mshr.cc revision 12715:0c8b4f376378
1/*
2 * Copyright (c) 2012-2013, 2015-2018 ARM Limited
3 * All rights reserved.
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder.  You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2002-2005 The Regents of The University of Michigan
15 * Copyright (c) 2010 Advanced Micro Devices, Inc.
16 * All rights reserved.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions are
20 * met: redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer;
22 * redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution;
25 * neither the name of the copyright holders nor the names of its
26 * contributors may be used to endorse or promote products derived from
27 * this software without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40 *
41 * Authors: Erik Hallnor
42 *          Dave Greene
43 */
44
45/**
46 * @file
47 * Miss Status and Handling Register (MSHR) definitions.
48 */
49
50#include "mem/cache/mshr.hh"
51
52#include <algorithm>
53#include <cassert>
54#include <string>
55#include <vector>
56
57#include "base/logging.hh"
58#include "base/types.hh"
59#include "debug/Cache.hh"
60#include "mem/cache/cache.hh"
61#include "sim/core.hh"
62
63MSHR::MSHR() : downstreamPending(false),
64               pendingModified(false),
65               postInvalidate(false), postDowngrade(false),
66               isForward(false)
67{
68}
69
70MSHR::TargetList::TargetList()
71    : needsWritable(false), hasUpgrade(false), allocOnFill(false),
72      hasFromCache(false)
73{}
74
75
76void
77MSHR::TargetList::updateFlags(PacketPtr pkt, Target::Source source,
78                              bool alloc_on_fill)
79{
80    if (source != Target::FromSnoop) {
81        if (pkt->needsWritable()) {
82            needsWritable = true;
83        }
84
85        // StoreCondReq is effectively an upgrade if it's in an MSHR
86        // since it would have been failed already if we didn't have a
87        // read-only copy
88        if (pkt->isUpgrade() || pkt->cmd == MemCmd::StoreCondReq) {
89            hasUpgrade = true;
90        }
91
92        // potentially re-evaluate whether we should allocate on a fill or
93        // not
94        allocOnFill = allocOnFill || alloc_on_fill;
95
96        if (source != Target::FromPrefetcher) {
97            hasFromCache = hasFromCache || pkt->fromCache();
98        }
99    }
100}
101
102void
103MSHR::TargetList::populateFlags()
104{
105    resetFlags();
106    for (auto& t: *this) {
107        updateFlags(t.pkt, t.source, t.allocOnFill);
108    }
109}
110
111inline void
112MSHR::TargetList::add(PacketPtr pkt, Tick readyTime,
113                      Counter order, Target::Source source, bool markPending,
114                      bool alloc_on_fill)
115{
116    updateFlags(pkt, source, alloc_on_fill);
117    if (markPending) {
118        // Iterate over the SenderState stack and see if we find
119        // an MSHR entry. If we do, set the downstreamPending
120        // flag. Otherwise, do nothing.
121        MSHR *mshr = pkt->findNextSenderState<MSHR>();
122        if (mshr != nullptr) {
123            assert(!mshr->downstreamPending);
124            mshr->downstreamPending = true;
125        } else {
126            // No need to clear downstreamPending later
127            markPending = false;
128        }
129    }
130
131    emplace_back(pkt, readyTime, order, source, markPending, alloc_on_fill);
132}
133
134
135static void
136replaceUpgrade(PacketPtr pkt)
137{
138    // remember if the current packet has data allocated
139    bool has_data = pkt->hasData() || pkt->hasRespData();
140
141    if (pkt->cmd == MemCmd::UpgradeReq) {
142        pkt->cmd = MemCmd::ReadExReq;
143        DPRINTF(Cache, "Replacing UpgradeReq with ReadExReq\n");
144    } else if (pkt->cmd == MemCmd::SCUpgradeReq) {
145        pkt->cmd = MemCmd::SCUpgradeFailReq;
146        DPRINTF(Cache, "Replacing SCUpgradeReq with SCUpgradeFailReq\n");
147    } else if (pkt->cmd == MemCmd::StoreCondReq) {
148        pkt->cmd = MemCmd::StoreCondFailReq;
149        DPRINTF(Cache, "Replacing StoreCondReq with StoreCondFailReq\n");
150    }
151
152    if (!has_data) {
153        // there is no sensible way of setting the data field if the
154        // new command actually would carry data
155        assert(!pkt->hasData());
156
157        if (pkt->hasRespData()) {
158            // we went from a packet that had no data (neither request,
159            // nor response), to one that does, and therefore we need to
160            // actually allocate space for the data payload
161            pkt->allocate();
162        }
163    }
164}
165
166
167void
168MSHR::TargetList::replaceUpgrades()
169{
170    if (!hasUpgrade)
171        return;
172
173    for (auto& t : *this) {
174        replaceUpgrade(t.pkt);
175    }
176
177    hasUpgrade = false;
178}
179
180
181void
182MSHR::TargetList::clearDownstreamPending()
183{
184    for (auto& t : *this) {
185        if (t.markedPending) {
186            // Iterate over the SenderState stack and see if we find
187            // an MSHR entry. If we find one, clear the
188            // downstreamPending flag by calling
189            // clearDownstreamPending(). This recursively clears the
190            // downstreamPending flag in all caches this packet has
191            // passed through.
192            MSHR *mshr = t.pkt->findNextSenderState<MSHR>();
193            if (mshr != nullptr) {
194                mshr->clearDownstreamPending();
195            }
196            t.markedPending = false;
197        }
198    }
199}
200
201
202bool
203MSHR::TargetList::checkFunctional(PacketPtr pkt)
204{
205    for (auto& t : *this) {
206        if (pkt->checkFunctional(t.pkt)) {
207            return true;
208        }
209    }
210
211    return false;
212}
213
214
215void
216MSHR::TargetList::print(std::ostream &os, int verbosity,
217                        const std::string &prefix) const
218{
219    for (auto& t : *this) {
220        const char *s;
221        switch (t.source) {
222          case Target::FromCPU:
223            s = "FromCPU";
224            break;
225          case Target::FromSnoop:
226            s = "FromSnoop";
227            break;
228          case Target::FromPrefetcher:
229            s = "FromPrefetcher";
230            break;
231          default:
232            s = "";
233            break;
234        }
235        ccprintf(os, "%s%s: ", prefix, s);
236        t.pkt->print(os, verbosity, "");
237        ccprintf(os, "\n");
238    }
239}
240
241
242void
243MSHR::allocate(Addr blk_addr, unsigned blk_size, PacketPtr target,
244               Tick when_ready, Counter _order, bool alloc_on_fill)
245{
246    blkAddr = blk_addr;
247    blkSize = blk_size;
248    isSecure = target->isSecure();
249    readyTime = when_ready;
250    order = _order;
251    assert(target);
252    isForward = false;
253    _isUncacheable = target->req->isUncacheable();
254    inService = false;
255    downstreamPending = false;
256    assert(targets.isReset());
257    // Don't know of a case where we would allocate a new MSHR for a
258    // snoop (mem-side request), so set source according to request here
259    Target::Source source = (target->cmd == MemCmd::HardPFReq) ?
260        Target::FromPrefetcher : Target::FromCPU;
261    targets.add(target, when_ready, _order, source, true, alloc_on_fill);
262    assert(deferredTargets.isReset());
263}
264
265
266void
267MSHR::clearDownstreamPending()
268{
269    assert(downstreamPending);
270    downstreamPending = false;
271    // recursively clear flag on any MSHRs we will be forwarding
272    // responses to
273    targets.clearDownstreamPending();
274}
275
276void
277MSHR::markInService(bool pending_modified_resp)
278{
279    assert(!inService);
280
281    inService = true;
282    pendingModified = targets.needsWritable || pending_modified_resp;
283    postInvalidate = postDowngrade = false;
284
285    if (!downstreamPending) {
286        // let upstream caches know that the request has made it to a
287        // level where it's going to get a response
288        targets.clearDownstreamPending();
289    }
290}
291
292
293void
294MSHR::deallocate()
295{
296    assert(targets.empty());
297    targets.resetFlags();
298    assert(deferredTargets.isReset());
299    inService = false;
300}
301
302/*
303 * Adds a target to an MSHR
304 */
305void
306MSHR::allocateTarget(PacketPtr pkt, Tick whenReady, Counter _order,
307                     bool alloc_on_fill)
308{
309    // assume we'd never issue a prefetch when we've got an
310    // outstanding miss
311    assert(pkt->cmd != MemCmd::HardPFReq);
312
313    // uncacheable accesses always allocate a new MSHR, and cacheable
314    // accesses ignore any uncacheable MSHRs, thus we should never
315    // have targets addded if originally allocated uncacheable
316    assert(!_isUncacheable);
317
318    // if there's a request already in service for this MSHR, we will
319    // have to defer the new target until after the response if any of
320    // the following are true:
321    // - there are other targets already deferred
322    // - there's a pending invalidate to be applied after the response
323    //   comes back (but before this target is processed)
324    // - the MSHR's first (and only) non-deferred target is a cache
325    //   maintenance packet
326    // - the new target is a cache maintenance packet (this is probably
327    //   overly conservative but certainly safe)
328    // - this target requires a writable block and either we're not
329    //   getting a writable block back or we have already snooped
330    //   another read request that will downgrade our writable block
331    //   to non-writable (Shared or Owned)
332    PacketPtr tgt_pkt = targets.front().pkt;
333    if (pkt->req->isCacheMaintenance() ||
334        tgt_pkt->req->isCacheMaintenance() ||
335        !deferredTargets.empty() ||
336        (inService &&
337         (hasPostInvalidate() ||
338          (pkt->needsWritable() &&
339           (!isPendingModified() || hasPostDowngrade() || isForward))))) {
340        // need to put on deferred list
341        if (inService && hasPostInvalidate())
342            replaceUpgrade(pkt);
343        deferredTargets.add(pkt, whenReady, _order, Target::FromCPU, true,
344                            alloc_on_fill);
345    } else {
346        // No request outstanding, or still OK to append to
347        // outstanding request: append to regular target list.  Only
348        // mark pending if current request hasn't been issued yet
349        // (isn't in service).
350        targets.add(pkt, whenReady, _order, Target::FromCPU, !inService,
351                    alloc_on_fill);
352    }
353}
354
355bool
356MSHR::handleSnoop(PacketPtr pkt, Counter _order)
357{
358    DPRINTF(Cache, "%s for %s\n", __func__, pkt->print());
359
360    // when we snoop packets the needsWritable and isInvalidate flags
361    // should always be the same, however, this assumes that we never
362    // snoop writes as they are currently not marked as invalidations
363    panic_if((pkt->needsWritable() != pkt->isInvalidate()) &&
364             !pkt->req->isCacheMaintenance(),
365             "%s got snoop %s where needsWritable, "
366             "does not match isInvalidate", name(), pkt->print());
367
368    if (!inService || (pkt->isExpressSnoop() && downstreamPending)) {
369        // Request has not been issued yet, or it's been issued
370        // locally but is buffered unissued at some downstream cache
371        // which is forwarding us this snoop.  Either way, the packet
372        // we're snooping logically precedes this MSHR's request, so
373        // the snoop has no impact on the MSHR, but must be processed
374        // in the standard way by the cache.  The only exception is
375        // that if we're an L2+ cache buffering an UpgradeReq from a
376        // higher-level cache, and the snoop is invalidating, then our
377        // buffered upgrades must be converted to read exclusives,
378        // since the upper-level cache no longer has a valid copy.
379        // That is, even though the upper-level cache got out on its
380        // local bus first, some other invalidating transaction
381        // reached the global bus before the upgrade did.
382        if (pkt->needsWritable() || pkt->req->isCacheInvalidate()) {
383            targets.replaceUpgrades();
384            deferredTargets.replaceUpgrades();
385        }
386
387        return false;
388    }
389
390    // From here on down, the request issued by this MSHR logically
391    // precedes the request we're snooping.
392    if (pkt->needsWritable() || pkt->req->isCacheInvalidate()) {
393        // snooped request still precedes the re-request we'll have to
394        // issue for deferred targets, if any...
395        deferredTargets.replaceUpgrades();
396    }
397
398    PacketPtr tgt_pkt = targets.front().pkt;
399    if (hasPostInvalidate() || tgt_pkt->req->isCacheInvalidate()) {
400        // a prior snoop has already appended an invalidation or a
401        // cache invalidation operation is in progress, so logically
402        // we don't have the block anymore; no need for further
403        // snooping.
404        return true;
405    }
406
407    if (isPendingModified() || pkt->isInvalidate()) {
408        // We need to save and replay the packet in two cases:
409        // 1. We're awaiting a writable copy (Modified or Exclusive),
410        //    so this MSHR is the orgering point, and we need to respond
411        //    after we receive data.
412        // 2. It's an invalidation (e.g., UpgradeReq), and we need
413        //    to forward the snoop up the hierarchy after the current
414        //    transaction completes.
415
416        // Start by determining if we will eventually respond or not,
417        // matching the conditions checked in Cache::handleSnoop
418        bool will_respond = isPendingModified() && pkt->needsResponse() &&
419                      !pkt->isClean();
420
421        // The packet we are snooping may be deleted by the time we
422        // actually process the target, and we consequently need to
423        // save a copy here. Clear flags and also allocate new data as
424        // the original packet data storage may have been deleted by
425        // the time we get to process this packet. In the cases where
426        // we are not responding after handling the snoop we also need
427        // to create a copy of the request to be on the safe side. In
428        // the latter case the cache is responsible for deleting both
429        // the packet and the request as part of handling the deferred
430        // snoop.
431        PacketPtr cp_pkt = will_respond ? new Packet(pkt, true, true) :
432            new Packet(new Request(*pkt->req), pkt->cmd, blkSize, pkt->id);
433
434        if (will_respond) {
435            // we are the ordering point, and will consequently
436            // respond, and depending on whether the packet
437            // needsWritable or not we either pass a Shared line or a
438            // Modified line
439            pkt->setCacheResponding();
440
441            // inform the cache hierarchy that this cache had the line
442            // in the Modified state, even if the response is passed
443            // as Shared (and thus non-writable)
444            pkt->setResponderHadWritable();
445
446            // in the case of an uncacheable request there is no need
447            // to set the responderHadWritable flag, but since the
448            // recipient does not care there is no harm in doing so
449        }
450        targets.add(cp_pkt, curTick(), _order, Target::FromSnoop,
451                    downstreamPending && targets.needsWritable, false);
452
453        if (pkt->needsWritable() || pkt->isInvalidate()) {
454            // This transaction will take away our pending copy
455            postInvalidate = true;
456        }
457
458        if (isPendingModified() && pkt->isClean()) {
459            pkt->setSatisfied();
460        }
461    }
462
463    if (!pkt->needsWritable() && !pkt->req->isUncacheable()) {
464        // This transaction will get a read-shared copy, downgrading
465        // our copy if we had a writable one
466        postDowngrade = true;
467        // make sure that any downstream cache does not respond with a
468        // writable (and dirty) copy even if it has one, unless it was
469        // explicitly asked for one
470        pkt->setHasSharers();
471    }
472
473    return true;
474}
475
476MSHR::TargetList
477MSHR::extractServiceableTargets(PacketPtr pkt)
478{
479    TargetList ready_targets;
480    // If the downstream MSHR got an invalidation request then we only
481    // service the first of the FromCPU targets and any other
482    // non-FromCPU target. This way the remaining FromCPU targets
483    // issue a new request and get a fresh copy of the block and we
484    // avoid memory consistency violations.
485    if (pkt->cmd == MemCmd::ReadRespWithInvalidate) {
486        auto it = targets.begin();
487        assert((it->source == Target::FromCPU) ||
488               (it->source == Target::FromPrefetcher));
489        ready_targets.push_back(*it);
490        it = targets.erase(it);
491        while (it != targets.end()) {
492            if (it->source == Target::FromCPU) {
493                it++;
494            } else {
495                assert(it->source == Target::FromSnoop);
496                ready_targets.push_back(*it);
497                it = targets.erase(it);
498            }
499        }
500        ready_targets.populateFlags();
501    } else {
502        std::swap(ready_targets, targets);
503    }
504    targets.populateFlags();
505
506    return ready_targets;
507}
508
509bool
510MSHR::promoteDeferredTargets()
511{
512    if (targets.empty() && deferredTargets.empty()) {
513        // nothing to promote
514        return false;
515    }
516
517    // the deferred targets can be generally promoted unless they
518    // contain a cache maintenance request
519
520    // find the first target that is a cache maintenance request
521    auto it = std::find_if(deferredTargets.begin(), deferredTargets.end(),
522                           [](MSHR::Target &t) {
523                               return t.pkt->req->isCacheMaintenance();
524                           });
525    if (it == deferredTargets.begin()) {
526        // if the first deferred target is a cache maintenance packet
527        // then we can promote provided the targets list is empty and
528        // we can service it on its own
529        if (targets.empty()) {
530            targets.splice(targets.end(), deferredTargets, it);
531        }
532    } else {
533        // if a cache maintenance operation exists, we promote all the
534        // deferred targets that precede it, or all deferred targets
535        // otherwise
536        targets.splice(targets.end(), deferredTargets,
537                       deferredTargets.begin(), it);
538    }
539
540    deferredTargets.populateFlags();
541    targets.populateFlags();
542    order = targets.front().order;
543    readyTime = std::max(curTick(), targets.front().readyTime);
544
545    return true;
546}
547
548
549void
550MSHR::promoteWritable()
551{
552    if (deferredTargets.needsWritable &&
553        !(hasPostInvalidate() || hasPostDowngrade())) {
554        // We got a writable response, but we have deferred targets
555        // which are waiting to request a writable copy (not because
556        // of a pending invalidate).  This can happen if the original
557        // request was for a read-only block, but we got a writable
558        // response anyway. Since we got the writable copy there's no
559        // need to defer the targets, so move them up to the regular
560        // target list.
561        assert(!targets.needsWritable);
562        targets.needsWritable = true;
563        // if any of the deferred targets were upper-level cache
564        // requests marked downstreamPending, need to clear that
565        assert(!downstreamPending);  // not pending here anymore
566        deferredTargets.clearDownstreamPending();
567        // this clears out deferredTargets too
568        targets.splice(targets.end(), deferredTargets);
569        deferredTargets.resetFlags();
570    }
571}
572
573
574bool
575MSHR::checkFunctional(PacketPtr pkt)
576{
577    // For printing, we treat the MSHR as a whole as single entity.
578    // For other requests, we iterate over the individual targets
579    // since that's where the actual data lies.
580    if (pkt->isPrint()) {
581        pkt->checkFunctional(this, blkAddr, isSecure, blkSize, nullptr);
582        return false;
583    } else {
584        return (targets.checkFunctional(pkt) ||
585                deferredTargets.checkFunctional(pkt));
586    }
587}
588
589bool
590MSHR::sendPacket(Cache &cache)
591{
592    return cache.sendMSHRQueuePacket(this);
593}
594
595void
596MSHR::print(std::ostream &os, int verbosity, const std::string &prefix) const
597{
598    ccprintf(os, "%s[%#llx:%#llx](%s) %s %s %s state: %s %s %s %s %s %s\n",
599             prefix, blkAddr, blkAddr + blkSize - 1,
600             isSecure ? "s" : "ns",
601             isForward ? "Forward" : "",
602             allocOnFill() ? "AllocOnFill" : "",
603             needsWritable() ? "Wrtbl" : "",
604             _isUncacheable ? "Unc" : "",
605             inService ? "InSvc" : "",
606             downstreamPending ? "DwnPend" : "",
607             postInvalidate ? "PostInv" : "",
608             postDowngrade ? "PostDowngr" : "",
609             hasFromCache() ? "HasFromCache" : "");
610
611    if (!targets.empty()) {
612        ccprintf(os, "%s  Targets:\n", prefix);
613        targets.print(os, verbosity, prefix + "    ");
614    }
615    if (!deferredTargets.empty()) {
616        ccprintf(os, "%s  Deferred Targets:\n", prefix);
617        deferredTargets.print(os, verbosity, prefix + "      ");
618    }
619}
620
621std::string
622MSHR::print() const
623{
624    std::ostringstream str;
625    print(str);
626    return str.str();
627}
628