mshr.cc revision 12334:e0ab29a34764
1/*
2 * Copyright (c) 2012-2013, 2015-2017 ARM Limited
3 * All rights reserved.
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder.  You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2002-2005 The Regents of The University of Michigan
15 * Copyright (c) 2010 Advanced Micro Devices, Inc.
16 * All rights reserved.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions are
20 * met: redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer;
22 * redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution;
25 * neither the name of the copyright holders nor the names of its
26 * contributors may be used to endorse or promote products derived from
27 * this software without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40 *
41 * Authors: Erik Hallnor
42 *          Dave Greene
43 */
44
45/**
46 * @file
47 * Miss Status and Handling Register (MSHR) definitions.
48 */
49
50#include "mem/cache/mshr.hh"
51
52#include <algorithm>
53#include <cassert>
54#include <string>
55#include <vector>
56
57#include "base/logging.hh"
58#include "base/types.hh"
59#include "debug/Cache.hh"
60#include "mem/cache/cache.hh"
61#include "sim/core.hh"
62
63using namespace std;
64
65MSHR::MSHR() : downstreamPending(false),
66               pendingModified(false),
67               postInvalidate(false), postDowngrade(false),
68               isForward(false)
69{
70}
71
72MSHR::TargetList::TargetList()
73    : needsWritable(false), hasUpgrade(false), allocOnFill(false)
74{}
75
76
77void
78MSHR::TargetList::updateFlags(PacketPtr pkt, Target::Source source,
79                              bool alloc_on_fill)
80{
81    if (source != Target::FromSnoop) {
82        if (pkt->needsWritable()) {
83            needsWritable = true;
84        }
85
86        // StoreCondReq is effectively an upgrade if it's in an MSHR
87        // since it would have been failed already if we didn't have a
88        // read-only copy
89        if (pkt->isUpgrade() || pkt->cmd == MemCmd::StoreCondReq) {
90            hasUpgrade = true;
91        }
92
93        // potentially re-evaluate whether we should allocate on a fill or
94        // not
95        allocOnFill = allocOnFill || alloc_on_fill;
96    }
97}
98
99void
100MSHR::TargetList::populateFlags()
101{
102    resetFlags();
103    for (auto& t: *this) {
104        updateFlags(t.pkt, t.source, t.allocOnFill);
105    }
106}
107
108inline void
109MSHR::TargetList::add(PacketPtr pkt, Tick readyTime,
110                      Counter order, Target::Source source, bool markPending,
111                      bool alloc_on_fill)
112{
113    updateFlags(pkt, source, alloc_on_fill);
114    if (markPending) {
115        // Iterate over the SenderState stack and see if we find
116        // an MSHR entry. If we do, set the downstreamPending
117        // flag. Otherwise, do nothing.
118        MSHR *mshr = pkt->findNextSenderState<MSHR>();
119        if (mshr != nullptr) {
120            assert(!mshr->downstreamPending);
121            mshr->downstreamPending = true;
122        } else {
123            // No need to clear downstreamPending later
124            markPending = false;
125        }
126    }
127
128    emplace_back(pkt, readyTime, order, source, markPending, alloc_on_fill);
129}
130
131
132static void
133replaceUpgrade(PacketPtr pkt)
134{
135    // remember if the current packet has data allocated
136    bool has_data = pkt->hasData() || pkt->hasRespData();
137
138    if (pkt->cmd == MemCmd::UpgradeReq) {
139        pkt->cmd = MemCmd::ReadExReq;
140        DPRINTF(Cache, "Replacing UpgradeReq with ReadExReq\n");
141    } else if (pkt->cmd == MemCmd::SCUpgradeReq) {
142        pkt->cmd = MemCmd::SCUpgradeFailReq;
143        DPRINTF(Cache, "Replacing SCUpgradeReq with SCUpgradeFailReq\n");
144    } else if (pkt->cmd == MemCmd::StoreCondReq) {
145        pkt->cmd = MemCmd::StoreCondFailReq;
146        DPRINTF(Cache, "Replacing StoreCondReq with StoreCondFailReq\n");
147    }
148
149    if (!has_data) {
150        // there is no sensible way of setting the data field if the
151        // new command actually would carry data
152        assert(!pkt->hasData());
153
154        if (pkt->hasRespData()) {
155            // we went from a packet that had no data (neither request,
156            // nor response), to one that does, and therefore we need to
157            // actually allocate space for the data payload
158            pkt->allocate();
159        }
160    }
161}
162
163
164void
165MSHR::TargetList::replaceUpgrades()
166{
167    if (!hasUpgrade)
168        return;
169
170    for (auto& t : *this) {
171        replaceUpgrade(t.pkt);
172    }
173
174    hasUpgrade = false;
175}
176
177
178void
179MSHR::TargetList::clearDownstreamPending()
180{
181    for (auto& t : *this) {
182        if (t.markedPending) {
183            // Iterate over the SenderState stack and see if we find
184            // an MSHR entry. If we find one, clear the
185            // downstreamPending flag by calling
186            // clearDownstreamPending(). This recursively clears the
187            // downstreamPending flag in all caches this packet has
188            // passed through.
189            MSHR *mshr = t.pkt->findNextSenderState<MSHR>();
190            if (mshr != nullptr) {
191                mshr->clearDownstreamPending();
192            }
193            t.markedPending = false;
194        }
195    }
196}
197
198
199bool
200MSHR::TargetList::checkFunctional(PacketPtr pkt)
201{
202    for (auto& t : *this) {
203        if (pkt->checkFunctional(t.pkt)) {
204            return true;
205        }
206    }
207
208    return false;
209}
210
211
212void
213MSHR::TargetList::print(std::ostream &os, int verbosity,
214                        const std::string &prefix) const
215{
216    for (auto& t : *this) {
217        const char *s;
218        switch (t.source) {
219          case Target::FromCPU:
220            s = "FromCPU";
221            break;
222          case Target::FromSnoop:
223            s = "FromSnoop";
224            break;
225          case Target::FromPrefetcher:
226            s = "FromPrefetcher";
227            break;
228          default:
229            s = "";
230            break;
231        }
232        ccprintf(os, "%s%s: ", prefix, s);
233        t.pkt->print(os, verbosity, "");
234        ccprintf(os, "\n");
235    }
236}
237
238
239void
240MSHR::allocate(Addr blk_addr, unsigned blk_size, PacketPtr target,
241               Tick when_ready, Counter _order, bool alloc_on_fill)
242{
243    blkAddr = blk_addr;
244    blkSize = blk_size;
245    isSecure = target->isSecure();
246    readyTime = when_ready;
247    order = _order;
248    assert(target);
249    isForward = false;
250    _isUncacheable = target->req->isUncacheable();
251    inService = false;
252    downstreamPending = false;
253    assert(targets.isReset());
254    // Don't know of a case where we would allocate a new MSHR for a
255    // snoop (mem-side request), so set source according to request here
256    Target::Source source = (target->cmd == MemCmd::HardPFReq) ?
257        Target::FromPrefetcher : Target::FromCPU;
258    targets.add(target, when_ready, _order, source, true, alloc_on_fill);
259    assert(deferredTargets.isReset());
260}
261
262
263void
264MSHR::clearDownstreamPending()
265{
266    assert(downstreamPending);
267    downstreamPending = false;
268    // recursively clear flag on any MSHRs we will be forwarding
269    // responses to
270    targets.clearDownstreamPending();
271}
272
273void
274MSHR::markInService(bool pending_modified_resp)
275{
276    assert(!inService);
277
278    inService = true;
279    pendingModified = targets.needsWritable || pending_modified_resp;
280    postInvalidate = postDowngrade = false;
281
282    if (!downstreamPending) {
283        // let upstream caches know that the request has made it to a
284        // level where it's going to get a response
285        targets.clearDownstreamPending();
286    }
287}
288
289
290void
291MSHR::deallocate()
292{
293    assert(targets.empty());
294    targets.resetFlags();
295    assert(deferredTargets.isReset());
296    inService = false;
297}
298
299/*
300 * Adds a target to an MSHR
301 */
302void
303MSHR::allocateTarget(PacketPtr pkt, Tick whenReady, Counter _order,
304                     bool alloc_on_fill)
305{
306    // assume we'd never issue a prefetch when we've got an
307    // outstanding miss
308    assert(pkt->cmd != MemCmd::HardPFReq);
309
310    // uncacheable accesses always allocate a new MSHR, and cacheable
311    // accesses ignore any uncacheable MSHRs, thus we should never
312    // have targets addded if originally allocated uncacheable
313    assert(!_isUncacheable);
314
315    // if there's a request already in service for this MSHR, we will
316    // have to defer the new target until after the response if any of
317    // the following are true:
318    // - there are other targets already deferred
319    // - there's a pending invalidate to be applied after the response
320    //   comes back (but before this target is processed)
321    // - this target requires a writable block and either we're not
322    //   getting a writable block back or we have already snooped
323    //   another read request that will downgrade our writable block
324    //   to non-writable (Shared or Owned)
325    if (inService &&
326        (!deferredTargets.empty() || hasPostInvalidate() ||
327         (pkt->needsWritable() &&
328          (!isPendingModified() || hasPostDowngrade() || isForward)))) {
329        // need to put on deferred list
330        if (hasPostInvalidate())
331            replaceUpgrade(pkt);
332        deferredTargets.add(pkt, whenReady, _order, Target::FromCPU, true,
333                            alloc_on_fill);
334    } else {
335        // No request outstanding, or still OK to append to
336        // outstanding request: append to regular target list.  Only
337        // mark pending if current request hasn't been issued yet
338        // (isn't in service).
339        targets.add(pkt, whenReady, _order, Target::FromCPU, !inService,
340                    alloc_on_fill);
341    }
342}
343
344bool
345MSHR::handleSnoop(PacketPtr pkt, Counter _order)
346{
347    DPRINTF(Cache, "%s for %s\n", __func__, pkt->print());
348
349    // when we snoop packets the needsWritable and isInvalidate flags
350    // should always be the same, however, this assumes that we never
351    // snoop writes as they are currently not marked as invalidations
352    panic_if(pkt->needsWritable() != pkt->isInvalidate(),
353             "%s got snoop %s where needsWritable, "
354             "does not match isInvalidate", name(), pkt->print());
355
356    if (!inService || (pkt->isExpressSnoop() && downstreamPending)) {
357        // Request has not been issued yet, or it's been issued
358        // locally but is buffered unissued at some downstream cache
359        // which is forwarding us this snoop.  Either way, the packet
360        // we're snooping logically precedes this MSHR's request, so
361        // the snoop has no impact on the MSHR, but must be processed
362        // in the standard way by the cache.  The only exception is
363        // that if we're an L2+ cache buffering an UpgradeReq from a
364        // higher-level cache, and the snoop is invalidating, then our
365        // buffered upgrades must be converted to read exclusives,
366        // since the upper-level cache no longer has a valid copy.
367        // That is, even though the upper-level cache got out on its
368        // local bus first, some other invalidating transaction
369        // reached the global bus before the upgrade did.
370        if (pkt->needsWritable()) {
371            targets.replaceUpgrades();
372            deferredTargets.replaceUpgrades();
373        }
374
375        return false;
376    }
377
378    // From here on down, the request issued by this MSHR logically
379    // precedes the request we're snooping.
380    if (pkt->needsWritable()) {
381        // snooped request still precedes the re-request we'll have to
382        // issue for deferred targets, if any...
383        deferredTargets.replaceUpgrades();
384    }
385
386    if (hasPostInvalidate()) {
387        // a prior snoop has already appended an invalidation, so
388        // logically we don't have the block anymore; no need for
389        // further snooping.
390        return true;
391    }
392
393    if (isPendingModified() || pkt->isInvalidate()) {
394        // We need to save and replay the packet in two cases:
395        // 1. We're awaiting a writable copy (Modified or Exclusive),
396        //    so this MSHR is the orgering point, and we need to respond
397        //    after we receive data.
398        // 2. It's an invalidation (e.g., UpgradeReq), and we need
399        //    to forward the snoop up the hierarchy after the current
400        //    transaction completes.
401
402        // Start by determining if we will eventually respond or not,
403        // matching the conditions checked in Cache::handleSnoop
404        bool will_respond = isPendingModified() && pkt->needsResponse();
405
406        // The packet we are snooping may be deleted by the time we
407        // actually process the target, and we consequently need to
408        // save a copy here. Clear flags and also allocate new data as
409        // the original packet data storage may have been deleted by
410        // the time we get to process this packet. In the cases where
411        // we are not responding after handling the snoop we also need
412        // to create a copy of the request to be on the safe side. In
413        // the latter case the cache is responsible for deleting both
414        // the packet and the request as part of handling the deferred
415        // snoop.
416        PacketPtr cp_pkt = will_respond ? new Packet(pkt, true, true) :
417            new Packet(new Request(*pkt->req), pkt->cmd, blkSize);
418
419        if (will_respond) {
420            // we are the ordering point, and will consequently
421            // respond, and depending on whether the packet
422            // needsWritable or not we either pass a Shared line or a
423            // Modified line
424            pkt->setCacheResponding();
425
426            // inform the cache hierarchy that this cache had the line
427            // in the Modified state, even if the response is passed
428            // as Shared (and thus non-writable)
429            pkt->setResponderHadWritable();
430
431            // in the case of an uncacheable request there is no need
432            // to set the responderHadWritable flag, but since the
433            // recipient does not care there is no harm in doing so
434        }
435        targets.add(cp_pkt, curTick(), _order, Target::FromSnoop,
436                    downstreamPending && targets.needsWritable, false);
437
438        if (pkt->needsWritable()) {
439            // This transaction will take away our pending copy
440            postInvalidate = true;
441        }
442    }
443
444    if (!pkt->needsWritable() && !pkt->req->isUncacheable()) {
445        // This transaction will get a read-shared copy, downgrading
446        // our copy if we had a writable one
447        postDowngrade = true;
448        // make sure that any downstream cache does not respond with a
449        // writable (and dirty) copy even if it has one, unless it was
450        // explicitly asked for one
451        pkt->setHasSharers();
452    }
453
454    return true;
455}
456
457MSHR::TargetList
458MSHR::extractServiceableTargets(PacketPtr pkt)
459{
460    TargetList ready_targets;
461    // If the downstream MSHR got an invalidation request then we only
462    // service the first of the FromCPU targets and any other
463    // non-FromCPU target. This way the remaining FromCPU targets
464    // issue a new request and get a fresh copy of the block and we
465    // avoid memory consistency violations.
466    if (pkt->cmd == MemCmd::ReadRespWithInvalidate) {
467        auto it = targets.begin();
468        assert((it->source == Target::FromCPU) ||
469               (it->source == Target::FromPrefetcher));
470        ready_targets.push_back(*it);
471        it = targets.erase(it);
472        while (it != targets.end()) {
473            if (it->source == Target::FromCPU) {
474                it++;
475            } else {
476                assert(it->source == Target::FromSnoop);
477                ready_targets.push_back(*it);
478                it = targets.erase(it);
479            }
480        }
481        ready_targets.populateFlags();
482    } else {
483        std::swap(ready_targets, targets);
484    }
485    targets.populateFlags();
486
487    return ready_targets;
488}
489
490bool
491MSHR::promoteDeferredTargets()
492{
493    if (targets.empty())  {
494        if (deferredTargets.empty()) {
495            return false;
496        }
497
498        std::swap(targets, deferredTargets);
499    } else {
500        // If the targets list is not empty then we have one targets
501        // from the deferredTargets list to the targets list. A new
502        // request will then service the targets list.
503        targets.splice(targets.end(), deferredTargets);
504        targets.populateFlags();
505    }
506
507    // clear deferredTargets flags
508    deferredTargets.resetFlags();
509
510    order = targets.front().order;
511    readyTime = std::max(curTick(), targets.front().readyTime);
512
513    return true;
514}
515
516
517void
518MSHR::promoteWritable()
519{
520    if (deferredTargets.needsWritable &&
521        !(hasPostInvalidate() || hasPostDowngrade())) {
522        // We got a writable response, but we have deferred targets
523        // which are waiting to request a writable copy (not because
524        // of a pending invalidate).  This can happen if the original
525        // request was for a read-only block, but we got a writable
526        // response anyway. Since we got the writable copy there's no
527        // need to defer the targets, so move them up to the regular
528        // target list.
529        assert(!targets.needsWritable);
530        targets.needsWritable = true;
531        // if any of the deferred targets were upper-level cache
532        // requests marked downstreamPending, need to clear that
533        assert(!downstreamPending);  // not pending here anymore
534        deferredTargets.clearDownstreamPending();
535        // this clears out deferredTargets too
536        targets.splice(targets.end(), deferredTargets);
537        deferredTargets.resetFlags();
538    }
539}
540
541
542bool
543MSHR::checkFunctional(PacketPtr pkt)
544{
545    // For printing, we treat the MSHR as a whole as single entity.
546    // For other requests, we iterate over the individual targets
547    // since that's where the actual data lies.
548    if (pkt->isPrint()) {
549        pkt->checkFunctional(this, blkAddr, isSecure, blkSize, nullptr);
550        return false;
551    } else {
552        return (targets.checkFunctional(pkt) ||
553                deferredTargets.checkFunctional(pkt));
554    }
555}
556
557bool
558MSHR::sendPacket(Cache &cache)
559{
560    return cache.sendMSHRQueuePacket(this);
561}
562
563void
564MSHR::print(std::ostream &os, int verbosity, const std::string &prefix) const
565{
566    ccprintf(os, "%s[%#llx:%#llx](%s) %s %s %s state: %s %s %s %s %s\n",
567             prefix, blkAddr, blkAddr + blkSize - 1,
568             isSecure ? "s" : "ns",
569             isForward ? "Forward" : "",
570             allocOnFill() ? "AllocOnFill" : "",
571             needsWritable() ? "Wrtbl" : "",
572             _isUncacheable ? "Unc" : "",
573             inService ? "InSvc" : "",
574             downstreamPending ? "DwnPend" : "",
575             postInvalidate ? "PostInv" : "",
576             postDowngrade ? "PostDowngr" : "");
577
578    if (!targets.empty()) {
579        ccprintf(os, "%s  Targets:\n", prefix);
580        targets.print(os, verbosity, prefix + "    ");
581    }
582    if (!deferredTargets.empty()) {
583        ccprintf(os, "%s  Deferred Targets:\n", prefix);
584        deferredTargets.print(os, verbosity, prefix + "      ");
585    }
586}
587
588std::string
589MSHR::print() const
590{
591    ostringstream str;
592    print(str);
593    return str.str();
594}
595