mshr.cc revision 12637:bfc3cb9c7e6c
1/*
2 * Copyright (c) 2012-2013, 2015-2018 ARM Limited
3 * All rights reserved.
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder.  You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2002-2005 The Regents of The University of Michigan
15 * Copyright (c) 2010 Advanced Micro Devices, Inc.
16 * All rights reserved.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions are
20 * met: redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer;
22 * redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution;
25 * neither the name of the copyright holders nor the names of its
26 * contributors may be used to endorse or promote products derived from
27 * this software without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40 *
41 * Authors: Erik Hallnor
42 *          Dave Greene
43 */
44
45/**
46 * @file
47 * Miss Status and Handling Register (MSHR) definitions.
48 */
49
50#include "mem/cache/mshr.hh"
51
52#include <algorithm>
53#include <cassert>
54#include <string>
55#include <vector>
56
57#include "base/logging.hh"
58#include "base/types.hh"
59#include "debug/Cache.hh"
60#include "mem/cache/cache.hh"
61#include "sim/core.hh"
62
63MSHR::MSHR() : downstreamPending(false),
64               pendingModified(false),
65               postInvalidate(false), postDowngrade(false),
66               isForward(false)
67{
68}
69
70MSHR::TargetList::TargetList()
71    : needsWritable(false), hasUpgrade(false), allocOnFill(false)
72{}
73
74
75void
76MSHR::TargetList::updateFlags(PacketPtr pkt, Target::Source source,
77                              bool alloc_on_fill)
78{
79    if (source != Target::FromSnoop) {
80        if (pkt->needsWritable()) {
81            needsWritable = true;
82        }
83
84        // StoreCondReq is effectively an upgrade if it's in an MSHR
85        // since it would have been failed already if we didn't have a
86        // read-only copy
87        if (pkt->isUpgrade() || pkt->cmd == MemCmd::StoreCondReq) {
88            hasUpgrade = true;
89        }
90
91        // potentially re-evaluate whether we should allocate on a fill or
92        // not
93        allocOnFill = allocOnFill || alloc_on_fill;
94    }
95}
96
97void
98MSHR::TargetList::populateFlags()
99{
100    resetFlags();
101    for (auto& t: *this) {
102        updateFlags(t.pkt, t.source, t.allocOnFill);
103    }
104}
105
106inline void
107MSHR::TargetList::add(PacketPtr pkt, Tick readyTime,
108                      Counter order, Target::Source source, bool markPending,
109                      bool alloc_on_fill)
110{
111    updateFlags(pkt, source, alloc_on_fill);
112    if (markPending) {
113        // Iterate over the SenderState stack and see if we find
114        // an MSHR entry. If we do, set the downstreamPending
115        // flag. Otherwise, do nothing.
116        MSHR *mshr = pkt->findNextSenderState<MSHR>();
117        if (mshr != nullptr) {
118            assert(!mshr->downstreamPending);
119            mshr->downstreamPending = true;
120        } else {
121            // No need to clear downstreamPending later
122            markPending = false;
123        }
124    }
125
126    emplace_back(pkt, readyTime, order, source, markPending, alloc_on_fill);
127}
128
129
130static void
131replaceUpgrade(PacketPtr pkt)
132{
133    // remember if the current packet has data allocated
134    bool has_data = pkt->hasData() || pkt->hasRespData();
135
136    if (pkt->cmd == MemCmd::UpgradeReq) {
137        pkt->cmd = MemCmd::ReadExReq;
138        DPRINTF(Cache, "Replacing UpgradeReq with ReadExReq\n");
139    } else if (pkt->cmd == MemCmd::SCUpgradeReq) {
140        pkt->cmd = MemCmd::SCUpgradeFailReq;
141        DPRINTF(Cache, "Replacing SCUpgradeReq with SCUpgradeFailReq\n");
142    } else if (pkt->cmd == MemCmd::StoreCondReq) {
143        pkt->cmd = MemCmd::StoreCondFailReq;
144        DPRINTF(Cache, "Replacing StoreCondReq with StoreCondFailReq\n");
145    }
146
147    if (!has_data) {
148        // there is no sensible way of setting the data field if the
149        // new command actually would carry data
150        assert(!pkt->hasData());
151
152        if (pkt->hasRespData()) {
153            // we went from a packet that had no data (neither request,
154            // nor response), to one that does, and therefore we need to
155            // actually allocate space for the data payload
156            pkt->allocate();
157        }
158    }
159}
160
161
162void
163MSHR::TargetList::replaceUpgrades()
164{
165    if (!hasUpgrade)
166        return;
167
168    for (auto& t : *this) {
169        replaceUpgrade(t.pkt);
170    }
171
172    hasUpgrade = false;
173}
174
175
176void
177MSHR::TargetList::clearDownstreamPending()
178{
179    for (auto& t : *this) {
180        if (t.markedPending) {
181            // Iterate over the SenderState stack and see if we find
182            // an MSHR entry. If we find one, clear the
183            // downstreamPending flag by calling
184            // clearDownstreamPending(). This recursively clears the
185            // downstreamPending flag in all caches this packet has
186            // passed through.
187            MSHR *mshr = t.pkt->findNextSenderState<MSHR>();
188            if (mshr != nullptr) {
189                mshr->clearDownstreamPending();
190            }
191            t.markedPending = false;
192        }
193    }
194}
195
196
197bool
198MSHR::TargetList::checkFunctional(PacketPtr pkt)
199{
200    for (auto& t : *this) {
201        if (pkt->checkFunctional(t.pkt)) {
202            return true;
203        }
204    }
205
206    return false;
207}
208
209
210void
211MSHR::TargetList::print(std::ostream &os, int verbosity,
212                        const std::string &prefix) const
213{
214    for (auto& t : *this) {
215        const char *s;
216        switch (t.source) {
217          case Target::FromCPU:
218            s = "FromCPU";
219            break;
220          case Target::FromSnoop:
221            s = "FromSnoop";
222            break;
223          case Target::FromPrefetcher:
224            s = "FromPrefetcher";
225            break;
226          default:
227            s = "";
228            break;
229        }
230        ccprintf(os, "%s%s: ", prefix, s);
231        t.pkt->print(os, verbosity, "");
232        ccprintf(os, "\n");
233    }
234}
235
236
237void
238MSHR::allocate(Addr blk_addr, unsigned blk_size, PacketPtr target,
239               Tick when_ready, Counter _order, bool alloc_on_fill)
240{
241    blkAddr = blk_addr;
242    blkSize = blk_size;
243    isSecure = target->isSecure();
244    readyTime = when_ready;
245    order = _order;
246    assert(target);
247    isForward = false;
248    _isUncacheable = target->req->isUncacheable();
249    inService = false;
250    downstreamPending = false;
251    assert(targets.isReset());
252    // Don't know of a case where we would allocate a new MSHR for a
253    // snoop (mem-side request), so set source according to request here
254    Target::Source source = (target->cmd == MemCmd::HardPFReq) ?
255        Target::FromPrefetcher : Target::FromCPU;
256    targets.add(target, when_ready, _order, source, true, alloc_on_fill);
257    assert(deferredTargets.isReset());
258}
259
260
261void
262MSHR::clearDownstreamPending()
263{
264    assert(downstreamPending);
265    downstreamPending = false;
266    // recursively clear flag on any MSHRs we will be forwarding
267    // responses to
268    targets.clearDownstreamPending();
269}
270
271void
272MSHR::markInService(bool pending_modified_resp)
273{
274    assert(!inService);
275
276    inService = true;
277    pendingModified = targets.needsWritable || pending_modified_resp;
278    postInvalidate = postDowngrade = false;
279
280    if (!downstreamPending) {
281        // let upstream caches know that the request has made it to a
282        // level where it's going to get a response
283        targets.clearDownstreamPending();
284    }
285}
286
287
288void
289MSHR::deallocate()
290{
291    assert(targets.empty());
292    targets.resetFlags();
293    assert(deferredTargets.isReset());
294    inService = false;
295}
296
297/*
298 * Adds a target to an MSHR
299 */
300void
301MSHR::allocateTarget(PacketPtr pkt, Tick whenReady, Counter _order,
302                     bool alloc_on_fill)
303{
304    // assume we'd never issue a prefetch when we've got an
305    // outstanding miss
306    assert(pkt->cmd != MemCmd::HardPFReq);
307
308    // uncacheable accesses always allocate a new MSHR, and cacheable
309    // accesses ignore any uncacheable MSHRs, thus we should never
310    // have targets addded if originally allocated uncacheable
311    assert(!_isUncacheable);
312
313    // if there's a request already in service for this MSHR, we will
314    // have to defer the new target until after the response if any of
315    // the following are true:
316    // - there are other targets already deferred
317    // - there's a pending invalidate to be applied after the response
318    //   comes back (but before this target is processed)
319    // - the MSHR's first (and only) non-deferred target is a cache
320    //   maintenance packet
321    // - the new target is a cache maintenance packet (this is probably
322    //   overly conservative but certainly safe)
323    // - this target requires a writable block and either we're not
324    //   getting a writable block back or we have already snooped
325    //   another read request that will downgrade our writable block
326    //   to non-writable (Shared or Owned)
327    PacketPtr tgt_pkt = targets.front().pkt;
328    if (pkt->req->isCacheMaintenance() ||
329        tgt_pkt->req->isCacheMaintenance() ||
330        !deferredTargets.empty() ||
331        (inService &&
332         (hasPostInvalidate() ||
333          (pkt->needsWritable() &&
334           (!isPendingModified() || hasPostDowngrade() || isForward))))) {
335        // need to put on deferred list
336        if (inService && hasPostInvalidate())
337            replaceUpgrade(pkt);
338        deferredTargets.add(pkt, whenReady, _order, Target::FromCPU, true,
339                            alloc_on_fill);
340    } else {
341        // No request outstanding, or still OK to append to
342        // outstanding request: append to regular target list.  Only
343        // mark pending if current request hasn't been issued yet
344        // (isn't in service).
345        targets.add(pkt, whenReady, _order, Target::FromCPU, !inService,
346                    alloc_on_fill);
347    }
348}
349
350bool
351MSHR::handleSnoop(PacketPtr pkt, Counter _order)
352{
353    DPRINTF(Cache, "%s for %s\n", __func__, pkt->print());
354
355    // when we snoop packets the needsWritable and isInvalidate flags
356    // should always be the same, however, this assumes that we never
357    // snoop writes as they are currently not marked as invalidations
358    panic_if((pkt->needsWritable() != pkt->isInvalidate()) &&
359             !pkt->req->isCacheMaintenance(),
360             "%s got snoop %s where needsWritable, "
361             "does not match isInvalidate", name(), pkt->print());
362
363    if (!inService || (pkt->isExpressSnoop() && downstreamPending)) {
364        // Request has not been issued yet, or it's been issued
365        // locally but is buffered unissued at some downstream cache
366        // which is forwarding us this snoop.  Either way, the packet
367        // we're snooping logically precedes this MSHR's request, so
368        // the snoop has no impact on the MSHR, but must be processed
369        // in the standard way by the cache.  The only exception is
370        // that if we're an L2+ cache buffering an UpgradeReq from a
371        // higher-level cache, and the snoop is invalidating, then our
372        // buffered upgrades must be converted to read exclusives,
373        // since the upper-level cache no longer has a valid copy.
374        // That is, even though the upper-level cache got out on its
375        // local bus first, some other invalidating transaction
376        // reached the global bus before the upgrade did.
377        if (pkt->needsWritable() || pkt->req->isCacheInvalidate()) {
378            targets.replaceUpgrades();
379            deferredTargets.replaceUpgrades();
380        }
381
382        return false;
383    }
384
385    // From here on down, the request issued by this MSHR logically
386    // precedes the request we're snooping.
387    if (pkt->needsWritable() || pkt->req->isCacheInvalidate()) {
388        // snooped request still precedes the re-request we'll have to
389        // issue for deferred targets, if any...
390        deferredTargets.replaceUpgrades();
391    }
392
393    PacketPtr tgt_pkt = targets.front().pkt;
394    if (hasPostInvalidate() || tgt_pkt->req->isCacheInvalidate()) {
395        // a prior snoop has already appended an invalidation or a
396        // cache invalidation operation is in progress, so logically
397        // we don't have the block anymore; no need for further
398        // snooping.
399        return true;
400    }
401
402    if (isPendingModified() || pkt->isInvalidate()) {
403        // We need to save and replay the packet in two cases:
404        // 1. We're awaiting a writable copy (Modified or Exclusive),
405        //    so this MSHR is the orgering point, and we need to respond
406        //    after we receive data.
407        // 2. It's an invalidation (e.g., UpgradeReq), and we need
408        //    to forward the snoop up the hierarchy after the current
409        //    transaction completes.
410
411        // Start by determining if we will eventually respond or not,
412        // matching the conditions checked in Cache::handleSnoop
413        bool will_respond = isPendingModified() && pkt->needsResponse() &&
414                      !pkt->isClean();
415
416        // The packet we are snooping may be deleted by the time we
417        // actually process the target, and we consequently need to
418        // save a copy here. Clear flags and also allocate new data as
419        // the original packet data storage may have been deleted by
420        // the time we get to process this packet. In the cases where
421        // we are not responding after handling the snoop we also need
422        // to create a copy of the request to be on the safe side. In
423        // the latter case the cache is responsible for deleting both
424        // the packet and the request as part of handling the deferred
425        // snoop.
426        PacketPtr cp_pkt = will_respond ? new Packet(pkt, true, true) :
427            new Packet(new Request(*pkt->req), pkt->cmd, blkSize, pkt->id);
428
429        if (will_respond) {
430            // we are the ordering point, and will consequently
431            // respond, and depending on whether the packet
432            // needsWritable or not we either pass a Shared line or a
433            // Modified line
434            pkt->setCacheResponding();
435
436            // inform the cache hierarchy that this cache had the line
437            // in the Modified state, even if the response is passed
438            // as Shared (and thus non-writable)
439            pkt->setResponderHadWritable();
440
441            // in the case of an uncacheable request there is no need
442            // to set the responderHadWritable flag, but since the
443            // recipient does not care there is no harm in doing so
444        }
445        targets.add(cp_pkt, curTick(), _order, Target::FromSnoop,
446                    downstreamPending && targets.needsWritable, false);
447
448        if (pkt->needsWritable() || pkt->isInvalidate()) {
449            // This transaction will take away our pending copy
450            postInvalidate = true;
451        }
452
453        if (isPendingModified() && pkt->isClean()) {
454            pkt->setSatisfied();
455        }
456    }
457
458    if (!pkt->needsWritable() && !pkt->req->isUncacheable()) {
459        // This transaction will get a read-shared copy, downgrading
460        // our copy if we had a writable one
461        postDowngrade = true;
462        // make sure that any downstream cache does not respond with a
463        // writable (and dirty) copy even if it has one, unless it was
464        // explicitly asked for one
465        pkt->setHasSharers();
466    }
467
468    return true;
469}
470
471MSHR::TargetList
472MSHR::extractServiceableTargets(PacketPtr pkt)
473{
474    TargetList ready_targets;
475    // If the downstream MSHR got an invalidation request then we only
476    // service the first of the FromCPU targets and any other
477    // non-FromCPU target. This way the remaining FromCPU targets
478    // issue a new request and get a fresh copy of the block and we
479    // avoid memory consistency violations.
480    if (pkt->cmd == MemCmd::ReadRespWithInvalidate) {
481        auto it = targets.begin();
482        assert((it->source == Target::FromCPU) ||
483               (it->source == Target::FromPrefetcher));
484        ready_targets.push_back(*it);
485        it = targets.erase(it);
486        while (it != targets.end()) {
487            if (it->source == Target::FromCPU) {
488                it++;
489            } else {
490                assert(it->source == Target::FromSnoop);
491                ready_targets.push_back(*it);
492                it = targets.erase(it);
493            }
494        }
495        ready_targets.populateFlags();
496    } else {
497        std::swap(ready_targets, targets);
498    }
499    targets.populateFlags();
500
501    return ready_targets;
502}
503
504bool
505MSHR::promoteDeferredTargets()
506{
507    if (targets.empty() && deferredTargets.empty()) {
508        // nothing to promote
509        return false;
510    }
511
512    // the deferred targets can be generally promoted unless they
513    // contain a cache maintenance request
514
515    // find the first target that is a cache maintenance request
516    auto it = std::find_if(deferredTargets.begin(), deferredTargets.end(),
517                           [](MSHR::Target &t) {
518                               return t.pkt->req->isCacheMaintenance();
519                           });
520    if (it == deferredTargets.begin()) {
521        // if the first deferred target is a cache maintenance packet
522        // then we can promote provided the targets list is empty and
523        // we can service it on its own
524        if (targets.empty()) {
525            targets.splice(targets.end(), deferredTargets, it);
526        }
527    } else {
528        // if a cache maintenance operation exists, we promote all the
529        // deferred targets that precede it, or all deferred targets
530        // otherwise
531        targets.splice(targets.end(), deferredTargets,
532                       deferredTargets.begin(), it);
533    }
534
535    deferredTargets.populateFlags();
536    targets.populateFlags();
537    order = targets.front().order;
538    readyTime = std::max(curTick(), targets.front().readyTime);
539
540    return true;
541}
542
543
544void
545MSHR::promoteWritable()
546{
547    if (deferredTargets.needsWritable &&
548        !(hasPostInvalidate() || hasPostDowngrade())) {
549        // We got a writable response, but we have deferred targets
550        // which are waiting to request a writable copy (not because
551        // of a pending invalidate).  This can happen if the original
552        // request was for a read-only block, but we got a writable
553        // response anyway. Since we got the writable copy there's no
554        // need to defer the targets, so move them up to the regular
555        // target list.
556        assert(!targets.needsWritable);
557        targets.needsWritable = true;
558        // if any of the deferred targets were upper-level cache
559        // requests marked downstreamPending, need to clear that
560        assert(!downstreamPending);  // not pending here anymore
561        deferredTargets.clearDownstreamPending();
562        // this clears out deferredTargets too
563        targets.splice(targets.end(), deferredTargets);
564        deferredTargets.resetFlags();
565    }
566}
567
568
569bool
570MSHR::checkFunctional(PacketPtr pkt)
571{
572    // For printing, we treat the MSHR as a whole as single entity.
573    // For other requests, we iterate over the individual targets
574    // since that's where the actual data lies.
575    if (pkt->isPrint()) {
576        pkt->checkFunctional(this, blkAddr, isSecure, blkSize, nullptr);
577        return false;
578    } else {
579        return (targets.checkFunctional(pkt) ||
580                deferredTargets.checkFunctional(pkt));
581    }
582}
583
584bool
585MSHR::sendPacket(Cache &cache)
586{
587    return cache.sendMSHRQueuePacket(this);
588}
589
590void
591MSHR::print(std::ostream &os, int verbosity, const std::string &prefix) const
592{
593    ccprintf(os, "%s[%#llx:%#llx](%s) %s %s %s state: %s %s %s %s %s\n",
594             prefix, blkAddr, blkAddr + blkSize - 1,
595             isSecure ? "s" : "ns",
596             isForward ? "Forward" : "",
597             allocOnFill() ? "AllocOnFill" : "",
598             needsWritable() ? "Wrtbl" : "",
599             _isUncacheable ? "Unc" : "",
600             inService ? "InSvc" : "",
601             downstreamPending ? "DwnPend" : "",
602             postInvalidate ? "PostInv" : "",
603             postDowngrade ? "PostDowngr" : "");
604
605    if (!targets.empty()) {
606        ccprintf(os, "%s  Targets:\n", prefix);
607        targets.print(os, verbosity, prefix + "    ");
608    }
609    if (!deferredTargets.empty()) {
610        ccprintf(os, "%s  Deferred Targets:\n", prefix);
611        deferredTargets.print(os, verbosity, prefix + "      ");
612    }
613}
614
615std::string
616MSHR::print() const
617{
618    std::ostringstream str;
619    print(str);
620    return str.str();
621}
622