coherent_xbar.cc revision 12345
1/*
2 * Copyright (c) 2011-2017 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder.  You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2006 The Regents of The University of Michigan
15 * All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions are
19 * met: redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer;
21 * redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution;
24 * neither the name of the copyright holders nor the names of its
25 * contributors may be used to endorse or promote products derived from
26 * this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 *
40 * Authors: Ali Saidi
41 *          Andreas Hansson
42 *          William Wang
43 */
44
45/**
46 * @file
47 * Definition of a crossbar object.
48 */
49
50#include "mem/coherent_xbar.hh"
51
52#include "base/logging.hh"
53#include "base/trace.hh"
54#include "debug/AddrRanges.hh"
55#include "debug/CoherentXBar.hh"
56#include "sim/system.hh"
57
58CoherentXBar::CoherentXBar(const CoherentXBarParams *p)
59    : BaseXBar(p), system(p->system), snoopFilter(p->snoop_filter),
60      snoopResponseLatency(p->snoop_response_latency),
61      pointOfCoherency(p->point_of_coherency),
62      pointOfUnification(p->point_of_unification)
63{
64    // create the ports based on the size of the master and slave
65    // vector ports, and the presence of the default port, the ports
66    // are enumerated starting from zero
67    for (int i = 0; i < p->port_master_connection_count; ++i) {
68        std::string portName = csprintf("%s.master[%d]", name(), i);
69        MasterPort* bp = new CoherentXBarMasterPort(portName, *this, i);
70        masterPorts.push_back(bp);
71        reqLayers.push_back(new ReqLayer(*bp, *this,
72                                         csprintf(".reqLayer%d", i)));
73        snoopLayers.push_back(new SnoopRespLayer(*bp, *this,
74                                                 csprintf(".snoopLayer%d", i)));
75    }
76
77    // see if we have a default slave device connected and if so add
78    // our corresponding master port
79    if (p->port_default_connection_count) {
80        defaultPortID = masterPorts.size();
81        std::string portName = name() + ".default";
82        MasterPort* bp = new CoherentXBarMasterPort(portName, *this,
83                                                   defaultPortID);
84        masterPorts.push_back(bp);
85        reqLayers.push_back(new ReqLayer(*bp, *this, csprintf(".reqLayer%d",
86                                             defaultPortID)));
87        snoopLayers.push_back(new SnoopRespLayer(*bp, *this,
88                                                 csprintf(".snoopLayer%d",
89                                                          defaultPortID)));
90    }
91
92    // create the slave ports, once again starting at zero
93    for (int i = 0; i < p->port_slave_connection_count; ++i) {
94        std::string portName = csprintf("%s.slave[%d]", name(), i);
95        QueuedSlavePort* bp = new CoherentXBarSlavePort(portName, *this, i);
96        slavePorts.push_back(bp);
97        respLayers.push_back(new RespLayer(*bp, *this,
98                                           csprintf(".respLayer%d", i)));
99        snoopRespPorts.push_back(new SnoopRespPort(*bp, *this));
100    }
101
102    clearPortCache();
103}
104
105CoherentXBar::~CoherentXBar()
106{
107    for (auto l: reqLayers)
108        delete l;
109    for (auto l: respLayers)
110        delete l;
111    for (auto l: snoopLayers)
112        delete l;
113    for (auto p: snoopRespPorts)
114        delete p;
115}
116
117void
118CoherentXBar::init()
119{
120    BaseXBar::init();
121
122    // iterate over our slave ports and determine which of our
123    // neighbouring master ports are snooping and add them as snoopers
124    for (const auto& p: slavePorts) {
125        // check if the connected master port is snooping
126        if (p->isSnooping()) {
127            DPRINTF(AddrRanges, "Adding snooping master %s\n",
128                    p->getMasterPort().name());
129            snoopPorts.push_back(p);
130        }
131    }
132
133    if (snoopPorts.empty())
134        warn("CoherentXBar %s has no snooping ports attached!\n", name());
135
136    // inform the snoop filter about the slave ports so it can create
137    // its own internal representation
138    if (snoopFilter)
139        snoopFilter->setSlavePorts(slavePorts);
140}
141
142bool
143CoherentXBar::recvTimingReq(PacketPtr pkt, PortID slave_port_id)
144{
145    // determine the source port based on the id
146    SlavePort *src_port = slavePorts[slave_port_id];
147
148    // remember if the packet is an express snoop
149    bool is_express_snoop = pkt->isExpressSnoop();
150    bool cache_responding = pkt->cacheResponding();
151    // for normal requests, going downstream, the express snoop flag
152    // and the cache responding flag should always be the same
153    assert(is_express_snoop == cache_responding);
154
155    // determine the destination based on the address
156    PortID master_port_id = findPort(pkt->getAddr());
157
158    // test if the crossbar should be considered occupied for the current
159    // port, and exclude express snoops from the check
160    if (!is_express_snoop && !reqLayers[master_port_id]->tryTiming(src_port)) {
161        DPRINTF(CoherentXBar, "%s: src %s packet %s BUSY\n", __func__,
162                src_port->name(), pkt->print());
163        return false;
164    }
165
166    DPRINTF(CoherentXBar, "%s: src %s packet %s\n", __func__,
167            src_port->name(), pkt->print());
168
169    // store size and command as they might be modified when
170    // forwarding the packet
171    unsigned int pkt_size = pkt->hasData() ? pkt->getSize() : 0;
172    unsigned int pkt_cmd = pkt->cmdToIndex();
173
174    // store the old header delay so we can restore it if needed
175    Tick old_header_delay = pkt->headerDelay;
176
177    // a request sees the frontend and forward latency
178    Tick xbar_delay = (frontendLatency + forwardLatency) * clockPeriod();
179
180    // set the packet header and payload delay
181    calcPacketTiming(pkt, xbar_delay);
182
183    // determine how long to be crossbar layer is busy
184    Tick packetFinishTime = clockEdge(Cycles(1)) + pkt->payloadDelay;
185
186    const bool snoop_caches = !system->bypassCaches() &&
187        pkt->cmd != MemCmd::WriteClean;
188    if (snoop_caches) {
189        assert(pkt->snoopDelay == 0);
190
191        // the packet is a memory-mapped request and should be
192        // broadcasted to our snoopers but the source
193        if (snoopFilter) {
194            // check with the snoop filter where to forward this packet
195            auto sf_res = snoopFilter->lookupRequest(pkt, *src_port);
196            // the time required by a packet to be delivered through
197            // the xbar has to be charged also with to lookup latency
198            // of the snoop filter
199            pkt->headerDelay += sf_res.second * clockPeriod();
200            DPRINTF(CoherentXBar, "%s: src %s packet %s SF size: %i lat: %i\n",
201                    __func__, src_port->name(), pkt->print(),
202                    sf_res.first.size(), sf_res.second);
203
204            if (pkt->isEviction()) {
205                // for block-evicting packets, i.e. writebacks and
206                // clean evictions, there is no need to snoop up, as
207                // all we do is determine if the block is cached or
208                // not, instead just set it here based on the snoop
209                // filter result
210                if (!sf_res.first.empty())
211                    pkt->setBlockCached();
212            } else {
213                forwardTiming(pkt, slave_port_id, sf_res.first);
214            }
215        } else {
216            forwardTiming(pkt, slave_port_id);
217        }
218
219        // add the snoop delay to our header delay, and then reset it
220        pkt->headerDelay += pkt->snoopDelay;
221        pkt->snoopDelay = 0;
222    }
223
224    // set up a sensible starting point
225    bool success = true;
226
227    // remember if the packet will generate a snoop response by
228    // checking if a cache set the cacheResponding flag during the
229    // snooping above
230    const bool expect_snoop_resp = !cache_responding && pkt->cacheResponding();
231    bool expect_response = pkt->needsResponse() && !pkt->cacheResponding();
232
233    const bool sink_packet = sinkPacket(pkt);
234
235    // in certain cases the crossbar is responsible for responding
236    bool respond_directly = false;
237    // store the original address as an address mapper could possibly
238    // modify the address upon a sendTimingRequest
239    const Addr addr(pkt->getAddr());
240    if (sink_packet) {
241        DPRINTF(CoherentXBar, "%s: Not forwarding %s\n", __func__,
242                pkt->print());
243    } else {
244        // determine if we are forwarding the packet, or responding to
245        // it
246        if (!pointOfCoherency || pkt->isRead() || pkt->isWrite()) {
247            // if we are passing on, rather than sinking, a packet to
248            // which an upstream cache has committed to responding,
249            // the line was needs writable, and the responding only
250            // had an Owned copy, so we need to immidiately let the
251            // downstream caches know, bypass any flow control
252            if (pkt->cacheResponding()) {
253                pkt->setExpressSnoop();
254            }
255
256            // since it is a normal request, attempt to send the packet
257            success = masterPorts[master_port_id]->sendTimingReq(pkt);
258        } else {
259            // no need to forward, turn this packet around and respond
260            // directly
261            assert(pkt->needsResponse());
262
263            respond_directly = true;
264            assert(!expect_snoop_resp);
265            expect_response = false;
266        }
267    }
268
269    if (snoopFilter && snoop_caches) {
270        // Let the snoop filter know about the success of the send operation
271        snoopFilter->finishRequest(!success, addr, pkt->isSecure());
272    }
273
274    // check if we were successful in sending the packet onwards
275    if (!success)  {
276        // express snoops should never be forced to retry
277        assert(!is_express_snoop);
278
279        // restore the header delay
280        pkt->headerDelay = old_header_delay;
281
282        DPRINTF(CoherentXBar, "%s: src %s packet %s RETRY\n", __func__,
283                src_port->name(), pkt->print());
284
285        // update the layer state and schedule an idle event
286        reqLayers[master_port_id]->failedTiming(src_port,
287                                                clockEdge(Cycles(1)));
288    } else {
289        // express snoops currently bypass the crossbar state entirely
290        if (!is_express_snoop) {
291            // if this particular request will generate a snoop
292            // response
293            if (expect_snoop_resp) {
294                // we should never have an exsiting request outstanding
295                assert(outstandingSnoop.find(pkt->req) ==
296                       outstandingSnoop.end());
297                outstandingSnoop.insert(pkt->req);
298
299                // basic sanity check on the outstanding snoops
300                panic_if(outstandingSnoop.size() > 512,
301                         "Outstanding snoop requests exceeded 512\n");
302            }
303
304            // remember where to route the normal response to
305            if (expect_response || expect_snoop_resp) {
306                assert(routeTo.find(pkt->req) == routeTo.end());
307                routeTo[pkt->req] = slave_port_id;
308
309                panic_if(routeTo.size() > 512,
310                         "Routing table exceeds 512 packets\n");
311            }
312
313            // update the layer state and schedule an idle event
314            reqLayers[master_port_id]->succeededTiming(packetFinishTime);
315        }
316
317        // stats updates only consider packets that were successfully sent
318        pktCount[slave_port_id][master_port_id]++;
319        pktSize[slave_port_id][master_port_id] += pkt_size;
320        transDist[pkt_cmd]++;
321
322        if (is_express_snoop) {
323            snoops++;
324            snoopTraffic += pkt_size;
325        }
326    }
327
328    if (sink_packet)
329        // queue the packet for deletion
330        pendingDelete.reset(pkt);
331
332    if (respond_directly) {
333        assert(pkt->needsResponse());
334        assert(success);
335
336        pkt->makeResponse();
337
338        if (snoopFilter && !system->bypassCaches()) {
339            // let the snoop filter inspect the response and update its state
340            snoopFilter->updateResponse(pkt, *slavePorts[slave_port_id]);
341        }
342
343        Tick response_time = clockEdge() + pkt->headerDelay;
344        pkt->headerDelay = 0;
345
346        slavePorts[slave_port_id]->schedTimingResp(pkt, response_time);
347    }
348
349    return success;
350}
351
352bool
353CoherentXBar::recvTimingResp(PacketPtr pkt, PortID master_port_id)
354{
355    // determine the source port based on the id
356    MasterPort *src_port = masterPorts[master_port_id];
357
358    // determine the destination
359    const auto route_lookup = routeTo.find(pkt->req);
360    assert(route_lookup != routeTo.end());
361    const PortID slave_port_id = route_lookup->second;
362    assert(slave_port_id != InvalidPortID);
363    assert(slave_port_id < respLayers.size());
364
365    // test if the crossbar should be considered occupied for the
366    // current port
367    if (!respLayers[slave_port_id]->tryTiming(src_port)) {
368        DPRINTF(CoherentXBar, "%s: src %s packet %s BUSY\n", __func__,
369                src_port->name(), pkt->print());
370        return false;
371    }
372
373    DPRINTF(CoherentXBar, "%s: src %s packet %s\n", __func__,
374            src_port->name(), pkt->print());
375
376    // store size and command as they might be modified when
377    // forwarding the packet
378    unsigned int pkt_size = pkt->hasData() ? pkt->getSize() : 0;
379    unsigned int pkt_cmd = pkt->cmdToIndex();
380
381    // a response sees the response latency
382    Tick xbar_delay = responseLatency * clockPeriod();
383
384    // set the packet header and payload delay
385    calcPacketTiming(pkt, xbar_delay);
386
387    // determine how long to be crossbar layer is busy
388    Tick packetFinishTime = clockEdge(Cycles(1)) + pkt->payloadDelay;
389
390    if (snoopFilter && !system->bypassCaches()) {
391        // let the snoop filter inspect the response and update its state
392        snoopFilter->updateResponse(pkt, *slavePorts[slave_port_id]);
393    }
394
395    // send the packet through the destination slave port and pay for
396    // any outstanding header delay
397    Tick latency = pkt->headerDelay;
398    pkt->headerDelay = 0;
399    slavePorts[slave_port_id]->schedTimingResp(pkt, curTick() + latency);
400
401    // remove the request from the routing table
402    routeTo.erase(route_lookup);
403
404    respLayers[slave_port_id]->succeededTiming(packetFinishTime);
405
406    // stats updates
407    pktCount[slave_port_id][master_port_id]++;
408    pktSize[slave_port_id][master_port_id] += pkt_size;
409    transDist[pkt_cmd]++;
410
411    return true;
412}
413
414void
415CoherentXBar::recvTimingSnoopReq(PacketPtr pkt, PortID master_port_id)
416{
417    DPRINTF(CoherentXBar, "%s: src %s packet %s\n", __func__,
418            masterPorts[master_port_id]->name(), pkt->print());
419
420    // update stats here as we know the forwarding will succeed
421    unsigned int pkt_size = pkt->hasData() ? pkt->getSize() : 0;
422    transDist[pkt->cmdToIndex()]++;
423    snoops++;
424    snoopTraffic += pkt_size;
425
426    // we should only see express snoops from caches
427    assert(pkt->isExpressSnoop());
428
429    // set the packet header and payload delay, for now use forward latency
430    // @todo Assess the choice of latency further
431    calcPacketTiming(pkt, forwardLatency * clockPeriod());
432
433    // remember if a cache has already committed to responding so we
434    // can see if it changes during the snooping
435    const bool cache_responding = pkt->cacheResponding();
436
437    assert(pkt->snoopDelay == 0);
438
439    if (snoopFilter) {
440        // let the Snoop Filter work its magic and guide probing
441        auto sf_res = snoopFilter->lookupSnoop(pkt);
442        // the time required by a packet to be delivered through
443        // the xbar has to be charged also with to lookup latency
444        // of the snoop filter
445        pkt->headerDelay += sf_res.second * clockPeriod();
446        DPRINTF(CoherentXBar, "%s: src %s packet %s SF size: %i lat: %i\n",
447                __func__, masterPorts[master_port_id]->name(), pkt->print(),
448                sf_res.first.size(), sf_res.second);
449
450        // forward to all snoopers
451        forwardTiming(pkt, InvalidPortID, sf_res.first);
452    } else {
453        forwardTiming(pkt, InvalidPortID);
454    }
455
456    // add the snoop delay to our header delay, and then reset it
457    pkt->headerDelay += pkt->snoopDelay;
458    pkt->snoopDelay = 0;
459
460    // if we can expect a response, remember how to route it
461    if (!cache_responding && pkt->cacheResponding()) {
462        assert(routeTo.find(pkt->req) == routeTo.end());
463        routeTo[pkt->req] = master_port_id;
464    }
465
466    // a snoop request came from a connected slave device (one of
467    // our master ports), and if it is not coming from the slave
468    // device responsible for the address range something is
469    // wrong, hence there is nothing further to do as the packet
470    // would be going back to where it came from
471    assert(master_port_id == findPort(pkt->getAddr()));
472}
473
474bool
475CoherentXBar::recvTimingSnoopResp(PacketPtr pkt, PortID slave_port_id)
476{
477    // determine the source port based on the id
478    SlavePort* src_port = slavePorts[slave_port_id];
479
480    // get the destination
481    const auto route_lookup = routeTo.find(pkt->req);
482    assert(route_lookup != routeTo.end());
483    const PortID dest_port_id = route_lookup->second;
484    assert(dest_port_id != InvalidPortID);
485
486    // determine if the response is from a snoop request we
487    // created as the result of a normal request (in which case it
488    // should be in the outstandingSnoop), or if we merely forwarded
489    // someone else's snoop request
490    const bool forwardAsSnoop = outstandingSnoop.find(pkt->req) ==
491        outstandingSnoop.end();
492
493    // test if the crossbar should be considered occupied for the
494    // current port, note that the check is bypassed if the response
495    // is being passed on as a normal response since this is occupying
496    // the response layer rather than the snoop response layer
497    if (forwardAsSnoop) {
498        assert(dest_port_id < snoopLayers.size());
499        if (!snoopLayers[dest_port_id]->tryTiming(src_port)) {
500            DPRINTF(CoherentXBar, "%s: src %s packet %s BUSY\n", __func__,
501                    src_port->name(), pkt->print());
502            return false;
503        }
504    } else {
505        // get the master port that mirrors this slave port internally
506        MasterPort* snoop_port = snoopRespPorts[slave_port_id];
507        assert(dest_port_id < respLayers.size());
508        if (!respLayers[dest_port_id]->tryTiming(snoop_port)) {
509            DPRINTF(CoherentXBar, "%s: src %s packet %s BUSY\n", __func__,
510                    snoop_port->name(), pkt->print());
511            return false;
512        }
513    }
514
515    DPRINTF(CoherentXBar, "%s: src %s packet %s\n", __func__,
516            src_port->name(), pkt->print());
517
518    // store size and command as they might be modified when
519    // forwarding the packet
520    unsigned int pkt_size = pkt->hasData() ? pkt->getSize() : 0;
521    unsigned int pkt_cmd = pkt->cmdToIndex();
522
523    // responses are never express snoops
524    assert(!pkt->isExpressSnoop());
525
526    // a snoop response sees the snoop response latency, and if it is
527    // forwarded as a normal response, the response latency
528    Tick xbar_delay =
529        (forwardAsSnoop ? snoopResponseLatency : responseLatency) *
530        clockPeriod();
531
532    // set the packet header and payload delay
533    calcPacketTiming(pkt, xbar_delay);
534
535    // determine how long to be crossbar layer is busy
536    Tick packetFinishTime = clockEdge(Cycles(1)) + pkt->payloadDelay;
537
538    // forward it either as a snoop response or a normal response
539    if (forwardAsSnoop) {
540        // this is a snoop response to a snoop request we forwarded,
541        // e.g. coming from the L1 and going to the L2, and it should
542        // be forwarded as a snoop response
543
544        if (snoopFilter) {
545            // update the probe filter so that it can properly track the line
546            snoopFilter->updateSnoopForward(pkt, *slavePorts[slave_port_id],
547                                            *masterPorts[dest_port_id]);
548        }
549
550        bool success M5_VAR_USED =
551            masterPorts[dest_port_id]->sendTimingSnoopResp(pkt);
552        pktCount[slave_port_id][dest_port_id]++;
553        pktSize[slave_port_id][dest_port_id] += pkt_size;
554        assert(success);
555
556        snoopLayers[dest_port_id]->succeededTiming(packetFinishTime);
557    } else {
558        // we got a snoop response on one of our slave ports,
559        // i.e. from a coherent master connected to the crossbar, and
560        // since we created the snoop request as part of recvTiming,
561        // this should now be a normal response again
562        outstandingSnoop.erase(pkt->req);
563
564        // this is a snoop response from a coherent master, hence it
565        // should never go back to where the snoop response came from,
566        // but instead to where the original request came from
567        assert(slave_port_id != dest_port_id);
568
569        if (snoopFilter) {
570            // update the probe filter so that it can properly track the line
571            snoopFilter->updateSnoopResponse(pkt, *slavePorts[slave_port_id],
572                                    *slavePorts[dest_port_id]);
573        }
574
575        DPRINTF(CoherentXBar, "%s: src %s packet %s FWD RESP\n", __func__,
576                src_port->name(), pkt->print());
577
578        // as a normal response, it should go back to a master through
579        // one of our slave ports, we also pay for any outstanding
580        // header latency
581        Tick latency = pkt->headerDelay;
582        pkt->headerDelay = 0;
583        slavePorts[dest_port_id]->schedTimingResp(pkt, curTick() + latency);
584
585        respLayers[dest_port_id]->succeededTiming(packetFinishTime);
586    }
587
588    // remove the request from the routing table
589    routeTo.erase(route_lookup);
590
591    // stats updates
592    transDist[pkt_cmd]++;
593    snoops++;
594    snoopTraffic += pkt_size;
595
596    return true;
597}
598
599
600void
601CoherentXBar::forwardTiming(PacketPtr pkt, PortID exclude_slave_port_id,
602                           const std::vector<QueuedSlavePort*>& dests)
603{
604    DPRINTF(CoherentXBar, "%s for %s\n", __func__, pkt->print());
605
606    // snoops should only happen if the system isn't bypassing caches
607    assert(!system->bypassCaches());
608
609    unsigned fanout = 0;
610
611    for (const auto& p: dests) {
612        // we could have gotten this request from a snooping master
613        // (corresponding to our own slave port that is also in
614        // snoopPorts) and should not send it back to where it came
615        // from
616        if (exclude_slave_port_id == InvalidPortID ||
617            p->getId() != exclude_slave_port_id) {
618            // cache is not allowed to refuse snoop
619            p->sendTimingSnoopReq(pkt);
620            fanout++;
621        }
622    }
623
624    // Stats for fanout of this forward operation
625    snoopFanout.sample(fanout);
626}
627
628void
629CoherentXBar::recvReqRetry(PortID master_port_id)
630{
631    // responses and snoop responses never block on forwarding them,
632    // so the retry will always be coming from a port to which we
633    // tried to forward a request
634    reqLayers[master_port_id]->recvRetry();
635}
636
637Tick
638CoherentXBar::recvAtomic(PacketPtr pkt, PortID slave_port_id)
639{
640    DPRINTF(CoherentXBar, "%s: src %s packet %s\n", __func__,
641            slavePorts[slave_port_id]->name(), pkt->print());
642
643    unsigned int pkt_size = pkt->hasData() ? pkt->getSize() : 0;
644    unsigned int pkt_cmd = pkt->cmdToIndex();
645
646    MemCmd snoop_response_cmd = MemCmd::InvalidCmd;
647    Tick snoop_response_latency = 0;
648
649    const bool snoop_caches = !system->bypassCaches() &&
650        pkt->cmd != MemCmd::WriteClean;
651    if (snoop_caches) {
652        // forward to all snoopers but the source
653        std::pair<MemCmd, Tick> snoop_result;
654        if (snoopFilter) {
655            // check with the snoop filter where to forward this packet
656            auto sf_res =
657                snoopFilter->lookupRequest(pkt, *slavePorts[slave_port_id]);
658            snoop_response_latency += sf_res.second * clockPeriod();
659            DPRINTF(CoherentXBar, "%s: src %s packet %s SF size: %i lat: %i\n",
660                    __func__, slavePorts[slave_port_id]->name(), pkt->print(),
661                    sf_res.first.size(), sf_res.second);
662
663            // let the snoop filter know about the success of the send
664            // operation, and do it even before sending it onwards to
665            // avoid situations where atomic upward snoops sneak in
666            // between and change the filter state
667            snoopFilter->finishRequest(false, pkt->getAddr(), pkt->isSecure());
668
669            if (pkt->isEviction()) {
670                // for block-evicting packets, i.e. writebacks and
671                // clean evictions, there is no need to snoop up, as
672                // all we do is determine if the block is cached or
673                // not, instead just set it here based on the snoop
674                // filter result
675                if (!sf_res.first.empty())
676                    pkt->setBlockCached();
677            } else {
678                snoop_result = forwardAtomic(pkt, slave_port_id, InvalidPortID,
679                                             sf_res.first);
680            }
681        } else {
682            snoop_result = forwardAtomic(pkt, slave_port_id);
683        }
684        snoop_response_cmd = snoop_result.first;
685        snoop_response_latency += snoop_result.second;
686    }
687
688    // set up a sensible default value
689    Tick response_latency = 0;
690
691    const bool sink_packet = sinkPacket(pkt);
692
693    // even if we had a snoop response, we must continue and also
694    // perform the actual request at the destination
695    PortID master_port_id = findPort(pkt->getAddr());
696
697    if (sink_packet) {
698        DPRINTF(CoherentXBar, "%s: Not forwarding %s\n", __func__,
699                pkt->print());
700    } else {
701        if (!pointOfCoherency || pkt->isRead() || pkt->isWrite()) {
702            // forward the request to the appropriate destination
703            response_latency = masterPorts[master_port_id]->sendAtomic(pkt);
704        } else {
705            // if it does not need a response we sink the packet above
706            assert(pkt->needsResponse());
707
708            pkt->makeResponse();
709        }
710    }
711
712    // stats updates for the request
713    pktCount[slave_port_id][master_port_id]++;
714    pktSize[slave_port_id][master_port_id] += pkt_size;
715    transDist[pkt_cmd]++;
716
717
718    // if lower levels have replied, tell the snoop filter
719    if (!system->bypassCaches() && snoopFilter && pkt->isResponse()) {
720        snoopFilter->updateResponse(pkt, *slavePorts[slave_port_id]);
721    }
722
723    // if we got a response from a snooper, restore it here
724    if (snoop_response_cmd != MemCmd::InvalidCmd) {
725        // no one else should have responded
726        assert(!pkt->isResponse());
727        pkt->cmd = snoop_response_cmd;
728        response_latency = snoop_response_latency;
729    }
730
731    // add the response data
732    if (pkt->isResponse()) {
733        pkt_size = pkt->hasData() ? pkt->getSize() : 0;
734        pkt_cmd = pkt->cmdToIndex();
735
736        // stats updates
737        pktCount[slave_port_id][master_port_id]++;
738        pktSize[slave_port_id][master_port_id] += pkt_size;
739        transDist[pkt_cmd]++;
740    }
741
742    // @todo: Not setting header time
743    pkt->payloadDelay = response_latency;
744    return response_latency;
745}
746
747Tick
748CoherentXBar::recvAtomicSnoop(PacketPtr pkt, PortID master_port_id)
749{
750    DPRINTF(CoherentXBar, "%s: src %s packet %s\n", __func__,
751            masterPorts[master_port_id]->name(), pkt->print());
752
753    // add the request snoop data
754    unsigned int pkt_size = pkt->hasData() ? pkt->getSize() : 0;
755    snoops++;
756    snoopTraffic += pkt_size;
757
758    // forward to all snoopers
759    std::pair<MemCmd, Tick> snoop_result;
760    Tick snoop_response_latency = 0;
761    if (snoopFilter) {
762        auto sf_res = snoopFilter->lookupSnoop(pkt);
763        snoop_response_latency += sf_res.second * clockPeriod();
764        DPRINTF(CoherentXBar, "%s: src %s packet %s SF size: %i lat: %i\n",
765                __func__, masterPorts[master_port_id]->name(), pkt->print(),
766                sf_res.first.size(), sf_res.second);
767        snoop_result = forwardAtomic(pkt, InvalidPortID, master_port_id,
768                                     sf_res.first);
769    } else {
770        snoop_result = forwardAtomic(pkt, InvalidPortID);
771    }
772    MemCmd snoop_response_cmd = snoop_result.first;
773    snoop_response_latency += snoop_result.second;
774
775    if (snoop_response_cmd != MemCmd::InvalidCmd)
776        pkt->cmd = snoop_response_cmd;
777
778    // add the response snoop data
779    if (pkt->isResponse()) {
780        snoops++;
781    }
782
783    // @todo: Not setting header time
784    pkt->payloadDelay = snoop_response_latency;
785    return snoop_response_latency;
786}
787
788std::pair<MemCmd, Tick>
789CoherentXBar::forwardAtomic(PacketPtr pkt, PortID exclude_slave_port_id,
790                           PortID source_master_port_id,
791                           const std::vector<QueuedSlavePort*>& dests)
792{
793    // the packet may be changed on snoops, record the original
794    // command to enable us to restore it between snoops so that
795    // additional snoops can take place properly
796    MemCmd orig_cmd = pkt->cmd;
797    MemCmd snoop_response_cmd = MemCmd::InvalidCmd;
798    Tick snoop_response_latency = 0;
799
800    // snoops should only happen if the system isn't bypassing caches
801    assert(!system->bypassCaches());
802
803    unsigned fanout = 0;
804
805    for (const auto& p: dests) {
806        // we could have gotten this request from a snooping master
807        // (corresponding to our own slave port that is also in
808        // snoopPorts) and should not send it back to where it came
809        // from
810        if (exclude_slave_port_id != InvalidPortID &&
811            p->getId() == exclude_slave_port_id)
812            continue;
813
814        Tick latency = p->sendAtomicSnoop(pkt);
815        fanout++;
816
817        // in contrast to a functional access, we have to keep on
818        // going as all snoopers must be updated even if we get a
819        // response
820        if (!pkt->isResponse())
821            continue;
822
823        // response from snoop agent
824        assert(pkt->cmd != orig_cmd);
825        assert(pkt->cacheResponding());
826        // should only happen once
827        assert(snoop_response_cmd == MemCmd::InvalidCmd);
828        // save response state
829        snoop_response_cmd = pkt->cmd;
830        snoop_response_latency = latency;
831
832        if (snoopFilter) {
833            // Handle responses by the snoopers and differentiate between
834            // responses to requests from above and snoops from below
835            if (source_master_port_id != InvalidPortID) {
836                // Getting a response for a snoop from below
837                assert(exclude_slave_port_id == InvalidPortID);
838                snoopFilter->updateSnoopForward(pkt, *p,
839                             *masterPorts[source_master_port_id]);
840            } else {
841                // Getting a response for a request from above
842                assert(source_master_port_id == InvalidPortID);
843                snoopFilter->updateSnoopResponse(pkt, *p,
844                             *slavePorts[exclude_slave_port_id]);
845            }
846        }
847        // restore original packet state for remaining snoopers
848        pkt->cmd = orig_cmd;
849    }
850
851    // Stats for fanout
852    snoopFanout.sample(fanout);
853
854    // the packet is restored as part of the loop and any potential
855    // snoop response is part of the returned pair
856    return std::make_pair(snoop_response_cmd, snoop_response_latency);
857}
858
859void
860CoherentXBar::recvFunctional(PacketPtr pkt, PortID slave_port_id)
861{
862    if (!pkt->isPrint()) {
863        // don't do DPRINTFs on PrintReq as it clutters up the output
864        DPRINTF(CoherentXBar, "%s: src %s packet %s\n", __func__,
865                slavePorts[slave_port_id]->name(), pkt->print());
866    }
867
868    if (!system->bypassCaches()) {
869        // forward to all snoopers but the source
870        forwardFunctional(pkt, slave_port_id);
871    }
872
873    // there is no need to continue if the snooping has found what we
874    // were looking for and the packet is already a response
875    if (!pkt->isResponse()) {
876        // since our slave ports are queued ports we need to check them as well
877        for (const auto& p : slavePorts) {
878            // if we find a response that has the data, then the
879            // downstream caches/memories may be out of date, so simply stop
880            // here
881            if (p->checkFunctional(pkt)) {
882                if (pkt->needsResponse())
883                    pkt->makeResponse();
884                return;
885            }
886        }
887
888        PortID dest_id = findPort(pkt->getAddr());
889
890        masterPorts[dest_id]->sendFunctional(pkt);
891    }
892}
893
894void
895CoherentXBar::recvFunctionalSnoop(PacketPtr pkt, PortID master_port_id)
896{
897    if (!pkt->isPrint()) {
898        // don't do DPRINTFs on PrintReq as it clutters up the output
899        DPRINTF(CoherentXBar, "%s: src %s packet %s\n", __func__,
900                masterPorts[master_port_id]->name(), pkt->print());
901    }
902
903    for (const auto& p : slavePorts) {
904        if (p->checkFunctional(pkt)) {
905            if (pkt->needsResponse())
906                pkt->makeResponse();
907            return;
908        }
909    }
910
911    // forward to all snoopers
912    forwardFunctional(pkt, InvalidPortID);
913}
914
915void
916CoherentXBar::forwardFunctional(PacketPtr pkt, PortID exclude_slave_port_id)
917{
918    // snoops should only happen if the system isn't bypassing caches
919    assert(!system->bypassCaches());
920
921    for (const auto& p: snoopPorts) {
922        // we could have gotten this request from a snooping master
923        // (corresponding to our own slave port that is also in
924        // snoopPorts) and should not send it back to where it came
925        // from
926        if (exclude_slave_port_id == InvalidPortID ||
927            p->getId() != exclude_slave_port_id)
928            p->sendFunctionalSnoop(pkt);
929
930        // if we get a response we are done
931        if (pkt->isResponse()) {
932            break;
933        }
934    }
935}
936
937bool
938CoherentXBar::sinkPacket(const PacketPtr pkt) const
939{
940    // we can sink the packet if:
941    // 1) the crossbar is the point of coherency, and a cache is
942    //    responding after being snooped
943    // 2) the crossbar is the point of coherency, and the packet is a
944    //    coherency packet (not a read or a write) that does not
945    //    require a response
946    // 3) this is a clean evict or clean writeback, but the packet is
947    //    found in a cache above this crossbar
948    // 4) a cache is responding after being snooped, and the packet
949    //    either does not need the block to be writable, or the cache
950    //    that has promised to respond (setting the cache responding
951    //    flag) is providing writable and thus had a Modified block,
952    //    and no further action is needed
953    return (pointOfCoherency && pkt->cacheResponding()) ||
954        (pointOfCoherency && !(pkt->isRead() || pkt->isWrite()) &&
955         !pkt->needsResponse()) ||
956        (pkt->isCleanEviction() && pkt->isBlockCached()) ||
957        (pkt->cacheResponding() &&
958         (!pkt->needsWritable() || pkt->responderHadWritable()));
959}
960
961void
962CoherentXBar::regStats()
963{
964    // register the stats of the base class and our layers
965    BaseXBar::regStats();
966    for (auto l: reqLayers)
967        l->regStats();
968    for (auto l: respLayers)
969        l->regStats();
970    for (auto l: snoopLayers)
971        l->regStats();
972
973    snoops
974        .name(name() + ".snoops")
975        .desc("Total snoops (count)")
976    ;
977
978    snoopTraffic
979        .name(name() + ".snoopTraffic")
980        .desc("Total snoop traffic (bytes)")
981    ;
982
983    snoopFanout
984        .init(0, snoopPorts.size(), 1)
985        .name(name() + ".snoop_fanout")
986        .desc("Request fanout histogram")
987    ;
988}
989
990CoherentXBar *
991CoherentXBarParams::create()
992{
993    return new CoherentXBar(this);
994}
995