, rather than sinking, a packet to
254            // which an upstream cache has committed to responding,
255            // the line was needs writable, and the responding only
256            // had an Owned copy, so we need to immidiately let the
257            // downstream caches know, bypass any flow control
258            if (pkt->cacheResponding()) {
259                pkt->setExpressSnoop();
260            }
261
262            // make sure that the write request (e.g., WriteClean)
263            // will stop at the memory below if this crossbar is its
264            // destination
265            if (pkt->isWrite() && is_destination) {
266                pkt->clearWriteThrough();
267            }
268
269            // since it is a normal request, attempt to send the packet
270            success = masterPorts[master_port_id]->sendTimingReq(pkt);
271        } else {
272            // no need to forward, turn this packet around and respond
273            // directly
274            assert(pkt->needsResponse());
275
276            respond_directly = true;
277            assert(!expect_snoop_resp);
278            expect_response = false;
279        }
280    }
281
282    if (snoopFilter && snoop_caches) {
283        // Let the snoop filter know about the success of the send operation
284        snoopFilter->finishRequest(!success, addr, pkt->isSecure());
285    }
286
287    // check if we were successful in sending the packet onwards
288    if (!success)  {
289        // express snoops should never be forced to retry
290        assert(!is_express_snoop);
291
292        // restore the header delay
293        pkt->headerDelay = old_header_delay;
294
295        DPRINTF(CoherentXBar, "%s: src %s packet %s RETRY\n", __func__,
296                src_port->name(), pkt->print());
297
298        // update the layer state and schedule an idle event
299        reqLayers[master_port_id]->failedTiming(src_port,
300                                                clockEdge(Cycles(1)));
301    } else {
302        // express snoops currently bypass the crossbar state entirely
303        if (!is_express_snoop) {
304            // if this particular request will generate a snoop
305            // response
306            if (expect_snoop_resp) {
307                // we should never have an exsiting request outstanding
308                assert(outstandingSnoop.find(pkt->req) ==
309                       outstandingSnoop.end());
310                outstandingSnoop.insert(pkt->req);
311
312                // basic sanity check on the outstanding snoops
313                panic_if(outstandingSnoop.size() > 512,
314                         "Outstanding snoop requests exceeded 512\n");
315            }
316
317            // remember where to route the normal response to
318            if (expect_response || expect_snoop_resp) {
319                assert(routeTo.find(pkt->req) == routeTo.end());
320                routeTo[pkt->req] = slave_port_id;
321
322                panic_if(routeTo.size() > 512,
323                         "Routing table exceeds 512 packets\n");
324            }
325
326            // update the layer state and schedule an idle event
327            reqLayers[master_port_id]->succeededTiming(packetFinishTime);
328        }
329
330        // stats updates only consider packets that were successfully sent
331        pktCount[slave_port_id][master_port_id]++;
332        pktSize[slave_port_id][master_port_id] += pkt_size;
333        transDist[pkt_cmd]++;
334
335        if (is_express_snoop) {
336            snoops++;
337            snoopTraffic += pkt_size;
338        }
339    }
340
341    if (sink_packet)
342        // queue the packet for deletion
343        pendingDelete.reset(pkt);
344
345    if (respond_directly) {
346        assert(pkt->needsResponse());
347        assert(success);
348
349        pkt->makeResponse();
350
351        if (snoopFilter && !system->bypassCaches()) {
352            // let the snoop filter inspect the response and update its state
353            snoopFilter->updateResponse(pkt, *slavePorts[slave_port_id]);
354        }
355
356        Tick response_time = clockEdge() + pkt->headerDelay;
357        pkt->headerDelay = 0;
358
359        slavePorts[slave_port_id]->schedTimingResp(pkt, response_time);
360    }
361
362    return success;
363}
364
365bool
366CoherentXBar::recvTimingResp(PacketPtr pkt, PortID master_port_id)
367{
368    // determine the source port based on the id
369    MasterPort *src_port = masterPorts[master_port_id];
370
371    // determine the destination
372    const auto route_lookup = routeTo.find(pkt->req);
373    assert(route_lookup != routeTo.end());
374    const PortID slave_port_id = route_lookup->second;
375    assert(slave_port_id != InvalidPortID);
376    assert(slave_port_id < respLayers.size());
377
378    // test if the crossbar should be considered occupied for the
379    // current port
380    if (!respLayers[slave_port_id]->tryTiming(src_port)) {
381        DPRINTF(CoherentXBar, "%s: src %s packet %s BUSY\n", __func__,
382                src_port->name(), pkt->print());
383        return false;
384    }
385
386    DPRINTF(CoherentXBar, "%s: src %s packet %s\n", __func__,
387            src_port->name(), pkt->print());
388
389    // store size and command as they might be modified when
390    // forwarding the packet
391    unsigned int pkt_size = pkt->hasData() ? pkt->getSize() : 0;
392    unsigned int pkt_cmd = pkt->cmdToIndex();
393
394    // a response sees the response latency
395    Tick xbar_delay = responseLatency * clockPeriod();
396
397    // set the packet header and payload delay
398    calcPacketTiming(pkt, xbar_delay);
399
400    // determine how long to be crossbar layer is busy
401    Tick packetFinishTime = clockEdge(Cycles(1)) + pkt->payloadDelay;
402
403    if (snoopFilter && !system->bypassCaches()) {
404        // let the snoop filter inspect the response and update its state
405        snoopFilter->updateResponse(pkt, *slavePorts[slave_port_id]);
406    }
407
408    // send the packet through the destination slave port and pay for
409    // any outstanding header delay
410    Tick latency = pkt->headerDelay;
411    pkt->headerDelay = 0;
412    slavePorts[slave_port_id]->schedTimingResp(pkt, curTick() + latency);
413
414    // remove the request from the routing table
415    routeTo.erase(route_lookup);
416
417    respLayers[slave_port_id]->succeededTiming(packetFinishTime);
418
419    // stats updates
420    pktCount[slave_port_id][master_port_id]++;
421    pktSize[slave_port_id][master_port_id] += pkt_size;
422    transDist[pkt_cmd]++;
423
424    return true;
425}
426
427void
428CoherentXBar::recvTimingSnoopReq(PacketPtr pkt, PortID master_port_id)
429{
430    DPRINTF(CoherentXBar, "%s: src %s packet %s\n", __func__,
431            masterPorts[master_port_id]->name(), pkt->print());
432
433    // update stats here as we know the forwarding will succeed
434    unsigned int pkt_size = pkt->hasData() ? pkt->getSize() : 0;
435    transDist[pkt->cmdToIndex()]++;
436    snoops++;
437    snoopTraffic += pkt_size;
438
439    // we should only see express snoops from caches
440    assert(pkt->isExpressSnoop());
441
442    // set the packet header and payload delay, for now use forward latency
443    // @todo Assess the choice of latency further
444    calcPacketTiming(pkt, forwardLatency * clockPeriod());
445
446    // remember if a cache has already committed to responding so we
447    // can see if it changes during the snooping
448    const bool cache_responding = pkt->cacheResponding();
449
450    assert(pkt->snoopDelay == 0);
451
452    if (snoopFilter) {
453        // let the Snoop Filter work its magic and guide probing
454        auto sf_res = snoopFilter->lookupSnoop(pkt);
455        // the time required by a packet to be delivered through
456        // the xbar has to be charged also with to lookup latency
457        // of the snoop filter
458        pkt->headerDelay += sf_res.second * clockPeriod();
459        DPRINTF(CoherentXBar, "%s: src %s packet %s SF size: %i lat: %i\n",
460                __func__, masterPorts[master_port_id]->name(), pkt->print(),
461                sf_res.first.size(), sf_res.second);
462
463        // forward to all snoopers
464        forwardTiming(pkt, InvalidPortID, sf_res.first);
465    } else {
466        forwardTiming(pkt, InvalidPortID);
467    }
468
469    // add the snoop delay to our header delay, and then reset it
470    pkt->headerDelay += pkt->snoopDelay;
471    pkt->snoopDelay = 0;
472
473    // if we can expect a response, remember how to route it
474    if (!cache_responding && pkt->cacheResponding()) {
475        assert(routeTo.find(pkt->req) == routeTo.end());
476        routeTo[pkt->req] = master_port_id;
477    }
478
479    // a snoop request came from a connected slave device (one of
480    // our master ports), and if it is not coming from the slave
481    // device responsible for the address range something is
482    // wrong, hence there is nothing further to do as the packet
483    // would be going back to where it came from
484    assert(master_port_id == findPort(pkt->getAddr()));
485}
486
487bool
488CoherentXBar::recvTimingSnoopResp(PacketPtr pkt, PortID slave_port_id)
489{
490    // determine the source port based on the id
491    SlavePort* src_port = slavePorts[slave_port_id];
492
493    // get the destination
494    const auto route_lookup = routeTo.find(pkt->req);
495    assert(route_lookup != routeTo.end());
496    const PortID dest_port_id = route_lookup->second;
497    assert(dest_port_id != InvalidPortID);
498
499    // determine if the response is from a snoop request we
500    // created as the result of a normal request (in which case it
501    // should be in the outstandingSnoop), or if we merely forwarded
502    // someone else's snoop request
503    const bool forwardAsSnoop = outstandingSnoop.find(pkt->req) ==
504        outstandingSnoop.end();
505
506    // test if the crossbar should be considered occupied for the
507    // current port, note that the check is bypassed if the response
508    // is being passed on as a normal response since this is occupying
509    // the response layer rather than the snoop response layer
510    if (forwardAsSnoop) {
511        assert(dest_port_id < snoopLayers.size());
512        if (!snoopLayers[dest_port_id]->tryTiming(src_port)) {
513            DPRINTF(CoherentXBar, "%s: src %s packet %s BUSY\n", __func__,
514                    src_port->name(), pkt->print());
515            return false;
516        }
517    } else {
518        // get the master port that mirrors this slave port internally
519        MasterPort* snoop_port = snoopRespPorts[slave_port_id];
520        assert(dest_port_id < respLayers.size());
521        if (!respLayers[dest_port_id]->tryTiming(snoop_port)) {
522            DPRINTF(CoherentXBar, "%s: src %s packet %s BUSY\n", __func__,
523                    snoop_port->name(), pkt->print());
524            return false;
525        }
526    }
527
528    DPRINTF(CoherentXBar, "%s: src %s packet %s\n", __func__,
529            src_port->name(), pkt->print());
530
531    // store size and command as they might be modified when
532    // forwarding the packet
533    unsigned int pkt_size = pkt->hasData() ? pkt->getSize() : 0;
534    unsigned int pkt_cmd = pkt->cmdToIndex();
535
536    // responses are never express snoops
537    assert(!pkt->isExpressSnoop());
538
539    // a snoop response sees the snoop response latency, and if it is
540    // forwarded as a normal response, the response latency
541    Tick xbar_delay =
542        (forwardAsSnoop ? snoopResponseLatency : responseLatency) *
543        clockPeriod();
544
545    // set the packet header and payload delay
546    calcPacketTiming(pkt, xbar_delay);
547
548    // determine how long to be crossbar layer is busy
549    Tick packetFinishTime = clockEdge(Cycles(1)) + pkt->payloadDelay;
550
551    // forward it either as a snoop response or a normal response
552    if (forwardAsSnoop) {
553        // this is a snoop response to a snoop request we forwarded,
554        // e.g. coming from the L1 and going to the L2, and it should
555        // be forwarded as a snoop response
556
557        if (snoopFilter) {
558            // update the probe filter so that it can properly track the line
559            snoopFilter->updateSnoopForward(pkt, *slavePorts[slave_port_id],
560                                            *masterPorts[dest_port_id]);
561        }
562
563        bool success M5_VAR_USED =
564            masterPorts[dest_port_id]->sendTimingSnoopResp(pkt);
565        pktCount[slave_port_id][dest_port_id]++;
566        pktSize[slave_port_id][dest_port_id] += pkt_size;
567        assert(success);
568
569        snoopLayers[dest_port_id]->succeededTiming(packetFinishTime);
570    } else {
571        // we got a snoop response on one of our slave ports,
572        // i.e. from a coherent master connected to the crossbar, and
573        // since we created the snoop request as part of recvTiming,
574        // this should now be a normal response again
575        outstandingSnoop.erase(pkt->req);
576
577        // this is a snoop response from a coherent master, hence it
578        // should never go back to where the snoop response came from,
579        // but instead to where the original request came from
580        assert(slave_port_id != dest_port_id);
581
582        if (snoopFilter) {
583            // update the probe filter so that it can properly track the line
584            snoopFilter->updateSnoopResponse(pkt, *slavePorts[slave_port_id],
585                                    *slavePorts[dest_port_id]);
586        }
587
588        DPRINTF(CoherentXBar, "%s: src %s packet %s FWD RESP\n", __func__,
589                src_port->name(), pkt->print());
590
591        // as a normal response, it should go back to a master through
592        // one of our slave ports, we also pay for any outstanding
593        // header latency
594        Tick latency = pkt->headerDelay;
595        pkt->headerDelay = 0;
596        slavePorts[dest_port_id]->schedTimingResp(pkt, curTick() + latency);
597
598        respLayers[dest_port_id]->succeededTiming(packetFinishTime);
599    }
600
601    // remove the request from the routing table
602    routeTo.erase(route_lookup);
603
604    // stats updates
605    transDist[pkt_cmd]++;
606    snoops++;
607    snoopTraffic += pkt_size;
608
609    return true;
610}
611
612
613void
614CoherentXBar::forwardTiming(PacketPtr pkt, PortID exclude_slave_port_id,
615                           const std::vector<QueuedSlavePort*>& dests)
616{
617    DPRINTF(CoherentXBar, "%s for %s\n", __func__, pkt->print());
618
619    // snoops should only happen if the system isn't bypassing caches
620    assert(!system->bypassCaches());
621
622    unsigned fanout = 0;
623
624    for (const auto& p: dests) {
625        // we could have gotten this request from a snooping master
626        // (corresponding to our own slave port that is also in
627        // snoopPorts) and should not send it back to where it came
628        // from
629        if (exclude_slave_port_id == InvalidPortID ||
630            p->getId() != exclude_slave_port_id) {
631            // cache is not allowed to refuse snoop
632            p->sendTimingSnoopReq(pkt);
633            fanout++;
634        }
635    }
636
637    // Stats for fanout of this forward operation
638    snoopFanout.sample(fanout);
639}
640
641void
642CoherentXBar::recvReqRetry(PortID master_port_id)
643{
644    // responses and snoop responses never block on forwarding them,
645    // so the retry will always be coming from a port to which we
646    // tried to forward a request
647    reqLayers[master_port_id]->recvRetry();
648}
649
650Tick
651CoherentXBar::recvAtomic(PacketPtr pkt, PortID slave_port_id)
652{
653    DPRINTF(CoherentXBar, "%s: src %s packet %s\n", __func__,
654            slavePorts[slave_port_id]->name(), pkt->print());
655
656    unsigned int pkt_size = pkt->hasData() ? pkt->getSize() : 0;
657    unsigned int pkt_cmd = pkt->cmdToIndex();
658
659    MemCmd snoop_response_cmd = MemCmd::InvalidCmd;
660    Tick snoop_response_latency = 0;
661
662    // is this the destination point for this packet? (e.g. true if
663    // this xbar is the PoC for a cache maintenance operation to the
664    // PoC) otherwise the destination is any cache that can satisfy
665    // the request
666    const bool is_destination = isDestination(pkt);
667
668    const bool snoop_caches = !system->bypassCaches() &&
669        pkt->cmd != MemCmd::WriteClean;
670    if (snoop_caches) {
671        // forward to all snoopers but the source
672        std::pair<MemCmd, Tick> snoop_result;
673        if (snoopFilter) {
674            // check with the snoop filter where to forward this packet
675            auto sf_res =
676                snoopFilter->lookupRequest(pkt, *slavePorts[slave_port_id]);
677            snoop_response_latency += sf_res.second * clockPeriod();
678            DPRINTF(CoherentXBar, "%s: src %s packet %s SF size: %i lat: %i\n",
679                    __func__, slavePorts[slave_port_id]->name(), pkt->print(),
680                    sf_res.first.size(), sf_res.second);
681
682            // let the snoop filter know about the success of the send
683            // operation, and do it even before sending it onwards to
684            // avoid situations where atomic upward snoops sneak in
685            // between and change the filter state
686            snoopFilter->finishRequest(false, pkt->getAddr(), pkt->isSecure());
687
688            if (pkt->isEviction()) {
689                // for block-evicting packets, i.e. writebacks and
690                // clean evictions, there is no need to snoop up, as
691                // all we do is determine if the block is cached or
692                // not, instead just set it here based on the snoop
693                // filter result
694                if (!sf_res.first.empty())
695                    pkt->setBlockCached();
696            } else {
697                snoop_result = forwardAtomic(pkt, slave_port_id, InvalidPortID,
698                                             sf_res.first);
699            }
700        } else {
701            snoop_result = forwardAtomic(pkt, slave_port_id);
702        }
703        snoop_response_cmd = snoop_result.first;
704        snoop_response_latency += snoop_result.second;
705    }
706
707    // set up a sensible default value
708    Tick response_latency = 0;
709
710    const bool sink_packet = sinkPacket(pkt);
711
712    // even if we had a snoop response, we must continue and also
713    // perform the actual request at the destination
714    PortID master_port_id = findPort(pkt->getAddr());
715
716    if (sink_packet) {
717        DPRINTF(CoherentXBar, "%s: Not forwarding %s\n", __func__,
718                pkt->print());
719    } else {
720        if (forwardPacket(pkt)) {
721            // make sure that the write request (e.g., WriteClean)
722            // will stop at the memory below if this crossbar is its
723            // destination
724            if (pkt->isWrite() && is_destination) {
725                pkt->clearWriteThrough();
726            }
727
728            // forward the request to the appropriate destination
729            response_latency = masterPorts[master_port_id]->sendAtomic(pkt);
730        } else {
731            // if it does not need a response we sink the packet above
732            assert(pkt->needsResponse());
733
734            pkt->makeResponse();
735        }
736    }
737
738    // stats updates for the request
739    pktCount[slave_port_id][master_port_id]++;
740    pktSize[slave_port_id][master_port_id] += pkt_size;
741    transDist[pkt_cmd]++;
742
743
744    // if lower levels have replied, tell the snoop filter
745    if (!system->bypassCaches() && snoopFilter && pkt->isResponse()) {
746        snoopFilter->updateResponse(pkt, *slavePorts[slave_port_id]);
747    }
748
749    // if we got a response from a snooper, restore it here
750    if (snoop_response_cmd != MemCmd::InvalidCmd) {
751        // no one else should have responded
752        assert(!pkt->isResponse());
753        pkt->cmd = snoop_response_cmd;
754        response_latency = snoop_response_latency;
755    }
756
757    // add the response data
758    if (pkt->isResponse()) {
759        pkt_size = pkt->hasData() ? pkt->getSize() : 0;
760        pkt_cmd = pkt->cmdToIndex();
761
762        // stats updates
763        pktCount[slave_port_id][master_port_id]++;
764        pktSize[slave_port_id][master_port_id] += pkt_size;
765        transDist[pkt_cmd]++;
766    }
767
768    // @todo: Not setting header time
769    pkt->payloadDelay = response_latency;
770    return response_latency;
771}
772
773Tick
774CoherentXBar::recvAtomicSnoop(PacketPtr pkt, PortID master_port_id)
775{
776    DPRINTF(CoherentXBar, "%s: src %s packet %s\n", __func__,
777            masterPorts[master_port_id]->name(), pkt->print());
778
779    // add the request snoop data
780    unsigned int pkt_size = pkt->hasData() ? pkt->getSize() : 0;
781    snoops++;
782    snoopTraffic += pkt_size;
783
784    // forward to all snoopers
785    std::pair<MemCmd, Tick> snoop_result;
786    Tick snoop_response_latency = 0;
787    if (snoopFilter) {
788        auto sf_res = snoopFilter->lookupSnoop(pkt);
789        snoop_response_latency += sf_res.second * clockPeriod();
790        DPRINTF(CoherentXBar, "%s: src %s packet %s SF size: %i lat: %i\n",
791                __func__, masterPorts[master_port_id]->name(), pkt->print(),
792                sf_res.first.size(), sf_res.second);
793        snoop_result = forwardAtomic(pkt, InvalidPortID, master_port_id,
794                                     sf_res.first);
795    } else {
796        snoop_result = forwardAtomic(pkt, InvalidPortID);
797    }
798    MemCmd snoop_response_cmd = snoop_result.first;
799    snoop_response_latency += snoop_result.second;
800
801    if (snoop_response_cmd != MemCmd::InvalidCmd)
802        pkt->cmd = snoop_response_cmd;
803
804    // add the response snoop data
805    if (pkt->isResponse()) {
806        snoops++;
807    }
808
809    // @todo: Not setting header time
810    pkt->payloadDelay = snoop_response_latency;
811    return snoop_response_latency;
812}
813
814std::pair<MemCmd, Tick>
815CoherentXBar::forwardAtomic(PacketPtr pkt, PortID exclude_slave_port_id,
816                           PortID source_master_port_id,
817                           const std::vector<QueuedSlavePort*>& dests)
818{
819    // the packet may be changed on snoops, record the original
820    // command to enable us to restore it between snoops so that
821    // additional snoops can take place properly
822    MemCmd orig_cmd = pkt->cmd;
823    MemCmd snoop_response_cmd = MemCmd::InvalidCmd;
824    Tick snoop_response_latency = 0;
825
826    // snoops should only happen if the system isn't bypassing caches
827    assert(!system->bypassCaches());
828
829    unsigned fanout = 0;
830
831    for (const auto& p: dests) {
832        // we could have gotten this request from a snooping master
833        // (corresponding to our own slave port that is also in
834        // snoopPorts) and should not send it back to where it came
835        // from
836        if (exclude_slave_port_id != InvalidPortID &&
837            p->getId() == exclude_slave_port_id)
838            continue;
839
840        Tick latency = p->sendAtomicSnoop(pkt);
841        fanout++;
842
843        // in contrast to a functional access, we have to keep on
844        // going as all snoopers must be updated even if we get a
845        // response
846        if (!pkt->isResponse())
847            continue;
848
849        // response from snoop agent
850        assert(pkt->cmd != orig_cmd);
851        assert(pkt->cacheResponding());
852        // should only happen once
853        assert(snoop_response_cmd == MemCmd::InvalidCmd);
854        // save response state
855        snoop_response_cmd = pkt->cmd;
856        snoop_response_latency = latency;
857
858        if (snoopFilter) {
859            // Handle responses by the snoopers and differentiate between
860            // responses to requests from above and snoops from below
861            if (source_master_port_id != InvalidPortID) {
862                // Getting a response for a snoop from below
863                assert(exclude_slave_port_id == InvalidPortID);
864                snoopFilter->updateSnoopForward(pkt, *p,
865                             *masterPorts[source_master_port_id]);
866            } else {
867                // Getting a response for a request from above
868                assert(source_master_port_id == InvalidPortID);
869                snoopFilter->updateSnoopResponse(pkt, *p,
870                             *slavePorts[exclude_slave_port_id]);
871            }
872        }
873        // restore original packet state for remaining snoopers
874        pkt->cmd = orig_cmd;
875    }
876
877    // Stats for fanout
878    snoopFanout.sample(fanout);
879
880    // the packet is restored as part of the loop and any potential
881    // snoop response is part of the returned pair
882    return std::make_pair(snoop_response_cmd, snoop_response_latency);
883}
884
885void
886CoherentXBar::recvFunctional(PacketPtr pkt, PortID slave_port_id)
887{
888    if (!pkt->isPrint()) {
889        // don't do DPRINTFs on PrintReq as it clutters up the output
890        DPRINTF(CoherentXBar, "%s: src %s packet %s\n", __func__,
891                slavePorts[slave_port_id]->name(), pkt->print());
892    }
893
894    if (!system->bypassCaches()) {
895        // forward to all snoopers but the source
896        forwardFunctional(pkt, slave_port_id);
897    }
898
899    // there is no need to continue if the snooping has found what we
900    // were looking for and the packet is already a response
901    if (!pkt->isResponse()) {
902        // since our slave ports are queued ports we need to check them as well
903        for (const auto& p : slavePorts) {
904            // if we find a response that has the data, then the
905            // downstream caches/memories may be out of date, so simply stop
906            // here
907            if (p->checkFunctional(pkt)) {
908                if (pkt->needsResponse())
909                    pkt->makeResponse();
910                return;
911            }
912        }
913
914        PortID dest_id = findPort(pkt->getAddr());
915
916        masterPorts[dest_id]->sendFunctional(pkt);
917    }
918}
919
920void
921CoherentXBar::recvFunctionalSnoop(PacketPtr pkt, PortID master_port_id)
922{
923    if (!pkt->isPrint()) {
924        // don't do DPRINTFs on PrintReq as it clutters up the output
925        DPRINTF(CoherentXBar, "%s: src %s packet %s\n", __func__,
926                masterPorts[master_port_id]->name(), pkt->print());
927    }
928
929    for (const auto& p : slavePorts) {
930        if (p->checkFunctional(pkt)) {
931            if (pkt->needsResponse())
932                pkt->makeResponse();
933            return;
934        }
935    }
936
937    // forward to all snoopers
938    forwardFunctional(pkt, InvalidPortID);
939}
940
941void
942CoherentXBar::forwardFunctional(PacketPtr pkt, PortID exclude_slave_port_id)
943{
944    // snoops should only happen if the system isn't bypassing caches
945    assert(!system->bypassCaches());
946
947    for (const auto& p: snoopPorts) {
948        // we could have gotten this request from a snooping master
949        // (corresponding to our own slave port that is also in
950        // snoopPorts) and should not send it back to where it came
951        // from
952        if (exclude_slave_port_id == InvalidPortID ||
953            p->getId() != exclude_slave_port_id)
954            p->sendFunctionalSnoop(pkt);
955
956        // if we get a response we are done
957        if (pkt->isResponse()) {
958            break;
959        }
960    }
961}
962
963bool
964CoherentXBar::sinkPacket(const PacketPtr pkt) const
965{
966    // we can sink the packet if:
967    // 1) the crossbar is the point of coherency, and a cache is
968    //    responding after being snooped
969    // 2) the crossbar is the point of coherency, and the packet is a
970    //    coherency packet (not a read or a write) that does not
971    //    require a response
972    // 3) this is a clean evict or clean writeback, but the packet is
973    //    found in a cache above this crossbar
974    // 4) a cache is responding after being snooped, and the packet
975    //    either does not need the block to be writable, or the cache
976    //    that has promised to respond (setting the cache responding
977    //    flag) is providing writable and thus had a Modified block,
978    //    and no further action is needed
979    return (pointOfCoherency && pkt->cacheResponding()) ||
980        (pointOfCoherency && !(pkt->isRead() || pkt->isWrite()) &&
981         !pkt->needsResponse()) ||
982        (pkt->isCleanEviction() && pkt->isBlockCached()) ||
983        (pkt->cacheResponding() &&
984         (!pkt->needsWritable() || pkt->responderHadWritable()));
985}
986
987bool
988CoherentXBar::forwardPacket(const PacketPtr pkt)
989{
990    // we are forwarding the packet if:
991    // 1) this is a read or a write
992    // 2) this crossbar is above the point of coherency
993    return pkt->isRead() || pkt->isWrite() || !pointOfCoherency;
994}
995
996
997void
998CoherentXBar::regStats()
999{
1000    // register the stats of the base class and our layers
1001    BaseXBar::regStats();
1002    for (auto l: reqLayers)
1003        l->regStats();
1004    for (auto l: respLayers)
1005        l->regStats();
1006    for (auto l: snoopLayers)
1007        l->regStats();
1008
1009    snoops
1010        .name(name() + ".snoops")
1011        .desc("Total snoops (count)")
1012    ;
1013
1014    snoopTraffic
1015        .name(name() + ".snoopTraffic")
1016        .desc("Total snoop traffic (bytes)")
1017    ;
1018
1019    snoopFanout
1020        .init(0, snoopPorts.size(), 1)
1021        .name(name() + ".snoop_fanout")
1022        .desc("Request fanout histogram")
1023    ;
1024}
1025
1026CoherentXBar *
1027CoherentXBarParams::create()
1028{
1029    return new CoherentXBar(this);
1030}
1031