coherent_xbar.cc revision 10405
1/*
2 * Copyright (c) 2011-2014 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder.  You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2006 The Regents of The University of Michigan
15 * All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions are
19 * met: redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer;
21 * redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution;
24 * neither the name of the copyright holders nor the names of its
25 * contributors may be used to endorse or promote products derived from
26 * this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 *
40 * Authors: Ali Saidi
41 *          Andreas Hansson
42 *          William Wang
43 */
44
45/**
46 * @file
47 * Definition of a crossbar object.
48 */
49
50#include "base/misc.hh"
51#include "base/trace.hh"
52#include "debug/AddrRanges.hh"
53#include "debug/CoherentXBar.hh"
54#include "mem/coherent_xbar.hh"
55#include "sim/system.hh"
56
57CoherentXBar::CoherentXBar(const CoherentXBarParams *p)
58    : BaseXBar(p), system(p->system), snoopFilter(p->snoop_filter)
59{
60    // create the ports based on the size of the master and slave
61    // vector ports, and the presence of the default port, the ports
62    // are enumerated starting from zero
63    for (int i = 0; i < p->port_master_connection_count; ++i) {
64        std::string portName = csprintf("%s.master[%d]", name(), i);
65        MasterPort* bp = new CoherentXBarMasterPort(portName, *this, i);
66        masterPorts.push_back(bp);
67        reqLayers.push_back(new ReqLayer(*bp, *this,
68                                         csprintf(".reqLayer%d", i)));
69        snoopLayers.push_back(new SnoopLayer(*bp, *this,
70                                             csprintf(".snoopLayer%d", i)));
71    }
72
73    // see if we have a default slave device connected and if so add
74    // our corresponding master port
75    if (p->port_default_connection_count) {
76        defaultPortID = masterPorts.size();
77        std::string portName = name() + ".default";
78        MasterPort* bp = new CoherentXBarMasterPort(portName, *this,
79                                                   defaultPortID);
80        masterPorts.push_back(bp);
81        reqLayers.push_back(new ReqLayer(*bp, *this, csprintf(".reqLayer%d",
82                                             defaultPortID)));
83        snoopLayers.push_back(new SnoopLayer(*bp, *this,
84                                             csprintf(".snoopLayer%d",
85                                                      defaultPortID)));
86    }
87
88    // create the slave ports, once again starting at zero
89    for (int i = 0; i < p->port_slave_connection_count; ++i) {
90        std::string portName = csprintf("%s.slave[%d]", name(), i);
91        SlavePort* bp = new CoherentXBarSlavePort(portName, *this, i);
92        slavePorts.push_back(bp);
93        respLayers.push_back(new RespLayer(*bp, *this,
94                                           csprintf(".respLayer%d", i)));
95        snoopRespPorts.push_back(new SnoopRespPort(*bp, *this));
96    }
97
98    if (snoopFilter)
99        snoopFilter->setSlavePorts(slavePorts);
100
101    clearPortCache();
102}
103
104CoherentXBar::~CoherentXBar()
105{
106    for (auto l: reqLayers)
107        delete l;
108    for (auto l: respLayers)
109        delete l;
110    for (auto l: snoopLayers)
111        delete l;
112    for (auto p: snoopRespPorts)
113        delete p;
114}
115
116void
117CoherentXBar::init()
118{
119    // the base class is responsible for determining the block size
120    BaseXBar::init();
121
122    // iterate over our slave ports and determine which of our
123    // neighbouring master ports are snooping and add them as snoopers
124    for (const auto& p: slavePorts) {
125        // check if the connected master port is snooping
126        if (p->isSnooping()) {
127            DPRINTF(AddrRanges, "Adding snooping master %s\n",
128                    p->getMasterPort().name());
129            snoopPorts.push_back(p);
130        }
131    }
132
133    if (snoopPorts.empty())
134        warn("CoherentXBar %s has no snooping ports attached!\n", name());
135}
136
137bool
138CoherentXBar::recvTimingReq(PacketPtr pkt, PortID slave_port_id)
139{
140    // determine the source port based on the id
141    SlavePort *src_port = slavePorts[slave_port_id];
142
143    // remember if the packet is an express snoop
144    bool is_express_snoop = pkt->isExpressSnoop();
145
146    // determine the destination based on the address
147    PortID master_port_id = findPort(pkt->getAddr());
148
149    // test if the crossbar should be considered occupied for the current
150    // port, and exclude express snoops from the check
151    if (!is_express_snoop && !reqLayers[master_port_id]->tryTiming(src_port)) {
152        DPRINTF(CoherentXBar, "recvTimingReq: src %s %s 0x%x BUSY\n",
153                src_port->name(), pkt->cmdString(), pkt->getAddr());
154        return false;
155    }
156
157    DPRINTF(CoherentXBar, "recvTimingReq: src %s %s expr %d 0x%x\n",
158            src_port->name(), pkt->cmdString(), is_express_snoop,
159            pkt->getAddr());
160
161    // store size and command as they might be modified when
162    // forwarding the packet
163    unsigned int pkt_size = pkt->hasData() ? pkt->getSize() : 0;
164    unsigned int pkt_cmd = pkt->cmdToIndex();
165
166    // set the source port for routing of the response
167    pkt->setSrc(slave_port_id);
168
169    calcPacketTiming(pkt);
170    Tick packetFinishTime = pkt->lastWordDelay + curTick();
171
172    // uncacheable requests need never be snooped
173    if (!pkt->req->isUncacheable() && !system->bypassCaches()) {
174        // the packet is a memory-mapped request and should be
175        // broadcasted to our snoopers but the source
176        if (snoopFilter) {
177            // check with the snoop filter where to forward this packet
178            auto sf_res = snoopFilter->lookupRequest(pkt, *src_port);
179            packetFinishTime += sf_res.second * clockPeriod();
180            DPRINTF(CoherentXBar, "recvTimingReq: src %s %s 0x%x"\
181                    " SF size: %i lat: %i\n", src_port->name(),
182                    pkt->cmdString(), pkt->getAddr(), sf_res.first.size(),
183                    sf_res.second);
184            forwardTiming(pkt, slave_port_id, sf_res.first);
185        } else {
186            forwardTiming(pkt, slave_port_id);
187        }
188    }
189
190    // remember if we add an outstanding req so we can undo it if
191    // necessary, if the packet needs a response, we should add it
192    // as outstanding and express snoops never fail so there is
193    // not need to worry about them
194    bool add_outstanding = !is_express_snoop && pkt->needsResponse();
195
196    // keep track that we have an outstanding request packet
197    // matching this request, this is used by the coherency
198    // mechanism in determining what to do with snoop responses
199    // (in recvTimingSnoop)
200    if (add_outstanding) {
201        // we should never have an exsiting request outstanding
202        assert(outstandingReq.find(pkt->req) == outstandingReq.end());
203        outstandingReq.insert(pkt->req);
204    }
205
206    // Note: Cannot create a copy of the full packet, here.
207    MemCmd orig_cmd(pkt->cmd);
208
209    // since it is a normal request, attempt to send the packet
210    bool success = masterPorts[master_port_id]->sendTimingReq(pkt);
211
212    if (snoopFilter && !pkt->req->isUncacheable()
213        && !system->bypassCaches()) {
214        // The packet may already be overwritten by the sendTimingReq function.
215        // The snoop filter needs to see the original request *and* the return
216        // status of the send operation, so we need to recreate the original
217        // request.  Atomic mode does not have the issue, as there the send
218        // operation and the response happen instantaneously and don't need two
219        // phase tracking.
220        MemCmd tmp_cmd(pkt->cmd);
221        pkt->cmd = orig_cmd;
222        // Let the snoop filter know about the success of the send operation
223        snoopFilter->updateRequest(pkt, *src_port, !success);
224        pkt->cmd = tmp_cmd;
225    }
226
227    // if this is an express snoop, we are done at this point
228    if (is_express_snoop) {
229        assert(success);
230        snoops++;
231    } else {
232        // for normal requests, check if successful
233        if (!success)  {
234            // inhibited packets should never be forced to retry
235            assert(!pkt->memInhibitAsserted());
236
237            // if it was added as outstanding and the send failed, then
238            // erase it again
239            if (add_outstanding)
240                outstandingReq.erase(pkt->req);
241
242            // undo the calculation so we can check for 0 again
243            pkt->firstWordDelay = pkt->lastWordDelay = 0;
244
245            DPRINTF(CoherentXBar, "recvTimingReq: src %s %s 0x%x RETRY\n",
246                    src_port->name(), pkt->cmdString(), pkt->getAddr());
247
248            // update the layer state and schedule an idle event
249            reqLayers[master_port_id]->failedTiming(src_port,
250                                                    clockEdge(headerCycles));
251        } else {
252            // update the layer state and schedule an idle event
253            reqLayers[master_port_id]->succeededTiming(packetFinishTime);
254        }
255    }
256
257    // stats updates only consider packets that were successfully sent
258    if (success) {
259        pktCount[slave_port_id][master_port_id]++;
260        pktSize[slave_port_id][master_port_id] += pkt_size;
261        transDist[pkt_cmd]++;
262    }
263
264    return success;
265}
266
267bool
268CoherentXBar::recvTimingResp(PacketPtr pkt, PortID master_port_id)
269{
270    // determine the source port based on the id
271    MasterPort *src_port = masterPorts[master_port_id];
272
273    // determine the destination based on what is stored in the packet
274    PortID slave_port_id = pkt->getDest();
275
276    // test if the crossbar should be considered occupied for the
277    // current port
278    if (!respLayers[slave_port_id]->tryTiming(src_port)) {
279        DPRINTF(CoherentXBar, "recvTimingResp: src %s %s 0x%x BUSY\n",
280                src_port->name(), pkt->cmdString(), pkt->getAddr());
281        return false;
282    }
283
284    DPRINTF(CoherentXBar, "recvTimingResp: src %s %s 0x%x\n",
285            src_port->name(), pkt->cmdString(), pkt->getAddr());
286
287    // store size and command as they might be modified when
288    // forwarding the packet
289    unsigned int pkt_size = pkt->hasData() ? pkt->getSize() : 0;
290    unsigned int pkt_cmd = pkt->cmdToIndex();
291
292    calcPacketTiming(pkt);
293    Tick packetFinishTime = pkt->lastWordDelay + curTick();
294
295    // the packet is a normal response to a request that we should
296    // have seen passing through the crossbar
297    assert(outstandingReq.find(pkt->req) != outstandingReq.end());
298
299    if (snoopFilter && !pkt->req->isUncacheable() && !system->bypassCaches()) {
300        // let the snoop filter inspect the response and update its state
301        snoopFilter->updateResponse(pkt, *slavePorts[slave_port_id]);
302    }
303
304    // remove it as outstanding
305    outstandingReq.erase(pkt->req);
306
307    // send the packet through the destination slave port
308    bool success M5_VAR_USED = slavePorts[slave_port_id]->sendTimingResp(pkt);
309
310    // currently it is illegal to block responses... can lead to
311    // deadlock
312    assert(success);
313
314    respLayers[slave_port_id]->succeededTiming(packetFinishTime);
315
316    // stats updates
317    pktCount[slave_port_id][master_port_id]++;
318    pktSize[slave_port_id][master_port_id] += pkt_size;
319    transDist[pkt_cmd]++;
320
321    return true;
322}
323
324void
325CoherentXBar::recvTimingSnoopReq(PacketPtr pkt, PortID master_port_id)
326{
327    DPRINTF(CoherentXBar, "recvTimingSnoopReq: src %s %s 0x%x\n",
328            masterPorts[master_port_id]->name(), pkt->cmdString(),
329            pkt->getAddr());
330
331    // update stats here as we know the forwarding will succeed
332    transDist[pkt->cmdToIndex()]++;
333    snoops++;
334
335    // we should only see express snoops from caches
336    assert(pkt->isExpressSnoop());
337
338    // set the source port for routing of the response
339    pkt->setSrc(master_port_id);
340
341    if (snoopFilter) {
342        // let the Snoop Filter work its magic and guide probing
343        auto sf_res = snoopFilter->lookupSnoop(pkt);
344        // No timing here: packetFinishTime += sf_res.second * clockPeriod();
345        DPRINTF(CoherentXBar, "recvTimingSnoopReq: src %s %s 0x%x"\
346                " SF size: %i lat: %i\n", masterPorts[master_port_id]->name(),
347                pkt->cmdString(), pkt->getAddr(), sf_res.first.size(),
348                sf_res.second);
349
350        // forward to all snoopers
351        forwardTiming(pkt, InvalidPortID, sf_res.first);
352    } else {
353        forwardTiming(pkt, InvalidPortID);
354    }
355
356    // a snoop request came from a connected slave device (one of
357    // our master ports), and if it is not coming from the slave
358    // device responsible for the address range something is
359    // wrong, hence there is nothing further to do as the packet
360    // would be going back to where it came from
361    assert(master_port_id == findPort(pkt->getAddr()));
362}
363
364bool
365CoherentXBar::recvTimingSnoopResp(PacketPtr pkt, PortID slave_port_id)
366{
367    // determine the source port based on the id
368    SlavePort* src_port = slavePorts[slave_port_id];
369
370    // get the destination from the packet
371    PortID dest_port_id = pkt->getDest();
372
373    // determine if the response is from a snoop request we
374    // created as the result of a normal request (in which case it
375    // should be in the outstandingReq), or if we merely forwarded
376    // someone else's snoop request
377    bool forwardAsSnoop = outstandingReq.find(pkt->req) ==
378        outstandingReq.end();
379
380    // test if the crossbar should be considered occupied for the
381    // current port, note that the check is bypassed if the response
382    // is being passed on as a normal response since this is occupying
383    // the response layer rather than the snoop response layer
384    if (forwardAsSnoop) {
385        if (!snoopLayers[dest_port_id]->tryTiming(src_port)) {
386            DPRINTF(CoherentXBar, "recvTimingSnoopResp: src %s %s 0x%x BUSY\n",
387                    src_port->name(), pkt->cmdString(), pkt->getAddr());
388            return false;
389        }
390    } else {
391        // get the master port that mirrors this slave port internally
392        MasterPort* snoop_port = snoopRespPorts[slave_port_id];
393        if (!respLayers[dest_port_id]->tryTiming(snoop_port)) {
394            DPRINTF(CoherentXBar, "recvTimingSnoopResp: src %s %s 0x%x BUSY\n",
395                    snoop_port->name(), pkt->cmdString(), pkt->getAddr());
396            return false;
397        }
398    }
399
400    DPRINTF(CoherentXBar, "recvTimingSnoopResp: src %s %s 0x%x\n",
401            src_port->name(), pkt->cmdString(), pkt->getAddr());
402
403    // store size and command as they might be modified when
404    // forwarding the packet
405    unsigned int pkt_size = pkt->hasData() ? pkt->getSize() : 0;
406    unsigned int pkt_cmd = pkt->cmdToIndex();
407
408    // responses are never express snoops
409    assert(!pkt->isExpressSnoop());
410
411    calcPacketTiming(pkt);
412    Tick packetFinishTime = pkt->lastWordDelay + curTick();
413
414    // forward it either as a snoop response or a normal response
415    if (forwardAsSnoop) {
416        // this is a snoop response to a snoop request we forwarded,
417        // e.g. coming from the L1 and going to the L2, and it should
418        // be forwarded as a snoop response
419
420        if (snoopFilter) {
421            // update the probe filter so that it can properly track the line
422            snoopFilter->updateSnoopForward(pkt, *slavePorts[slave_port_id],
423                                            *masterPorts[dest_port_id]);
424        }
425
426        bool success M5_VAR_USED =
427            masterPorts[dest_port_id]->sendTimingSnoopResp(pkt);
428        pktCount[slave_port_id][dest_port_id]++;
429        pktSize[slave_port_id][dest_port_id] += pkt_size;
430        assert(success);
431
432        snoopLayers[dest_port_id]->succeededTiming(packetFinishTime);
433    } else {
434        // we got a snoop response on one of our slave ports,
435        // i.e. from a coherent master connected to the crossbar, and
436        // since we created the snoop request as part of recvTiming,
437        // this should now be a normal response again
438        outstandingReq.erase(pkt->req);
439
440        // this is a snoop response from a coherent master, with a
441        // destination field set on its way through the crossbar as
442        // request, hence it should never go back to where the snoop
443        // response came from, but instead to where the original
444        // request came from
445        assert(slave_port_id != dest_port_id);
446
447        if (snoopFilter) {
448            // update the probe filter so that it can properly track the line
449            snoopFilter->updateSnoopResponse(pkt, *slavePorts[slave_port_id],
450                                    *slavePorts[dest_port_id]);
451        }
452
453        DPRINTF(CoherentXBar, "recvTimingSnoopResp: src %s %s 0x%x"\
454                " FWD RESP\n", src_port->name(), pkt->cmdString(),
455                pkt->getAddr());
456
457        // as a normal response, it should go back to a master through
458        // one of our slave ports, at this point we are ignoring the
459        // fact that the response layer could be busy and do not touch
460        // its state
461        bool success M5_VAR_USED =
462            slavePorts[dest_port_id]->sendTimingResp(pkt);
463
464        // @todo Put the response in an internal FIFO and pass it on
465        // to the response layer from there
466
467        // currently it is illegal to block responses... can lead
468        // to deadlock
469        assert(success);
470
471        respLayers[dest_port_id]->succeededTiming(packetFinishTime);
472    }
473
474    // stats updates
475    transDist[pkt_cmd]++;
476    snoops++;
477
478    return true;
479}
480
481
482void
483CoherentXBar::forwardTiming(PacketPtr pkt, PortID exclude_slave_port_id,
484                           const std::vector<SlavePort*>& dests)
485{
486    DPRINTF(CoherentXBar, "%s for %s address %x size %d\n", __func__,
487            pkt->cmdString(), pkt->getAddr(), pkt->getSize());
488
489    // snoops should only happen if the system isn't bypassing caches
490    assert(!system->bypassCaches());
491
492    unsigned fanout = 0;
493
494    for (const auto& p: dests) {
495        // we could have gotten this request from a snooping master
496        // (corresponding to our own slave port that is also in
497        // snoopPorts) and should not send it back to where it came
498        // from
499        if (exclude_slave_port_id == InvalidPortID ||
500            p->getId() != exclude_slave_port_id) {
501            // cache is not allowed to refuse snoop
502            p->sendTimingSnoopReq(pkt);
503            fanout++;
504        }
505    }
506
507    // Stats for fanout of this forward operation
508    snoopFanout.sample(fanout);
509}
510
511void
512CoherentXBar::recvRetry(PortID master_port_id)
513{
514    // responses and snoop responses never block on forwarding them,
515    // so the retry will always be coming from a port to which we
516    // tried to forward a request
517    reqLayers[master_port_id]->recvRetry();
518}
519
520Tick
521CoherentXBar::recvAtomic(PacketPtr pkt, PortID slave_port_id)
522{
523    DPRINTF(CoherentXBar, "recvAtomic: packet src %s addr 0x%x cmd %s\n",
524            slavePorts[slave_port_id]->name(), pkt->getAddr(),
525            pkt->cmdString());
526
527    unsigned int pkt_size = pkt->hasData() ? pkt->getSize() : 0;
528    unsigned int pkt_cmd = pkt->cmdToIndex();
529
530    MemCmd snoop_response_cmd = MemCmd::InvalidCmd;
531    Tick snoop_response_latency = 0;
532
533    // uncacheable requests need never be snooped
534    if (!pkt->req->isUncacheable() && !system->bypassCaches()) {
535        // forward to all snoopers but the source
536        std::pair<MemCmd, Tick> snoop_result;
537        if (snoopFilter) {
538            // check with the snoop filter where to forward this packet
539            auto sf_res =
540                snoopFilter->lookupRequest(pkt, *slavePorts[slave_port_id]);
541            snoop_response_latency += sf_res.second * clockPeriod();
542            DPRINTF(CoherentXBar, "%s: src %s %s 0x%x"\
543                    " SF size: %i lat: %i\n", __func__,
544                    slavePorts[slave_port_id]->name(), pkt->cmdString(),
545                    pkt->getAddr(), sf_res.first.size(), sf_res.second);
546            snoop_result = forwardAtomic(pkt, slave_port_id, InvalidPortID,
547                                         sf_res.first);
548        } else {
549            snoop_result = forwardAtomic(pkt, slave_port_id);
550        }
551        snoop_response_cmd = snoop_result.first;
552        snoop_response_latency += snoop_result.second;
553    }
554
555    // even if we had a snoop response, we must continue and also
556    // perform the actual request at the destination
557    PortID master_port_id = findPort(pkt->getAddr());
558
559    // stats updates for the request
560    pktCount[slave_port_id][master_port_id]++;
561    pktSize[slave_port_id][master_port_id] += pkt_size;
562    transDist[pkt_cmd]++;
563
564    // forward the request to the appropriate destination
565    Tick response_latency = masterPorts[master_port_id]->sendAtomic(pkt);
566
567    // Lower levels have replied, tell the snoop filter
568    if (snoopFilter && !pkt->req->isUncacheable() && !system->bypassCaches() &&
569        pkt->isResponse()) {
570        snoopFilter->updateResponse(pkt, *slavePorts[slave_port_id]);
571    }
572
573    // if we got a response from a snooper, restore it here
574    if (snoop_response_cmd != MemCmd::InvalidCmd) {
575        // no one else should have responded
576        assert(!pkt->isResponse());
577        pkt->cmd = snoop_response_cmd;
578        response_latency = snoop_response_latency;
579    }
580
581    // add the response data
582    if (pkt->isResponse()) {
583        pkt_size = pkt->hasData() ? pkt->getSize() : 0;
584        pkt_cmd = pkt->cmdToIndex();
585
586        // stats updates
587        pktCount[slave_port_id][master_port_id]++;
588        pktSize[slave_port_id][master_port_id] += pkt_size;
589        transDist[pkt_cmd]++;
590    }
591
592    // @todo: Not setting first-word time
593    pkt->lastWordDelay = response_latency;
594    return response_latency;
595}
596
597Tick
598CoherentXBar::recvAtomicSnoop(PacketPtr pkt, PortID master_port_id)
599{
600    DPRINTF(CoherentXBar, "recvAtomicSnoop: packet src %s addr 0x%x cmd %s\n",
601            masterPorts[master_port_id]->name(), pkt->getAddr(),
602            pkt->cmdString());
603
604    // add the request snoop data
605    snoops++;
606
607    // forward to all snoopers
608    std::pair<MemCmd, Tick> snoop_result;
609    Tick snoop_response_latency = 0;
610    if (snoopFilter) {
611        auto sf_res = snoopFilter->lookupSnoop(pkt);
612        snoop_response_latency += sf_res.second * clockPeriod();
613        DPRINTF(CoherentXBar, "%s: src %s %s 0x%x SF size: %i lat: %i\n",
614                __func__, masterPorts[master_port_id]->name(), pkt->cmdString(),
615                pkt->getAddr(), sf_res.first.size(), sf_res.second);
616        snoop_result = forwardAtomic(pkt, InvalidPortID, master_port_id,
617                                     sf_res.first);
618    } else {
619        snoop_result = forwardAtomic(pkt, InvalidPortID);
620    }
621    MemCmd snoop_response_cmd = snoop_result.first;
622    snoop_response_latency += snoop_result.second;
623
624    if (snoop_response_cmd != MemCmd::InvalidCmd)
625        pkt->cmd = snoop_response_cmd;
626
627    // add the response snoop data
628    if (pkt->isResponse()) {
629        snoops++;
630    }
631
632    // @todo: Not setting first-word time
633    pkt->lastWordDelay = snoop_response_latency;
634    return snoop_response_latency;
635}
636
637std::pair<MemCmd, Tick>
638CoherentXBar::forwardAtomic(PacketPtr pkt, PortID exclude_slave_port_id,
639                           PortID source_master_port_id,
640                           const std::vector<SlavePort*>& dests)
641{
642    // the packet may be changed on snoops, record the original
643    // command to enable us to restore it between snoops so that
644    // additional snoops can take place properly
645    MemCmd orig_cmd = pkt->cmd;
646    MemCmd snoop_response_cmd = MemCmd::InvalidCmd;
647    Tick snoop_response_latency = 0;
648
649    // snoops should only happen if the system isn't bypassing caches
650    assert(!system->bypassCaches());
651
652    unsigned fanout = 0;
653
654    for (const auto& p: dests) {
655        // we could have gotten this request from a snooping master
656        // (corresponding to our own slave port that is also in
657        // snoopPorts) and should not send it back to where it came
658        // from
659        if (exclude_slave_port_id != InvalidPortID &&
660            p->getId() == exclude_slave_port_id)
661            continue;
662
663        Tick latency = p->sendAtomicSnoop(pkt);
664        fanout++;
665
666        // in contrast to a functional access, we have to keep on
667        // going as all snoopers must be updated even if we get a
668        // response
669        if (!pkt->isResponse())
670            continue;
671
672        // response from snoop agent
673        assert(pkt->cmd != orig_cmd);
674        assert(pkt->memInhibitAsserted());
675        // should only happen once
676        assert(snoop_response_cmd == MemCmd::InvalidCmd);
677        // save response state
678        snoop_response_cmd = pkt->cmd;
679        snoop_response_latency = latency;
680
681        if (snoopFilter) {
682            // Handle responses by the snoopers and differentiate between
683            // responses to requests from above and snoops from below
684            if (source_master_port_id != InvalidPortID) {
685                // Getting a response for a snoop from below
686                assert(exclude_slave_port_id == InvalidPortID);
687                snoopFilter->updateSnoopForward(pkt, *p,
688                             *masterPorts[source_master_port_id]);
689            } else {
690                // Getting a response for a request from above
691                assert(source_master_port_id == InvalidPortID);
692                snoopFilter->updateSnoopResponse(pkt, *p,
693                             *slavePorts[exclude_slave_port_id]);
694            }
695        }
696        // restore original packet state for remaining snoopers
697        pkt->cmd = orig_cmd;
698    }
699
700    // Stats for fanout
701    snoopFanout.sample(fanout);
702
703    // the packet is restored as part of the loop and any potential
704    // snoop response is part of the returned pair
705    return std::make_pair(snoop_response_cmd, snoop_response_latency);
706}
707
708void
709CoherentXBar::recvFunctional(PacketPtr pkt, PortID slave_port_id)
710{
711    if (!pkt->isPrint()) {
712        // don't do DPRINTFs on PrintReq as it clutters up the output
713        DPRINTF(CoherentXBar,
714                "recvFunctional: packet src %s addr 0x%x cmd %s\n",
715                slavePorts[slave_port_id]->name(), pkt->getAddr(),
716                pkt->cmdString());
717    }
718
719    // uncacheable requests need never be snooped
720    if (!pkt->req->isUncacheable() && !system->bypassCaches()) {
721        // forward to all snoopers but the source
722        forwardFunctional(pkt, slave_port_id);
723    }
724
725    // there is no need to continue if the snooping has found what we
726    // were looking for and the packet is already a response
727    if (!pkt->isResponse()) {
728        PortID dest_id = findPort(pkt->getAddr());
729
730        masterPorts[dest_id]->sendFunctional(pkt);
731    }
732}
733
734void
735CoherentXBar::recvFunctionalSnoop(PacketPtr pkt, PortID master_port_id)
736{
737    if (!pkt->isPrint()) {
738        // don't do DPRINTFs on PrintReq as it clutters up the output
739        DPRINTF(CoherentXBar,
740                "recvFunctionalSnoop: packet src %s addr 0x%x cmd %s\n",
741                masterPorts[master_port_id]->name(), pkt->getAddr(),
742                pkt->cmdString());
743    }
744
745    // forward to all snoopers
746    forwardFunctional(pkt, InvalidPortID);
747}
748
749void
750CoherentXBar::forwardFunctional(PacketPtr pkt, PortID exclude_slave_port_id)
751{
752    // snoops should only happen if the system isn't bypassing caches
753    assert(!system->bypassCaches());
754
755    for (const auto& p: snoopPorts) {
756        // we could have gotten this request from a snooping master
757        // (corresponding to our own slave port that is also in
758        // snoopPorts) and should not send it back to where it came
759        // from
760        if (exclude_slave_port_id == InvalidPortID ||
761            p->getId() != exclude_slave_port_id)
762            p->sendFunctionalSnoop(pkt);
763
764        // if we get a response we are done
765        if (pkt->isResponse()) {
766            break;
767        }
768    }
769}
770
771unsigned int
772CoherentXBar::drain(DrainManager *dm)
773{
774    // sum up the individual layers
775    unsigned int total = 0;
776    for (auto l: reqLayers)
777        total += l->drain(dm);
778    for (auto l: respLayers)
779        total += l->drain(dm);
780    for (auto l: snoopLayers)
781        total += l->drain(dm);
782    return total;
783}
784
785void
786CoherentXBar::regStats()
787{
788    // register the stats of the base class and our layers
789    BaseXBar::regStats();
790    for (auto l: reqLayers)
791        l->regStats();
792    for (auto l: respLayers)
793        l->regStats();
794    for (auto l: snoopLayers)
795        l->regStats();
796
797    snoops
798        .name(name() + ".snoops")
799        .desc("Total snoops (count)")
800    ;
801
802    snoopFanout
803        .init(0, snoopPorts.size(), 1)
804        .name(name() + ".snoop_fanout")
805        .desc("Request fanout histogram")
806    ;
807}
808
809CoherentXBar *
810CoherentXBarParams::create()
811{
812    return new CoherentXBar(this);
813}
814