1/* 2 * Copyright (c) 2012-2013, 2015-2019 ARM Limited 3 * All rights reserved. 4 * 5 * The license below extends only to copyright in the software and shall 6 * not be construed as granting a license to any other intellectual 7 * property including but not limited to intellectual property relating 8 * to a hardware implementation of the functionality of the software 9 * licensed hereunder. You may use the software subject to the license 10 * terms below provided that you ensure that this notice is replicated 11 * unmodified and in its entirety in all distributions of the software, 12 * modified or unmodified, in source code or in binary form. 13 * 14 * Copyright (c) 2002-2005 The Regents of The University of Michigan 15 * Copyright (c) 2010 Advanced Micro Devices, Inc. 16 * All rights reserved. 17 * 18 * Redistribution and use in source and binary forms, with or without 19 * modification, are permitted provided that the following conditions are 20 * met: redistributions of source code must retain the above copyright 21 * notice, this list of conditions and the following disclaimer; 22 * redistributions in binary form must reproduce the above copyright 23 * notice, this list of conditions and the following disclaimer in the 24 * documentation and/or other materials provided with the distribution; 25 * neither the name of the copyright holders nor the names of its 26 * contributors may be used to endorse or promote products derived from 27 * this software without specific prior written permission. 28 * 29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 40 * 41 * Authors: Erik Hallnor 42 * Dave Greene 43 * Nikos Nikoleris 44 */ 45 46/** 47 * @file 48 * Miss Status and Handling Register (MSHR) definitions. 49 */ 50 51#include "mem/cache/mshr.hh" 52 53#include <cassert> 54#include <string> 55 56#include "base/logging.hh" 57#include "base/trace.hh" 58#include "base/types.hh" 59#include "debug/Cache.hh" 60#include "mem/cache/base.hh" 61#include "mem/request.hh" 62#include "sim/core.hh" 63 64MSHR::MSHR() : downstreamPending(false), 65 pendingModified(false), 66 postInvalidate(false), postDowngrade(false), 67 wasWholeLineWrite(false), isForward(false) 68{ 69} 70 71MSHR::TargetList::TargetList() 72 : needsWritable(false), hasUpgrade(false), allocOnFill(false), 73 hasFromCache(false) 74{} 75 76 77void 78MSHR::TargetList::updateFlags(PacketPtr pkt, Target::Source source, 79 bool alloc_on_fill) 80{ 81 if (source != Target::FromSnoop) { 82 if (pkt->needsWritable()) { 83 needsWritable = true; 84 } 85 86 // StoreCondReq is effectively an upgrade if it's in an MSHR 87 // since it would have been failed already if we didn't have a 88 // read-only copy 89 if (pkt->isUpgrade() || pkt->cmd == MemCmd::StoreCondReq) { 90 hasUpgrade = true; 91 } 92 93 // potentially re-evaluate whether we should allocate on a fill or 94 // not 95 allocOnFill = allocOnFill || alloc_on_fill; 96 97 if (source != Target::FromPrefetcher) { 98 hasFromCache = hasFromCache || pkt->fromCache(); 99 100 updateWriteFlags(pkt); 101 } 102 } 103} 104 105void 106MSHR::TargetList::populateFlags() 107{ 108 resetFlags(); 109 for (auto& t: *this) { 110 updateFlags(t.pkt, t.source, t.allocOnFill); 111 } 112} 113 114inline void 115MSHR::TargetList::add(PacketPtr pkt, Tick readyTime, 116 Counter order, Target::Source source, bool markPending, 117 bool alloc_on_fill) 118{ 119 updateFlags(pkt, source, alloc_on_fill); 120 if (markPending) { 121 // Iterate over the SenderState stack and see if we find 122 // an MSHR entry. If we do, set the downstreamPending 123 // flag. Otherwise, do nothing. 124 MSHR *mshr = pkt->findNextSenderState<MSHR>(); 125 if (mshr != nullptr) { 126 assert(!mshr->downstreamPending); 127 mshr->downstreamPending = true; 128 } else { 129 // No need to clear downstreamPending later 130 markPending = false; 131 } 132 } 133 134 emplace_back(pkt, readyTime, order, source, markPending, alloc_on_fill); 135} 136 137 138static void 139replaceUpgrade(PacketPtr pkt) 140{ 141 // remember if the current packet has data allocated 142 bool has_data = pkt->hasData() || pkt->hasRespData(); 143 144 if (pkt->cmd == MemCmd::UpgradeReq) { 145 pkt->cmd = MemCmd::ReadExReq; 146 DPRINTF(Cache, "Replacing UpgradeReq with ReadExReq\n"); 147 } else if (pkt->cmd == MemCmd::SCUpgradeReq) { 148 pkt->cmd = MemCmd::SCUpgradeFailReq; 149 DPRINTF(Cache, "Replacing SCUpgradeReq with SCUpgradeFailReq\n"); 150 } else if (pkt->cmd == MemCmd::StoreCondReq) { 151 pkt->cmd = MemCmd::StoreCondFailReq; 152 DPRINTF(Cache, "Replacing StoreCondReq with StoreCondFailReq\n"); 153 } 154 155 if (!has_data) { 156 // there is no sensible way of setting the data field if the 157 // new command actually would carry data 158 assert(!pkt->hasData()); 159 160 if (pkt->hasRespData()) { 161 // we went from a packet that had no data (neither request, 162 // nor response), to one that does, and therefore we need to 163 // actually allocate space for the data payload 164 pkt->allocate(); 165 } 166 } 167} 168 169 170void 171MSHR::TargetList::replaceUpgrades() 172{ 173 if (!hasUpgrade) 174 return; 175 176 for (auto& t : *this) { 177 replaceUpgrade(t.pkt); 178 } 179 180 hasUpgrade = false; 181} 182 183 184void 185MSHR::TargetList::clearDownstreamPending(MSHR::TargetList::iterator begin, 186 MSHR::TargetList::iterator end) 187{ 188 for (auto t = begin; t != end; t++) { 189 if (t->markedPending) { 190 // Iterate over the SenderState stack and see if we find 191 // an MSHR entry. If we find one, clear the 192 // downstreamPending flag by calling 193 // clearDownstreamPending(). This recursively clears the 194 // downstreamPending flag in all caches this packet has 195 // passed through. 196 MSHR *mshr = t->pkt->findNextSenderState<MSHR>(); 197 if (mshr != nullptr) { 198 mshr->clearDownstreamPending(); 199 } 200 t->markedPending = false; 201 } 202 } 203} 204 205void 206MSHR::TargetList::clearDownstreamPending() 207{ 208 clearDownstreamPending(begin(), end()); 209} 210 211 212bool 213MSHR::TargetList::trySatisfyFunctional(PacketPtr pkt) 214{ 215 for (auto& t : *this) { 216 if (pkt->trySatisfyFunctional(t.pkt)) { 217 return true; 218 } 219 } 220 221 return false; 222} 223 224 225void 226MSHR::TargetList::print(std::ostream &os, int verbosity, 227 const std::string &prefix) const 228{ 229 for (auto& t : *this) { 230 const char *s; 231 switch (t.source) { 232 case Target::FromCPU: 233 s = "FromCPU"; 234 break; 235 case Target::FromSnoop: 236 s = "FromSnoop"; 237 break; 238 case Target::FromPrefetcher: 239 s = "FromPrefetcher"; 240 break; 241 default: 242 s = ""; 243 break; 244 } 245 ccprintf(os, "%s%s: ", prefix, s); 246 t.pkt->print(os, verbosity, ""); 247 ccprintf(os, "\n"); 248 } 249} 250 251 252void 253MSHR::allocate(Addr blk_addr, unsigned blk_size, PacketPtr target, 254 Tick when_ready, Counter _order, bool alloc_on_fill) 255{ 256 blkAddr = blk_addr; 257 blkSize = blk_size; 258 isSecure = target->isSecure(); 259 readyTime = when_ready; 260 order = _order; 261 assert(target); 262 isForward = false; 263 wasWholeLineWrite = false; 264 _isUncacheable = target->req->isUncacheable(); 265 inService = false; 266 downstreamPending = false; 267 268 targets.init(blkAddr, blkSize); 269 deferredTargets.init(blkAddr, blkSize); 270 271 // Don't know of a case where we would allocate a new MSHR for a 272 // snoop (mem-side request), so set source according to request here 273 Target::Source source = (target->cmd == MemCmd::HardPFReq) ? 274 Target::FromPrefetcher : Target::FromCPU; 275 targets.add(target, when_ready, _order, source, true, alloc_on_fill); 276 277 // All targets must refer to the same block 278 assert(target->matchBlockAddr(targets.front().pkt, blkSize)); 279} 280 281 282void 283MSHR::clearDownstreamPending() 284{ 285 assert(downstreamPending); 286 downstreamPending = false; 287 // recursively clear flag on any MSHRs we will be forwarding 288 // responses to 289 targets.clearDownstreamPending(); 290} 291 292void 293MSHR::markInService(bool pending_modified_resp) 294{ 295 assert(!inService); 296 297 inService = true; 298 pendingModified = targets.needsWritable || pending_modified_resp; 299 postInvalidate = postDowngrade = false; 300 301 if (!downstreamPending) { 302 // let upstream caches know that the request has made it to a 303 // level where it's going to get a response 304 targets.clearDownstreamPending(); 305 } 306 // if the line is not considered a whole-line write when sent 307 // downstream, make sure it is also not considered a whole-line 308 // write when receiving the response, and vice versa 309 wasWholeLineWrite = isWholeLineWrite(); 310} 311 312 313void 314MSHR::deallocate() 315{ 316 assert(targets.empty()); 317 targets.resetFlags(); 318 assert(deferredTargets.isReset()); 319 inService = false; 320} 321 322/* 323 * Adds a target to an MSHR 324 */ 325void 326MSHR::allocateTarget(PacketPtr pkt, Tick whenReady, Counter _order, 327 bool alloc_on_fill) 328{ 329 // assume we'd never issue a prefetch when we've got an 330 // outstanding miss 331 assert(pkt->cmd != MemCmd::HardPFReq); 332 333 // if there's a request already in service for this MSHR, we will 334 // have to defer the new target until after the response if any of 335 // the following are true: 336 // - there are other targets already deferred 337 // - there's a pending invalidate to be applied after the response 338 // comes back (but before this target is processed) 339 // - the MSHR's first (and only) non-deferred target is a cache 340 // maintenance packet 341 // - the new target is a cache maintenance packet (this is probably 342 // overly conservative but certainly safe) 343 // - this target requires a writable block and either we're not 344 // getting a writable block back or we have already snooped 345 // another read request that will downgrade our writable block 346 // to non-writable (Shared or Owned) 347 PacketPtr tgt_pkt = targets.front().pkt; 348 if (pkt->req->isCacheMaintenance() || 349 tgt_pkt->req->isCacheMaintenance() || 350 !deferredTargets.empty() || 351 (inService && 352 (hasPostInvalidate() || 353 (pkt->needsWritable() && 354 (!isPendingModified() || hasPostDowngrade() || isForward))))) { 355 // need to put on deferred list 356 if (inService && hasPostInvalidate()) 357 replaceUpgrade(pkt); 358 deferredTargets.add(pkt, whenReady, _order, Target::FromCPU, true, 359 alloc_on_fill); 360 } else { 361 // No request outstanding, or still OK to append to 362 // outstanding request: append to regular target list. Only 363 // mark pending if current request hasn't been issued yet 364 // (isn't in service). 365 targets.add(pkt, whenReady, _order, Target::FromCPU, !inService, 366 alloc_on_fill); 367 } 368} 369 370bool 371MSHR::handleSnoop(PacketPtr pkt, Counter _order) 372{ 373 DPRINTF(Cache, "%s for %s\n", __func__, pkt->print()); 374 375 // when we snoop packets the needsWritable and isInvalidate flags 376 // should always be the same, however, this assumes that we never 377 // snoop writes as they are currently not marked as invalidations 378 panic_if((pkt->needsWritable() != pkt->isInvalidate()) && 379 !pkt->req->isCacheMaintenance(), 380 "%s got snoop %s where needsWritable, " 381 "does not match isInvalidate", name(), pkt->print()); 382 383 if (!inService || (pkt->isExpressSnoop() && downstreamPending)) { 384 // Request has not been issued yet, or it's been issued 385 // locally but is buffered unissued at some downstream cache 386 // which is forwarding us this snoop. Either way, the packet 387 // we're snooping logically precedes this MSHR's request, so 388 // the snoop has no impact on the MSHR, but must be processed 389 // in the standard way by the cache. The only exception is 390 // that if we're an L2+ cache buffering an UpgradeReq from a 391 // higher-level cache, and the snoop is invalidating, then our 392 // buffered upgrades must be converted to read exclusives, 393 // since the upper-level cache no longer has a valid copy. 394 // That is, even though the upper-level cache got out on its 395 // local bus first, some other invalidating transaction 396 // reached the global bus before the upgrade did. 397 if (pkt->needsWritable() || pkt->req->isCacheInvalidate()) { 398 targets.replaceUpgrades(); 399 deferredTargets.replaceUpgrades(); 400 } 401 402 return false; 403 } 404 405 // From here on down, the request issued by this MSHR logically 406 // precedes the request we're snooping. 407 if (pkt->needsWritable() || pkt->req->isCacheInvalidate()) { 408 // snooped request still precedes the re-request we'll have to 409 // issue for deferred targets, if any... 410 deferredTargets.replaceUpgrades(); 411 } 412 413 PacketPtr tgt_pkt = targets.front().pkt; 414 if (hasPostInvalidate() || tgt_pkt->req->isCacheInvalidate()) { 415 // a prior snoop has already appended an invalidation or a 416 // cache invalidation operation is in progress, so logically 417 // we don't have the block anymore; no need for further 418 // snooping. 419 return true; 420 } 421 422 if (isPendingModified() || pkt->isInvalidate()) { 423 // We need to save and replay the packet in two cases: 424 // 1. We're awaiting a writable copy (Modified or Exclusive), 425 // so this MSHR is the orgering point, and we need to respond 426 // after we receive data. 427 // 2. It's an invalidation (e.g., UpgradeReq), and we need 428 // to forward the snoop up the hierarchy after the current 429 // transaction completes. 430 431 // Start by determining if we will eventually respond or not, 432 // matching the conditions checked in Cache::handleSnoop 433 bool will_respond = isPendingModified() && pkt->needsResponse() && 434 !pkt->isClean(); 435 436 // The packet we are snooping may be deleted by the time we 437 // actually process the target, and we consequently need to 438 // save a copy here. Clear flags and also allocate new data as 439 // the original packet data storage may have been deleted by 440 // the time we get to process this packet. In the cases where 441 // we are not responding after handling the snoop we also need 442 // to create a copy of the request to be on the safe side. In 443 // the latter case the cache is responsible for deleting both 444 // the packet and the request as part of handling the deferred 445 // snoop. 446 PacketPtr cp_pkt = will_respond ? new Packet(pkt, true, true) : 447 new Packet(std::make_shared<Request>(*pkt->req), pkt->cmd, 448 blkSize, pkt->id); 449 450 if (will_respond) { 451 // we are the ordering point, and will consequently 452 // respond, and depending on whether the packet 453 // needsWritable or not we either pass a Shared line or a 454 // Modified line 455 pkt->setCacheResponding(); 456 457 // inform the cache hierarchy that this cache had the line 458 // in the Modified state, even if the response is passed 459 // as Shared (and thus non-writable) 460 pkt->setResponderHadWritable(); 461 462 // in the case of an uncacheable request there is no need 463 // to set the responderHadWritable flag, but since the 464 // recipient does not care there is no harm in doing so 465 } else if (isPendingModified() && pkt->isClean()) { 466 // this cache doesn't respond to the clean request, a 467 // destination xbar will respond to this request, but to 468 // do so it needs to know if it should wait for the 469 // WriteCleanReq 470 pkt->setSatisfied(); 471 } 472 473 targets.add(cp_pkt, curTick(), _order, Target::FromSnoop, 474 downstreamPending && targets.needsWritable, false); 475 476 if (pkt->needsWritable() || pkt->isInvalidate()) { 477 // This transaction will take away our pending copy 478 postInvalidate = true; 479 } 480 } 481 482 if (!pkt->needsWritable() && !pkt->req->isUncacheable()) { 483 // This transaction will get a read-shared copy, downgrading 484 // our copy if we had a writable one 485 postDowngrade = true; 486 // make sure that any downstream cache does not respond with a 487 // writable (and dirty) copy even if it has one, unless it was 488 // explicitly asked for one 489 pkt->setHasSharers(); 490 } 491 492 return true; 493} 494 495MSHR::TargetList 496MSHR::extractServiceableTargets(PacketPtr pkt) 497{ 498 TargetList ready_targets; 499 ready_targets.init(blkAddr, blkSize); 500 // If the downstream MSHR got an invalidation request then we only 501 // service the first of the FromCPU targets and any other 502 // non-FromCPU target. This way the remaining FromCPU targets 503 // issue a new request and get a fresh copy of the block and we 504 // avoid memory consistency violations. 505 if (pkt->cmd == MemCmd::ReadRespWithInvalidate) { 506 auto it = targets.begin(); 507 assert((it->source == Target::FromCPU) || 508 (it->source == Target::FromPrefetcher)); 509 ready_targets.push_back(*it); 510 it = targets.erase(it); 511 while (it != targets.end()) { 512 if (it->source == Target::FromCPU) { 513 it++; 514 } else { 515 assert(it->source == Target::FromSnoop); 516 ready_targets.push_back(*it); 517 it = targets.erase(it); 518 } 519 } 520 ready_targets.populateFlags(); 521 } else { 522 std::swap(ready_targets, targets); 523 } 524 targets.populateFlags(); 525 526 return ready_targets; 527} 528 529bool 530MSHR::promoteDeferredTargets() 531{ 532 if (targets.empty() && deferredTargets.empty()) { 533 // nothing to promote 534 return false; 535 } 536 537 // the deferred targets can be generally promoted unless they 538 // contain a cache maintenance request 539 540 // find the first target that is a cache maintenance request 541 auto it = std::find_if(deferredTargets.begin(), deferredTargets.end(), 542 [](MSHR::Target &t) { 543 return t.pkt->req->isCacheMaintenance(); 544 }); 545 if (it == deferredTargets.begin()) { 546 // if the first deferred target is a cache maintenance packet 547 // then we can promote provided the targets list is empty and 548 // we can service it on its own 549 if (targets.empty()) { 550 targets.splice(targets.end(), deferredTargets, it); 551 } 552 } else { 553 // if a cache maintenance operation exists, we promote all the 554 // deferred targets that precede it, or all deferred targets 555 // otherwise 556 targets.splice(targets.end(), deferredTargets, 557 deferredTargets.begin(), it); 558 } 559 560 deferredTargets.populateFlags(); 561 targets.populateFlags(); 562 order = targets.front().order; 563 readyTime = std::max(curTick(), targets.front().readyTime); 564 565 return true; 566} 567 568void 569MSHR::promoteIf(const std::function<bool (Target &)>& pred) 570{ 571 // if any of the deferred targets were upper-level cache 572 // requests marked downstreamPending, need to clear that 573 assert(!downstreamPending); // not pending here anymore 574 575 // find the first target does not satisfy the condition 576 auto last_it = std::find_if_not(deferredTargets.begin(), 577 deferredTargets.end(), 578 pred); 579 580 // for the prefix of the deferredTargets [begin(), last_it) clear 581 // the downstreamPending flag and move them to the target list 582 deferredTargets.clearDownstreamPending(deferredTargets.begin(), 583 last_it); 584 targets.splice(targets.end(), deferredTargets, 585 deferredTargets.begin(), last_it); 586 // We need to update the flags for the target lists after the 587 // modifications 588 deferredTargets.populateFlags(); 589} 590 591void 592MSHR::promoteReadable() 593{ 594 if (!deferredTargets.empty() && !hasPostInvalidate()) { 595 // We got a non invalidating response, and we have the block 596 // but we have deferred targets which are waiting and they do 597 // not need writable. This can happen if the original request 598 // was for a cache clean operation and we had a copy of the 599 // block. Since we serviced the cache clean operation and we 600 // have the block, there's no need to defer the targets, so 601 // move them up to the regular target list. 602 603 auto pred = [](Target &t) { 604 assert(t.source == Target::FromCPU); 605 return !t.pkt->req->isCacheInvalidate() && 606 !t.pkt->needsWritable(); 607 }; 608 promoteIf(pred); 609 } 610} 611 612void 613MSHR::promoteWritable() 614{ 615 if (deferredTargets.needsWritable && 616 !(hasPostInvalidate() || hasPostDowngrade())) { 617 // We got a writable response, but we have deferred targets 618 // which are waiting to request a writable copy (not because 619 // of a pending invalidate). This can happen if the original 620 // request was for a read-only block, but we got a writable 621 // response anyway. Since we got the writable copy there's no 622 // need to defer the targets, so move them up to the regular 623 // target list. 624 assert(!targets.needsWritable); 625 targets.needsWritable = true; 626 627 auto pred = [](Target &t) { 628 assert(t.source == Target::FromCPU); 629 return !t.pkt->req->isCacheInvalidate(); 630 }; 631 632 promoteIf(pred); 633 } 634} 635 636 637bool 638MSHR::trySatisfyFunctional(PacketPtr pkt) 639{ 640 // For printing, we treat the MSHR as a whole as single entity. 641 // For other requests, we iterate over the individual targets 642 // since that's where the actual data lies. 643 if (pkt->isPrint()) { 644 pkt->trySatisfyFunctional(this, blkAddr, isSecure, blkSize, nullptr); 645 return false; 646 } else { 647 return (targets.trySatisfyFunctional(pkt) || 648 deferredTargets.trySatisfyFunctional(pkt)); 649 } 650} 651 652bool 653MSHR::sendPacket(BaseCache &cache) 654{ 655 return cache.sendMSHRQueuePacket(this); 656} 657 658void 659MSHR::print(std::ostream &os, int verbosity, const std::string &prefix) const 660{ 661 ccprintf(os, "%s[%#llx:%#llx](%s) %s %s %s state: %s %s %s %s %s %s\n", 662 prefix, blkAddr, blkAddr + blkSize - 1, 663 isSecure ? "s" : "ns", 664 isForward ? "Forward" : "", 665 allocOnFill() ? "AllocOnFill" : "", 666 needsWritable() ? "Wrtbl" : "", 667 _isUncacheable ? "Unc" : "", 668 inService ? "InSvc" : "", 669 downstreamPending ? "DwnPend" : "", 670 postInvalidate ? "PostInv" : "", 671 postDowngrade ? "PostDowngr" : "", 672 hasFromCache() ? "HasFromCache" : ""); 673 674 if (!targets.empty()) { 675 ccprintf(os, "%s Targets:\n", prefix); 676 targets.print(os, verbosity, prefix + " "); 677 } 678 if (!deferredTargets.empty()) { 679 ccprintf(os, "%s Deferred Targets:\n", prefix); 680 deferredTargets.print(os, verbosity, prefix + " "); 681 } 682} 683 684std::string 685MSHR::print() const 686{ 687 std::ostringstream str; 688 print(str); 689 return str.str(); 690} 691 692bool 693MSHR::matchBlockAddr(const Addr addr, const bool is_secure) const 694{ 695 assert(hasTargets()); 696 return (blkAddr == addr) && (isSecure == is_secure); 697} 698 699bool 700MSHR::matchBlockAddr(const PacketPtr pkt) const 701{ 702 assert(hasTargets()); 703 return pkt->matchBlockAddr(blkAddr, isSecure, blkSize); 704} 705 706bool 707MSHR::conflictAddr(const QueueEntry* entry) const 708{ 709 assert(hasTargets()); 710 return entry->matchBlockAddr(blkAddr, isSecure); 711} 712