coherent_xbar.cc revision 11188
1/*
2 * Copyright (c) 2011-2015 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder.  You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2006 The Regents of The University of Michigan
15 * All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions are
19 * met: redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer;
21 * redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution;
24 * neither the name of the copyright holders nor the names of its
25 * contributors may be used to endorse or promote products derived from
26 * this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 *
40 * Authors: Ali Saidi
41 *          Andreas Hansson
42 *          William Wang
43 */
44
45/**
46 * @file
47 * Definition of a crossbar object.
48 */
49
50#include "base/misc.hh"
51#include "base/trace.hh"
52#include "debug/AddrRanges.hh"
53#include "debug/CoherentXBar.hh"
54#include "mem/coherent_xbar.hh"
55#include "sim/system.hh"
56
57CoherentXBar::CoherentXBar(const CoherentXBarParams *p)
58    : BaseXBar(p), system(p->system), snoopFilter(p->snoop_filter),
59      snoopResponseLatency(p->snoop_response_latency)
60{
61    // create the ports based on the size of the master and slave
62    // vector ports, and the presence of the default port, the ports
63    // are enumerated starting from zero
64    for (int i = 0; i < p->port_master_connection_count; ++i) {
65        std::string portName = csprintf("%s.master[%d]", name(), i);
66        MasterPort* bp = new CoherentXBarMasterPort(portName, *this, i);
67        masterPorts.push_back(bp);
68        reqLayers.push_back(new ReqLayer(*bp, *this,
69                                         csprintf(".reqLayer%d", i)));
70        snoopLayers.push_back(new SnoopRespLayer(*bp, *this,
71                                                 csprintf(".snoopLayer%d", i)));
72    }
73
74    // see if we have a default slave device connected and if so add
75    // our corresponding master port
76    if (p->port_default_connection_count) {
77        defaultPortID = masterPorts.size();
78        std::string portName = name() + ".default";
79        MasterPort* bp = new CoherentXBarMasterPort(portName, *this,
80                                                   defaultPortID);
81        masterPorts.push_back(bp);
82        reqLayers.push_back(new ReqLayer(*bp, *this, csprintf(".reqLayer%d",
83                                             defaultPortID)));
84        snoopLayers.push_back(new SnoopRespLayer(*bp, *this,
85                                                 csprintf(".snoopLayer%d",
86                                                          defaultPortID)));
87    }
88
89    // create the slave ports, once again starting at zero
90    for (int i = 0; i < p->port_slave_connection_count; ++i) {
91        std::string portName = csprintf("%s.slave[%d]", name(), i);
92        QueuedSlavePort* bp = new CoherentXBarSlavePort(portName, *this, i);
93        slavePorts.push_back(bp);
94        respLayers.push_back(new RespLayer(*bp, *this,
95                                           csprintf(".respLayer%d", i)));
96        snoopRespPorts.push_back(new SnoopRespPort(*bp, *this));
97    }
98
99    clearPortCache();
100}
101
102CoherentXBar::~CoherentXBar()
103{
104    for (auto l: reqLayers)
105        delete l;
106    for (auto l: respLayers)
107        delete l;
108    for (auto l: snoopLayers)
109        delete l;
110    for (auto p: snoopRespPorts)
111        delete p;
112}
113
114void
115CoherentXBar::init()
116{
117    // the base class is responsible for determining the block size
118    BaseXBar::init();
119
120    // iterate over our slave ports and determine which of our
121    // neighbouring master ports are snooping and add them as snoopers
122    for (const auto& p: slavePorts) {
123        // check if the connected master port is snooping
124        if (p->isSnooping()) {
125            DPRINTF(AddrRanges, "Adding snooping master %s\n",
126                    p->getMasterPort().name());
127            snoopPorts.push_back(p);
128        }
129    }
130
131    if (snoopPorts.empty())
132        warn("CoherentXBar %s has no snooping ports attached!\n", name());
133
134    // inform the snoop filter about the slave ports so it can create
135    // its own internal representation
136    if (snoopFilter)
137        snoopFilter->setSlavePorts(slavePorts);
138}
139
140bool
141CoherentXBar::recvTimingReq(PacketPtr pkt, PortID slave_port_id)
142{
143    // @todo temporary hack to deal with memory corruption issue until
144    // 4-phase transactions are complete
145    for (int x = 0; x < pendingDelete.size(); x++)
146        delete pendingDelete[x];
147    pendingDelete.clear();
148
149    // determine the source port based on the id
150    SlavePort *src_port = slavePorts[slave_port_id];
151
152    // remember if the packet is an express snoop
153    bool is_express_snoop = pkt->isExpressSnoop();
154    bool is_inhibited = pkt->memInhibitAsserted();
155    // for normal requests, going downstream, the express snoop flag
156    // and the inhibited flag should always be the same
157    assert(is_express_snoop == is_inhibited);
158
159    // determine the destination based on the address
160    PortID master_port_id = findPort(pkt->getAddr());
161
162    // test if the crossbar should be considered occupied for the current
163    // port, and exclude express snoops from the check
164    if (!is_express_snoop && !reqLayers[master_port_id]->tryTiming(src_port)) {
165        DPRINTF(CoherentXBar, "recvTimingReq: src %s %s 0x%x BUSY\n",
166                src_port->name(), pkt->cmdString(), pkt->getAddr());
167        return false;
168    }
169
170    DPRINTF(CoherentXBar, "recvTimingReq: src %s %s expr %d 0x%x\n",
171            src_port->name(), pkt->cmdString(), is_express_snoop,
172            pkt->getAddr());
173
174    // store size and command as they might be modified when
175    // forwarding the packet
176    unsigned int pkt_size = pkt->hasData() ? pkt->getSize() : 0;
177    unsigned int pkt_cmd = pkt->cmdToIndex();
178
179    // store the old header delay so we can restore it if needed
180    Tick old_header_delay = pkt->headerDelay;
181
182    // a request sees the frontend and forward latency
183    Tick xbar_delay = (frontendLatency + forwardLatency) * clockPeriod();
184
185    // set the packet header and payload delay
186    calcPacketTiming(pkt, xbar_delay);
187
188    // determine how long to be crossbar layer is busy
189    Tick packetFinishTime = clockEdge(Cycles(1)) + pkt->payloadDelay;
190
191    if (!system->bypassCaches()) {
192        assert(pkt->snoopDelay == 0);
193
194        // the packet is a memory-mapped request and should be
195        // broadcasted to our snoopers but the source
196        if (snoopFilter) {
197            // check with the snoop filter where to forward this packet
198            auto sf_res = snoopFilter->lookupRequest(pkt, *src_port);
199            // the time required by a packet to be delivered through
200            // the xbar has to be charged also with to lookup latency
201            // of the snoop filter
202            pkt->headerDelay += sf_res.second * clockPeriod();
203            DPRINTF(CoherentXBar, "recvTimingReq: src %s %s 0x%x"\
204                    " SF size: %i lat: %i\n", src_port->name(),
205                    pkt->cmdString(), pkt->getAddr(), sf_res.first.size(),
206                    sf_res.second);
207            forwardTiming(pkt, slave_port_id, sf_res.first);
208        } else {
209            forwardTiming(pkt, slave_port_id);
210        }
211
212        // add the snoop delay to our header delay, and then reset it
213        pkt->headerDelay += pkt->snoopDelay;
214        pkt->snoopDelay = 0;
215    }
216
217    // forwardTiming snooped into peer caches of the sender, and if
218    // this is a clean evict, but the packet is found in a cache, do
219    // not forward it
220    if (pkt->cmd == MemCmd::CleanEvict && pkt->isBlockCached()) {
221        DPRINTF(CoherentXBar, "recvTimingReq: Clean evict 0x%x still cached, "
222                "not forwarding\n", pkt->getAddr());
223
224        // update the layer state and schedule an idle event
225        reqLayers[master_port_id]->succeededTiming(packetFinishTime);
226        pendingDelete.push_back(pkt);
227        return true;
228    }
229
230    // remember if the packet will generate a snoop response
231    const bool expect_snoop_resp = !is_inhibited && pkt->memInhibitAsserted();
232    const bool expect_response = pkt->needsResponse() &&
233        !pkt->memInhibitAsserted();
234
235    // since it is a normal request, attempt to send the packet
236    bool success = masterPorts[master_port_id]->sendTimingReq(pkt);
237
238    if (snoopFilter && !system->bypassCaches()) {
239        // Let the snoop filter know about the success of the send operation
240        snoopFilter->finishRequest(!success, pkt);
241    }
242
243    // check if we were successful in sending the packet onwards
244    if (!success)  {
245        // express snoops and inhibited packets should never be forced
246        // to retry
247        assert(!is_express_snoop);
248        assert(!pkt->memInhibitAsserted());
249
250        // restore the header delay
251        pkt->headerDelay = old_header_delay;
252
253        DPRINTF(CoherentXBar, "recvTimingReq: src %s %s 0x%x RETRY\n",
254                src_port->name(), pkt->cmdString(), pkt->getAddr());
255
256        // update the layer state and schedule an idle event
257        reqLayers[master_port_id]->failedTiming(src_port,
258                                                clockEdge(Cycles(1)));
259    } else {
260        // express snoops currently bypass the crossbar state entirely
261        if (!is_express_snoop) {
262            // if this particular request will generate a snoop
263            // response
264            if (expect_snoop_resp) {
265                // we should never have an exsiting request outstanding
266                assert(outstandingSnoop.find(pkt->req) ==
267                       outstandingSnoop.end());
268                outstandingSnoop.insert(pkt->req);
269
270                // basic sanity check on the outstanding snoops
271                panic_if(outstandingSnoop.size() > 512,
272                         "Outstanding snoop requests exceeded 512\n");
273            }
274
275            // remember where to route the normal response to
276            if (expect_response || expect_snoop_resp) {
277                assert(routeTo.find(pkt->req) == routeTo.end());
278                routeTo[pkt->req] = slave_port_id;
279
280                panic_if(routeTo.size() > 512,
281                         "Routing table exceeds 512 packets\n");
282            }
283
284            // update the layer state and schedule an idle event
285            reqLayers[master_port_id]->succeededTiming(packetFinishTime);
286        }
287
288        // stats updates only consider packets that were successfully sent
289        pktCount[slave_port_id][master_port_id]++;
290        pktSize[slave_port_id][master_port_id] += pkt_size;
291        transDist[pkt_cmd]++;
292
293        if (is_express_snoop)
294            snoops++;
295    }
296
297    return success;
298}
299
300bool
301CoherentXBar::recvTimingResp(PacketPtr pkt, PortID master_port_id)
302{
303    // determine the source port based on the id
304    MasterPort *src_port = masterPorts[master_port_id];
305
306    // determine the destination
307    const auto route_lookup = routeTo.find(pkt->req);
308    assert(route_lookup != routeTo.end());
309    const PortID slave_port_id = route_lookup->second;
310    assert(slave_port_id != InvalidPortID);
311    assert(slave_port_id < respLayers.size());
312
313    // test if the crossbar should be considered occupied for the
314    // current port
315    if (!respLayers[slave_port_id]->tryTiming(src_port)) {
316        DPRINTF(CoherentXBar, "recvTimingResp: src %s %s 0x%x BUSY\n",
317                src_port->name(), pkt->cmdString(), pkt->getAddr());
318        return false;
319    }
320
321    DPRINTF(CoherentXBar, "recvTimingResp: src %s %s 0x%x\n",
322            src_port->name(), pkt->cmdString(), pkt->getAddr());
323
324    // store size and command as they might be modified when
325    // forwarding the packet
326    unsigned int pkt_size = pkt->hasData() ? pkt->getSize() : 0;
327    unsigned int pkt_cmd = pkt->cmdToIndex();
328
329    // a response sees the response latency
330    Tick xbar_delay = responseLatency * clockPeriod();
331
332    // set the packet header and payload delay
333    calcPacketTiming(pkt, xbar_delay);
334
335    // determine how long to be crossbar layer is busy
336    Tick packetFinishTime = clockEdge(Cycles(1)) + pkt->payloadDelay;
337
338    if (snoopFilter && !system->bypassCaches()) {
339        // let the snoop filter inspect the response and update its state
340        snoopFilter->updateResponse(pkt, *slavePorts[slave_port_id]);
341    }
342
343    // send the packet through the destination slave port and pay for
344    // any outstanding header delay
345    Tick latency = pkt->headerDelay;
346    pkt->headerDelay = 0;
347    slavePorts[slave_port_id]->schedTimingResp(pkt, curTick() + latency);
348
349    // remove the request from the routing table
350    routeTo.erase(route_lookup);
351
352    respLayers[slave_port_id]->succeededTiming(packetFinishTime);
353
354    // stats updates
355    pktCount[slave_port_id][master_port_id]++;
356    pktSize[slave_port_id][master_port_id] += pkt_size;
357    transDist[pkt_cmd]++;
358
359    return true;
360}
361
362void
363CoherentXBar::recvTimingSnoopReq(PacketPtr pkt, PortID master_port_id)
364{
365    DPRINTF(CoherentXBar, "recvTimingSnoopReq: src %s %s 0x%x\n",
366            masterPorts[master_port_id]->name(), pkt->cmdString(),
367            pkt->getAddr());
368
369    // update stats here as we know the forwarding will succeed
370    transDist[pkt->cmdToIndex()]++;
371    snoops++;
372
373    // we should only see express snoops from caches
374    assert(pkt->isExpressSnoop());
375
376    // set the packet header and payload delay, for now use forward latency
377    // @todo Assess the choice of latency further
378    calcPacketTiming(pkt, forwardLatency * clockPeriod());
379
380    // remeber if the packet is inhibited so we can see if it changes
381    const bool is_inhibited = pkt->memInhibitAsserted();
382
383    assert(pkt->snoopDelay == 0);
384
385    if (snoopFilter) {
386        // let the Snoop Filter work its magic and guide probing
387        auto sf_res = snoopFilter->lookupSnoop(pkt);
388        // the time required by a packet to be delivered through
389        // the xbar has to be charged also with to lookup latency
390        // of the snoop filter
391        pkt->headerDelay += sf_res.second * clockPeriod();
392        DPRINTF(CoherentXBar, "recvTimingSnoopReq: src %s %s 0x%x"\
393                " SF size: %i lat: %i\n", masterPorts[master_port_id]->name(),
394                pkt->cmdString(), pkt->getAddr(), sf_res.first.size(),
395                sf_res.second);
396
397        // forward to all snoopers
398        forwardTiming(pkt, InvalidPortID, sf_res.first);
399    } else {
400        forwardTiming(pkt, InvalidPortID);
401    }
402
403    // add the snoop delay to our header delay, and then reset it
404    pkt->headerDelay += pkt->snoopDelay;
405    pkt->snoopDelay = 0;
406
407    // if we can expect a response, remember how to route it
408    if (!is_inhibited && pkt->memInhibitAsserted()) {
409        assert(routeTo.find(pkt->req) == routeTo.end());
410        routeTo[pkt->req] = master_port_id;
411    }
412
413    // a snoop request came from a connected slave device (one of
414    // our master ports), and if it is not coming from the slave
415    // device responsible for the address range something is
416    // wrong, hence there is nothing further to do as the packet
417    // would be going back to where it came from
418    assert(master_port_id == findPort(pkt->getAddr()));
419}
420
421bool
422CoherentXBar::recvTimingSnoopResp(PacketPtr pkt, PortID slave_port_id)
423{
424    // determine the source port based on the id
425    SlavePort* src_port = slavePorts[slave_port_id];
426
427    // get the destination
428    const auto route_lookup = routeTo.find(pkt->req);
429    assert(route_lookup != routeTo.end());
430    const PortID dest_port_id = route_lookup->second;
431    assert(dest_port_id != InvalidPortID);
432
433    // determine if the response is from a snoop request we
434    // created as the result of a normal request (in which case it
435    // should be in the outstandingSnoop), or if we merely forwarded
436    // someone else's snoop request
437    const bool forwardAsSnoop = outstandingSnoop.find(pkt->req) ==
438        outstandingSnoop.end();
439
440    // test if the crossbar should be considered occupied for the
441    // current port, note that the check is bypassed if the response
442    // is being passed on as a normal response since this is occupying
443    // the response layer rather than the snoop response layer
444    if (forwardAsSnoop) {
445        assert(dest_port_id < snoopLayers.size());
446        if (!snoopLayers[dest_port_id]->tryTiming(src_port)) {
447            DPRINTF(CoherentXBar, "recvTimingSnoopResp: src %s %s 0x%x BUSY\n",
448                    src_port->name(), pkt->cmdString(), pkt->getAddr());
449            return false;
450        }
451    } else {
452        // get the master port that mirrors this slave port internally
453        MasterPort* snoop_port = snoopRespPorts[slave_port_id];
454        assert(dest_port_id < respLayers.size());
455        if (!respLayers[dest_port_id]->tryTiming(snoop_port)) {
456            DPRINTF(CoherentXBar, "recvTimingSnoopResp: src %s %s 0x%x BUSY\n",
457                    snoop_port->name(), pkt->cmdString(), pkt->getAddr());
458            return false;
459        }
460    }
461
462    DPRINTF(CoherentXBar, "recvTimingSnoopResp: src %s %s 0x%x\n",
463            src_port->name(), pkt->cmdString(), pkt->getAddr());
464
465    // store size and command as they might be modified when
466    // forwarding the packet
467    unsigned int pkt_size = pkt->hasData() ? pkt->getSize() : 0;
468    unsigned int pkt_cmd = pkt->cmdToIndex();
469
470    // responses are never express snoops
471    assert(!pkt->isExpressSnoop());
472
473    // a snoop response sees the snoop response latency, and if it is
474    // forwarded as a normal response, the response latency
475    Tick xbar_delay =
476        (forwardAsSnoop ? snoopResponseLatency : responseLatency) *
477        clockPeriod();
478
479    // set the packet header and payload delay
480    calcPacketTiming(pkt, xbar_delay);
481
482    // determine how long to be crossbar layer is busy
483    Tick packetFinishTime = clockEdge(Cycles(1)) + pkt->payloadDelay;
484
485    // forward it either as a snoop response or a normal response
486    if (forwardAsSnoop) {
487        // this is a snoop response to a snoop request we forwarded,
488        // e.g. coming from the L1 and going to the L2, and it should
489        // be forwarded as a snoop response
490
491        if (snoopFilter) {
492            // update the probe filter so that it can properly track the line
493            snoopFilter->updateSnoopForward(pkt, *slavePorts[slave_port_id],
494                                            *masterPorts[dest_port_id]);
495        }
496
497        bool success M5_VAR_USED =
498            masterPorts[dest_port_id]->sendTimingSnoopResp(pkt);
499        pktCount[slave_port_id][dest_port_id]++;
500        pktSize[slave_port_id][dest_port_id] += pkt_size;
501        assert(success);
502
503        snoopLayers[dest_port_id]->succeededTiming(packetFinishTime);
504    } else {
505        // we got a snoop response on one of our slave ports,
506        // i.e. from a coherent master connected to the crossbar, and
507        // since we created the snoop request as part of recvTiming,
508        // this should now be a normal response again
509        outstandingSnoop.erase(pkt->req);
510
511        // this is a snoop response from a coherent master, hence it
512        // should never go back to where the snoop response came from,
513        // but instead to where the original request came from
514        assert(slave_port_id != dest_port_id);
515
516        if (snoopFilter) {
517            // update the probe filter so that it can properly track the line
518            snoopFilter->updateSnoopResponse(pkt, *slavePorts[slave_port_id],
519                                    *slavePorts[dest_port_id]);
520        }
521
522        DPRINTF(CoherentXBar, "recvTimingSnoopResp: src %s %s 0x%x"\
523                " FWD RESP\n", src_port->name(), pkt->cmdString(),
524                pkt->getAddr());
525
526        // as a normal response, it should go back to a master through
527        // one of our slave ports, we also pay for any outstanding
528        // header latency
529        Tick latency = pkt->headerDelay;
530        pkt->headerDelay = 0;
531        slavePorts[dest_port_id]->schedTimingResp(pkt, curTick() + latency);
532
533        respLayers[dest_port_id]->succeededTiming(packetFinishTime);
534    }
535
536    // remove the request from the routing table
537    routeTo.erase(route_lookup);
538
539    // stats updates
540    transDist[pkt_cmd]++;
541    snoops++;
542
543    return true;
544}
545
546
547void
548CoherentXBar::forwardTiming(PacketPtr pkt, PortID exclude_slave_port_id,
549                           const std::vector<QueuedSlavePort*>& dests)
550{
551    DPRINTF(CoherentXBar, "%s for %s address %x size %d\n", __func__,
552            pkt->cmdString(), pkt->getAddr(), pkt->getSize());
553
554    // snoops should only happen if the system isn't bypassing caches
555    assert(!system->bypassCaches());
556
557    unsigned fanout = 0;
558
559    for (const auto& p: dests) {
560        // we could have gotten this request from a snooping master
561        // (corresponding to our own slave port that is also in
562        // snoopPorts) and should not send it back to where it came
563        // from
564        if (exclude_slave_port_id == InvalidPortID ||
565            p->getId() != exclude_slave_port_id) {
566            // cache is not allowed to refuse snoop
567            p->sendTimingSnoopReq(pkt);
568            fanout++;
569        }
570    }
571
572    // Stats for fanout of this forward operation
573    snoopFanout.sample(fanout);
574}
575
576void
577CoherentXBar::recvReqRetry(PortID master_port_id)
578{
579    // responses and snoop responses never block on forwarding them,
580    // so the retry will always be coming from a port to which we
581    // tried to forward a request
582    reqLayers[master_port_id]->recvRetry();
583}
584
585Tick
586CoherentXBar::recvAtomic(PacketPtr pkt, PortID slave_port_id)
587{
588    DPRINTF(CoherentXBar, "recvAtomic: packet src %s addr 0x%x cmd %s\n",
589            slavePorts[slave_port_id]->name(), pkt->getAddr(),
590            pkt->cmdString());
591
592    unsigned int pkt_size = pkt->hasData() ? pkt->getSize() : 0;
593    unsigned int pkt_cmd = pkt->cmdToIndex();
594
595    MemCmd snoop_response_cmd = MemCmd::InvalidCmd;
596    Tick snoop_response_latency = 0;
597
598    if (!system->bypassCaches()) {
599        // forward to all snoopers but the source
600        std::pair<MemCmd, Tick> snoop_result;
601        if (snoopFilter) {
602            // check with the snoop filter where to forward this packet
603            auto sf_res =
604                snoopFilter->lookupRequest(pkt, *slavePorts[slave_port_id]);
605            snoop_response_latency += sf_res.second * clockPeriod();
606            DPRINTF(CoherentXBar, "%s: src %s %s 0x%x"\
607                    " SF size: %i lat: %i\n", __func__,
608                    slavePorts[slave_port_id]->name(), pkt->cmdString(),
609                    pkt->getAddr(), sf_res.first.size(), sf_res.second);
610
611            // let the snoop filter know about the success of the send
612            // operation, and do it even before sending it onwards to
613            // avoid situations where atomic upward snoops sneak in
614            // between and change the filter state
615            snoopFilter->finishRequest(false, pkt);
616
617            snoop_result = forwardAtomic(pkt, slave_port_id, InvalidPortID,
618                                         sf_res.first);
619        } else {
620            snoop_result = forwardAtomic(pkt, slave_port_id);
621        }
622        snoop_response_cmd = snoop_result.first;
623        snoop_response_latency += snoop_result.second;
624    }
625
626    // forwardAtomic snooped into peer caches of the sender, and if
627    // this is a clean evict, but the packet is found in a cache, do
628    // not forward it
629    if (pkt->cmd == MemCmd::CleanEvict && pkt->isBlockCached()) {
630        DPRINTF(CoherentXBar, "recvAtomic: Clean evict 0x%x still cached, "
631                "not forwarding\n", pkt->getAddr());
632        return 0;
633    }
634
635    // even if we had a snoop response, we must continue and also
636    // perform the actual request at the destination
637    PortID master_port_id = findPort(pkt->getAddr());
638
639    // stats updates for the request
640    pktCount[slave_port_id][master_port_id]++;
641    pktSize[slave_port_id][master_port_id] += pkt_size;
642    transDist[pkt_cmd]++;
643
644    // forward the request to the appropriate destination
645    Tick response_latency = masterPorts[master_port_id]->sendAtomic(pkt);
646
647    // if lower levels have replied, tell the snoop filter
648    if (!system->bypassCaches() && snoopFilter && pkt->isResponse()) {
649        snoopFilter->updateResponse(pkt, *slavePorts[slave_port_id]);
650    }
651
652    // if we got a response from a snooper, restore it here
653    if (snoop_response_cmd != MemCmd::InvalidCmd) {
654        // no one else should have responded
655        assert(!pkt->isResponse());
656        pkt->cmd = snoop_response_cmd;
657        response_latency = snoop_response_latency;
658    }
659
660    // add the response data
661    if (pkt->isResponse()) {
662        pkt_size = pkt->hasData() ? pkt->getSize() : 0;
663        pkt_cmd = pkt->cmdToIndex();
664
665        // stats updates
666        pktCount[slave_port_id][master_port_id]++;
667        pktSize[slave_port_id][master_port_id] += pkt_size;
668        transDist[pkt_cmd]++;
669    }
670
671    // @todo: Not setting header time
672    pkt->payloadDelay = response_latency;
673    return response_latency;
674}
675
676Tick
677CoherentXBar::recvAtomicSnoop(PacketPtr pkt, PortID master_port_id)
678{
679    DPRINTF(CoherentXBar, "recvAtomicSnoop: packet src %s addr 0x%x cmd %s\n",
680            masterPorts[master_port_id]->name(), pkt->getAddr(),
681            pkt->cmdString());
682
683    // add the request snoop data
684    snoops++;
685
686    // forward to all snoopers
687    std::pair<MemCmd, Tick> snoop_result;
688    Tick snoop_response_latency = 0;
689    if (snoopFilter) {
690        auto sf_res = snoopFilter->lookupSnoop(pkt);
691        snoop_response_latency += sf_res.second * clockPeriod();
692        DPRINTF(CoherentXBar, "%s: src %s %s 0x%x SF size: %i lat: %i\n",
693                __func__, masterPorts[master_port_id]->name(), pkt->cmdString(),
694                pkt->getAddr(), sf_res.first.size(), sf_res.second);
695        snoop_result = forwardAtomic(pkt, InvalidPortID, master_port_id,
696                                     sf_res.first);
697    } else {
698        snoop_result = forwardAtomic(pkt, InvalidPortID);
699    }
700    MemCmd snoop_response_cmd = snoop_result.first;
701    snoop_response_latency += snoop_result.second;
702
703    if (snoop_response_cmd != MemCmd::InvalidCmd)
704        pkt->cmd = snoop_response_cmd;
705
706    // add the response snoop data
707    if (pkt->isResponse()) {
708        snoops++;
709    }
710
711    // @todo: Not setting header time
712    pkt->payloadDelay = snoop_response_latency;
713    return snoop_response_latency;
714}
715
716std::pair<MemCmd, Tick>
717CoherentXBar::forwardAtomic(PacketPtr pkt, PortID exclude_slave_port_id,
718                           PortID source_master_port_id,
719                           const std::vector<QueuedSlavePort*>& dests)
720{
721    // the packet may be changed on snoops, record the original
722    // command to enable us to restore it between snoops so that
723    // additional snoops can take place properly
724    MemCmd orig_cmd = pkt->cmd;
725    MemCmd snoop_response_cmd = MemCmd::InvalidCmd;
726    Tick snoop_response_latency = 0;
727
728    // snoops should only happen if the system isn't bypassing caches
729    assert(!system->bypassCaches());
730
731    unsigned fanout = 0;
732
733    for (const auto& p: dests) {
734        // we could have gotten this request from a snooping master
735        // (corresponding to our own slave port that is also in
736        // snoopPorts) and should not send it back to where it came
737        // from
738        if (exclude_slave_port_id != InvalidPortID &&
739            p->getId() == exclude_slave_port_id)
740            continue;
741
742        Tick latency = p->sendAtomicSnoop(pkt);
743        fanout++;
744
745        // in contrast to a functional access, we have to keep on
746        // going as all snoopers must be updated even if we get a
747        // response
748        if (!pkt->isResponse())
749            continue;
750
751        // response from snoop agent
752        assert(pkt->cmd != orig_cmd);
753        assert(pkt->memInhibitAsserted());
754        // should only happen once
755        assert(snoop_response_cmd == MemCmd::InvalidCmd);
756        // save response state
757        snoop_response_cmd = pkt->cmd;
758        snoop_response_latency = latency;
759
760        if (snoopFilter) {
761            // Handle responses by the snoopers and differentiate between
762            // responses to requests from above and snoops from below
763            if (source_master_port_id != InvalidPortID) {
764                // Getting a response for a snoop from below
765                assert(exclude_slave_port_id == InvalidPortID);
766                snoopFilter->updateSnoopForward(pkt, *p,
767                             *masterPorts[source_master_port_id]);
768            } else {
769                // Getting a response for a request from above
770                assert(source_master_port_id == InvalidPortID);
771                snoopFilter->updateSnoopResponse(pkt, *p,
772                             *slavePorts[exclude_slave_port_id]);
773            }
774        }
775        // restore original packet state for remaining snoopers
776        pkt->cmd = orig_cmd;
777    }
778
779    // Stats for fanout
780    snoopFanout.sample(fanout);
781
782    // the packet is restored as part of the loop and any potential
783    // snoop response is part of the returned pair
784    return std::make_pair(snoop_response_cmd, snoop_response_latency);
785}
786
787void
788CoherentXBar::recvFunctional(PacketPtr pkt, PortID slave_port_id)
789{
790    if (!pkt->isPrint()) {
791        // don't do DPRINTFs on PrintReq as it clutters up the output
792        DPRINTF(CoherentXBar,
793                "recvFunctional: packet src %s addr 0x%x cmd %s\n",
794                slavePorts[slave_port_id]->name(), pkt->getAddr(),
795                pkt->cmdString());
796    }
797
798    if (!system->bypassCaches()) {
799        // forward to all snoopers but the source
800        forwardFunctional(pkt, slave_port_id);
801    }
802
803    // there is no need to continue if the snooping has found what we
804    // were looking for and the packet is already a response
805    if (!pkt->isResponse()) {
806        // since our slave ports are queued ports we need to check them as well
807        for (const auto& p : slavePorts) {
808            // if we find a response that has the data, then the
809            // downstream caches/memories may be out of date, so simply stop
810            // here
811            if (p->checkFunctional(pkt)) {
812                if (pkt->needsResponse())
813                    pkt->makeResponse();
814                return;
815            }
816        }
817
818        PortID dest_id = findPort(pkt->getAddr());
819
820        masterPorts[dest_id]->sendFunctional(pkt);
821    }
822}
823
824void
825CoherentXBar::recvFunctionalSnoop(PacketPtr pkt, PortID master_port_id)
826{
827    if (!pkt->isPrint()) {
828        // don't do DPRINTFs on PrintReq as it clutters up the output
829        DPRINTF(CoherentXBar,
830                "recvFunctionalSnoop: packet src %s addr 0x%x cmd %s\n",
831                masterPorts[master_port_id]->name(), pkt->getAddr(),
832                pkt->cmdString());
833    }
834
835    for (const auto& p : slavePorts) {
836        if (p->checkFunctional(pkt)) {
837            if (pkt->needsResponse())
838                pkt->makeResponse();
839            return;
840        }
841    }
842
843    // forward to all snoopers
844    forwardFunctional(pkt, InvalidPortID);
845}
846
847void
848CoherentXBar::forwardFunctional(PacketPtr pkt, PortID exclude_slave_port_id)
849{
850    // snoops should only happen if the system isn't bypassing caches
851    assert(!system->bypassCaches());
852
853    for (const auto& p: snoopPorts) {
854        // we could have gotten this request from a snooping master
855        // (corresponding to our own slave port that is also in
856        // snoopPorts) and should not send it back to where it came
857        // from
858        if (exclude_slave_port_id == InvalidPortID ||
859            p->getId() != exclude_slave_port_id)
860            p->sendFunctionalSnoop(pkt);
861
862        // if we get a response we are done
863        if (pkt->isResponse()) {
864            break;
865        }
866    }
867}
868
869void
870CoherentXBar::regStats()
871{
872    // register the stats of the base class and our layers
873    BaseXBar::regStats();
874    for (auto l: reqLayers)
875        l->regStats();
876    for (auto l: respLayers)
877        l->regStats();
878    for (auto l: snoopLayers)
879        l->regStats();
880
881    snoops
882        .name(name() + ".snoops")
883        .desc("Total snoops (count)")
884    ;
885
886    snoopFanout
887        .init(0, snoopPorts.size(), 1)
888        .name(name() + ".snoop_fanout")
889        .desc("Request fanout histogram")
890    ;
891}
892
893CoherentXBar *
894CoherentXBarParams::create()
895{
896    return new CoherentXBar(this);
897}
898