mshr.cc revision 12823:ba630bc7a36d
1/*
2 * Copyright (c) 2012-2013, 2015-2018 ARM Limited
3 * All rights reserved.
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder.  You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2002-2005 The Regents of The University of Michigan
15 * Copyright (c) 2010 Advanced Micro Devices, Inc.
16 * All rights reserved.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions are
20 * met: redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer;
22 * redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution;
25 * neither the name of the copyright holders nor the names of its
26 * contributors may be used to endorse or promote products derived from
27 * this software without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40 *
41 * Authors: Erik Hallnor
42 *          Dave Greene
43 */
44
45/**
46 * @file
47 * Miss Status and Handling Register (MSHR) definitions.
48 */
49
50#include "mem/cache/mshr.hh"
51
52#include <cassert>
53#include <string>
54
55#include "base/logging.hh"
56#include "base/trace.hh"
57#include "base/types.hh"
58#include "debug/Cache.hh"
59#include "mem/cache/base.hh"
60#include "mem/request.hh"
61#include "sim/core.hh"
62
63MSHR::MSHR() : downstreamPending(false),
64               pendingModified(false),
65               postInvalidate(false), postDowngrade(false),
66               isForward(false)
67{
68}
69
70MSHR::TargetList::TargetList()
71    : needsWritable(false), hasUpgrade(false), allocOnFill(false),
72      hasFromCache(false)
73{}
74
75
76void
77MSHR::TargetList::updateFlags(PacketPtr pkt, Target::Source source,
78                              bool alloc_on_fill)
79{
80    if (source != Target::FromSnoop) {
81        if (pkt->needsWritable()) {
82            needsWritable = true;
83        }
84
85        // StoreCondReq is effectively an upgrade if it's in an MSHR
86        // since it would have been failed already if we didn't have a
87        // read-only copy
88        if (pkt->isUpgrade() || pkt->cmd == MemCmd::StoreCondReq) {
89            hasUpgrade = true;
90        }
91
92        // potentially re-evaluate whether we should allocate on a fill or
93        // not
94        allocOnFill = allocOnFill || alloc_on_fill;
95
96        if (source != Target::FromPrefetcher) {
97            hasFromCache = hasFromCache || pkt->fromCache();
98        }
99    }
100}
101
102void
103MSHR::TargetList::populateFlags()
104{
105    resetFlags();
106    for (auto& t: *this) {
107        updateFlags(t.pkt, t.source, t.allocOnFill);
108    }
109}
110
111inline void
112MSHR::TargetList::add(PacketPtr pkt, Tick readyTime,
113                      Counter order, Target::Source source, bool markPending,
114                      bool alloc_on_fill)
115{
116    updateFlags(pkt, source, alloc_on_fill);
117    if (markPending) {
118        // Iterate over the SenderState stack and see if we find
119        // an MSHR entry. If we do, set the downstreamPending
120        // flag. Otherwise, do nothing.
121        MSHR *mshr = pkt->findNextSenderState<MSHR>();
122        if (mshr != nullptr) {
123            assert(!mshr->downstreamPending);
124            mshr->downstreamPending = true;
125        } else {
126            // No need to clear downstreamPending later
127            markPending = false;
128        }
129    }
130
131    emplace_back(pkt, readyTime, order, source, markPending, alloc_on_fill);
132}
133
134
135static void
136replaceUpgrade(PacketPtr pkt)
137{
138    // remember if the current packet has data allocated
139    bool has_data = pkt->hasData() || pkt->hasRespData();
140
141    if (pkt->cmd == MemCmd::UpgradeReq) {
142        pkt->cmd = MemCmd::ReadExReq;
143        DPRINTF(Cache, "Replacing UpgradeReq with ReadExReq\n");
144    } else if (pkt->cmd == MemCmd::SCUpgradeReq) {
145        pkt->cmd = MemCmd::SCUpgradeFailReq;
146        DPRINTF(Cache, "Replacing SCUpgradeReq with SCUpgradeFailReq\n");
147    } else if (pkt->cmd == MemCmd::StoreCondReq) {
148        pkt->cmd = MemCmd::StoreCondFailReq;
149        DPRINTF(Cache, "Replacing StoreCondReq with StoreCondFailReq\n");
150    }
151
152    if (!has_data) {
153        // there is no sensible way of setting the data field if the
154        // new command actually would carry data
155        assert(!pkt->hasData());
156
157        if (pkt->hasRespData()) {
158            // we went from a packet that had no data (neither request,
159            // nor response), to one that does, and therefore we need to
160            // actually allocate space for the data payload
161            pkt->allocate();
162        }
163    }
164}
165
166
167void
168MSHR::TargetList::replaceUpgrades()
169{
170    if (!hasUpgrade)
171        return;
172
173    for (auto& t : *this) {
174        replaceUpgrade(t.pkt);
175    }
176
177    hasUpgrade = false;
178}
179
180
181void
182MSHR::TargetList::clearDownstreamPending(MSHR::TargetList::iterator begin,
183                                         MSHR::TargetList::iterator end)
184{
185    for (auto t = begin; t != end; t++) {
186        if (t->markedPending) {
187            // Iterate over the SenderState stack and see if we find
188            // an MSHR entry. If we find one, clear the
189            // downstreamPending flag by calling
190            // clearDownstreamPending(). This recursively clears the
191            // downstreamPending flag in all caches this packet has
192            // passed through.
193            MSHR *mshr = t->pkt->findNextSenderState<MSHR>();
194            if (mshr != nullptr) {
195                mshr->clearDownstreamPending();
196            }
197            t->markedPending = false;
198        }
199    }
200}
201
202void
203MSHR::TargetList::clearDownstreamPending()
204{
205    clearDownstreamPending(begin(), end());
206}
207
208
209bool
210MSHR::TargetList::trySatisfyFunctional(PacketPtr pkt)
211{
212    for (auto& t : *this) {
213        if (pkt->trySatisfyFunctional(t.pkt)) {
214            return true;
215        }
216    }
217
218    return false;
219}
220
221
222void
223MSHR::TargetList::print(std::ostream &os, int verbosity,
224                        const std::string &prefix) const
225{
226    for (auto& t : *this) {
227        const char *s;
228        switch (t.source) {
229          case Target::FromCPU:
230            s = "FromCPU";
231            break;
232          case Target::FromSnoop:
233            s = "FromSnoop";
234            break;
235          case Target::FromPrefetcher:
236            s = "FromPrefetcher";
237            break;
238          default:
239            s = "";
240            break;
241        }
242        ccprintf(os, "%s%s: ", prefix, s);
243        t.pkt->print(os, verbosity, "");
244        ccprintf(os, "\n");
245    }
246}
247
248
249void
250MSHR::allocate(Addr blk_addr, unsigned blk_size, PacketPtr target,
251               Tick when_ready, Counter _order, bool alloc_on_fill)
252{
253    blkAddr = blk_addr;
254    blkSize = blk_size;
255    isSecure = target->isSecure();
256    readyTime = when_ready;
257    order = _order;
258    assert(target);
259    isForward = false;
260    _isUncacheable = target->req->isUncacheable();
261    inService = false;
262    downstreamPending = false;
263    assert(targets.isReset());
264    // Don't know of a case where we would allocate a new MSHR for a
265    // snoop (mem-side request), so set source according to request here
266    Target::Source source = (target->cmd == MemCmd::HardPFReq) ?
267        Target::FromPrefetcher : Target::FromCPU;
268    targets.add(target, when_ready, _order, source, true, alloc_on_fill);
269    assert(deferredTargets.isReset());
270}
271
272
273void
274MSHR::clearDownstreamPending()
275{
276    assert(downstreamPending);
277    downstreamPending = false;
278    // recursively clear flag on any MSHRs we will be forwarding
279    // responses to
280    targets.clearDownstreamPending();
281}
282
283void
284MSHR::markInService(bool pending_modified_resp)
285{
286    assert(!inService);
287
288    inService = true;
289    pendingModified = targets.needsWritable || pending_modified_resp;
290    postInvalidate = postDowngrade = false;
291
292    if (!downstreamPending) {
293        // let upstream caches know that the request has made it to a
294        // level where it's going to get a response
295        targets.clearDownstreamPending();
296    }
297}
298
299
300void
301MSHR::deallocate()
302{
303    assert(targets.empty());
304    targets.resetFlags();
305    assert(deferredTargets.isReset());
306    inService = false;
307}
308
309/*
310 * Adds a target to an MSHR
311 */
312void
313MSHR::allocateTarget(PacketPtr pkt, Tick whenReady, Counter _order,
314                     bool alloc_on_fill)
315{
316    // assume we'd never issue a prefetch when we've got an
317    // outstanding miss
318    assert(pkt->cmd != MemCmd::HardPFReq);
319
320    // if there's a request already in service for this MSHR, we will
321    // have to defer the new target until after the response if any of
322    // the following are true:
323    // - there are other targets already deferred
324    // - there's a pending invalidate to be applied after the response
325    //   comes back (but before this target is processed)
326    // - the MSHR's first (and only) non-deferred target is a cache
327    //   maintenance packet
328    // - the new target is a cache maintenance packet (this is probably
329    //   overly conservative but certainly safe)
330    // - this target requires a writable block and either we're not
331    //   getting a writable block back or we have already snooped
332    //   another read request that will downgrade our writable block
333    //   to non-writable (Shared or Owned)
334    PacketPtr tgt_pkt = targets.front().pkt;
335    if (pkt->req->isCacheMaintenance() ||
336        tgt_pkt->req->isCacheMaintenance() ||
337        !deferredTargets.empty() ||
338        (inService &&
339         (hasPostInvalidate() ||
340          (pkt->needsWritable() &&
341           (!isPendingModified() || hasPostDowngrade() || isForward))))) {
342        // need to put on deferred list
343        if (inService && hasPostInvalidate())
344            replaceUpgrade(pkt);
345        deferredTargets.add(pkt, whenReady, _order, Target::FromCPU, true,
346                            alloc_on_fill);
347    } else {
348        // No request outstanding, or still OK to append to
349        // outstanding request: append to regular target list.  Only
350        // mark pending if current request hasn't been issued yet
351        // (isn't in service).
352        targets.add(pkt, whenReady, _order, Target::FromCPU, !inService,
353                    alloc_on_fill);
354    }
355}
356
357bool
358MSHR::handleSnoop(PacketPtr pkt, Counter _order)
359{
360    DPRINTF(Cache, "%s for %s\n", __func__, pkt->print());
361
362    // when we snoop packets the needsWritable and isInvalidate flags
363    // should always be the same, however, this assumes that we never
364    // snoop writes as they are currently not marked as invalidations
365    panic_if((pkt->needsWritable() != pkt->isInvalidate()) &&
366             !pkt->req->isCacheMaintenance(),
367             "%s got snoop %s where needsWritable, "
368             "does not match isInvalidate", name(), pkt->print());
369
370    if (!inService || (pkt->isExpressSnoop() && downstreamPending)) {
371        // Request has not been issued yet, or it's been issued
372        // locally but is buffered unissued at some downstream cache
373        // which is forwarding us this snoop.  Either way, the packet
374        // we're snooping logically precedes this MSHR's request, so
375        // the snoop has no impact on the MSHR, but must be processed
376        // in the standard way by the cache.  The only exception is
377        // that if we're an L2+ cache buffering an UpgradeReq from a
378        // higher-level cache, and the snoop is invalidating, then our
379        // buffered upgrades must be converted to read exclusives,
380        // since the upper-level cache no longer has a valid copy.
381        // That is, even though the upper-level cache got out on its
382        // local bus first, some other invalidating transaction
383        // reached the global bus before the upgrade did.
384        if (pkt->needsWritable() || pkt->req->isCacheInvalidate()) {
385            targets.replaceUpgrades();
386            deferredTargets.replaceUpgrades();
387        }
388
389        return false;
390    }
391
392    // From here on down, the request issued by this MSHR logically
393    // precedes the request we're snooping.
394    if (pkt->needsWritable() || pkt->req->isCacheInvalidate()) {
395        // snooped request still precedes the re-request we'll have to
396        // issue for deferred targets, if any...
397        deferredTargets.replaceUpgrades();
398    }
399
400    PacketPtr tgt_pkt = targets.front().pkt;
401    if (hasPostInvalidate() || tgt_pkt->req->isCacheInvalidate()) {
402        // a prior snoop has already appended an invalidation or a
403        // cache invalidation operation is in progress, so logically
404        // we don't have the block anymore; no need for further
405        // snooping.
406        return true;
407    }
408
409    if (isPendingModified() || pkt->isInvalidate()) {
410        // We need to save and replay the packet in two cases:
411        // 1. We're awaiting a writable copy (Modified or Exclusive),
412        //    so this MSHR is the orgering point, and we need to respond
413        //    after we receive data.
414        // 2. It's an invalidation (e.g., UpgradeReq), and we need
415        //    to forward the snoop up the hierarchy after the current
416        //    transaction completes.
417
418        // Start by determining if we will eventually respond or not,
419        // matching the conditions checked in Cache::handleSnoop
420        bool will_respond = isPendingModified() && pkt->needsResponse() &&
421                      !pkt->isClean();
422
423        // The packet we are snooping may be deleted by the time we
424        // actually process the target, and we consequently need to
425        // save a copy here. Clear flags and also allocate new data as
426        // the original packet data storage may have been deleted by
427        // the time we get to process this packet. In the cases where
428        // we are not responding after handling the snoop we also need
429        // to create a copy of the request to be on the safe side. In
430        // the latter case the cache is responsible for deleting both
431        // the packet and the request as part of handling the deferred
432        // snoop.
433        PacketPtr cp_pkt = will_respond ? new Packet(pkt, true, true) :
434            new Packet(std::make_shared<Request>(*pkt->req), pkt->cmd,
435                       blkSize, pkt->id);
436
437        if (will_respond) {
438            // we are the ordering point, and will consequently
439            // respond, and depending on whether the packet
440            // needsWritable or not we either pass a Shared line or a
441            // Modified line
442            pkt->setCacheResponding();
443
444            // inform the cache hierarchy that this cache had the line
445            // in the Modified state, even if the response is passed
446            // as Shared (and thus non-writable)
447            pkt->setResponderHadWritable();
448
449            // in the case of an uncacheable request there is no need
450            // to set the responderHadWritable flag, but since the
451            // recipient does not care there is no harm in doing so
452        }
453        targets.add(cp_pkt, curTick(), _order, Target::FromSnoop,
454                    downstreamPending && targets.needsWritable, false);
455
456        if (pkt->needsWritable() || pkt->isInvalidate()) {
457            // This transaction will take away our pending copy
458            postInvalidate = true;
459        }
460
461        if (isPendingModified() && pkt->isClean()) {
462            pkt->setSatisfied();
463        }
464    }
465
466    if (!pkt->needsWritable() && !pkt->req->isUncacheable()) {
467        // This transaction will get a read-shared copy, downgrading
468        // our copy if we had a writable one
469        postDowngrade = true;
470        // make sure that any downstream cache does not respond with a
471        // writable (and dirty) copy even if it has one, unless it was
472        // explicitly asked for one
473        pkt->setHasSharers();
474    }
475
476    return true;
477}
478
479MSHR::TargetList
480MSHR::extractServiceableTargets(PacketPtr pkt)
481{
482    TargetList ready_targets;
483    // If the downstream MSHR got an invalidation request then we only
484    // service the first of the FromCPU targets and any other
485    // non-FromCPU target. This way the remaining FromCPU targets
486    // issue a new request and get a fresh copy of the block and we
487    // avoid memory consistency violations.
488    if (pkt->cmd == MemCmd::ReadRespWithInvalidate) {
489        auto it = targets.begin();
490        assert((it->source == Target::FromCPU) ||
491               (it->source == Target::FromPrefetcher));
492        ready_targets.push_back(*it);
493        it = targets.erase(it);
494        while (it != targets.end()) {
495            if (it->source == Target::FromCPU) {
496                it++;
497            } else {
498                assert(it->source == Target::FromSnoop);
499                ready_targets.push_back(*it);
500                it = targets.erase(it);
501            }
502        }
503        ready_targets.populateFlags();
504    } else {
505        std::swap(ready_targets, targets);
506    }
507    targets.populateFlags();
508
509    return ready_targets;
510}
511
512bool
513MSHR::promoteDeferredTargets()
514{
515    if (targets.empty() && deferredTargets.empty()) {
516        // nothing to promote
517        return false;
518    }
519
520    // the deferred targets can be generally promoted unless they
521    // contain a cache maintenance request
522
523    // find the first target that is a cache maintenance request
524    auto it = std::find_if(deferredTargets.begin(), deferredTargets.end(),
525                           [](MSHR::Target &t) {
526                               return t.pkt->req->isCacheMaintenance();
527                           });
528    if (it == deferredTargets.begin()) {
529        // if the first deferred target is a cache maintenance packet
530        // then we can promote provided the targets list is empty and
531        // we can service it on its own
532        if (targets.empty()) {
533            targets.splice(targets.end(), deferredTargets, it);
534        }
535    } else {
536        // if a cache maintenance operation exists, we promote all the
537        // deferred targets that precede it, or all deferred targets
538        // otherwise
539        targets.splice(targets.end(), deferredTargets,
540                       deferredTargets.begin(), it);
541    }
542
543    deferredTargets.populateFlags();
544    targets.populateFlags();
545    order = targets.front().order;
546    readyTime = std::max(curTick(), targets.front().readyTime);
547
548    return true;
549}
550
551void
552MSHR::promoteIf(const std::function<bool (Target &)>& pred)
553{
554    // if any of the deferred targets were upper-level cache
555    // requests marked downstreamPending, need to clear that
556    assert(!downstreamPending);  // not pending here anymore
557
558    // find the first target does not satisfy the condition
559    auto last_it = std::find_if_not(deferredTargets.begin(),
560                                    deferredTargets.end(),
561                                    pred);
562
563    // for the prefix of the deferredTargets [begin(), last_it) clear
564    // the downstreamPending flag and move them to the target list
565    deferredTargets.clearDownstreamPending(deferredTargets.begin(),
566                                           last_it);
567    targets.splice(targets.end(), deferredTargets,
568                   deferredTargets.begin(), last_it);
569    // We need to update the flags for the target lists after the
570    // modifications
571    deferredTargets.populateFlags();
572}
573
574void
575MSHR::promoteReadable()
576{
577    if (!deferredTargets.empty() && !hasPostInvalidate()) {
578        // We got a non invalidating response, and we have the block
579        // but we have deferred targets which are waiting and they do
580        // not need writable. This can happen if the original request
581        // was for a cache clean operation and we had a copy of the
582        // block. Since we serviced the cache clean operation and we
583        // have the block, there's no need to defer the targets, so
584        // move them up to the regular target list.
585
586        auto pred = [](Target &t) {
587            assert(t.source == Target::FromCPU);
588            return !t.pkt->req->isCacheInvalidate() &&
589                   !t.pkt->needsWritable();
590        };
591        promoteIf(pred);
592    }
593}
594
595void
596MSHR::promoteWritable()
597{
598    if (deferredTargets.needsWritable &&
599        !(hasPostInvalidate() || hasPostDowngrade())) {
600        // We got a writable response, but we have deferred targets
601        // which are waiting to request a writable copy (not because
602        // of a pending invalidate).  This can happen if the original
603        // request was for a read-only block, but we got a writable
604        // response anyway. Since we got the writable copy there's no
605        // need to defer the targets, so move them up to the regular
606        // target list.
607        assert(!targets.needsWritable);
608        targets.needsWritable = true;
609
610        auto pred = [](Target &t) {
611            assert(t.source == Target::FromCPU);
612            return !t.pkt->req->isCacheInvalidate();
613        };
614
615        promoteIf(pred);
616    }
617}
618
619
620bool
621MSHR::trySatisfyFunctional(PacketPtr pkt)
622{
623    // For printing, we treat the MSHR as a whole as single entity.
624    // For other requests, we iterate over the individual targets
625    // since that's where the actual data lies.
626    if (pkt->isPrint()) {
627        pkt->trySatisfyFunctional(this, blkAddr, isSecure, blkSize, nullptr);
628        return false;
629    } else {
630        return (targets.trySatisfyFunctional(pkt) ||
631                deferredTargets.trySatisfyFunctional(pkt));
632    }
633}
634
635bool
636MSHR::sendPacket(BaseCache &cache)
637{
638    return cache.sendMSHRQueuePacket(this);
639}
640
641void
642MSHR::print(std::ostream &os, int verbosity, const std::string &prefix) const
643{
644    ccprintf(os, "%s[%#llx:%#llx](%s) %s %s %s state: %s %s %s %s %s %s\n",
645             prefix, blkAddr, blkAddr + blkSize - 1,
646             isSecure ? "s" : "ns",
647             isForward ? "Forward" : "",
648             allocOnFill() ? "AllocOnFill" : "",
649             needsWritable() ? "Wrtbl" : "",
650             _isUncacheable ? "Unc" : "",
651             inService ? "InSvc" : "",
652             downstreamPending ? "DwnPend" : "",
653             postInvalidate ? "PostInv" : "",
654             postDowngrade ? "PostDowngr" : "",
655             hasFromCache() ? "HasFromCache" : "");
656
657    if (!targets.empty()) {
658        ccprintf(os, "%s  Targets:\n", prefix);
659        targets.print(os, verbosity, prefix + "    ");
660    }
661    if (!deferredTargets.empty()) {
662        ccprintf(os, "%s  Deferred Targets:\n", prefix);
663        deferredTargets.print(os, verbosity, prefix + "      ");
664    }
665}
666
667std::string
668MSHR::print() const
669{
670    std::ostringstream str;
671    print(str);
672    return str.str();
673}
674