coherent_xbar.cc revision 10888
1/*
2 * Copyright (c) 2011-2015 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder.  You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2006 The Regents of The University of Michigan
15 * All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions are
19 * met: redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer;
21 * redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution;
24 * neither the name of the copyright holders nor the names of its
25 * contributors may be used to endorse or promote products derived from
26 * this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 *
40 * Authors: Ali Saidi
41 *          Andreas Hansson
42 *          William Wang
43 */
44
45/**
46 * @file
47 * Definition of a crossbar object.
48 */
49
50#include "base/misc.hh"
51#include "base/trace.hh"
52#include "debug/AddrRanges.hh"
53#include "debug/CoherentXBar.hh"
54#include "mem/coherent_xbar.hh"
55#include "sim/system.hh"
56
57CoherentXBar::CoherentXBar(const CoherentXBarParams *p)
58    : BaseXBar(p), system(p->system), snoopFilter(p->snoop_filter),
59      snoopResponseLatency(p->snoop_response_latency)
60{
61    // create the ports based on the size of the master and slave
62    // vector ports, and the presence of the default port, the ports
63    // are enumerated starting from zero
64    for (int i = 0; i < p->port_master_connection_count; ++i) {
65        std::string portName = csprintf("%s.master[%d]", name(), i);
66        MasterPort* bp = new CoherentXBarMasterPort(portName, *this, i);
67        masterPorts.push_back(bp);
68        reqLayers.push_back(new ReqLayer(*bp, *this,
69                                         csprintf(".reqLayer%d", i)));
70        snoopLayers.push_back(new SnoopRespLayer(*bp, *this,
71                                                 csprintf(".snoopLayer%d", i)));
72    }
73
74    // see if we have a default slave device connected and if so add
75    // our corresponding master port
76    if (p->port_default_connection_count) {
77        defaultPortID = masterPorts.size();
78        std::string portName = name() + ".default";
79        MasterPort* bp = new CoherentXBarMasterPort(portName, *this,
80                                                   defaultPortID);
81        masterPorts.push_back(bp);
82        reqLayers.push_back(new ReqLayer(*bp, *this, csprintf(".reqLayer%d",
83                                             defaultPortID)));
84        snoopLayers.push_back(new SnoopRespLayer(*bp, *this,
85                                                 csprintf(".snoopLayer%d",
86                                                          defaultPortID)));
87    }
88
89    // create the slave ports, once again starting at zero
90    for (int i = 0; i < p->port_slave_connection_count; ++i) {
91        std::string portName = csprintf("%s.slave[%d]", name(), i);
92        QueuedSlavePort* bp = new CoherentXBarSlavePort(portName, *this, i);
93        slavePorts.push_back(bp);
94        respLayers.push_back(new RespLayer(*bp, *this,
95                                           csprintf(".respLayer%d", i)));
96        snoopRespPorts.push_back(new SnoopRespPort(*bp, *this));
97    }
98
99    if (snoopFilter)
100        snoopFilter->setSlavePorts(slavePorts);
101
102    clearPortCache();
103}
104
105CoherentXBar::~CoherentXBar()
106{
107    for (auto l: reqLayers)
108        delete l;
109    for (auto l: respLayers)
110        delete l;
111    for (auto l: snoopLayers)
112        delete l;
113    for (auto p: snoopRespPorts)
114        delete p;
115}
116
117void
118CoherentXBar::init()
119{
120    // the base class is responsible for determining the block size
121    BaseXBar::init();
122
123    // iterate over our slave ports and determine which of our
124    // neighbouring master ports are snooping and add them as snoopers
125    for (const auto& p: slavePorts) {
126        // check if the connected master port is snooping
127        if (p->isSnooping()) {
128            DPRINTF(AddrRanges, "Adding snooping master %s\n",
129                    p->getMasterPort().name());
130            snoopPorts.push_back(p);
131        }
132    }
133
134    if (snoopPorts.empty())
135        warn("CoherentXBar %s has no snooping ports attached!\n", name());
136}
137
138bool
139CoherentXBar::recvTimingReq(PacketPtr pkt, PortID slave_port_id)
140{
141    // @todo temporary hack to deal with memory corruption issue until
142    // 4-phase transactions are complete
143    for (int x = 0; x < pendingDelete.size(); x++)
144        delete pendingDelete[x];
145    pendingDelete.clear();
146
147    // determine the source port based on the id
148    SlavePort *src_port = slavePorts[slave_port_id];
149
150    // remember if the packet is an express snoop
151    bool is_express_snoop = pkt->isExpressSnoop();
152    bool is_inhibited = pkt->memInhibitAsserted();
153    // for normal requests, going downstream, the express snoop flag
154    // and the inhibited flag should always be the same
155    assert(is_express_snoop == is_inhibited);
156
157    // determine the destination based on the address
158    PortID master_port_id = findPort(pkt->getAddr());
159
160    // test if the crossbar should be considered occupied for the current
161    // port, and exclude express snoops from the check
162    if (!is_express_snoop && !reqLayers[master_port_id]->tryTiming(src_port)) {
163        DPRINTF(CoherentXBar, "recvTimingReq: src %s %s 0x%x BUSY\n",
164                src_port->name(), pkt->cmdString(), pkt->getAddr());
165        return false;
166    }
167
168    DPRINTF(CoherentXBar, "recvTimingReq: src %s %s expr %d 0x%x\n",
169            src_port->name(), pkt->cmdString(), is_express_snoop,
170            pkt->getAddr());
171
172    // store size and command as they might be modified when
173    // forwarding the packet
174    unsigned int pkt_size = pkt->hasData() ? pkt->getSize() : 0;
175    unsigned int pkt_cmd = pkt->cmdToIndex();
176
177    // store the old header delay so we can restore it if needed
178    Tick old_header_delay = pkt->headerDelay;
179
180    // a request sees the frontend and forward latency
181    Tick xbar_delay = (frontendLatency + forwardLatency) * clockPeriod();
182
183    // set the packet header and payload delay
184    calcPacketTiming(pkt, xbar_delay);
185
186    // determine how long to be crossbar layer is busy
187    Tick packetFinishTime = clockEdge(Cycles(1)) + pkt->payloadDelay;
188
189    if (!system->bypassCaches()) {
190        // the packet is a memory-mapped request and should be
191        // broadcasted to our snoopers but the source
192        if (snoopFilter) {
193            // check with the snoop filter where to forward this packet
194            auto sf_res = snoopFilter->lookupRequest(pkt, *src_port);
195            // If SnoopFilter is enabled, the total time required by a packet
196            // to be delivered through the xbar has to be charged also with
197            // to lookup latency of the snoop filter (sf_res.second).
198            pkt->headerDelay += sf_res.second * clockPeriod();
199            packetFinishTime += sf_res.second * clockPeriod();
200            DPRINTF(CoherentXBar, "recvTimingReq: src %s %s 0x%x"\
201                    " SF size: %i lat: %i\n", src_port->name(),
202                    pkt->cmdString(), pkt->getAddr(), sf_res.first.size(),
203                    sf_res.second);
204            forwardTiming(pkt, slave_port_id, sf_res.first);
205        } else {
206            forwardTiming(pkt, slave_port_id);
207        }
208    }
209
210    // forwardTiming snooped into peer caches of the sender, and if
211    // this is a clean evict, but the packet is found in a cache, do
212    // not forward it
213    if (pkt->cmd == MemCmd::CleanEvict && pkt->isBlockCached()) {
214        DPRINTF(CoherentXBar, "recvTimingReq: Clean evict 0x%x still cached, "
215                "not forwarding\n", pkt->getAddr());
216
217        // update the layer state and schedule an idle event
218        reqLayers[master_port_id]->succeededTiming(packetFinishTime);
219        pendingDelete.push_back(pkt);
220        return true;
221    }
222
223    // remember if the packet will generate a snoop response
224    const bool expect_snoop_resp = !is_inhibited && pkt->memInhibitAsserted();
225    const bool expect_response = pkt->needsResponse() &&
226        !pkt->memInhibitAsserted();
227
228    // Note: Cannot create a copy of the full packet, here.
229    MemCmd orig_cmd(pkt->cmd);
230
231    // since it is a normal request, attempt to send the packet
232    bool success = masterPorts[master_port_id]->sendTimingReq(pkt);
233
234    if (snoopFilter && !system->bypassCaches()) {
235        // The packet may already be overwritten by the sendTimingReq function.
236        // The snoop filter needs to see the original request *and* the return
237        // status of the send operation, so we need to recreate the original
238        // request.  Atomic mode does not have the issue, as there the send
239        // operation and the response happen instantaneously and don't need two
240        // phase tracking.
241        MemCmd tmp_cmd(pkt->cmd);
242        pkt->cmd = orig_cmd;
243        // Let the snoop filter know about the success of the send operation
244        snoopFilter->updateRequest(pkt, *src_port, !success);
245        pkt->cmd = tmp_cmd;
246    }
247
248    // check if we were successful in sending the packet onwards
249    if (!success)  {
250        // express snoops and inhibited packets should never be forced
251        // to retry
252        assert(!is_express_snoop);
253        assert(!pkt->memInhibitAsserted());
254
255        // restore the header delay
256        pkt->headerDelay = old_header_delay;
257
258        DPRINTF(CoherentXBar, "recvTimingReq: src %s %s 0x%x RETRY\n",
259                src_port->name(), pkt->cmdString(), pkt->getAddr());
260
261        // update the layer state and schedule an idle event
262        reqLayers[master_port_id]->failedTiming(src_port,
263                                                clockEdge(Cycles(1)));
264    } else {
265        // express snoops currently bypass the crossbar state entirely
266        if (!is_express_snoop) {
267            // if this particular request will generate a snoop
268            // response
269            if (expect_snoop_resp) {
270                // we should never have an exsiting request outstanding
271                assert(outstandingSnoop.find(pkt->req) ==
272                       outstandingSnoop.end());
273                outstandingSnoop.insert(pkt->req);
274
275                // basic sanity check on the outstanding snoops
276                panic_if(outstandingSnoop.size() > 512,
277                         "Outstanding snoop requests exceeded 512\n");
278            }
279
280            // remember where to route the normal response to
281            if (expect_response || expect_snoop_resp) {
282                assert(routeTo.find(pkt->req) == routeTo.end());
283                routeTo[pkt->req] = slave_port_id;
284
285                panic_if(routeTo.size() > 512,
286                         "Routing table exceeds 512 packets\n");
287            }
288
289            // update the layer state and schedule an idle event
290            reqLayers[master_port_id]->succeededTiming(packetFinishTime);
291        }
292
293        // stats updates only consider packets that were successfully sent
294        pktCount[slave_port_id][master_port_id]++;
295        pktSize[slave_port_id][master_port_id] += pkt_size;
296        transDist[pkt_cmd]++;
297
298        if (is_express_snoop)
299            snoops++;
300    }
301
302    return success;
303}
304
305bool
306CoherentXBar::recvTimingResp(PacketPtr pkt, PortID master_port_id)
307{
308    // determine the source port based on the id
309    MasterPort *src_port = masterPorts[master_port_id];
310
311    // determine the destination
312    const auto route_lookup = routeTo.find(pkt->req);
313    assert(route_lookup != routeTo.end());
314    const PortID slave_port_id = route_lookup->second;
315    assert(slave_port_id != InvalidPortID);
316    assert(slave_port_id < respLayers.size());
317
318    // test if the crossbar should be considered occupied for the
319    // current port
320    if (!respLayers[slave_port_id]->tryTiming(src_port)) {
321        DPRINTF(CoherentXBar, "recvTimingResp: src %s %s 0x%x BUSY\n",
322                src_port->name(), pkt->cmdString(), pkt->getAddr());
323        return false;
324    }
325
326    DPRINTF(CoherentXBar, "recvTimingResp: src %s %s 0x%x\n",
327            src_port->name(), pkt->cmdString(), pkt->getAddr());
328
329    // store size and command as they might be modified when
330    // forwarding the packet
331    unsigned int pkt_size = pkt->hasData() ? pkt->getSize() : 0;
332    unsigned int pkt_cmd = pkt->cmdToIndex();
333
334    // a response sees the response latency
335    Tick xbar_delay = responseLatency * clockPeriod();
336
337    // set the packet header and payload delay
338    calcPacketTiming(pkt, xbar_delay);
339
340    // determine how long to be crossbar layer is busy
341    Tick packetFinishTime = clockEdge(Cycles(1)) + pkt->payloadDelay;
342
343    if (snoopFilter && !system->bypassCaches()) {
344        // let the snoop filter inspect the response and update its state
345        snoopFilter->updateResponse(pkt, *slavePorts[slave_port_id]);
346    }
347
348    // send the packet through the destination slave port and pay for
349    // any outstanding header delay
350    Tick latency = pkt->headerDelay;
351    pkt->headerDelay = 0;
352    slavePorts[slave_port_id]->schedTimingResp(pkt, curTick() + latency);
353
354    // remove the request from the routing table
355    routeTo.erase(route_lookup);
356
357    respLayers[slave_port_id]->succeededTiming(packetFinishTime);
358
359    // stats updates
360    pktCount[slave_port_id][master_port_id]++;
361    pktSize[slave_port_id][master_port_id] += pkt_size;
362    transDist[pkt_cmd]++;
363
364    return true;
365}
366
367void
368CoherentXBar::recvTimingSnoopReq(PacketPtr pkt, PortID master_port_id)
369{
370    DPRINTF(CoherentXBar, "recvTimingSnoopReq: src %s %s 0x%x\n",
371            masterPorts[master_port_id]->name(), pkt->cmdString(),
372            pkt->getAddr());
373
374    // update stats here as we know the forwarding will succeed
375    transDist[pkt->cmdToIndex()]++;
376    snoops++;
377
378    // we should only see express snoops from caches
379    assert(pkt->isExpressSnoop());
380
381    // remeber if the packet is inhibited so we can see if it changes
382    const bool is_inhibited = pkt->memInhibitAsserted();
383
384    if (snoopFilter) {
385        // let the Snoop Filter work its magic and guide probing
386        auto sf_res = snoopFilter->lookupSnoop(pkt);
387        // No timing here: packetFinishTime += sf_res.second * clockPeriod();
388        DPRINTF(CoherentXBar, "recvTimingSnoopReq: src %s %s 0x%x"\
389                " SF size: %i lat: %i\n", masterPorts[master_port_id]->name(),
390                pkt->cmdString(), pkt->getAddr(), sf_res.first.size(),
391                sf_res.second);
392
393        // forward to all snoopers
394        forwardTiming(pkt, InvalidPortID, sf_res.first);
395    } else {
396        forwardTiming(pkt, InvalidPortID);
397    }
398
399    // if we can expect a response, remember how to route it
400    if (!is_inhibited && pkt->memInhibitAsserted()) {
401        assert(routeTo.find(pkt->req) == routeTo.end());
402        routeTo[pkt->req] = master_port_id;
403    }
404
405    // a snoop request came from a connected slave device (one of
406    // our master ports), and if it is not coming from the slave
407    // device responsible for the address range something is
408    // wrong, hence there is nothing further to do as the packet
409    // would be going back to where it came from
410    assert(master_port_id == findPort(pkt->getAddr()));
411}
412
413bool
414CoherentXBar::recvTimingSnoopResp(PacketPtr pkt, PortID slave_port_id)
415{
416    // determine the source port based on the id
417    SlavePort* src_port = slavePorts[slave_port_id];
418
419    // get the destination
420    const auto route_lookup = routeTo.find(pkt->req);
421    assert(route_lookup != routeTo.end());
422    const PortID dest_port_id = route_lookup->second;
423    assert(dest_port_id != InvalidPortID);
424
425    // determine if the response is from a snoop request we
426    // created as the result of a normal request (in which case it
427    // should be in the outstandingSnoop), or if we merely forwarded
428    // someone else's snoop request
429    const bool forwardAsSnoop = outstandingSnoop.find(pkt->req) ==
430        outstandingSnoop.end();
431
432    // test if the crossbar should be considered occupied for the
433    // current port, note that the check is bypassed if the response
434    // is being passed on as a normal response since this is occupying
435    // the response layer rather than the snoop response layer
436    if (forwardAsSnoop) {
437        assert(dest_port_id < snoopLayers.size());
438        if (!snoopLayers[dest_port_id]->tryTiming(src_port)) {
439            DPRINTF(CoherentXBar, "recvTimingSnoopResp: src %s %s 0x%x BUSY\n",
440                    src_port->name(), pkt->cmdString(), pkt->getAddr());
441            return false;
442        }
443    } else {
444        // get the master port that mirrors this slave port internally
445        MasterPort* snoop_port = snoopRespPorts[slave_port_id];
446        assert(dest_port_id < respLayers.size());
447        if (!respLayers[dest_port_id]->tryTiming(snoop_port)) {
448            DPRINTF(CoherentXBar, "recvTimingSnoopResp: src %s %s 0x%x BUSY\n",
449                    snoop_port->name(), pkt->cmdString(), pkt->getAddr());
450            return false;
451        }
452    }
453
454    DPRINTF(CoherentXBar, "recvTimingSnoopResp: src %s %s 0x%x\n",
455            src_port->name(), pkt->cmdString(), pkt->getAddr());
456
457    // store size and command as they might be modified when
458    // forwarding the packet
459    unsigned int pkt_size = pkt->hasData() ? pkt->getSize() : 0;
460    unsigned int pkt_cmd = pkt->cmdToIndex();
461
462    // responses are never express snoops
463    assert(!pkt->isExpressSnoop());
464
465    // a snoop response sees the snoop response latency, and if it is
466    // forwarded as a normal response, the response latency
467    Tick xbar_delay =
468        (forwardAsSnoop ? snoopResponseLatency : responseLatency) *
469        clockPeriod();
470
471    // set the packet header and payload delay
472    calcPacketTiming(pkt, xbar_delay);
473
474    // determine how long to be crossbar layer is busy
475    Tick packetFinishTime = clockEdge(Cycles(1)) + pkt->payloadDelay;
476
477    // forward it either as a snoop response or a normal response
478    if (forwardAsSnoop) {
479        // this is a snoop response to a snoop request we forwarded,
480        // e.g. coming from the L1 and going to the L2, and it should
481        // be forwarded as a snoop response
482
483        if (snoopFilter) {
484            // update the probe filter so that it can properly track the line
485            snoopFilter->updateSnoopForward(pkt, *slavePorts[slave_port_id],
486                                            *masterPorts[dest_port_id]);
487        }
488
489        bool success M5_VAR_USED =
490            masterPorts[dest_port_id]->sendTimingSnoopResp(pkt);
491        pktCount[slave_port_id][dest_port_id]++;
492        pktSize[slave_port_id][dest_port_id] += pkt_size;
493        assert(success);
494
495        snoopLayers[dest_port_id]->succeededTiming(packetFinishTime);
496    } else {
497        // we got a snoop response on one of our slave ports,
498        // i.e. from a coherent master connected to the crossbar, and
499        // since we created the snoop request as part of recvTiming,
500        // this should now be a normal response again
501        outstandingSnoop.erase(pkt->req);
502
503        // this is a snoop response from a coherent master, hence it
504        // should never go back to where the snoop response came from,
505        // but instead to where the original request came from
506        assert(slave_port_id != dest_port_id);
507
508        if (snoopFilter) {
509            // update the probe filter so that it can properly track the line
510            snoopFilter->updateSnoopResponse(pkt, *slavePorts[slave_port_id],
511                                    *slavePorts[dest_port_id]);
512        }
513
514        DPRINTF(CoherentXBar, "recvTimingSnoopResp: src %s %s 0x%x"\
515                " FWD RESP\n", src_port->name(), pkt->cmdString(),
516                pkt->getAddr());
517
518        // as a normal response, it should go back to a master through
519        // one of our slave ports, we also pay for any outstanding
520        // header latency
521        Tick latency = pkt->headerDelay;
522        pkt->headerDelay = 0;
523        slavePorts[dest_port_id]->schedTimingResp(pkt, curTick() + latency);
524
525        respLayers[dest_port_id]->succeededTiming(packetFinishTime);
526    }
527
528    // remove the request from the routing table
529    routeTo.erase(route_lookup);
530
531    // stats updates
532    transDist[pkt_cmd]++;
533    snoops++;
534
535    return true;
536}
537
538
539void
540CoherentXBar::forwardTiming(PacketPtr pkt, PortID exclude_slave_port_id,
541                           const std::vector<QueuedSlavePort*>& dests)
542{
543    DPRINTF(CoherentXBar, "%s for %s address %x size %d\n", __func__,
544            pkt->cmdString(), pkt->getAddr(), pkt->getSize());
545
546    // snoops should only happen if the system isn't bypassing caches
547    assert(!system->bypassCaches());
548
549    unsigned fanout = 0;
550
551    for (const auto& p: dests) {
552        // we could have gotten this request from a snooping master
553        // (corresponding to our own slave port that is also in
554        // snoopPorts) and should not send it back to where it came
555        // from
556        if (exclude_slave_port_id == InvalidPortID ||
557            p->getId() != exclude_slave_port_id) {
558            // cache is not allowed to refuse snoop
559            p->sendTimingSnoopReq(pkt);
560            fanout++;
561        }
562    }
563
564    // Stats for fanout of this forward operation
565    snoopFanout.sample(fanout);
566}
567
568void
569CoherentXBar::recvReqRetry(PortID master_port_id)
570{
571    // responses and snoop responses never block on forwarding them,
572    // so the retry will always be coming from a port to which we
573    // tried to forward a request
574    reqLayers[master_port_id]->recvRetry();
575}
576
577Tick
578CoherentXBar::recvAtomic(PacketPtr pkt, PortID slave_port_id)
579{
580    DPRINTF(CoherentXBar, "recvAtomic: packet src %s addr 0x%x cmd %s\n",
581            slavePorts[slave_port_id]->name(), pkt->getAddr(),
582            pkt->cmdString());
583
584    unsigned int pkt_size = pkt->hasData() ? pkt->getSize() : 0;
585    unsigned int pkt_cmd = pkt->cmdToIndex();
586
587    MemCmd snoop_response_cmd = MemCmd::InvalidCmd;
588    Tick snoop_response_latency = 0;
589
590    if (!system->bypassCaches()) {
591        // forward to all snoopers but the source
592        std::pair<MemCmd, Tick> snoop_result;
593        if (snoopFilter) {
594            // check with the snoop filter where to forward this packet
595            auto sf_res =
596                snoopFilter->lookupRequest(pkt, *slavePorts[slave_port_id]);
597            snoop_response_latency += sf_res.second * clockPeriod();
598            DPRINTF(CoherentXBar, "%s: src %s %s 0x%x"\
599                    " SF size: %i lat: %i\n", __func__,
600                    slavePorts[slave_port_id]->name(), pkt->cmdString(),
601                    pkt->getAddr(), sf_res.first.size(), sf_res.second);
602            snoop_result = forwardAtomic(pkt, slave_port_id, InvalidPortID,
603                                         sf_res.first);
604        } else {
605            snoop_result = forwardAtomic(pkt, slave_port_id);
606        }
607        snoop_response_cmd = snoop_result.first;
608        snoop_response_latency += snoop_result.second;
609    }
610
611    // even if we had a snoop response, we must continue and also
612    // perform the actual request at the destination
613    PortID master_port_id = findPort(pkt->getAddr());
614
615    // stats updates for the request
616    pktCount[slave_port_id][master_port_id]++;
617    pktSize[slave_port_id][master_port_id] += pkt_size;
618    transDist[pkt_cmd]++;
619
620    // forward the request to the appropriate destination
621    Tick response_latency = masterPorts[master_port_id]->sendAtomic(pkt);
622
623    // Lower levels have replied, tell the snoop filter
624    if (snoopFilter && !system->bypassCaches() && pkt->isResponse()) {
625        snoopFilter->updateResponse(pkt, *slavePorts[slave_port_id]);
626    }
627
628    // if we got a response from a snooper, restore it here
629    if (snoop_response_cmd != MemCmd::InvalidCmd) {
630        // no one else should have responded
631        assert(!pkt->isResponse());
632        pkt->cmd = snoop_response_cmd;
633        response_latency = snoop_response_latency;
634    }
635
636    // add the response data
637    if (pkt->isResponse()) {
638        pkt_size = pkt->hasData() ? pkt->getSize() : 0;
639        pkt_cmd = pkt->cmdToIndex();
640
641        // stats updates
642        pktCount[slave_port_id][master_port_id]++;
643        pktSize[slave_port_id][master_port_id] += pkt_size;
644        transDist[pkt_cmd]++;
645    }
646
647    // @todo: Not setting header time
648    pkt->payloadDelay = response_latency;
649    return response_latency;
650}
651
652Tick
653CoherentXBar::recvAtomicSnoop(PacketPtr pkt, PortID master_port_id)
654{
655    DPRINTF(CoherentXBar, "recvAtomicSnoop: packet src %s addr 0x%x cmd %s\n",
656            masterPorts[master_port_id]->name(), pkt->getAddr(),
657            pkt->cmdString());
658
659    // add the request snoop data
660    snoops++;
661
662    // forward to all snoopers
663    std::pair<MemCmd, Tick> snoop_result;
664    Tick snoop_response_latency = 0;
665    if (snoopFilter) {
666        auto sf_res = snoopFilter->lookupSnoop(pkt);
667        snoop_response_latency += sf_res.second * clockPeriod();
668        DPRINTF(CoherentXBar, "%s: src %s %s 0x%x SF size: %i lat: %i\n",
669                __func__, masterPorts[master_port_id]->name(), pkt->cmdString(),
670                pkt->getAddr(), sf_res.first.size(), sf_res.second);
671        snoop_result = forwardAtomic(pkt, InvalidPortID, master_port_id,
672                                     sf_res.first);
673    } else {
674        snoop_result = forwardAtomic(pkt, InvalidPortID);
675    }
676    MemCmd snoop_response_cmd = snoop_result.first;
677    snoop_response_latency += snoop_result.second;
678
679    if (snoop_response_cmd != MemCmd::InvalidCmd)
680        pkt->cmd = snoop_response_cmd;
681
682    // add the response snoop data
683    if (pkt->isResponse()) {
684        snoops++;
685    }
686
687    // @todo: Not setting header time
688    pkt->payloadDelay = snoop_response_latency;
689    return snoop_response_latency;
690}
691
692std::pair<MemCmd, Tick>
693CoherentXBar::forwardAtomic(PacketPtr pkt, PortID exclude_slave_port_id,
694                           PortID source_master_port_id,
695                           const std::vector<QueuedSlavePort*>& dests)
696{
697    // the packet may be changed on snoops, record the original
698    // command to enable us to restore it between snoops so that
699    // additional snoops can take place properly
700    MemCmd orig_cmd = pkt->cmd;
701    MemCmd snoop_response_cmd = MemCmd::InvalidCmd;
702    Tick snoop_response_latency = 0;
703
704    // snoops should only happen if the system isn't bypassing caches
705    assert(!system->bypassCaches());
706
707    unsigned fanout = 0;
708
709    for (const auto& p: dests) {
710        // we could have gotten this request from a snooping master
711        // (corresponding to our own slave port that is also in
712        // snoopPorts) and should not send it back to where it came
713        // from
714        if (exclude_slave_port_id != InvalidPortID &&
715            p->getId() == exclude_slave_port_id)
716            continue;
717
718        Tick latency = p->sendAtomicSnoop(pkt);
719        fanout++;
720
721        // in contrast to a functional access, we have to keep on
722        // going as all snoopers must be updated even if we get a
723        // response
724        if (!pkt->isResponse())
725            continue;
726
727        // response from snoop agent
728        assert(pkt->cmd != orig_cmd);
729        assert(pkt->memInhibitAsserted());
730        // should only happen once
731        assert(snoop_response_cmd == MemCmd::InvalidCmd);
732        // save response state
733        snoop_response_cmd = pkt->cmd;
734        snoop_response_latency = latency;
735
736        if (snoopFilter) {
737            // Handle responses by the snoopers and differentiate between
738            // responses to requests from above and snoops from below
739            if (source_master_port_id != InvalidPortID) {
740                // Getting a response for a snoop from below
741                assert(exclude_slave_port_id == InvalidPortID);
742                snoopFilter->updateSnoopForward(pkt, *p,
743                             *masterPorts[source_master_port_id]);
744            } else {
745                // Getting a response for a request from above
746                assert(source_master_port_id == InvalidPortID);
747                snoopFilter->updateSnoopResponse(pkt, *p,
748                             *slavePorts[exclude_slave_port_id]);
749            }
750        }
751        // restore original packet state for remaining snoopers
752        pkt->cmd = orig_cmd;
753    }
754
755    // Stats for fanout
756    snoopFanout.sample(fanout);
757
758    // the packet is restored as part of the loop and any potential
759    // snoop response is part of the returned pair
760    return std::make_pair(snoop_response_cmd, snoop_response_latency);
761}
762
763void
764CoherentXBar::recvFunctional(PacketPtr pkt, PortID slave_port_id)
765{
766    if (!pkt->isPrint()) {
767        // don't do DPRINTFs on PrintReq as it clutters up the output
768        DPRINTF(CoherentXBar,
769                "recvFunctional: packet src %s addr 0x%x cmd %s\n",
770                slavePorts[slave_port_id]->name(), pkt->getAddr(),
771                pkt->cmdString());
772    }
773
774    if (!system->bypassCaches()) {
775        // forward to all snoopers but the source
776        forwardFunctional(pkt, slave_port_id);
777    }
778
779    // there is no need to continue if the snooping has found what we
780    // were looking for and the packet is already a response
781    if (!pkt->isResponse()) {
782        // since our slave ports are queued ports we need to check them as well
783        for (const auto& p : slavePorts) {
784            // if we find a response that has the data, then the
785            // downstream caches/memories may be out of date, so simply stop
786            // here
787            if (p->checkFunctional(pkt)) {
788                if (pkt->needsResponse())
789                    pkt->makeResponse();
790                return;
791            }
792        }
793
794        PortID dest_id = findPort(pkt->getAddr());
795
796        masterPorts[dest_id]->sendFunctional(pkt);
797    }
798}
799
800void
801CoherentXBar::recvFunctionalSnoop(PacketPtr pkt, PortID master_port_id)
802{
803    if (!pkt->isPrint()) {
804        // don't do DPRINTFs on PrintReq as it clutters up the output
805        DPRINTF(CoherentXBar,
806                "recvFunctionalSnoop: packet src %s addr 0x%x cmd %s\n",
807                masterPorts[master_port_id]->name(), pkt->getAddr(),
808                pkt->cmdString());
809    }
810
811    // forward to all snoopers
812    forwardFunctional(pkt, InvalidPortID);
813}
814
815void
816CoherentXBar::forwardFunctional(PacketPtr pkt, PortID exclude_slave_port_id)
817{
818    // snoops should only happen if the system isn't bypassing caches
819    assert(!system->bypassCaches());
820
821    for (const auto& p: snoopPorts) {
822        // we could have gotten this request from a snooping master
823        // (corresponding to our own slave port that is also in
824        // snoopPorts) and should not send it back to where it came
825        // from
826        if (exclude_slave_port_id == InvalidPortID ||
827            p->getId() != exclude_slave_port_id)
828            p->sendFunctionalSnoop(pkt);
829
830        // if we get a response we are done
831        if (pkt->isResponse()) {
832            break;
833        }
834    }
835}
836
837unsigned int
838CoherentXBar::drain(DrainManager *dm)
839{
840    // sum up the individual layers
841    unsigned int total = 0;
842    for (auto l: reqLayers)
843        total += l->drain(dm);
844    for (auto l: respLayers)
845        total += l->drain(dm);
846    for (auto l: snoopLayers)
847        total += l->drain(dm);
848    return total;
849}
850
851void
852CoherentXBar::regStats()
853{
854    // register the stats of the base class and our layers
855    BaseXBar::regStats();
856    for (auto l: reqLayers)
857        l->regStats();
858    for (auto l: respLayers)
859        l->regStats();
860    for (auto l: snoopLayers)
861        l->regStats();
862
863    snoops
864        .name(name() + ".snoops")
865        .desc("Total snoops (count)")
866    ;
867
868    snoopFanout
869        .init(0, snoopPorts.size(), 1)
870        .name(name() + ".snoop_fanout")
871        .desc("Request fanout histogram")
872    ;
873}
874
875CoherentXBar *
876CoherentXBarParams::create()
877{
878    return new CoherentXBar(this);
879}
880