mshr.cc revision 13844
1/*
2 * Copyright (c) 2012-2013, 2015-2019 ARM Limited
3 * All rights reserved.
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder.  You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2002-2005 The Regents of The University of Michigan
15 * Copyright (c) 2010 Advanced Micro Devices, Inc.
16 * All rights reserved.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions are
20 * met: redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer;
22 * redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution;
25 * neither the name of the copyright holders nor the names of its
26 * contributors may be used to endorse or promote products derived from
27 * this software without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40 *
41 * Authors: Erik Hallnor
42 *          Dave Greene
43 *          Nikos Nikoleris
44 */
45
46/**
47 * @file
48 * Miss Status and Handling Register (MSHR) definitions.
49 */
50
51#include "mem/cache/mshr.hh"
52
53#include <cassert>
54#include <string>
55
56#include "base/logging.hh"
57#include "base/trace.hh"
58#include "base/types.hh"
59#include "debug/Cache.hh"
60#include "mem/cache/base.hh"
61#include "mem/request.hh"
62#include "sim/core.hh"
63
64MSHR::MSHR() : downstreamPending(false),
65               pendingModified(false),
66               postInvalidate(false), postDowngrade(false),
67               wasWholeLineWrite(false), isForward(false)
68{
69}
70
71MSHR::TargetList::TargetList()
72    : needsWritable(false), hasUpgrade(false), allocOnFill(false),
73      hasFromCache(false)
74{}
75
76
77void
78MSHR::TargetList::updateFlags(PacketPtr pkt, Target::Source source,
79                              bool alloc_on_fill)
80{
81    if (source != Target::FromSnoop) {
82        if (pkt->needsWritable()) {
83            needsWritable = true;
84        }
85
86        // StoreCondReq is effectively an upgrade if it's in an MSHR
87        // since it would have been failed already if we didn't have a
88        // read-only copy
89        if (pkt->isUpgrade() || pkt->cmd == MemCmd::StoreCondReq) {
90            hasUpgrade = true;
91        }
92
93        // potentially re-evaluate whether we should allocate on a fill or
94        // not
95        allocOnFill = allocOnFill || alloc_on_fill;
96
97        if (source != Target::FromPrefetcher) {
98            hasFromCache = hasFromCache || pkt->fromCache();
99
100            updateWriteFlags(pkt);
101        }
102    }
103}
104
105void
106MSHR::TargetList::populateFlags()
107{
108    resetFlags();
109    for (auto& t: *this) {
110        updateFlags(t.pkt, t.source, t.allocOnFill);
111    }
112}
113
114inline void
115MSHR::TargetList::add(PacketPtr pkt, Tick readyTime,
116                      Counter order, Target::Source source, bool markPending,
117                      bool alloc_on_fill)
118{
119    updateFlags(pkt, source, alloc_on_fill);
120    if (markPending) {
121        // Iterate over the SenderState stack and see if we find
122        // an MSHR entry. If we do, set the downstreamPending
123        // flag. Otherwise, do nothing.
124        MSHR *mshr = pkt->findNextSenderState<MSHR>();
125        if (mshr != nullptr) {
126            assert(!mshr->downstreamPending);
127            mshr->downstreamPending = true;
128        } else {
129            // No need to clear downstreamPending later
130            markPending = false;
131        }
132    }
133
134    emplace_back(pkt, readyTime, order, source, markPending, alloc_on_fill);
135}
136
137
138static void
139replaceUpgrade(PacketPtr pkt)
140{
141    // remember if the current packet has data allocated
142    bool has_data = pkt->hasData() || pkt->hasRespData();
143
144    if (pkt->cmd == MemCmd::UpgradeReq) {
145        pkt->cmd = MemCmd::ReadExReq;
146        DPRINTF(Cache, "Replacing UpgradeReq with ReadExReq\n");
147    } else if (pkt->cmd == MemCmd::SCUpgradeReq) {
148        pkt->cmd = MemCmd::SCUpgradeFailReq;
149        DPRINTF(Cache, "Replacing SCUpgradeReq with SCUpgradeFailReq\n");
150    } else if (pkt->cmd == MemCmd::StoreCondReq) {
151        pkt->cmd = MemCmd::StoreCondFailReq;
152        DPRINTF(Cache, "Replacing StoreCondReq with StoreCondFailReq\n");
153    }
154
155    if (!has_data) {
156        // there is no sensible way of setting the data field if the
157        // new command actually would carry data
158        assert(!pkt->hasData());
159
160        if (pkt->hasRespData()) {
161            // we went from a packet that had no data (neither request,
162            // nor response), to one that does, and therefore we need to
163            // actually allocate space for the data payload
164            pkt->allocate();
165        }
166    }
167}
168
169
170void
171MSHR::TargetList::replaceUpgrades()
172{
173    if (!hasUpgrade)
174        return;
175
176    for (auto& t : *this) {
177        replaceUpgrade(t.pkt);
178    }
179
180    hasUpgrade = false;
181}
182
183
184void
185MSHR::TargetList::clearDownstreamPending(MSHR::TargetList::iterator begin,
186                                         MSHR::TargetList::iterator end)
187{
188    for (auto t = begin; t != end; t++) {
189        if (t->markedPending) {
190            // Iterate over the SenderState stack and see if we find
191            // an MSHR entry. If we find one, clear the
192            // downstreamPending flag by calling
193            // clearDownstreamPending(). This recursively clears the
194            // downstreamPending flag in all caches this packet has
195            // passed through.
196            MSHR *mshr = t->pkt->findNextSenderState<MSHR>();
197            if (mshr != nullptr) {
198                mshr->clearDownstreamPending();
199            }
200            t->markedPending = false;
201        }
202    }
203}
204
205void
206MSHR::TargetList::clearDownstreamPending()
207{
208    clearDownstreamPending(begin(), end());
209}
210
211
212bool
213MSHR::TargetList::trySatisfyFunctional(PacketPtr pkt)
214{
215    for (auto& t : *this) {
216        if (pkt->trySatisfyFunctional(t.pkt)) {
217            return true;
218        }
219    }
220
221    return false;
222}
223
224
225void
226MSHR::TargetList::print(std::ostream &os, int verbosity,
227                        const std::string &prefix) const
228{
229    for (auto& t : *this) {
230        const char *s;
231        switch (t.source) {
232          case Target::FromCPU:
233            s = "FromCPU";
234            break;
235          case Target::FromSnoop:
236            s = "FromSnoop";
237            break;
238          case Target::FromPrefetcher:
239            s = "FromPrefetcher";
240            break;
241          default:
242            s = "";
243            break;
244        }
245        ccprintf(os, "%s%s: ", prefix, s);
246        t.pkt->print(os, verbosity, "");
247        ccprintf(os, "\n");
248    }
249}
250
251
252void
253MSHR::allocate(Addr blk_addr, unsigned blk_size, PacketPtr target,
254               Tick when_ready, Counter _order, bool alloc_on_fill)
255{
256    blkAddr = blk_addr;
257    blkSize = blk_size;
258    isSecure = target->isSecure();
259    readyTime = when_ready;
260    order = _order;
261    assert(target);
262    isForward = false;
263    wasWholeLineWrite = false;
264    _isUncacheable = target->req->isUncacheable();
265    inService = false;
266    downstreamPending = false;
267
268    targets.init(blkAddr, blkSize);
269    deferredTargets.init(blkAddr, blkSize);
270
271    // Don't know of a case where we would allocate a new MSHR for a
272    // snoop (mem-side request), so set source according to request here
273    Target::Source source = (target->cmd == MemCmd::HardPFReq) ?
274        Target::FromPrefetcher : Target::FromCPU;
275    targets.add(target, when_ready, _order, source, true, alloc_on_fill);
276}
277
278
279void
280MSHR::clearDownstreamPending()
281{
282    assert(downstreamPending);
283    downstreamPending = false;
284    // recursively clear flag on any MSHRs we will be forwarding
285    // responses to
286    targets.clearDownstreamPending();
287}
288
289void
290MSHR::markInService(bool pending_modified_resp)
291{
292    assert(!inService);
293
294    inService = true;
295    pendingModified = targets.needsWritable || pending_modified_resp;
296    postInvalidate = postDowngrade = false;
297
298    if (!downstreamPending) {
299        // let upstream caches know that the request has made it to a
300        // level where it's going to get a response
301        targets.clearDownstreamPending();
302    }
303    // if the line is not considered a whole-line write when sent
304    // downstream, make sure it is also not considered a whole-line
305    // write when receiving the response, and vice versa
306    wasWholeLineWrite = isWholeLineWrite();
307}
308
309
310void
311MSHR::deallocate()
312{
313    assert(targets.empty());
314    targets.resetFlags();
315    assert(deferredTargets.isReset());
316    inService = false;
317}
318
319/*
320 * Adds a target to an MSHR
321 */
322void
323MSHR::allocateTarget(PacketPtr pkt, Tick whenReady, Counter _order,
324                     bool alloc_on_fill)
325{
326    // assume we'd never issue a prefetch when we've got an
327    // outstanding miss
328    assert(pkt->cmd != MemCmd::HardPFReq);
329
330    // if there's a request already in service for this MSHR, we will
331    // have to defer the new target until after the response if any of
332    // the following are true:
333    // - there are other targets already deferred
334    // - there's a pending invalidate to be applied after the response
335    //   comes back (but before this target is processed)
336    // - the MSHR's first (and only) non-deferred target is a cache
337    //   maintenance packet
338    // - the new target is a cache maintenance packet (this is probably
339    //   overly conservative but certainly safe)
340    // - this target requires a writable block and either we're not
341    //   getting a writable block back or we have already snooped
342    //   another read request that will downgrade our writable block
343    //   to non-writable (Shared or Owned)
344    PacketPtr tgt_pkt = targets.front().pkt;
345    if (pkt->req->isCacheMaintenance() ||
346        tgt_pkt->req->isCacheMaintenance() ||
347        !deferredTargets.empty() ||
348        (inService &&
349         (hasPostInvalidate() ||
350          (pkt->needsWritable() &&
351           (!isPendingModified() || hasPostDowngrade() || isForward))))) {
352        // need to put on deferred list
353        if (inService && hasPostInvalidate())
354            replaceUpgrade(pkt);
355        deferredTargets.add(pkt, whenReady, _order, Target::FromCPU, true,
356                            alloc_on_fill);
357    } else {
358        // No request outstanding, or still OK to append to
359        // outstanding request: append to regular target list.  Only
360        // mark pending if current request hasn't been issued yet
361        // (isn't in service).
362        targets.add(pkt, whenReady, _order, Target::FromCPU, !inService,
363                    alloc_on_fill);
364    }
365}
366
367bool
368MSHR::handleSnoop(PacketPtr pkt, Counter _order)
369{
370    DPRINTF(Cache, "%s for %s\n", __func__, pkt->print());
371
372    // when we snoop packets the needsWritable and isInvalidate flags
373    // should always be the same, however, this assumes that we never
374    // snoop writes as they are currently not marked as invalidations
375    panic_if((pkt->needsWritable() != pkt->isInvalidate()) &&
376             !pkt->req->isCacheMaintenance(),
377             "%s got snoop %s where needsWritable, "
378             "does not match isInvalidate", name(), pkt->print());
379
380    if (!inService || (pkt->isExpressSnoop() && downstreamPending)) {
381        // Request has not been issued yet, or it's been issued
382        // locally but is buffered unissued at some downstream cache
383        // which is forwarding us this snoop.  Either way, the packet
384        // we're snooping logically precedes this MSHR's request, so
385        // the snoop has no impact on the MSHR, but must be processed
386        // in the standard way by the cache.  The only exception is
387        // that if we're an L2+ cache buffering an UpgradeReq from a
388        // higher-level cache, and the snoop is invalidating, then our
389        // buffered upgrades must be converted to read exclusives,
390        // since the upper-level cache no longer has a valid copy.
391        // That is, even though the upper-level cache got out on its
392        // local bus first, some other invalidating transaction
393        // reached the global bus before the upgrade did.
394        if (pkt->needsWritable() || pkt->req->isCacheInvalidate()) {
395            targets.replaceUpgrades();
396            deferredTargets.replaceUpgrades();
397        }
398
399        return false;
400    }
401
402    // From here on down, the request issued by this MSHR logically
403    // precedes the request we're snooping.
404    if (pkt->needsWritable() || pkt->req->isCacheInvalidate()) {
405        // snooped request still precedes the re-request we'll have to
406        // issue for deferred targets, if any...
407        deferredTargets.replaceUpgrades();
408    }
409
410    PacketPtr tgt_pkt = targets.front().pkt;
411    if (hasPostInvalidate() || tgt_pkt->req->isCacheInvalidate()) {
412        // a prior snoop has already appended an invalidation or a
413        // cache invalidation operation is in progress, so logically
414        // we don't have the block anymore; no need for further
415        // snooping.
416        return true;
417    }
418
419    if (isPendingModified() || pkt->isInvalidate()) {
420        // We need to save and replay the packet in two cases:
421        // 1. We're awaiting a writable copy (Modified or Exclusive),
422        //    so this MSHR is the orgering point, and we need to respond
423        //    after we receive data.
424        // 2. It's an invalidation (e.g., UpgradeReq), and we need
425        //    to forward the snoop up the hierarchy after the current
426        //    transaction completes.
427
428        // Start by determining if we will eventually respond or not,
429        // matching the conditions checked in Cache::handleSnoop
430        bool will_respond = isPendingModified() && pkt->needsResponse() &&
431                      !pkt->isClean();
432
433        // The packet we are snooping may be deleted by the time we
434        // actually process the target, and we consequently need to
435        // save a copy here. Clear flags and also allocate new data as
436        // the original packet data storage may have been deleted by
437        // the time we get to process this packet. In the cases where
438        // we are not responding after handling the snoop we also need
439        // to create a copy of the request to be on the safe side. In
440        // the latter case the cache is responsible for deleting both
441        // the packet and the request as part of handling the deferred
442        // snoop.
443        PacketPtr cp_pkt = will_respond ? new Packet(pkt, true, true) :
444            new Packet(std::make_shared<Request>(*pkt->req), pkt->cmd,
445                       blkSize, pkt->id);
446
447        if (will_respond) {
448            // we are the ordering point, and will consequently
449            // respond, and depending on whether the packet
450            // needsWritable or not we either pass a Shared line or a
451            // Modified line
452            pkt->setCacheResponding();
453
454            // inform the cache hierarchy that this cache had the line
455            // in the Modified state, even if the response is passed
456            // as Shared (and thus non-writable)
457            pkt->setResponderHadWritable();
458
459            // in the case of an uncacheable request there is no need
460            // to set the responderHadWritable flag, but since the
461            // recipient does not care there is no harm in doing so
462        } else if (isPendingModified() && pkt->isClean()) {
463            // this cache doesn't respond to the clean request, a
464            // destination xbar will respond to this request, but to
465            // do so it needs to know if it should wait for the
466            // WriteCleanReq
467            pkt->setSatisfied();
468        }
469
470        targets.add(cp_pkt, curTick(), _order, Target::FromSnoop,
471                    downstreamPending && targets.needsWritable, false);
472
473        if (pkt->needsWritable() || pkt->isInvalidate()) {
474            // This transaction will take away our pending copy
475            postInvalidate = true;
476        }
477    }
478
479    if (!pkt->needsWritable() && !pkt->req->isUncacheable()) {
480        // This transaction will get a read-shared copy, downgrading
481        // our copy if we had a writable one
482        postDowngrade = true;
483        // make sure that any downstream cache does not respond with a
484        // writable (and dirty) copy even if it has one, unless it was
485        // explicitly asked for one
486        pkt->setHasSharers();
487    }
488
489    return true;
490}
491
492MSHR::TargetList
493MSHR::extractServiceableTargets(PacketPtr pkt)
494{
495    TargetList ready_targets;
496    ready_targets.init(blkAddr, blkSize);
497    // If the downstream MSHR got an invalidation request then we only
498    // service the first of the FromCPU targets and any other
499    // non-FromCPU target. This way the remaining FromCPU targets
500    // issue a new request and get a fresh copy of the block and we
501    // avoid memory consistency violations.
502    if (pkt->cmd == MemCmd::ReadRespWithInvalidate) {
503        auto it = targets.begin();
504        assert((it->source == Target::FromCPU) ||
505               (it->source == Target::FromPrefetcher));
506        ready_targets.push_back(*it);
507        it = targets.erase(it);
508        while (it != targets.end()) {
509            if (it->source == Target::FromCPU) {
510                it++;
511            } else {
512                assert(it->source == Target::FromSnoop);
513                ready_targets.push_back(*it);
514                it = targets.erase(it);
515            }
516        }
517        ready_targets.populateFlags();
518    } else {
519        std::swap(ready_targets, targets);
520    }
521    targets.populateFlags();
522
523    return ready_targets;
524}
525
526bool
527MSHR::promoteDeferredTargets()
528{
529    if (targets.empty() && deferredTargets.empty()) {
530        // nothing to promote
531        return false;
532    }
533
534    // the deferred targets can be generally promoted unless they
535    // contain a cache maintenance request
536
537    // find the first target that is a cache maintenance request
538    auto it = std::find_if(deferredTargets.begin(), deferredTargets.end(),
539                           [](MSHR::Target &t) {
540                               return t.pkt->req->isCacheMaintenance();
541                           });
542    if (it == deferredTargets.begin()) {
543        // if the first deferred target is a cache maintenance packet
544        // then we can promote provided the targets list is empty and
545        // we can service it on its own
546        if (targets.empty()) {
547            targets.splice(targets.end(), deferredTargets, it);
548        }
549    } else {
550        // if a cache maintenance operation exists, we promote all the
551        // deferred targets that precede it, or all deferred targets
552        // otherwise
553        targets.splice(targets.end(), deferredTargets,
554                       deferredTargets.begin(), it);
555    }
556
557    deferredTargets.populateFlags();
558    targets.populateFlags();
559    order = targets.front().order;
560    readyTime = std::max(curTick(), targets.front().readyTime);
561
562    return true;
563}
564
565void
566MSHR::promoteIf(const std::function<bool (Target &)>& pred)
567{
568    // if any of the deferred targets were upper-level cache
569    // requests marked downstreamPending, need to clear that
570    assert(!downstreamPending);  // not pending here anymore
571
572    // find the first target does not satisfy the condition
573    auto last_it = std::find_if_not(deferredTargets.begin(),
574                                    deferredTargets.end(),
575                                    pred);
576
577    // for the prefix of the deferredTargets [begin(), last_it) clear
578    // the downstreamPending flag and move them to the target list
579    deferredTargets.clearDownstreamPending(deferredTargets.begin(),
580                                           last_it);
581    targets.splice(targets.end(), deferredTargets,
582                   deferredTargets.begin(), last_it);
583    // We need to update the flags for the target lists after the
584    // modifications
585    deferredTargets.populateFlags();
586}
587
588void
589MSHR::promoteReadable()
590{
591    if (!deferredTargets.empty() && !hasPostInvalidate()) {
592        // We got a non invalidating response, and we have the block
593        // but we have deferred targets which are waiting and they do
594        // not need writable. This can happen if the original request
595        // was for a cache clean operation and we had a copy of the
596        // block. Since we serviced the cache clean operation and we
597        // have the block, there's no need to defer the targets, so
598        // move them up to the regular target list.
599
600        auto pred = [](Target &t) {
601            assert(t.source == Target::FromCPU);
602            return !t.pkt->req->isCacheInvalidate() &&
603                   !t.pkt->needsWritable();
604        };
605        promoteIf(pred);
606    }
607}
608
609void
610MSHR::promoteWritable()
611{
612    if (deferredTargets.needsWritable &&
613        !(hasPostInvalidate() || hasPostDowngrade())) {
614        // We got a writable response, but we have deferred targets
615        // which are waiting to request a writable copy (not because
616        // of a pending invalidate).  This can happen if the original
617        // request was for a read-only block, but we got a writable
618        // response anyway. Since we got the writable copy there's no
619        // need to defer the targets, so move them up to the regular
620        // target list.
621        assert(!targets.needsWritable);
622        targets.needsWritable = true;
623
624        auto pred = [](Target &t) {
625            assert(t.source == Target::FromCPU);
626            return !t.pkt->req->isCacheInvalidate();
627        };
628
629        promoteIf(pred);
630    }
631}
632
633
634bool
635MSHR::trySatisfyFunctional(PacketPtr pkt)
636{
637    // For printing, we treat the MSHR as a whole as single entity.
638    // For other requests, we iterate over the individual targets
639    // since that's where the actual data lies.
640    if (pkt->isPrint()) {
641        pkt->trySatisfyFunctional(this, blkAddr, isSecure, blkSize, nullptr);
642        return false;
643    } else {
644        return (targets.trySatisfyFunctional(pkt) ||
645                deferredTargets.trySatisfyFunctional(pkt));
646    }
647}
648
649bool
650MSHR::sendPacket(BaseCache &cache)
651{
652    return cache.sendMSHRQueuePacket(this);
653}
654
655void
656MSHR::print(std::ostream &os, int verbosity, const std::string &prefix) const
657{
658    ccprintf(os, "%s[%#llx:%#llx](%s) %s %s %s state: %s %s %s %s %s %s\n",
659             prefix, blkAddr, blkAddr + blkSize - 1,
660             isSecure ? "s" : "ns",
661             isForward ? "Forward" : "",
662             allocOnFill() ? "AllocOnFill" : "",
663             needsWritable() ? "Wrtbl" : "",
664             _isUncacheable ? "Unc" : "",
665             inService ? "InSvc" : "",
666             downstreamPending ? "DwnPend" : "",
667             postInvalidate ? "PostInv" : "",
668             postDowngrade ? "PostDowngr" : "",
669             hasFromCache() ? "HasFromCache" : "");
670
671    if (!targets.empty()) {
672        ccprintf(os, "%s  Targets:\n", prefix);
673        targets.print(os, verbosity, prefix + "    ");
674    }
675    if (!deferredTargets.empty()) {
676        ccprintf(os, "%s  Deferred Targets:\n", prefix);
677        deferredTargets.print(os, verbosity, prefix + "      ");
678    }
679}
680
681std::string
682MSHR::print() const
683{
684    std::ostringstream str;
685    print(str);
686    return str.str();
687}
688