mshr.cc revision 12351
1/*
2 * Copyright (c) 2012-2013, 2015-2017 ARM Limited
3 * All rights reserved.
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder.  You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2002-2005 The Regents of The University of Michigan
15 * Copyright (c) 2010 Advanced Micro Devices, Inc.
16 * All rights reserved.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions are
20 * met: redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer;
22 * redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution;
25 * neither the name of the copyright holders nor the names of its
26 * contributors may be used to endorse or promote products derived from
27 * this software without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40 *
41 * Authors: Erik Hallnor
42 *          Dave Greene
43 */
44
45/**
46 * @file
47 * Miss Status and Handling Register (MSHR) definitions.
48 */
49
50#include "mem/cache/mshr.hh"
51
52#include <algorithm>
53#include <cassert>
54#include <string>
55#include <vector>
56
57#include "base/logging.hh"
58#include "base/types.hh"
59#include "debug/Cache.hh"
60#include "mem/cache/cache.hh"
61#include "sim/core.hh"
62
63using namespace std;
64
65MSHR::MSHR() : downstreamPending(false),
66               pendingModified(false),
67               postInvalidate(false), postDowngrade(false),
68               isForward(false)
69{
70}
71
72MSHR::TargetList::TargetList()
73    : needsWritable(false), hasUpgrade(false), allocOnFill(false)
74{}
75
76
77void
78MSHR::TargetList::updateFlags(PacketPtr pkt, Target::Source source,
79                              bool alloc_on_fill)
80{
81    if (source != Target::FromSnoop) {
82        if (pkt->needsWritable()) {
83            needsWritable = true;
84        }
85
86        // StoreCondReq is effectively an upgrade if it's in an MSHR
87        // since it would have been failed already if we didn't have a
88        // read-only copy
89        if (pkt->isUpgrade() || pkt->cmd == MemCmd::StoreCondReq) {
90            hasUpgrade = true;
91        }
92
93        // potentially re-evaluate whether we should allocate on a fill or
94        // not
95        allocOnFill = allocOnFill || alloc_on_fill;
96    }
97}
98
99void
100MSHR::TargetList::populateFlags()
101{
102    resetFlags();
103    for (auto& t: *this) {
104        updateFlags(t.pkt, t.source, t.allocOnFill);
105    }
106}
107
108inline void
109MSHR::TargetList::add(PacketPtr pkt, Tick readyTime,
110                      Counter order, Target::Source source, bool markPending,
111                      bool alloc_on_fill)
112{
113    updateFlags(pkt, source, alloc_on_fill);
114    if (markPending) {
115        // Iterate over the SenderState stack and see if we find
116        // an MSHR entry. If we do, set the downstreamPending
117        // flag. Otherwise, do nothing.
118        MSHR *mshr = pkt->findNextSenderState<MSHR>();
119        if (mshr != nullptr) {
120            assert(!mshr->downstreamPending);
121            mshr->downstreamPending = true;
122        } else {
123            // No need to clear downstreamPending later
124            markPending = false;
125        }
126    }
127
128    emplace_back(pkt, readyTime, order, source, markPending, alloc_on_fill);
129}
130
131
132static void
133replaceUpgrade(PacketPtr pkt)
134{
135    // remember if the current packet has data allocated
136    bool has_data = pkt->hasData() || pkt->hasRespData();
137
138    if (pkt->cmd == MemCmd::UpgradeReq) {
139        pkt->cmd = MemCmd::ReadExReq;
140        DPRINTF(Cache, "Replacing UpgradeReq with ReadExReq\n");
141    } else if (pkt->cmd == MemCmd::SCUpgradeReq) {
142        pkt->cmd = MemCmd::SCUpgradeFailReq;
143        DPRINTF(Cache, "Replacing SCUpgradeReq with SCUpgradeFailReq\n");
144    } else if (pkt->cmd == MemCmd::StoreCondReq) {
145        pkt->cmd = MemCmd::StoreCondFailReq;
146        DPRINTF(Cache, "Replacing StoreCondReq with StoreCondFailReq\n");
147    }
148
149    if (!has_data) {
150        // there is no sensible way of setting the data field if the
151        // new command actually would carry data
152        assert(!pkt->hasData());
153
154        if (pkt->hasRespData()) {
155            // we went from a packet that had no data (neither request,
156            // nor response), to one that does, and therefore we need to
157            // actually allocate space for the data payload
158            pkt->allocate();
159        }
160    }
161}
162
163
164void
165MSHR::TargetList::replaceUpgrades()
166{
167    if (!hasUpgrade)
168        return;
169
170    for (auto& t : *this) {
171        replaceUpgrade(t.pkt);
172    }
173
174    hasUpgrade = false;
175}
176
177
178void
179MSHR::TargetList::clearDownstreamPending()
180{
181    for (auto& t : *this) {
182        if (t.markedPending) {
183            // Iterate over the SenderState stack and see if we find
184            // an MSHR entry. If we find one, clear the
185            // downstreamPending flag by calling
186            // clearDownstreamPending(). This recursively clears the
187            // downstreamPending flag in all caches this packet has
188            // passed through.
189            MSHR *mshr = t.pkt->findNextSenderState<MSHR>();
190            if (mshr != nullptr) {
191                mshr->clearDownstreamPending();
192            }
193            t.markedPending = false;
194        }
195    }
196}
197
198
199bool
200MSHR::TargetList::checkFunctional(PacketPtr pkt)
201{
202    for (auto& t : *this) {
203        if (pkt->checkFunctional(t.pkt)) {
204            return true;
205        }
206    }
207
208    return false;
209}
210
211
212void
213MSHR::TargetList::print(std::ostream &os, int verbosity,
214                        const std::string &prefix) const
215{
216    for (auto& t : *this) {
217        const char *s;
218        switch (t.source) {
219          case Target::FromCPU:
220            s = "FromCPU";
221            break;
222          case Target::FromSnoop:
223            s = "FromSnoop";
224            break;
225          case Target::FromPrefetcher:
226            s = "FromPrefetcher";
227            break;
228          default:
229            s = "";
230            break;
231        }
232        ccprintf(os, "%s%s: ", prefix, s);
233        t.pkt->print(os, verbosity, "");
234        ccprintf(os, "\n");
235    }
236}
237
238
239void
240MSHR::allocate(Addr blk_addr, unsigned blk_size, PacketPtr target,
241               Tick when_ready, Counter _order, bool alloc_on_fill)
242{
243    blkAddr = blk_addr;
244    blkSize = blk_size;
245    isSecure = target->isSecure();
246    readyTime = when_ready;
247    order = _order;
248    assert(target);
249    isForward = false;
250    _isUncacheable = target->req->isUncacheable();
251    inService = false;
252    downstreamPending = false;
253    assert(targets.isReset());
254    // Don't know of a case where we would allocate a new MSHR for a
255    // snoop (mem-side request), so set source according to request here
256    Target::Source source = (target->cmd == MemCmd::HardPFReq) ?
257        Target::FromPrefetcher : Target::FromCPU;
258    targets.add(target, when_ready, _order, source, true, alloc_on_fill);
259    assert(deferredTargets.isReset());
260}
261
262
263void
264MSHR::clearDownstreamPending()
265{
266    assert(downstreamPending);
267    downstreamPending = false;
268    // recursively clear flag on any MSHRs we will be forwarding
269    // responses to
270    targets.clearDownstreamPending();
271}
272
273void
274MSHR::markInService(bool pending_modified_resp)
275{
276    assert(!inService);
277
278    inService = true;
279    pendingModified = targets.needsWritable || pending_modified_resp;
280    postInvalidate = postDowngrade = false;
281
282    if (!downstreamPending) {
283        // let upstream caches know that the request has made it to a
284        // level where it's going to get a response
285        targets.clearDownstreamPending();
286    }
287}
288
289
290void
291MSHR::deallocate()
292{
293    assert(targets.empty());
294    targets.resetFlags();
295    assert(deferredTargets.isReset());
296    inService = false;
297}
298
299/*
300 * Adds a target to an MSHR
301 */
302void
303MSHR::allocateTarget(PacketPtr pkt, Tick whenReady, Counter _order,
304                     bool alloc_on_fill)
305{
306    // assume we'd never issue a prefetch when we've got an
307    // outstanding miss
308    assert(pkt->cmd != MemCmd::HardPFReq);
309
310    // uncacheable accesses always allocate a new MSHR, and cacheable
311    // accesses ignore any uncacheable MSHRs, thus we should never
312    // have targets addded if originally allocated uncacheable
313    assert(!_isUncacheable);
314
315    // if there's a request already in service for this MSHR, we will
316    // have to defer the new target until after the response if any of
317    // the following are true:
318    // - there are other targets already deferred
319    // - there's a pending invalidate to be applied after the response
320    //   comes back (but before this target is processed)
321    // - the MSHR's first (and only) non-deferred target is a cache
322    //   maintenance packet
323    // - the new target is a cache maintenance packet (this is probably
324    //   overly conservative but certainly safe)
325    // - this target requires a writable block and either we're not
326    //   getting a writable block back or we have already snooped
327    //   another read request that will downgrade our writable block
328    //   to non-writable (Shared or Owned)
329    PacketPtr tgt_pkt = targets.front().pkt;
330    if (pkt->req->isCacheMaintenance() ||
331        tgt_pkt->req->isCacheMaintenance() ||
332        !deferredTargets.empty() ||
333        (inService &&
334         (hasPostInvalidate() ||
335          (pkt->needsWritable() &&
336           (!isPendingModified() || hasPostDowngrade() || isForward))))) {
337        // need to put on deferred list
338        if (inService && hasPostInvalidate())
339            replaceUpgrade(pkt);
340        deferredTargets.add(pkt, whenReady, _order, Target::FromCPU, true,
341                            alloc_on_fill);
342    } else {
343        // No request outstanding, or still OK to append to
344        // outstanding request: append to regular target list.  Only
345        // mark pending if current request hasn't been issued yet
346        // (isn't in service).
347        targets.add(pkt, whenReady, _order, Target::FromCPU, !inService,
348                    alloc_on_fill);
349    }
350}
351
352bool
353MSHR::handleSnoop(PacketPtr pkt, Counter _order)
354{
355    DPRINTF(Cache, "%s for %s\n", __func__, pkt->print());
356
357    // when we snoop packets the needsWritable and isInvalidate flags
358    // should always be the same, however, this assumes that we never
359    // snoop writes as they are currently not marked as invalidations
360    panic_if((pkt->needsWritable() != pkt->isInvalidate()) &&
361             !pkt->req->isCacheMaintenance(),
362             "%s got snoop %s where needsWritable, "
363             "does not match isInvalidate", name(), pkt->print());
364
365    if (!inService || (pkt->isExpressSnoop() && downstreamPending)) {
366        // Request has not been issued yet, or it's been issued
367        // locally but is buffered unissued at some downstream cache
368        // which is forwarding us this snoop.  Either way, the packet
369        // we're snooping logically precedes this MSHR's request, so
370        // the snoop has no impact on the MSHR, but must be processed
371        // in the standard way by the cache.  The only exception is
372        // that if we're an L2+ cache buffering an UpgradeReq from a
373        // higher-level cache, and the snoop is invalidating, then our
374        // buffered upgrades must be converted to read exclusives,
375        // since the upper-level cache no longer has a valid copy.
376        // That is, even though the upper-level cache got out on its
377        // local bus first, some other invalidating transaction
378        // reached the global bus before the upgrade did.
379        if (pkt->needsWritable() || pkt->req->isCacheInvalidate()) {
380            targets.replaceUpgrades();
381            deferredTargets.replaceUpgrades();
382        }
383
384        return false;
385    }
386
387    // From here on down, the request issued by this MSHR logically
388    // precedes the request we're snooping.
389    if (pkt->needsWritable() || pkt->req->isCacheInvalidate()) {
390        // snooped request still precedes the re-request we'll have to
391        // issue for deferred targets, if any...
392        deferredTargets.replaceUpgrades();
393    }
394
395    PacketPtr tgt_pkt = targets.front().pkt;
396    if (hasPostInvalidate() || tgt_pkt->req->isCacheInvalidate()) {
397        // a prior snoop has already appended an invalidation or a
398        // cache invalidation operation is in progress, so logically
399        // we don't have the block anymore; no need for further
400        // snooping.
401        return true;
402    }
403
404    if (isPendingModified() || pkt->isInvalidate()) {
405        // We need to save and replay the packet in two cases:
406        // 1. We're awaiting a writable copy (Modified or Exclusive),
407        //    so this MSHR is the orgering point, and we need to respond
408        //    after we receive data.
409        // 2. It's an invalidation (e.g., UpgradeReq), and we need
410        //    to forward the snoop up the hierarchy after the current
411        //    transaction completes.
412
413        // Start by determining if we will eventually respond or not,
414        // matching the conditions checked in Cache::handleSnoop
415        bool will_respond = isPendingModified() && pkt->needsResponse() &&
416                      !pkt->isClean();
417
418        // The packet we are snooping may be deleted by the time we
419        // actually process the target, and we consequently need to
420        // save a copy here. Clear flags and also allocate new data as
421        // the original packet data storage may have been deleted by
422        // the time we get to process this packet. In the cases where
423        // we are not responding after handling the snoop we also need
424        // to create a copy of the request to be on the safe side. In
425        // the latter case the cache is responsible for deleting both
426        // the packet and the request as part of handling the deferred
427        // snoop.
428        PacketPtr cp_pkt = will_respond ? new Packet(pkt, true, true) :
429            new Packet(new Request(*pkt->req), pkt->cmd, blkSize, pkt->id);
430
431        if (will_respond) {
432            // we are the ordering point, and will consequently
433            // respond, and depending on whether the packet
434            // needsWritable or not we either pass a Shared line or a
435            // Modified line
436            pkt->setCacheResponding();
437
438            // inform the cache hierarchy that this cache had the line
439            // in the Modified state, even if the response is passed
440            // as Shared (and thus non-writable)
441            pkt->setResponderHadWritable();
442
443            // in the case of an uncacheable request there is no need
444            // to set the responderHadWritable flag, but since the
445            // recipient does not care there is no harm in doing so
446        }
447        targets.add(cp_pkt, curTick(), _order, Target::FromSnoop,
448                    downstreamPending && targets.needsWritable, false);
449
450        if (pkt->needsWritable() || pkt->isInvalidate()) {
451            // This transaction will take away our pending copy
452            postInvalidate = true;
453        }
454
455        if (pkt->isClean()) {
456            pkt->setSatisfied();
457        }
458    }
459
460    if (!pkt->needsWritable() && !pkt->req->isUncacheable()) {
461        // This transaction will get a read-shared copy, downgrading
462        // our copy if we had a writable one
463        postDowngrade = true;
464        // make sure that any downstream cache does not respond with a
465        // writable (and dirty) copy even if it has one, unless it was
466        // explicitly asked for one
467        pkt->setHasSharers();
468    }
469
470    return true;
471}
472
473MSHR::TargetList
474MSHR::extractServiceableTargets(PacketPtr pkt)
475{
476    TargetList ready_targets;
477    // If the downstream MSHR got an invalidation request then we only
478    // service the first of the FromCPU targets and any other
479    // non-FromCPU target. This way the remaining FromCPU targets
480    // issue a new request and get a fresh copy of the block and we
481    // avoid memory consistency violations.
482    if (pkt->cmd == MemCmd::ReadRespWithInvalidate) {
483        auto it = targets.begin();
484        assert((it->source == Target::FromCPU) ||
485               (it->source == Target::FromPrefetcher));
486        ready_targets.push_back(*it);
487        it = targets.erase(it);
488        while (it != targets.end()) {
489            if (it->source == Target::FromCPU) {
490                it++;
491            } else {
492                assert(it->source == Target::FromSnoop);
493                ready_targets.push_back(*it);
494                it = targets.erase(it);
495            }
496        }
497        ready_targets.populateFlags();
498    } else {
499        std::swap(ready_targets, targets);
500    }
501    targets.populateFlags();
502
503    return ready_targets;
504}
505
506bool
507MSHR::promoteDeferredTargets()
508{
509    if (targets.empty() && deferredTargets.empty()) {
510        // nothing to promote
511        return false;
512    }
513
514    // the deferred targets can be generally promoted unless they
515    // contain a cache maintenance request
516
517    // find the first target that is a cache maintenance request
518    auto it = std::find_if(deferredTargets.begin(), deferredTargets.end(),
519                           [](MSHR::Target &t) {
520                               return t.pkt->req->isCacheMaintenance();
521                           });
522    if (it == deferredTargets.begin()) {
523        // if the first deferred target is a cache maintenance packet
524        // then we can promote provided the targets list is empty and
525        // we can service it on its own
526        if (targets.empty()) {
527            targets.splice(targets.end(), deferredTargets, it);
528        }
529    } else {
530        // if a cache maintenance operation exists, we promote all the
531        // deferred targets that precede it, or all deferred targets
532        // otherwise
533        targets.splice(targets.end(), deferredTargets,
534                       deferredTargets.begin(), it);
535    }
536
537    deferredTargets.populateFlags();
538    targets.populateFlags();
539    order = targets.front().order;
540    readyTime = std::max(curTick(), targets.front().readyTime);
541
542    return true;
543}
544
545
546void
547MSHR::promoteWritable()
548{
549    if (deferredTargets.needsWritable &&
550        !(hasPostInvalidate() || hasPostDowngrade())) {
551        // We got a writable response, but we have deferred targets
552        // which are waiting to request a writable copy (not because
553        // of a pending invalidate).  This can happen if the original
554        // request was for a read-only block, but we got a writable
555        // response anyway. Since we got the writable copy there's no
556        // need to defer the targets, so move them up to the regular
557        // target list.
558        assert(!targets.needsWritable);
559        targets.needsWritable = true;
560        // if any of the deferred targets were upper-level cache
561        // requests marked downstreamPending, need to clear that
562        assert(!downstreamPending);  // not pending here anymore
563        deferredTargets.clearDownstreamPending();
564        // this clears out deferredTargets too
565        targets.splice(targets.end(), deferredTargets);
566        deferredTargets.resetFlags();
567    }
568}
569
570
571bool
572MSHR::checkFunctional(PacketPtr pkt)
573{
574    // For printing, we treat the MSHR as a whole as single entity.
575    // For other requests, we iterate over the individual targets
576    // since that's where the actual data lies.
577    if (pkt->isPrint()) {
578        pkt->checkFunctional(this, blkAddr, isSecure, blkSize, nullptr);
579        return false;
580    } else {
581        return (targets.checkFunctional(pkt) ||
582                deferredTargets.checkFunctional(pkt));
583    }
584}
585
586bool
587MSHR::sendPacket(Cache &cache)
588{
589    return cache.sendMSHRQueuePacket(this);
590}
591
592void
593MSHR::print(std::ostream &os, int verbosity, const std::string &prefix) const
594{
595    ccprintf(os, "%s[%#llx:%#llx](%s) %s %s %s state: %s %s %s %s %s\n",
596             prefix, blkAddr, blkAddr + blkSize - 1,
597             isSecure ? "s" : "ns",
598             isForward ? "Forward" : "",
599             allocOnFill() ? "AllocOnFill" : "",
600             needsWritable() ? "Wrtbl" : "",
601             _isUncacheable ? "Unc" : "",
602             inService ? "InSvc" : "",
603             downstreamPending ? "DwnPend" : "",
604             postInvalidate ? "PostInv" : "",
605             postDowngrade ? "PostDowngr" : "");
606
607    if (!targets.empty()) {
608        ccprintf(os, "%s  Targets:\n", prefix);
609        targets.print(os, verbosity, prefix + "    ");
610    }
611    if (!deferredTargets.empty()) {
612        ccprintf(os, "%s  Deferred Targets:\n", prefix);
613        deferredTargets.print(os, verbosity, prefix + "      ");
614    }
615}
616
617std::string
618MSHR::print() const
619{
620    ostringstream str;
621    print(str);
622    return str.str();
623}
624