coherent_xbar.cc revision 11793:ef606668d247
1/*
2 * Copyright (c) 2011-2016 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder.  You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2006 The Regents of The University of Michigan
15 * All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions are
19 * met: redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer;
21 * redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution;
24 * neither the name of the copyright holders nor the names of its
25 * contributors may be used to endorse or promote products derived from
26 * this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 *
40 * Authors: Ali Saidi
41 *          Andreas Hansson
42 *          William Wang
43 */
44
45/**
46 * @file
47 * Definition of a crossbar object.
48 */
49
50#include "mem/coherent_xbar.hh"
51
52#include "base/misc.hh"
53#include "base/trace.hh"
54#include "debug/AddrRanges.hh"
55#include "debug/CoherentXBar.hh"
56#include "sim/system.hh"
57
58CoherentXBar::CoherentXBar(const CoherentXBarParams *p)
59    : BaseXBar(p), system(p->system), snoopFilter(p->snoop_filter),
60      snoopResponseLatency(p->snoop_response_latency),
61      pointOfCoherency(p->point_of_coherency)
62{
63    // create the ports based on the size of the master and slave
64    // vector ports, and the presence of the default port, the ports
65    // are enumerated starting from zero
66    for (int i = 0; i < p->port_master_connection_count; ++i) {
67        std::string portName = csprintf("%s.master[%d]", name(), i);
68        MasterPort* bp = new CoherentXBarMasterPort(portName, *this, i);
69        masterPorts.push_back(bp);
70        reqLayers.push_back(new ReqLayer(*bp, *this,
71                                         csprintf(".reqLayer%d", i)));
72        snoopLayers.push_back(new SnoopRespLayer(*bp, *this,
73                                                 csprintf(".snoopLayer%d", i)));
74    }
75
76    // see if we have a default slave device connected and if so add
77    // our corresponding master port
78    if (p->port_default_connection_count) {
79        defaultPortID = masterPorts.size();
80        std::string portName = name() + ".default";
81        MasterPort* bp = new CoherentXBarMasterPort(portName, *this,
82                                                   defaultPortID);
83        masterPorts.push_back(bp);
84        reqLayers.push_back(new ReqLayer(*bp, *this, csprintf(".reqLayer%d",
85                                             defaultPortID)));
86        snoopLayers.push_back(new SnoopRespLayer(*bp, *this,
87                                                 csprintf(".snoopLayer%d",
88                                                          defaultPortID)));
89    }
90
91    // create the slave ports, once again starting at zero
92    for (int i = 0; i < p->port_slave_connection_count; ++i) {
93        std::string portName = csprintf("%s.slave[%d]", name(), i);
94        QueuedSlavePort* bp = new CoherentXBarSlavePort(portName, *this, i);
95        slavePorts.push_back(bp);
96        respLayers.push_back(new RespLayer(*bp, *this,
97                                           csprintf(".respLayer%d", i)));
98        snoopRespPorts.push_back(new SnoopRespPort(*bp, *this));
99    }
100
101    clearPortCache();
102}
103
104CoherentXBar::~CoherentXBar()
105{
106    for (auto l: reqLayers)
107        delete l;
108    for (auto l: respLayers)
109        delete l;
110    for (auto l: snoopLayers)
111        delete l;
112    for (auto p: snoopRespPorts)
113        delete p;
114}
115
116void
117CoherentXBar::init()
118{
119    BaseXBar::init();
120
121    // iterate over our slave ports and determine which of our
122    // neighbouring master ports are snooping and add them as snoopers
123    for (const auto& p: slavePorts) {
124        // check if the connected master port is snooping
125        if (p->isSnooping()) {
126            DPRINTF(AddrRanges, "Adding snooping master %s\n",
127                    p->getMasterPort().name());
128            snoopPorts.push_back(p);
129        }
130    }
131
132    if (snoopPorts.empty())
133        warn("CoherentXBar %s has no snooping ports attached!\n", name());
134
135    // inform the snoop filter about the slave ports so it can create
136    // its own internal representation
137    if (snoopFilter)
138        snoopFilter->setSlavePorts(slavePorts);
139}
140
141bool
142CoherentXBar::recvTimingReq(PacketPtr pkt, PortID slave_port_id)
143{
144    // determine the source port based on the id
145    SlavePort *src_port = slavePorts[slave_port_id];
146
147    // remember if the packet is an express snoop
148    bool is_express_snoop = pkt->isExpressSnoop();
149    bool cache_responding = pkt->cacheResponding();
150    // for normal requests, going downstream, the express snoop flag
151    // and the cache responding flag should always be the same
152    assert(is_express_snoop == cache_responding);
153
154    // determine the destination based on the address
155    PortID master_port_id = findPort(pkt->getAddr());
156
157    // test if the crossbar should be considered occupied for the current
158    // port, and exclude express snoops from the check
159    if (!is_express_snoop && !reqLayers[master_port_id]->tryTiming(src_port)) {
160        DPRINTF(CoherentXBar, "%s: src %s packet %s BUSY\n", __func__,
161                src_port->name(), pkt->print());
162        return false;
163    }
164
165    DPRINTF(CoherentXBar, "%s: src %s packet %s\n", __func__,
166            src_port->name(), pkt->print());
167
168    // store size and command as they might be modified when
169    // forwarding the packet
170    unsigned int pkt_size = pkt->hasData() ? pkt->getSize() : 0;
171    unsigned int pkt_cmd = pkt->cmdToIndex();
172
173    // store the old header delay so we can restore it if needed
174    Tick old_header_delay = pkt->headerDelay;
175
176    // a request sees the frontend and forward latency
177    Tick xbar_delay = (frontendLatency + forwardLatency) * clockPeriod();
178
179    // set the packet header and payload delay
180    calcPacketTiming(pkt, xbar_delay);
181
182    // determine how long to be crossbar layer is busy
183    Tick packetFinishTime = clockEdge(Cycles(1)) + pkt->payloadDelay;
184
185    if (!system->bypassCaches()) {
186        assert(pkt->snoopDelay == 0);
187
188        // the packet is a memory-mapped request and should be
189        // broadcasted to our snoopers but the source
190        if (snoopFilter) {
191            // check with the snoop filter where to forward this packet
192            auto sf_res = snoopFilter->lookupRequest(pkt, *src_port);
193            // the time required by a packet to be delivered through
194            // the xbar has to be charged also with to lookup latency
195            // of the snoop filter
196            pkt->headerDelay += sf_res.second * clockPeriod();
197            DPRINTF(CoherentXBar, "%s: src %s packet %s SF size: %i lat: %i\n",
198                    __func__, src_port->name(), pkt->print(),
199                    sf_res.first.size(), sf_res.second);
200
201            if (pkt->isEviction()) {
202                // for block-evicting packets, i.e. writebacks and
203                // clean evictions, there is no need to snoop up, as
204                // all we do is determine if the block is cached or
205                // not, instead just set it here based on the snoop
206                // filter result
207                if (!sf_res.first.empty())
208                    pkt->setBlockCached();
209            } else {
210                forwardTiming(pkt, slave_port_id, sf_res.first);
211            }
212        } else {
213            forwardTiming(pkt, slave_port_id);
214        }
215
216        // add the snoop delay to our header delay, and then reset it
217        pkt->headerDelay += pkt->snoopDelay;
218        pkt->snoopDelay = 0;
219    }
220
221    // set up a sensible starting point
222    bool success = true;
223
224    // remember if the packet will generate a snoop response by
225    // checking if a cache set the cacheResponding flag during the
226    // snooping above
227    const bool expect_snoop_resp = !cache_responding && pkt->cacheResponding();
228    bool expect_response = pkt->needsResponse() && !pkt->cacheResponding();
229
230    const bool sink_packet = sinkPacket(pkt);
231
232    // in certain cases the crossbar is responsible for responding
233    bool respond_directly = false;
234    // store the original address as an address mapper could possibly
235    // modify the address upon a sendTimingRequest
236    const Addr addr(pkt->getAddr());
237    if (sink_packet) {
238        DPRINTF(CoherentXBar, "%s: Not forwarding %s\n", __func__,
239                pkt->print());
240    } else {
241        // determine if we are forwarding the packet, or responding to
242        // it
243        if (!pointOfCoherency || pkt->isRead() || pkt->isWrite()) {
244            // if we are passing on, rather than sinking, a packet to
245            // which an upstream cache has committed to responding,
246            // the line was needs writable, and the responding only
247            // had an Owned copy, so we need to immidiately let the
248            // downstream caches know, bypass any flow control
249            if (pkt->cacheResponding()) {
250                pkt->setExpressSnoop();
251            }
252
253            // since it is a normal request, attempt to send the packet
254            success = masterPorts[master_port_id]->sendTimingReq(pkt);
255        } else {
256            // no need to forward, turn this packet around and respond
257            // directly
258            assert(pkt->needsResponse());
259
260            respond_directly = true;
261            assert(!expect_snoop_resp);
262            expect_response = false;
263        }
264    }
265
266    if (snoopFilter && !system->bypassCaches()) {
267        // Let the snoop filter know about the success of the send operation
268        snoopFilter->finishRequest(!success, addr, pkt->isSecure());
269    }
270
271    // check if we were successful in sending the packet onwards
272    if (!success)  {
273        // express snoops should never be forced to retry
274        assert(!is_express_snoop);
275
276        // restore the header delay
277        pkt->headerDelay = old_header_delay;
278
279        DPRINTF(CoherentXBar, "%s: src %s packet %s RETRY\n", __func__,
280                src_port->name(), pkt->print());
281
282        // update the layer state and schedule an idle event
283        reqLayers[master_port_id]->failedTiming(src_port,
284                                                clockEdge(Cycles(1)));
285    } else {
286        // express snoops currently bypass the crossbar state entirely
287        if (!is_express_snoop) {
288            // if this particular request will generate a snoop
289            // response
290            if (expect_snoop_resp) {
291                // we should never have an exsiting request outstanding
292                assert(outstandingSnoop.find(pkt->req) ==
293                       outstandingSnoop.end());
294                outstandingSnoop.insert(pkt->req);
295
296                // basic sanity check on the outstanding snoops
297                panic_if(outstandingSnoop.size() > 512,
298                         "Outstanding snoop requests exceeded 512\n");
299            }
300
301            // remember where to route the normal response to
302            if (expect_response || expect_snoop_resp) {
303                assert(routeTo.find(pkt->req) == routeTo.end());
304                routeTo[pkt->req] = slave_port_id;
305
306                panic_if(routeTo.size() > 512,
307                         "Routing table exceeds 512 packets\n");
308            }
309
310            // update the layer state and schedule an idle event
311            reqLayers[master_port_id]->succeededTiming(packetFinishTime);
312        }
313
314        // stats updates only consider packets that were successfully sent
315        pktCount[slave_port_id][master_port_id]++;
316        pktSize[slave_port_id][master_port_id] += pkt_size;
317        transDist[pkt_cmd]++;
318
319        if (is_express_snoop) {
320            snoops++;
321            snoopTraffic += pkt_size;
322        }
323    }
324
325    if (sink_packet)
326        // queue the packet for deletion
327        pendingDelete.reset(pkt);
328
329    if (respond_directly) {
330        assert(pkt->needsResponse());
331        assert(success);
332
333        pkt->makeResponse();
334
335        if (snoopFilter && !system->bypassCaches()) {
336            // let the snoop filter inspect the response and update its state
337            snoopFilter->updateResponse(pkt, *slavePorts[slave_port_id]);
338        }
339
340        Tick response_time = clockEdge() + pkt->headerDelay;
341        pkt->headerDelay = 0;
342
343        slavePorts[slave_port_id]->schedTimingResp(pkt, response_time);
344    }
345
346    return success;
347}
348
349bool
350CoherentXBar::recvTimingResp(PacketPtr pkt, PortID master_port_id)
351{
352    // determine the source port based on the id
353    MasterPort *src_port = masterPorts[master_port_id];
354
355    // determine the destination
356    const auto route_lookup = routeTo.find(pkt->req);
357    assert(route_lookup != routeTo.end());
358    const PortID slave_port_id = route_lookup->second;
359    assert(slave_port_id != InvalidPortID);
360    assert(slave_port_id < respLayers.size());
361
362    // test if the crossbar should be considered occupied for the
363    // current port
364    if (!respLayers[slave_port_id]->tryTiming(src_port)) {
365        DPRINTF(CoherentXBar, "%s: src %s packet %s BUSY\n", __func__,
366                src_port->name(), pkt->print());
367        return false;
368    }
369
370    DPRINTF(CoherentXBar, "%s: src %s packet %s\n", __func__,
371            src_port->name(), pkt->print());
372
373    // store size and command as they might be modified when
374    // forwarding the packet
375    unsigned int pkt_size = pkt->hasData() ? pkt->getSize() : 0;
376    unsigned int pkt_cmd = pkt->cmdToIndex();
377
378    // a response sees the response latency
379    Tick xbar_delay = responseLatency * clockPeriod();
380
381    // set the packet header and payload delay
382    calcPacketTiming(pkt, xbar_delay);
383
384    // determine how long to be crossbar layer is busy
385    Tick packetFinishTime = clockEdge(Cycles(1)) + pkt->payloadDelay;
386
387    if (snoopFilter && !system->bypassCaches()) {
388        // let the snoop filter inspect the response and update its state
389        snoopFilter->updateResponse(pkt, *slavePorts[slave_port_id]);
390    }
391
392    // send the packet through the destination slave port and pay for
393    // any outstanding header delay
394    Tick latency = pkt->headerDelay;
395    pkt->headerDelay = 0;
396    slavePorts[slave_port_id]->schedTimingResp(pkt, curTick() + latency);
397
398    // remove the request from the routing table
399    routeTo.erase(route_lookup);
400
401    respLayers[slave_port_id]->succeededTiming(packetFinishTime);
402
403    // stats updates
404    pktCount[slave_port_id][master_port_id]++;
405    pktSize[slave_port_id][master_port_id] += pkt_size;
406    transDist[pkt_cmd]++;
407
408    return true;
409}
410
411void
412CoherentXBar::recvTimingSnoopReq(PacketPtr pkt, PortID master_port_id)
413{
414    DPRINTF(CoherentXBar, "%s: src %s packet %s\n", __func__,
415            masterPorts[master_port_id]->name(), pkt->print());
416
417    // update stats here as we know the forwarding will succeed
418    unsigned int pkt_size = pkt->hasData() ? pkt->getSize() : 0;
419    transDist[pkt->cmdToIndex()]++;
420    snoops++;
421    snoopTraffic += pkt_size;
422
423    // we should only see express snoops from caches
424    assert(pkt->isExpressSnoop());
425
426    // set the packet header and payload delay, for now use forward latency
427    // @todo Assess the choice of latency further
428    calcPacketTiming(pkt, forwardLatency * clockPeriod());
429
430    // remember if a cache has already committed to responding so we
431    // can see if it changes during the snooping
432    const bool cache_responding = pkt->cacheResponding();
433
434    assert(pkt->snoopDelay == 0);
435
436    if (snoopFilter) {
437        // let the Snoop Filter work its magic and guide probing
438        auto sf_res = snoopFilter->lookupSnoop(pkt);
439        // the time required by a packet to be delivered through
440        // the xbar has to be charged also with to lookup latency
441        // of the snoop filter
442        pkt->headerDelay += sf_res.second * clockPeriod();
443        DPRINTF(CoherentXBar, "%s: src %s packet %s SF size: %i lat: %i\n",
444                __func__, masterPorts[master_port_id]->name(), pkt->print(),
445                sf_res.first.size(), sf_res.second);
446
447        // forward to all snoopers
448        forwardTiming(pkt, InvalidPortID, sf_res.first);
449    } else {
450        forwardTiming(pkt, InvalidPortID);
451    }
452
453    // add the snoop delay to our header delay, and then reset it
454    pkt->headerDelay += pkt->snoopDelay;
455    pkt->snoopDelay = 0;
456
457    // if we can expect a response, remember how to route it
458    if (!cache_responding && pkt->cacheResponding()) {
459        assert(routeTo.find(pkt->req) == routeTo.end());
460        routeTo[pkt->req] = master_port_id;
461    }
462
463    // a snoop request came from a connected slave device (one of
464    // our master ports), and if it is not coming from the slave
465    // device responsible for the address range something is
466    // wrong, hence there is nothing further to do as the packet
467    // would be going back to where it came from
468    assert(master_port_id == findPort(pkt->getAddr()));
469}
470
471bool
472CoherentXBar::recvTimingSnoopResp(PacketPtr pkt, PortID slave_port_id)
473{
474    // determine the source port based on the id
475    SlavePort* src_port = slavePorts[slave_port_id];
476
477    // get the destination
478    const auto route_lookup = routeTo.find(pkt->req);
479    assert(route_lookup != routeTo.end());
480    const PortID dest_port_id = route_lookup->second;
481    assert(dest_port_id != InvalidPortID);
482
483    // determine if the response is from a snoop request we
484    // created as the result of a normal request (in which case it
485    // should be in the outstandingSnoop), or if we merely forwarded
486    // someone else's snoop request
487    const bool forwardAsSnoop = outstandingSnoop.find(pkt->req) ==
488        outstandingSnoop.end();
489
490    // test if the crossbar should be considered occupied for the
491    // current port, note that the check is bypassed if the response
492    // is being passed on as a normal response since this is occupying
493    // the response layer rather than the snoop response layer
494    if (forwardAsSnoop) {
495        assert(dest_port_id < snoopLayers.size());
496        if (!snoopLayers[dest_port_id]->tryTiming(src_port)) {
497            DPRINTF(CoherentXBar, "%s: src %s packet %s BUSY\n", __func__,
498                    src_port->name(), pkt->print());
499            return false;
500        }
501    } else {
502        // get the master port that mirrors this slave port internally
503        MasterPort* snoop_port = snoopRespPorts[slave_port_id];
504        assert(dest_port_id < respLayers.size());
505        if (!respLayers[dest_port_id]->tryTiming(snoop_port)) {
506            DPRINTF(CoherentXBar, "%s: src %s packet %s BUSY\n", __func__,
507                    snoop_port->name(), pkt->print());
508            return false;
509        }
510    }
511
512    DPRINTF(CoherentXBar, "%s: src %s packet %s\n", __func__,
513            src_port->name(), pkt->print());
514
515    // store size and command as they might be modified when
516    // forwarding the packet
517    unsigned int pkt_size = pkt->hasData() ? pkt->getSize() : 0;
518    unsigned int pkt_cmd = pkt->cmdToIndex();
519
520    // responses are never express snoops
521    assert(!pkt->isExpressSnoop());
522
523    // a snoop response sees the snoop response latency, and if it is
524    // forwarded as a normal response, the response latency
525    Tick xbar_delay =
526        (forwardAsSnoop ? snoopResponseLatency : responseLatency) *
527        clockPeriod();
528
529    // set the packet header and payload delay
530    calcPacketTiming(pkt, xbar_delay);
531
532    // determine how long to be crossbar layer is busy
533    Tick packetFinishTime = clockEdge(Cycles(1)) + pkt->payloadDelay;
534
535    // forward it either as a snoop response or a normal response
536    if (forwardAsSnoop) {
537        // this is a snoop response to a snoop request we forwarded,
538        // e.g. coming from the L1 and going to the L2, and it should
539        // be forwarded as a snoop response
540
541        if (snoopFilter) {
542            // update the probe filter so that it can properly track the line
543            snoopFilter->updateSnoopForward(pkt, *slavePorts[slave_port_id],
544                                            *masterPorts[dest_port_id]);
545        }
546
547        bool success M5_VAR_USED =
548            masterPorts[dest_port_id]->sendTimingSnoopResp(pkt);
549        pktCount[slave_port_id][dest_port_id]++;
550        pktSize[slave_port_id][dest_port_id] += pkt_size;
551        assert(success);
552
553        snoopLayers[dest_port_id]->succeededTiming(packetFinishTime);
554    } else {
555        // we got a snoop response on one of our slave ports,
556        // i.e. from a coherent master connected to the crossbar, and
557        // since we created the snoop request as part of recvTiming,
558        // this should now be a normal response again
559        outstandingSnoop.erase(pkt->req);
560
561        // this is a snoop response from a coherent master, hence it
562        // should never go back to where the snoop response came from,
563        // but instead to where the original request came from
564        assert(slave_port_id != dest_port_id);
565
566        if (snoopFilter) {
567            // update the probe filter so that it can properly track the line
568            snoopFilter->updateSnoopResponse(pkt, *slavePorts[slave_port_id],
569                                    *slavePorts[dest_port_id]);
570        }
571
572        DPRINTF(CoherentXBar, "%s: src %s packet %s FWD RESP\n", __func__,
573                src_port->name(), pkt->print());
574
575        // as a normal response, it should go back to a master through
576        // one of our slave ports, we also pay for any outstanding
577        // header latency
578        Tick latency = pkt->headerDelay;
579        pkt->headerDelay = 0;
580        slavePorts[dest_port_id]->schedTimingResp(pkt, curTick() + latency);
581
582        respLayers[dest_port_id]->succeededTiming(packetFinishTime);
583    }
584
585    // remove the request from the routing table
586    routeTo.erase(route_lookup);
587
588    // stats updates
589    transDist[pkt_cmd]++;
590    snoops++;
591    snoopTraffic += pkt_size;
592
593    return true;
594}
595
596
597void
598CoherentXBar::forwardTiming(PacketPtr pkt, PortID exclude_slave_port_id,
599                           const std::vector<QueuedSlavePort*>& dests)
600{
601    DPRINTF(CoherentXBar, "%s for %s\n", __func__, pkt->print());
602
603    // snoops should only happen if the system isn't bypassing caches
604    assert(!system->bypassCaches());
605
606    unsigned fanout = 0;
607
608    for (const auto& p: dests) {
609        // we could have gotten this request from a snooping master
610        // (corresponding to our own slave port that is also in
611        // snoopPorts) and should not send it back to where it came
612        // from
613        if (exclude_slave_port_id == InvalidPortID ||
614            p->getId() != exclude_slave_port_id) {
615            // cache is not allowed to refuse snoop
616            p->sendTimingSnoopReq(pkt);
617            fanout++;
618        }
619    }
620
621    // Stats for fanout of this forward operation
622    snoopFanout.sample(fanout);
623}
624
625void
626CoherentXBar::recvReqRetry(PortID master_port_id)
627{
628    // responses and snoop responses never block on forwarding them,
629    // so the retry will always be coming from a port to which we
630    // tried to forward a request
631    reqLayers[master_port_id]->recvRetry();
632}
633
634Tick
635CoherentXBar::recvAtomic(PacketPtr pkt, PortID slave_port_id)
636{
637    DPRINTF(CoherentXBar, "%s: src %s packet %s\n", __func__,
638            slavePorts[slave_port_id]->name(), pkt->print());
639
640    unsigned int pkt_size = pkt->hasData() ? pkt->getSize() : 0;
641    unsigned int pkt_cmd = pkt->cmdToIndex();
642
643    MemCmd snoop_response_cmd = MemCmd::InvalidCmd;
644    Tick snoop_response_latency = 0;
645
646    if (!system->bypassCaches()) {
647        // forward to all snoopers but the source
648        std::pair<MemCmd, Tick> snoop_result;
649        if (snoopFilter) {
650            // check with the snoop filter where to forward this packet
651            auto sf_res =
652                snoopFilter->lookupRequest(pkt, *slavePorts[slave_port_id]);
653            snoop_response_latency += sf_res.second * clockPeriod();
654            DPRINTF(CoherentXBar, "%s: src %s packet %s SF size: %i lat: %i\n",
655                    __func__, slavePorts[slave_port_id]->name(), pkt->print(),
656                    sf_res.first.size(), sf_res.second);
657
658            // let the snoop filter know about the success of the send
659            // operation, and do it even before sending it onwards to
660            // avoid situations where atomic upward snoops sneak in
661            // between and change the filter state
662            snoopFilter->finishRequest(false, pkt->getAddr(), pkt->isSecure());
663
664            snoop_result = forwardAtomic(pkt, slave_port_id, InvalidPortID,
665                                         sf_res.first);
666        } else {
667            snoop_result = forwardAtomic(pkt, slave_port_id);
668        }
669        snoop_response_cmd = snoop_result.first;
670        snoop_response_latency += snoop_result.second;
671    }
672
673    // set up a sensible default value
674    Tick response_latency = 0;
675
676    const bool sink_packet = sinkPacket(pkt);
677
678    // even if we had a snoop response, we must continue and also
679    // perform the actual request at the destination
680    PortID master_port_id = findPort(pkt->getAddr());
681
682    if (sink_packet) {
683        DPRINTF(CoherentXBar, "%s: Not forwarding %s\n", __func__,
684                pkt->print());
685    } else {
686        if (!pointOfCoherency || pkt->isRead() || pkt->isWrite()) {
687            // forward the request to the appropriate destination
688            response_latency = masterPorts[master_port_id]->sendAtomic(pkt);
689        } else {
690            // if it does not need a response we sink the packet above
691            assert(pkt->needsResponse());
692
693            pkt->makeResponse();
694        }
695    }
696
697    // stats updates for the request
698    pktCount[slave_port_id][master_port_id]++;
699    pktSize[slave_port_id][master_port_id] += pkt_size;
700    transDist[pkt_cmd]++;
701
702
703    // if lower levels have replied, tell the snoop filter
704    if (!system->bypassCaches() && snoopFilter && pkt->isResponse()) {
705        snoopFilter->updateResponse(pkt, *slavePorts[slave_port_id]);
706    }
707
708    // if we got a response from a snooper, restore it here
709    if (snoop_response_cmd != MemCmd::InvalidCmd) {
710        // no one else should have responded
711        assert(!pkt->isResponse());
712        pkt->cmd = snoop_response_cmd;
713        response_latency = snoop_response_latency;
714    }
715
716    // add the response data
717    if (pkt->isResponse()) {
718        pkt_size = pkt->hasData() ? pkt->getSize() : 0;
719        pkt_cmd = pkt->cmdToIndex();
720
721        // stats updates
722        pktCount[slave_port_id][master_port_id]++;
723        pktSize[slave_port_id][master_port_id] += pkt_size;
724        transDist[pkt_cmd]++;
725    }
726
727    // @todo: Not setting header time
728    pkt->payloadDelay = response_latency;
729    return response_latency;
730}
731
732Tick
733CoherentXBar::recvAtomicSnoop(PacketPtr pkt, PortID master_port_id)
734{
735    DPRINTF(CoherentXBar, "%s: src %s packet %s\n", __func__,
736            masterPorts[master_port_id]->name(), pkt->print());
737
738    // add the request snoop data
739    unsigned int pkt_size = pkt->hasData() ? pkt->getSize() : 0;
740    snoops++;
741    snoopTraffic += pkt_size;
742
743    // forward to all snoopers
744    std::pair<MemCmd, Tick> snoop_result;
745    Tick snoop_response_latency = 0;
746    if (snoopFilter) {
747        auto sf_res = snoopFilter->lookupSnoop(pkt);
748        snoop_response_latency += sf_res.second * clockPeriod();
749        DPRINTF(CoherentXBar, "%s: src %s packet %s SF size: %i lat: %i\n",
750                __func__, masterPorts[master_port_id]->name(), pkt->print(),
751                sf_res.first.size(), sf_res.second);
752        snoop_result = forwardAtomic(pkt, InvalidPortID, master_port_id,
753                                     sf_res.first);
754    } else {
755        snoop_result = forwardAtomic(pkt, InvalidPortID);
756    }
757    MemCmd snoop_response_cmd = snoop_result.first;
758    snoop_response_latency += snoop_result.second;
759
760    if (snoop_response_cmd != MemCmd::InvalidCmd)
761        pkt->cmd = snoop_response_cmd;
762
763    // add the response snoop data
764    if (pkt->isResponse()) {
765        snoops++;
766    }
767
768    // @todo: Not setting header time
769    pkt->payloadDelay = snoop_response_latency;
770    return snoop_response_latency;
771}
772
773std::pair<MemCmd, Tick>
774CoherentXBar::forwardAtomic(PacketPtr pkt, PortID exclude_slave_port_id,
775                           PortID source_master_port_id,
776                           const std::vector<QueuedSlavePort*>& dests)
777{
778    // the packet may be changed on snoops, record the original
779    // command to enable us to restore it between snoops so that
780    // additional snoops can take place properly
781    MemCmd orig_cmd = pkt->cmd;
782    MemCmd snoop_response_cmd = MemCmd::InvalidCmd;
783    Tick snoop_response_latency = 0;
784
785    // snoops should only happen if the system isn't bypassing caches
786    assert(!system->bypassCaches());
787
788    unsigned fanout = 0;
789
790    for (const auto& p: dests) {
791        // we could have gotten this request from a snooping master
792        // (corresponding to our own slave port that is also in
793        // snoopPorts) and should not send it back to where it came
794        // from
795        if (exclude_slave_port_id != InvalidPortID &&
796            p->getId() == exclude_slave_port_id)
797            continue;
798
799        Tick latency = p->sendAtomicSnoop(pkt);
800        fanout++;
801
802        // in contrast to a functional access, we have to keep on
803        // going as all snoopers must be updated even if we get a
804        // response
805        if (!pkt->isResponse())
806            continue;
807
808        // response from snoop agent
809        assert(pkt->cmd != orig_cmd);
810        assert(pkt->cacheResponding());
811        // should only happen once
812        assert(snoop_response_cmd == MemCmd::InvalidCmd);
813        // save response state
814        snoop_response_cmd = pkt->cmd;
815        snoop_response_latency = latency;
816
817        if (snoopFilter) {
818            // Handle responses by the snoopers and differentiate between
819            // responses to requests from above and snoops from below
820            if (source_master_port_id != InvalidPortID) {
821                // Getting a response for a snoop from below
822                assert(exclude_slave_port_id == InvalidPortID);
823                snoopFilter->updateSnoopForward(pkt, *p,
824                             *masterPorts[source_master_port_id]);
825            } else {
826                // Getting a response for a request from above
827                assert(source_master_port_id == InvalidPortID);
828                snoopFilter->updateSnoopResponse(pkt, *p,
829                             *slavePorts[exclude_slave_port_id]);
830            }
831        }
832        // restore original packet state for remaining snoopers
833        pkt->cmd = orig_cmd;
834    }
835
836    // Stats for fanout
837    snoopFanout.sample(fanout);
838
839    // the packet is restored as part of the loop and any potential
840    // snoop response is part of the returned pair
841    return std::make_pair(snoop_response_cmd, snoop_response_latency);
842}
843
844void
845CoherentXBar::recvFunctional(PacketPtr pkt, PortID slave_port_id)
846{
847    if (!pkt->isPrint()) {
848        // don't do DPRINTFs on PrintReq as it clutters up the output
849        DPRINTF(CoherentXBar, "%s: src %s packet %s\n", __func__,
850                slavePorts[slave_port_id]->name(), pkt->print());
851    }
852
853    if (!system->bypassCaches()) {
854        // forward to all snoopers but the source
855        forwardFunctional(pkt, slave_port_id);
856    }
857
858    // there is no need to continue if the snooping has found what we
859    // were looking for and the packet is already a response
860    if (!pkt->isResponse()) {
861        // since our slave ports are queued ports we need to check them as well
862        for (const auto& p : slavePorts) {
863            // if we find a response that has the data, then the
864            // downstream caches/memories may be out of date, so simply stop
865            // here
866            if (p->checkFunctional(pkt)) {
867                if (pkt->needsResponse())
868                    pkt->makeResponse();
869                return;
870            }
871        }
872
873        PortID dest_id = findPort(pkt->getAddr());
874
875        masterPorts[dest_id]->sendFunctional(pkt);
876    }
877}
878
879void
880CoherentXBar::recvFunctionalSnoop(PacketPtr pkt, PortID master_port_id)
881{
882    if (!pkt->isPrint()) {
883        // don't do DPRINTFs on PrintReq as it clutters up the output
884        DPRINTF(CoherentXBar, "%s: src %s packet %s\n", __func__,
885                masterPorts[master_port_id]->name(), pkt->print());
886    }
887
888    for (const auto& p : slavePorts) {
889        if (p->checkFunctional(pkt)) {
890            if (pkt->needsResponse())
891                pkt->makeResponse();
892            return;
893        }
894    }
895
896    // forward to all snoopers
897    forwardFunctional(pkt, InvalidPortID);
898}
899
900void
901CoherentXBar::forwardFunctional(PacketPtr pkt, PortID exclude_slave_port_id)
902{
903    // snoops should only happen if the system isn't bypassing caches
904    assert(!system->bypassCaches());
905
906    for (const auto& p: snoopPorts) {
907        // we could have gotten this request from a snooping master
908        // (corresponding to our own slave port that is also in
909        // snoopPorts) and should not send it back to where it came
910        // from
911        if (exclude_slave_port_id == InvalidPortID ||
912            p->getId() != exclude_slave_port_id)
913            p->sendFunctionalSnoop(pkt);
914
915        // if we get a response we are done
916        if (pkt->isResponse()) {
917            break;
918        }
919    }
920}
921
922bool
923CoherentXBar::sinkPacket(const PacketPtr pkt) const
924{
925    // we can sink the packet if:
926    // 1) the crossbar is the point of coherency, and a cache is
927    //    responding after being snooped
928    // 2) the crossbar is the point of coherency, and the packet is a
929    //    coherency packet (not a read or a write) that does not
930    //    require a response
931    // 3) this is a clean evict or clean writeback, but the packet is
932    //    found in a cache above this crossbar
933    // 4) a cache is responding after being snooped, and the packet
934    //    either does not need the block to be writable, or the cache
935    //    that has promised to respond (setting the cache responding
936    //    flag) is providing writable and thus had a Modified block,
937    //    and no further action is needed
938    return (pointOfCoherency && pkt->cacheResponding()) ||
939        (pointOfCoherency && !(pkt->isRead() || pkt->isWrite()) &&
940         !pkt->needsResponse()) ||
941        (pkt->isCleanEviction() && pkt->isBlockCached()) ||
942        (pkt->cacheResponding() &&
943         (!pkt->needsWritable() || pkt->responderHadWritable()));
944}
945
946void
947CoherentXBar::regStats()
948{
949    // register the stats of the base class and our layers
950    BaseXBar::regStats();
951    for (auto l: reqLayers)
952        l->regStats();
953    for (auto l: respLayers)
954        l->regStats();
955    for (auto l: snoopLayers)
956        l->regStats();
957
958    snoops
959        .name(name() + ".snoops")
960        .desc("Total snoops (count)")
961    ;
962
963    snoopTraffic
964        .name(name() + ".snoopTraffic")
965        .desc("Total snoop traffic (bytes)")
966    ;
967
968    snoopFanout
969        .init(0, snoopPorts.size(), 1)
970        .name(name() + ".snoop_fanout")
971        .desc("Request fanout histogram")
972    ;
973}
974
975CoherentXBar *
976CoherentXBarParams::create()
977{
978    return new CoherentXBar(this);
979}
980