cache.cc revision 12723:530dc4bf1a00
1/*
2 * Copyright (c) 2010-2018 ARM Limited
3 * All rights reserved.
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder.  You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2002-2005 The Regents of The University of Michigan
15 * Copyright (c) 2010,2015 Advanced Micro Devices, Inc.
16 * All rights reserved.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions are
20 * met: redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer;
22 * redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution;
25 * neither the name of the copyright holders nor the names of its
26 * contributors may be used to endorse or promote products derived from
27 * this software without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40 *
41 * Authors: Erik Hallnor
42 *          Dave Greene
43 *          Nathan Binkert
44 *          Steve Reinhardt
45 *          Ron Dreslinski
46 *          Andreas Sandberg
47 *          Nikos Nikoleris
48 */
49
50/**
51 * @file
52 * Cache definitions.
53 */
54
55#include "mem/cache/cache.hh"
56
57#include "base/logging.hh"
58#include "base/types.hh"
59#include "debug/Cache.hh"
60#include "debug/CachePort.hh"
61#include "debug/CacheTags.hh"
62#include "debug/CacheVerbose.hh"
63#include "mem/cache/blk.hh"
64#include "mem/cache/mshr.hh"
65#include "mem/cache/prefetch/base.hh"
66#include "sim/sim_exit.hh"
67
68Cache::Cache(const CacheParams *p)
69    : BaseCache(p, p->system->cacheLineSize()),
70      tags(p->tags),
71      prefetcher(p->prefetcher),
72      doFastWrites(true),
73      prefetchOnAccess(p->prefetch_on_access),
74      clusivity(p->clusivity),
75      writebackClean(p->writeback_clean),
76      tempBlockWriteback(nullptr),
77      writebackTempBlockAtomicEvent([this]{ writebackTempBlockAtomic(); },
78                                    name(), false,
79                                    EventBase::Delayed_Writeback_Pri)
80{
81    tempBlock = new CacheBlk();
82    tempBlock->data = new uint8_t[blkSize];
83
84    cpuSidePort = new CpuSidePort(p->name + ".cpu_side", this,
85                                  "CpuSidePort");
86    memSidePort = new MemSidePort(p->name + ".mem_side", this,
87                                  "MemSidePort");
88
89    tags->setCache(this);
90    if (prefetcher)
91        prefetcher->setCache(this);
92}
93
94Cache::~Cache()
95{
96    delete [] tempBlock->data;
97    delete tempBlock;
98
99    delete cpuSidePort;
100    delete memSidePort;
101}
102
103void
104Cache::regStats()
105{
106    BaseCache::regStats();
107}
108
109void
110Cache::cmpAndSwap(CacheBlk *blk, PacketPtr pkt)
111{
112    assert(pkt->isRequest());
113
114    uint64_t overwrite_val;
115    bool overwrite_mem;
116    uint64_t condition_val64;
117    uint32_t condition_val32;
118
119    int offset = tags->extractBlkOffset(pkt->getAddr());
120    uint8_t *blk_data = blk->data + offset;
121
122    assert(sizeof(uint64_t) >= pkt->getSize());
123
124    overwrite_mem = true;
125    // keep a copy of our possible write value, and copy what is at the
126    // memory address into the packet
127    pkt->writeData((uint8_t *)&overwrite_val);
128    pkt->setData(blk_data);
129
130    if (pkt->req->isCondSwap()) {
131        if (pkt->getSize() == sizeof(uint64_t)) {
132            condition_val64 = pkt->req->getExtraData();
133            overwrite_mem = !std::memcmp(&condition_val64, blk_data,
134                                         sizeof(uint64_t));
135        } else if (pkt->getSize() == sizeof(uint32_t)) {
136            condition_val32 = (uint32_t)pkt->req->getExtraData();
137            overwrite_mem = !std::memcmp(&condition_val32, blk_data,
138                                         sizeof(uint32_t));
139        } else
140            panic("Invalid size for conditional read/write\n");
141    }
142
143    if (overwrite_mem) {
144        std::memcpy(blk_data, &overwrite_val, pkt->getSize());
145        blk->status |= BlkDirty;
146    }
147}
148
149
150void
151Cache::satisfyRequest(PacketPtr pkt, CacheBlk *blk,
152                      bool deferred_response, bool pending_downgrade)
153{
154    assert(pkt->isRequest());
155
156    assert(blk && blk->isValid());
157    // Occasionally this is not true... if we are a lower-level cache
158    // satisfying a string of Read and ReadEx requests from
159    // upper-level caches, a Read will mark the block as shared but we
160    // can satisfy a following ReadEx anyway since we can rely on the
161    // Read requester(s) to have buffered the ReadEx snoop and to
162    // invalidate their blocks after receiving them.
163    // assert(!pkt->needsWritable() || blk->isWritable());
164    assert(pkt->getOffset(blkSize) + pkt->getSize() <= blkSize);
165
166    // Check RMW operations first since both isRead() and
167    // isWrite() will be true for them
168    if (pkt->cmd == MemCmd::SwapReq) {
169        cmpAndSwap(blk, pkt);
170    } else if (pkt->isWrite()) {
171        // we have the block in a writable state and can go ahead,
172        // note that the line may be also be considered writable in
173        // downstream caches along the path to memory, but always
174        // Exclusive, and never Modified
175        assert(blk->isWritable());
176        // Write or WriteLine at the first cache with block in writable state
177        if (blk->checkWrite(pkt)) {
178            pkt->writeDataToBlock(blk->data, blkSize);
179        }
180        // Always mark the line as dirty (and thus transition to the
181        // Modified state) even if we are a failed StoreCond so we
182        // supply data to any snoops that have appended themselves to
183        // this cache before knowing the store will fail.
184        blk->status |= BlkDirty;
185        DPRINTF(CacheVerbose, "%s for %s (write)\n", __func__, pkt->print());
186    } else if (pkt->isRead()) {
187        if (pkt->isLLSC()) {
188            blk->trackLoadLocked(pkt);
189        }
190
191        // all read responses have a data payload
192        assert(pkt->hasRespData());
193        pkt->setDataFromBlock(blk->data, blkSize);
194
195        // determine if this read is from a (coherent) cache or not
196        if (pkt->fromCache()) {
197            assert(pkt->getSize() == blkSize);
198            // special handling for coherent block requests from
199            // upper-level caches
200            if (pkt->needsWritable()) {
201                // sanity check
202                assert(pkt->cmd == MemCmd::ReadExReq ||
203                       pkt->cmd == MemCmd::SCUpgradeFailReq);
204                assert(!pkt->hasSharers());
205
206                // if we have a dirty copy, make sure the recipient
207                // keeps it marked dirty (in the modified state)
208                if (blk->isDirty()) {
209                    pkt->setCacheResponding();
210                    blk->status &= ~BlkDirty;
211                }
212            } else if (blk->isWritable() && !pending_downgrade &&
213                       !pkt->hasSharers() &&
214                       pkt->cmd != MemCmd::ReadCleanReq) {
215                // we can give the requester a writable copy on a read
216                // request if:
217                // - we have a writable copy at this level (& below)
218                // - we don't have a pending snoop from below
219                //   signaling another read request
220                // - no other cache above has a copy (otherwise it
221                //   would have set hasSharers flag when
222                //   snooping the packet)
223                // - the read has explicitly asked for a clean
224                //   copy of the line
225                if (blk->isDirty()) {
226                    // special considerations if we're owner:
227                    if (!deferred_response) {
228                        // respond with the line in Modified state
229                        // (cacheResponding set, hasSharers not set)
230                        pkt->setCacheResponding();
231
232                        // if this cache is mostly inclusive, we
233                        // keep the block in the Exclusive state,
234                        // and pass it upwards as Modified
235                        // (writable and dirty), hence we have
236                        // multiple caches, all on the same path
237                        // towards memory, all considering the
238                        // same block writable, but only one
239                        // considering it Modified
240
241                        // we get away with multiple caches (on
242                        // the same path to memory) considering
243                        // the block writeable as we always enter
244                        // the cache hierarchy through a cache,
245                        // and first snoop upwards in all other
246                        // branches
247                        blk->status &= ~BlkDirty;
248                    } else {
249                        // if we're responding after our own miss,
250                        // there's a window where the recipient didn't
251                        // know it was getting ownership and may not
252                        // have responded to snoops correctly, so we
253                        // have to respond with a shared line
254                        pkt->setHasSharers();
255                    }
256                }
257            } else {
258                // otherwise only respond with a shared copy
259                pkt->setHasSharers();
260            }
261        }
262    } else if (pkt->isUpgrade()) {
263        // sanity check
264        assert(!pkt->hasSharers());
265
266        if (blk->isDirty()) {
267            // we were in the Owned state, and a cache above us that
268            // has the line in Shared state needs to be made aware
269            // that the data it already has is in fact dirty
270            pkt->setCacheResponding();
271            blk->status &= ~BlkDirty;
272        }
273    } else {
274        assert(pkt->isInvalidate());
275        invalidateBlock(blk);
276        DPRINTF(CacheVerbose, "%s for %s (invalidation)\n", __func__,
277                pkt->print());
278    }
279}
280
281/////////////////////////////////////////////////////
282//
283// Access path: requests coming in from the CPU side
284//
285/////////////////////////////////////////////////////
286
287bool
288Cache::access(PacketPtr pkt, CacheBlk *&blk, Cycles &lat,
289              PacketList &writebacks)
290{
291    // sanity check
292    assert(pkt->isRequest());
293
294    chatty_assert(!(isReadOnly && pkt->isWrite()),
295                  "Should never see a write in a read-only cache %s\n",
296                  name());
297
298    DPRINTF(CacheVerbose, "%s for %s\n", __func__, pkt->print());
299
300    if (pkt->req->isUncacheable()) {
301        DPRINTF(Cache, "uncacheable: %s\n", pkt->print());
302
303        // flush and invalidate any existing block
304        CacheBlk *old_blk(tags->findBlock(pkt->getAddr(), pkt->isSecure()));
305        if (old_blk && old_blk->isValid()) {
306            evictBlock(old_blk, writebacks);
307        }
308
309        blk = nullptr;
310        // lookupLatency is the latency in case the request is uncacheable.
311        lat = lookupLatency;
312        return false;
313    }
314
315    // Here lat is the value passed as parameter to accessBlock() function
316    // that can modify its value.
317    blk = tags->accessBlock(pkt->getAddr(), pkt->isSecure(), lat);
318
319    DPRINTF(Cache, "%s %s\n", pkt->print(),
320            blk ? "hit " + blk->print() : "miss");
321
322    if (pkt->req->isCacheMaintenance()) {
323        // A cache maintenance operation is always forwarded to the
324        // memory below even if the block is found in dirty state.
325
326        // We defer any changes to the state of the block until we
327        // create and mark as in service the mshr for the downstream
328        // packet.
329        return false;
330    }
331
332    if (pkt->isEviction()) {
333        // We check for presence of block in above caches before issuing
334        // Writeback or CleanEvict to write buffer. Therefore the only
335        // possible cases can be of a CleanEvict packet coming from above
336        // encountering a Writeback generated in this cache peer cache and
337        // waiting in the write buffer. Cases of upper level peer caches
338        // generating CleanEvict and Writeback or simply CleanEvict and
339        // CleanEvict almost simultaneously will be caught by snoops sent out
340        // by crossbar.
341        WriteQueueEntry *wb_entry = writeBuffer.findMatch(pkt->getAddr(),
342                                                          pkt->isSecure());
343        if (wb_entry) {
344            assert(wb_entry->getNumTargets() == 1);
345            PacketPtr wbPkt = wb_entry->getTarget()->pkt;
346            assert(wbPkt->isWriteback());
347
348            if (pkt->isCleanEviction()) {
349                // The CleanEvict and WritebackClean snoops into other
350                // peer caches of the same level while traversing the
351                // crossbar. If a copy of the block is found, the
352                // packet is deleted in the crossbar. Hence, none of
353                // the other upper level caches connected to this
354                // cache have the block, so we can clear the
355                // BLOCK_CACHED flag in the Writeback if set and
356                // discard the CleanEvict by returning true.
357                wbPkt->clearBlockCached();
358                return true;
359            } else {
360                assert(pkt->cmd == MemCmd::WritebackDirty);
361                // Dirty writeback from above trumps our clean
362                // writeback... discard here
363                // Note: markInService will remove entry from writeback buffer.
364                markInService(wb_entry);
365                delete wbPkt;
366            }
367        }
368    }
369
370    // Writeback handling is special case.  We can write the block into
371    // the cache without having a writeable copy (or any copy at all).
372    if (pkt->isWriteback()) {
373        assert(blkSize == pkt->getSize());
374
375        // we could get a clean writeback while we are having
376        // outstanding accesses to a block, do the simple thing for
377        // now and drop the clean writeback so that we do not upset
378        // any ordering/decisions about ownership already taken
379        if (pkt->cmd == MemCmd::WritebackClean &&
380            mshrQueue.findMatch(pkt->getAddr(), pkt->isSecure())) {
381            DPRINTF(Cache, "Clean writeback %#llx to block with MSHR, "
382                    "dropping\n", pkt->getAddr());
383            return true;
384        }
385
386        if (blk == nullptr) {
387            // need to do a replacement
388            blk = allocateBlock(pkt->getAddr(), pkt->isSecure(), writebacks);
389            if (blk == nullptr) {
390                // no replaceable block available: give up, fwd to next level.
391                incMissCount(pkt);
392                return false;
393            }
394            tags->insertBlock(pkt, blk);
395
396            blk->status |= (BlkValid | BlkReadable);
397        }
398        // only mark the block dirty if we got a writeback command,
399        // and leave it as is for a clean writeback
400        if (pkt->cmd == MemCmd::WritebackDirty) {
401            assert(!blk->isDirty());
402            blk->status |= BlkDirty;
403        }
404        // if the packet does not have sharers, it is passing
405        // writable, and we got the writeback in Modified or Exclusive
406        // state, if not we are in the Owned or Shared state
407        if (!pkt->hasSharers()) {
408            blk->status |= BlkWritable;
409        }
410        // nothing else to do; writeback doesn't expect response
411        assert(!pkt->needsResponse());
412        pkt->writeDataToBlock(blk->data, blkSize);
413        DPRINTF(Cache, "%s new state is %s\n", __func__, blk->print());
414        incHitCount(pkt);
415        // populate the time when the block will be ready to access.
416        blk->whenReady = clockEdge(fillLatency) + pkt->headerDelay +
417            pkt->payloadDelay;
418        return true;
419    } else if (pkt->cmd == MemCmd::CleanEvict) {
420        if (blk != nullptr) {
421            // Found the block in the tags, need to stop CleanEvict from
422            // propagating further down the hierarchy. Returning true will
423            // treat the CleanEvict like a satisfied write request and delete
424            // it.
425            return true;
426        }
427        // We didn't find the block here, propagate the CleanEvict further
428        // down the memory hierarchy. Returning false will treat the CleanEvict
429        // like a Writeback which could not find a replaceable block so has to
430        // go to next level.
431        return false;
432    } else if (pkt->cmd == MemCmd::WriteClean) {
433        // WriteClean handling is a special case. We can allocate a
434        // block directly if it doesn't exist and we can update the
435        // block immediately. The WriteClean transfers the ownership
436        // of the block as well.
437        assert(blkSize == pkt->getSize());
438
439        if (!blk) {
440            if (pkt->writeThrough()) {
441                // if this is a write through packet, we don't try to
442                // allocate if the block is not present
443                return false;
444            } else {
445                // a writeback that misses needs to allocate a new block
446                blk = allocateBlock(pkt->getAddr(), pkt->isSecure(),
447                                    writebacks);
448                if (!blk) {
449                    // no replaceable block available: give up, fwd to
450                    // next level.
451                    incMissCount(pkt);
452                    return false;
453                }
454                tags->insertBlock(pkt, blk);
455
456                blk->status |= (BlkValid | BlkReadable);
457            }
458        }
459
460        // at this point either this is a writeback or a write-through
461        // write clean operation and the block is already in this
462        // cache, we need to update the data and the block flags
463        assert(blk);
464        assert(!blk->isDirty());
465        if (!pkt->writeThrough()) {
466            blk->status |= BlkDirty;
467        }
468        // nothing else to do; writeback doesn't expect response
469        assert(!pkt->needsResponse());
470        pkt->writeDataToBlock(blk->data, blkSize);
471        DPRINTF(Cache, "%s new state is %s\n", __func__, blk->print());
472
473        incHitCount(pkt);
474        // populate the time when the block will be ready to access.
475        blk->whenReady = clockEdge(fillLatency) + pkt->headerDelay +
476            pkt->payloadDelay;
477        // if this a write-through packet it will be sent to cache
478        // below
479        return !pkt->writeThrough();
480    } else if (blk && (pkt->needsWritable() ? blk->isWritable() :
481                       blk->isReadable())) {
482        // OK to satisfy access
483        incHitCount(pkt);
484        satisfyRequest(pkt, blk);
485        maintainClusivity(pkt->fromCache(), blk);
486
487        return true;
488    }
489
490    // Can't satisfy access normally... either no block (blk == nullptr)
491    // or have block but need writable
492
493    incMissCount(pkt);
494
495    if (blk == nullptr && pkt->isLLSC() && pkt->isWrite()) {
496        // complete miss on store conditional... just give up now
497        pkt->req->setExtraData(0);
498        return true;
499    }
500
501    return false;
502}
503
504void
505Cache::maintainClusivity(bool from_cache, CacheBlk *blk)
506{
507    if (from_cache && blk && blk->isValid() && !blk->isDirty() &&
508        clusivity == Enums::mostly_excl) {
509        // if we have responded to a cache, and our block is still
510        // valid, but not dirty, and this cache is mostly exclusive
511        // with respect to the cache above, drop the block
512        invalidateBlock(blk);
513    }
514}
515
516void
517Cache::doWritebacks(PacketList& writebacks, Tick forward_time)
518{
519    while (!writebacks.empty()) {
520        PacketPtr wbPkt = writebacks.front();
521        // We use forwardLatency here because we are copying writebacks to
522        // write buffer.
523
524        // Call isCachedAbove for Writebacks, CleanEvicts and
525        // WriteCleans to discover if the block is cached above.
526        if (isCachedAbove(wbPkt)) {
527            if (wbPkt->cmd == MemCmd::CleanEvict) {
528                // Delete CleanEvict because cached copies exist above. The
529                // packet destructor will delete the request object because
530                // this is a non-snoop request packet which does not require a
531                // response.
532                delete wbPkt;
533            } else if (wbPkt->cmd == MemCmd::WritebackClean) {
534                // clean writeback, do not send since the block is
535                // still cached above
536                assert(writebackClean);
537                delete wbPkt;
538            } else {
539                assert(wbPkt->cmd == MemCmd::WritebackDirty ||
540                       wbPkt->cmd == MemCmd::WriteClean);
541                // Set BLOCK_CACHED flag in Writeback and send below, so that
542                // the Writeback does not reset the bit corresponding to this
543                // address in the snoop filter below.
544                wbPkt->setBlockCached();
545                allocateWriteBuffer(wbPkt, forward_time);
546            }
547        } else {
548            // If the block is not cached above, send packet below. Both
549            // CleanEvict and Writeback with BLOCK_CACHED flag cleared will
550            // reset the bit corresponding to this address in the snoop filter
551            // below.
552            allocateWriteBuffer(wbPkt, forward_time);
553        }
554        writebacks.pop_front();
555    }
556}
557
558void
559Cache::doWritebacksAtomic(PacketList& writebacks)
560{
561    while (!writebacks.empty()) {
562        PacketPtr wbPkt = writebacks.front();
563        // Call isCachedAbove for both Writebacks and CleanEvicts. If
564        // isCachedAbove returns true we set BLOCK_CACHED flag in Writebacks
565        // and discard CleanEvicts.
566        if (isCachedAbove(wbPkt, false)) {
567            if (wbPkt->cmd == MemCmd::WritebackDirty ||
568                wbPkt->cmd == MemCmd::WriteClean) {
569                // Set BLOCK_CACHED flag in Writeback and send below,
570                // so that the Writeback does not reset the bit
571                // corresponding to this address in the snoop filter
572                // below. We can discard CleanEvicts because cached
573                // copies exist above. Atomic mode isCachedAbove
574                // modifies packet to set BLOCK_CACHED flag
575                memSidePort->sendAtomic(wbPkt);
576            }
577        } else {
578            // If the block is not cached above, send packet below. Both
579            // CleanEvict and Writeback with BLOCK_CACHED flag cleared will
580            // reset the bit corresponding to this address in the snoop filter
581            // below.
582            memSidePort->sendAtomic(wbPkt);
583        }
584        writebacks.pop_front();
585        // In case of CleanEvicts, the packet destructor will delete the
586        // request object because this is a non-snoop request packet which
587        // does not require a response.
588        delete wbPkt;
589    }
590}
591
592
593void
594Cache::recvTimingSnoopResp(PacketPtr pkt)
595{
596    DPRINTF(Cache, "%s for %s\n", __func__, pkt->print());
597
598    assert(pkt->isResponse());
599    assert(!system->bypassCaches());
600
601    // determine if the response is from a snoop request we created
602    // (in which case it should be in the outstandingSnoop), or if we
603    // merely forwarded someone else's snoop request
604    const bool forwardAsSnoop = outstandingSnoop.find(pkt->req) ==
605        outstandingSnoop.end();
606
607    if (!forwardAsSnoop) {
608        // the packet came from this cache, so sink it here and do not
609        // forward it
610        assert(pkt->cmd == MemCmd::HardPFResp);
611
612        outstandingSnoop.erase(pkt->req);
613
614        DPRINTF(Cache, "Got prefetch response from above for addr "
615                "%#llx (%s)\n", pkt->getAddr(), pkt->isSecure() ? "s" : "ns");
616        recvTimingResp(pkt);
617        return;
618    }
619
620    // forwardLatency is set here because there is a response from an
621    // upper level cache.
622    // To pay the delay that occurs if the packet comes from the bus,
623    // we charge also headerDelay.
624    Tick snoop_resp_time = clockEdge(forwardLatency) + pkt->headerDelay;
625    // Reset the timing of the packet.
626    pkt->headerDelay = pkt->payloadDelay = 0;
627    memSidePort->schedTimingSnoopResp(pkt, snoop_resp_time);
628}
629
630void
631Cache::promoteWholeLineWrites(PacketPtr pkt)
632{
633    // Cache line clearing instructions
634    if (doFastWrites && (pkt->cmd == MemCmd::WriteReq) &&
635        (pkt->getSize() == blkSize) && (pkt->getOffset(blkSize) == 0)) {
636        pkt->cmd = MemCmd::WriteLineReq;
637        DPRINTF(Cache, "packet promoted from Write to WriteLineReq\n");
638    }
639}
640
641void
642Cache::handleTimingReqHit(PacketPtr pkt, CacheBlk *blk, Tick request_time)
643{
644    // should never be satisfying an uncacheable access as we
645    // flush and invalidate any existing block as part of the
646    // lookup
647    assert(!pkt->req->isUncacheable());
648
649    if (pkt->needsResponse()) {
650        pkt->makeTimingResponse();
651        // @todo: Make someone pay for this
652        pkt->headerDelay = pkt->payloadDelay = 0;
653
654        // In this case we are considering request_time that takes
655        // into account the delay of the xbar, if any, and just
656        // lat, neglecting responseLatency, modelling hit latency
657        // just as lookupLatency or or the value of lat overriden
658        // by access(), that calls accessBlock() function.
659        cpuSidePort->schedTimingResp(pkt, request_time, true);
660    } else {
661        DPRINTF(Cache, "%s satisfied %s, no response needed\n", __func__,
662                pkt->print());
663
664        // queue the packet for deletion, as the sending cache is
665        // still relying on it; if the block is found in access(),
666        // CleanEvict and Writeback messages will be deleted
667        // here as well
668        pendingDelete.reset(pkt);
669    }
670}
671
672void
673Cache::handleTimingReqMiss(PacketPtr pkt, CacheBlk *blk, Tick forward_time,
674                           Tick request_time)
675{
676    Addr blk_addr = pkt->getBlockAddr(blkSize);
677
678    // ignore any existing MSHR if we are dealing with an
679    // uncacheable request
680    MSHR *mshr = pkt->req->isUncacheable() ? nullptr :
681        mshrQueue.findMatch(blk_addr, pkt->isSecure());
682
683    // Software prefetch handling:
684    // To keep the core from waiting on data it won't look at
685    // anyway, send back a response with dummy data. Miss handling
686    // will continue asynchronously. Unfortunately, the core will
687    // insist upon freeing original Packet/Request, so we have to
688    // create a new pair with a different lifecycle. Note that this
689    // processing happens before any MSHR munging on the behalf of
690    // this request because this new Request will be the one stored
691    // into the MSHRs, not the original.
692    if (pkt->cmd.isSWPrefetch()) {
693        assert(pkt->needsResponse());
694        assert(pkt->req->hasPaddr());
695        assert(!pkt->req->isUncacheable());
696
697        // There's no reason to add a prefetch as an additional target
698        // to an existing MSHR. If an outstanding request is already
699        // in progress, there is nothing for the prefetch to do.
700        // If this is the case, we don't even create a request at all.
701        PacketPtr pf = nullptr;
702
703        if (!mshr) {
704            // copy the request and create a new SoftPFReq packet
705            RequestPtr req = new Request(pkt->req->getPaddr(),
706                                         pkt->req->getSize(),
707                                         pkt->req->getFlags(),
708                                         pkt->req->masterId());
709            pf = new Packet(req, pkt->cmd);
710            pf->allocate();
711            assert(pf->getAddr() == pkt->getAddr());
712            assert(pf->getSize() == pkt->getSize());
713        }
714
715        pkt->makeTimingResponse();
716
717        // request_time is used here, taking into account lat and the delay
718        // charged if the packet comes from the xbar.
719        cpuSidePort->schedTimingResp(pkt, request_time, true);
720
721        // If an outstanding request is in progress (we found an
722        // MSHR) this is set to null
723        pkt = pf;
724    }
725
726    if (mshr) {
727        /// MSHR hit
728        /// @note writebacks will be checked in getNextMSHR()
729        /// for any conflicting requests to the same block
730
731        //@todo remove hw_pf here
732
733        // Coalesce unless it was a software prefetch (see above).
734        if (pkt) {
735            assert(!pkt->isWriteback());
736            // CleanEvicts corresponding to blocks which have
737            // outstanding requests in MSHRs are simply sunk here
738            if (pkt->cmd == MemCmd::CleanEvict) {
739                pendingDelete.reset(pkt);
740            } else if (pkt->cmd == MemCmd::WriteClean) {
741                // A WriteClean should never coalesce with any
742                // outstanding cache maintenance requests.
743
744                // We use forward_time here because there is an
745                // uncached memory write, forwarded to WriteBuffer.
746                allocateWriteBuffer(pkt, forward_time);
747            } else {
748                DPRINTF(Cache, "%s coalescing MSHR for %s\n", __func__,
749                        pkt->print());
750
751                assert(pkt->req->masterId() < system->maxMasters());
752                mshr_hits[pkt->cmdToIndex()][pkt->req->masterId()]++;
753
754                // uncacheable accesses always allocate a new
755                // MSHR, and cacheable accesses ignore any
756                // uncacheable MSHRs, thus we should never have
757                // targets addded if originally allocated
758                // uncacheable
759                assert(!mshr->isUncacheable());
760
761                // We use forward_time here because it is the same
762                // considering new targets. We have multiple
763                // requests for the same address here. It
764                // specifies the latency to allocate an internal
765                // buffer and to schedule an event to the queued
766                // port and also takes into account the additional
767                // delay of the xbar.
768                mshr->allocateTarget(pkt, forward_time, order++,
769                                     allocOnFill(pkt->cmd));
770                if (mshr->getNumTargets() == numTarget) {
771                    noTargetMSHR = mshr;
772                    setBlocked(Blocked_NoTargets);
773                    // need to be careful with this... if this mshr isn't
774                    // ready yet (i.e. time > curTick()), we don't want to
775                    // move it ahead of mshrs that are ready
776                    // mshrQueue.moveToFront(mshr);
777                }
778            }
779        }
780    } else {
781        // no MSHR
782        assert(pkt->req->masterId() < system->maxMasters());
783        if (pkt->req->isUncacheable()) {
784            mshr_uncacheable[pkt->cmdToIndex()][pkt->req->masterId()]++;
785        } else {
786            mshr_misses[pkt->cmdToIndex()][pkt->req->masterId()]++;
787        }
788
789        if (pkt->isEviction() || pkt->cmd == MemCmd::WriteClean ||
790            (pkt->req->isUncacheable() && pkt->isWrite())) {
791            // We use forward_time here because there is an
792            // uncached memory write, forwarded to WriteBuffer.
793            allocateWriteBuffer(pkt, forward_time);
794        } else {
795            if (blk && blk->isValid()) {
796                // should have flushed and have no valid block
797                assert(!pkt->req->isUncacheable());
798
799                // If we have a write miss to a valid block, we
800                // need to mark the block non-readable.  Otherwise
801                // if we allow reads while there's an outstanding
802                // write miss, the read could return stale data
803                // out of the cache block... a more aggressive
804                // system could detect the overlap (if any) and
805                // forward data out of the MSHRs, but we don't do
806                // that yet.  Note that we do need to leave the
807                // block valid so that it stays in the cache, in
808                // case we get an upgrade response (and hence no
809                // new data) when the write miss completes.
810                // As long as CPUs do proper store/load forwarding
811                // internally, and have a sufficiently weak memory
812                // model, this is probably unnecessary, but at some
813                // point it must have seemed like we needed it...
814                assert((pkt->needsWritable() && !blk->isWritable()) ||
815                       pkt->req->isCacheMaintenance());
816                blk->status &= ~BlkReadable;
817            }
818            // Here we are using forward_time, modelling the latency of
819            // a miss (outbound) just as forwardLatency, neglecting the
820            // lookupLatency component.
821            allocateMissBuffer(pkt, forward_time);
822        }
823    }
824}
825
826void
827Cache::recvTimingReq(PacketPtr pkt)
828{
829    DPRINTF(CacheTags, "%s tags:\n%s\n", __func__, tags->print());
830
831    assert(pkt->isRequest());
832
833    // Just forward the packet if caches are disabled.
834    if (system->bypassCaches()) {
835        // @todo This should really enqueue the packet rather
836        bool M5_VAR_USED success = memSidePort->sendTimingReq(pkt);
837        assert(success);
838        return;
839    }
840
841    promoteWholeLineWrites(pkt);
842
843    // Cache maintenance operations have to visit all the caches down
844    // to the specified xbar (PoC, PoU, etc.). Even if a cache above
845    // is responding we forward the packet to the memory below rather
846    // than creating an express snoop.
847    if (pkt->cacheResponding()) {
848        // a cache above us (but not where the packet came from) is
849        // responding to the request, in other words it has the line
850        // in Modified or Owned state
851        DPRINTF(Cache, "Cache above responding to %s: not responding\n",
852                pkt->print());
853
854        // if the packet needs the block to be writable, and the cache
855        // that has promised to respond (setting the cache responding
856        // flag) is not providing writable (it is in Owned rather than
857        // the Modified state), we know that there may be other Shared
858        // copies in the system; go out and invalidate them all
859        assert(pkt->needsWritable() && !pkt->responderHadWritable());
860
861        // an upstream cache that had the line in Owned state
862        // (dirty, but not writable), is responding and thus
863        // transferring the dirty line from one branch of the
864        // cache hierarchy to another
865
866        // send out an express snoop and invalidate all other
867        // copies (snooping a packet that needs writable is the
868        // same as an invalidation), thus turning the Owned line
869        // into a Modified line, note that we don't invalidate the
870        // block in the current cache or any other cache on the
871        // path to memory
872
873        // create a downstream express snoop with cleared packet
874        // flags, there is no need to allocate any data as the
875        // packet is merely used to co-ordinate state transitions
876        Packet *snoop_pkt = new Packet(pkt, true, false);
877
878        // also reset the bus time that the original packet has
879        // not yet paid for
880        snoop_pkt->headerDelay = snoop_pkt->payloadDelay = 0;
881
882        // make this an instantaneous express snoop, and let the
883        // other caches in the system know that the another cache
884        // is responding, because we have found the authorative
885        // copy (Modified or Owned) that will supply the right
886        // data
887        snoop_pkt->setExpressSnoop();
888        snoop_pkt->setCacheResponding();
889
890        // this express snoop travels towards the memory, and at
891        // every crossbar it is snooped upwards thus reaching
892        // every cache in the system
893        bool M5_VAR_USED success = memSidePort->sendTimingReq(snoop_pkt);
894        // express snoops always succeed
895        assert(success);
896
897        // main memory will delete the snoop packet
898
899        // queue for deletion, as opposed to immediate deletion, as
900        // the sending cache is still relying on the packet
901        pendingDelete.reset(pkt);
902
903        // no need to take any further action in this particular cache
904        // as an upstram cache has already committed to responding,
905        // and we have already sent out any express snoops in the
906        // section above to ensure all other copies in the system are
907        // invalidated
908        return;
909    }
910
911    // anything that is merely forwarded pays for the forward latency and
912    // the delay provided by the crossbar
913    Tick forward_time = clockEdge(forwardLatency) + pkt->headerDelay;
914
915    // We use lookupLatency here because it is used to specify the latency
916    // to access.
917    Cycles lat = lookupLatency;
918    CacheBlk *blk = nullptr;
919    bool satisfied = false;
920    {
921        PacketList writebacks;
922        // Note that lat is passed by reference here. The function
923        // access() calls accessBlock() which can modify lat value.
924        satisfied = access(pkt, blk, lat, writebacks);
925
926        // copy writebacks to write buffer here to ensure they logically
927        // proceed anything happening below
928        doWritebacks(writebacks, forward_time);
929    }
930
931    // Here we charge the headerDelay that takes into account the latencies
932    // of the bus, if the packet comes from it.
933    // The latency charged it is just lat that is the value of lookupLatency
934    // modified by access() function, or if not just lookupLatency.
935    // In case of a hit we are neglecting response latency.
936    // In case of a miss we are neglecting forward latency.
937    Tick request_time = clockEdge(lat) + pkt->headerDelay;
938    // Here we reset the timing of the packet.
939    pkt->headerDelay = pkt->payloadDelay = 0;
940
941    // track time of availability of next prefetch, if any
942    Tick next_pf_time = MaxTick;
943
944    if (satisfied) {
945        // if need to notify the prefetcher we need to do it anything
946        // else, handleTimingReqHit might turn the packet into a
947        // response
948        if (prefetcher &&
949            (prefetchOnAccess || (blk && blk->wasPrefetched()))) {
950            if (blk)
951                blk->status &= ~BlkHWPrefetched;
952
953            // Don't notify on SWPrefetch
954            if (!pkt->cmd.isSWPrefetch()) {
955                assert(!pkt->req->isCacheMaintenance());
956                next_pf_time = prefetcher->notify(pkt);
957            }
958        }
959
960        handleTimingReqHit(pkt, blk, request_time);
961    } else {
962        handleTimingReqMiss(pkt, blk, forward_time, request_time);
963
964        // We should call the prefetcher reguardless if the request is
965        // satisfied or not, reguardless if the request is in the MSHR
966        // or not.  The request could be a ReadReq hit, but still not
967        // satisfied (potentially because of a prior write to the same
968        // cache line.  So, even when not satisfied, there is an MSHR
969        // already allocated for this, we need to let the prefetcher
970        // know about the request
971        if (prefetcher && pkt &&
972            !pkt->cmd.isSWPrefetch() &&
973            !pkt->req->isCacheMaintenance()) {
974            next_pf_time = prefetcher->notify(pkt);
975        }
976    }
977
978    if (next_pf_time != MaxTick)
979        schedMemSideSendEvent(next_pf_time);
980}
981
982PacketPtr
983Cache::createMissPacket(PacketPtr cpu_pkt, CacheBlk *blk,
984                        bool needsWritable) const
985{
986    // should never see evictions here
987    assert(!cpu_pkt->isEviction());
988
989    bool blkValid = blk && blk->isValid();
990
991    if (cpu_pkt->req->isUncacheable() ||
992        (!blkValid && cpu_pkt->isUpgrade()) ||
993        cpu_pkt->cmd == MemCmd::InvalidateReq || cpu_pkt->isClean()) {
994        // uncacheable requests and upgrades from upper-level caches
995        // that missed completely just go through as is
996        return nullptr;
997    }
998
999    assert(cpu_pkt->needsResponse());
1000
1001    MemCmd cmd;
1002    // @TODO make useUpgrades a parameter.
1003    // Note that ownership protocols require upgrade, otherwise a
1004    // write miss on a shared owned block will generate a ReadExcl,
1005    // which will clobber the owned copy.
1006    const bool useUpgrades = true;
1007    if (cpu_pkt->cmd == MemCmd::WriteLineReq) {
1008        assert(!blkValid || !blk->isWritable());
1009        // forward as invalidate to all other caches, this gives us
1010        // the line in Exclusive state, and invalidates all other
1011        // copies
1012        cmd = MemCmd::InvalidateReq;
1013    } else if (blkValid && useUpgrades) {
1014        // only reason to be here is that blk is read only and we need
1015        // it to be writable
1016        assert(needsWritable);
1017        assert(!blk->isWritable());
1018        cmd = cpu_pkt->isLLSC() ? MemCmd::SCUpgradeReq : MemCmd::UpgradeReq;
1019    } else if (cpu_pkt->cmd == MemCmd::SCUpgradeFailReq ||
1020               cpu_pkt->cmd == MemCmd::StoreCondFailReq) {
1021        // Even though this SC will fail, we still need to send out the
1022        // request and get the data to supply it to other snoopers in the case
1023        // where the determination the StoreCond fails is delayed due to
1024        // all caches not being on the same local bus.
1025        cmd = MemCmd::SCUpgradeFailReq;
1026    } else {
1027        // block is invalid
1028
1029        // If the request does not need a writable there are two cases
1030        // where we need to ensure the response will not fetch the
1031        // block in dirty state:
1032        // * this cache is read only and it does not perform
1033        //   writebacks,
1034        // * this cache is mostly exclusive and will not fill (since
1035        //   it does not fill it will have to writeback the dirty data
1036        //   immediately which generates uneccesary writebacks).
1037        bool force_clean_rsp = isReadOnly || clusivity == Enums::mostly_excl;
1038        cmd = needsWritable ? MemCmd::ReadExReq :
1039            (force_clean_rsp ? MemCmd::ReadCleanReq : MemCmd::ReadSharedReq);
1040    }
1041    PacketPtr pkt = new Packet(cpu_pkt->req, cmd, blkSize);
1042
1043    // if there are upstream caches that have already marked the
1044    // packet as having sharers (not passing writable), pass that info
1045    // downstream
1046    if (cpu_pkt->hasSharers() && !needsWritable) {
1047        // note that cpu_pkt may have spent a considerable time in the
1048        // MSHR queue and that the information could possibly be out
1049        // of date, however, there is no harm in conservatively
1050        // assuming the block has sharers
1051        pkt->setHasSharers();
1052        DPRINTF(Cache, "%s: passing hasSharers from %s to %s\n",
1053                __func__, cpu_pkt->print(), pkt->print());
1054    }
1055
1056    // the packet should be block aligned
1057    assert(pkt->getAddr() == pkt->getBlockAddr(blkSize));
1058
1059    pkt->allocate();
1060    DPRINTF(Cache, "%s: created %s from %s\n", __func__, pkt->print(),
1061            cpu_pkt->print());
1062    return pkt;
1063}
1064
1065
1066Cycles
1067Cache::handleAtomicReqMiss(PacketPtr pkt, CacheBlk *blk,
1068                           PacketList &writebacks)
1069{
1070    // deal with the packets that go through the write path of
1071    // the cache, i.e. any evictions and writes
1072    if (pkt->isEviction() || pkt->cmd == MemCmd::WriteClean ||
1073        (pkt->req->isUncacheable() && pkt->isWrite())) {
1074        Cycles latency = ticksToCycles(memSidePort->sendAtomic(pkt));
1075
1076        // at this point, if the request was an uncacheable write
1077        // request, it has been satisfied by a memory below and the
1078        // packet carries the response back
1079        assert(!(pkt->req->isUncacheable() && pkt->isWrite()) ||
1080               pkt->isResponse());
1081
1082        return latency;
1083    }
1084
1085    // only misses left
1086
1087    PacketPtr bus_pkt = createMissPacket(pkt, blk, pkt->needsWritable());
1088
1089    bool is_forward = (bus_pkt == nullptr);
1090
1091    if (is_forward) {
1092        // just forwarding the same request to the next level
1093        // no local cache operation involved
1094        bus_pkt = pkt;
1095    }
1096
1097    DPRINTF(Cache, "%s: Sending an atomic %s\n", __func__,
1098            bus_pkt->print());
1099
1100#if TRACING_ON
1101    CacheBlk::State old_state = blk ? blk->status : 0;
1102#endif
1103
1104    Cycles latency = ticksToCycles(memSidePort->sendAtomic(bus_pkt));
1105
1106    bool is_invalidate = bus_pkt->isInvalidate();
1107
1108    // We are now dealing with the response handling
1109    DPRINTF(Cache, "%s: Receive response: %s in state %i\n", __func__,
1110            bus_pkt->print(), old_state);
1111
1112    // If packet was a forward, the response (if any) is already
1113    // in place in the bus_pkt == pkt structure, so we don't need
1114    // to do anything.  Otherwise, use the separate bus_pkt to
1115    // generate response to pkt and then delete it.
1116    if (!is_forward) {
1117        if (pkt->needsResponse()) {
1118            assert(bus_pkt->isResponse());
1119            if (bus_pkt->isError()) {
1120                pkt->makeAtomicResponse();
1121                pkt->copyError(bus_pkt);
1122            } else if (pkt->cmd == MemCmd::WriteLineReq) {
1123                // note the use of pkt, not bus_pkt here.
1124
1125                // write-line request to the cache that promoted
1126                // the write to a whole line
1127                blk = handleFill(pkt, blk, writebacks,
1128                                 allocOnFill(pkt->cmd));
1129                assert(blk != NULL);
1130                is_invalidate = false;
1131                satisfyRequest(pkt, blk);
1132            } else if (bus_pkt->isRead() ||
1133                       bus_pkt->cmd == MemCmd::UpgradeResp) {
1134                // we're updating cache state to allow us to
1135                // satisfy the upstream request from the cache
1136                blk = handleFill(bus_pkt, blk, writebacks,
1137                                 allocOnFill(pkt->cmd));
1138                satisfyRequest(pkt, blk);
1139                maintainClusivity(pkt->fromCache(), blk);
1140            } else {
1141                // we're satisfying the upstream request without
1142                // modifying cache state, e.g., a write-through
1143                pkt->makeAtomicResponse();
1144            }
1145        }
1146        delete bus_pkt;
1147    }
1148
1149    if (is_invalidate && blk && blk->isValid()) {
1150        invalidateBlock(blk);
1151    }
1152
1153    return latency;
1154}
1155
1156Tick
1157Cache::recvAtomic(PacketPtr pkt)
1158{
1159    // We are in atomic mode so we pay just for lookupLatency here.
1160    Cycles lat = lookupLatency;
1161
1162    // Forward the request if the system is in cache bypass mode.
1163    if (system->bypassCaches())
1164        return ticksToCycles(memSidePort->sendAtomic(pkt));
1165
1166    promoteWholeLineWrites(pkt);
1167
1168    // follow the same flow as in recvTimingReq, and check if a cache
1169    // above us is responding
1170    if (pkt->cacheResponding() && !pkt->isClean()) {
1171        assert(!pkt->req->isCacheInvalidate());
1172        DPRINTF(Cache, "Cache above responding to %s: not responding\n",
1173                pkt->print());
1174
1175        // if a cache is responding, and it had the line in Owned
1176        // rather than Modified state, we need to invalidate any
1177        // copies that are not on the same path to memory
1178        assert(pkt->needsWritable() && !pkt->responderHadWritable());
1179        lat += ticksToCycles(memSidePort->sendAtomic(pkt));
1180
1181        return lat * clockPeriod();
1182    }
1183
1184    // should assert here that there are no outstanding MSHRs or
1185    // writebacks... that would mean that someone used an atomic
1186    // access in timing mode
1187
1188    CacheBlk *blk = nullptr;
1189    PacketList writebacks;
1190    bool satisfied = access(pkt, blk, lat, writebacks);
1191
1192    if (pkt->isClean() && blk && blk->isDirty()) {
1193        // A cache clean opearation is looking for a dirty
1194        // block. If a dirty block is encountered a WriteClean
1195        // will update any copies to the path to the memory
1196        // until the point of reference.
1197        DPRINTF(CacheVerbose, "%s: packet %s found block: %s\n",
1198                __func__, pkt->print(), blk->print());
1199        PacketPtr wb_pkt = writecleanBlk(blk, pkt->req->getDest(), pkt->id);
1200        writebacks.push_back(wb_pkt);
1201        pkt->setSatisfied();
1202    }
1203
1204    // handle writebacks resulting from the access here to ensure they
1205    // logically proceed anything happening below
1206    doWritebacksAtomic(writebacks);
1207    assert(writebacks.empty());
1208
1209    if (!satisfied) {
1210        lat += handleAtomicReqMiss(pkt, blk, writebacks);
1211    }
1212
1213    // Note that we don't invoke the prefetcher at all in atomic mode.
1214    // It's not clear how to do it properly, particularly for
1215    // prefetchers that aggressively generate prefetch candidates and
1216    // rely on bandwidth contention to throttle them; these will tend
1217    // to pollute the cache in atomic mode since there is no bandwidth
1218    // contention.  If we ever do want to enable prefetching in atomic
1219    // mode, though, this is the place to do it... see timingAccess()
1220    // for an example (though we'd want to issue the prefetch(es)
1221    // immediately rather than calling requestMemSideBus() as we do
1222    // there).
1223
1224    // do any writebacks resulting from the response handling
1225    doWritebacksAtomic(writebacks);
1226
1227    // if we used temp block, check to see if its valid and if so
1228    // clear it out, but only do so after the call to recvAtomic is
1229    // finished so that any downstream observers (such as a snoop
1230    // filter), first see the fill, and only then see the eviction
1231    if (blk == tempBlock && tempBlock->isValid()) {
1232        // the atomic CPU calls recvAtomic for fetch and load/store
1233        // sequentuially, and we may already have a tempBlock
1234        // writeback from the fetch that we have not yet sent
1235        if (tempBlockWriteback) {
1236            // if that is the case, write the prevoius one back, and
1237            // do not schedule any new event
1238            writebackTempBlockAtomic();
1239        } else {
1240            // the writeback/clean eviction happens after the call to
1241            // recvAtomic has finished (but before any successive
1242            // calls), so that the response handling from the fill is
1243            // allowed to happen first
1244            schedule(writebackTempBlockAtomicEvent, curTick());
1245        }
1246
1247        tempBlockWriteback = evictBlock(blk);
1248    }
1249
1250    if (pkt->needsResponse()) {
1251        pkt->makeAtomicResponse();
1252    }
1253
1254    return lat * clockPeriod();
1255}
1256
1257
1258void
1259Cache::functionalAccess(PacketPtr pkt, bool fromCpuSide)
1260{
1261    if (system->bypassCaches()) {
1262        // Packets from the memory side are snoop request and
1263        // shouldn't happen in bypass mode.
1264        assert(fromCpuSide);
1265
1266        // The cache should be flushed if we are in cache bypass mode,
1267        // so we don't need to check if we need to update anything.
1268        memSidePort->sendFunctional(pkt);
1269        return;
1270    }
1271
1272    Addr blk_addr = pkt->getBlockAddr(blkSize);
1273    bool is_secure = pkt->isSecure();
1274    CacheBlk *blk = tags->findBlock(pkt->getAddr(), is_secure);
1275    MSHR *mshr = mshrQueue.findMatch(blk_addr, is_secure);
1276
1277    pkt->pushLabel(name());
1278
1279    CacheBlkPrintWrapper cbpw(blk);
1280
1281    // Note that just because an L2/L3 has valid data doesn't mean an
1282    // L1 doesn't have a more up-to-date modified copy that still
1283    // needs to be found.  As a result we always update the request if
1284    // we have it, but only declare it satisfied if we are the owner.
1285
1286    // see if we have data at all (owned or otherwise)
1287    bool have_data = blk && blk->isValid()
1288        && pkt->checkFunctional(&cbpw, blk_addr, is_secure, blkSize,
1289                                blk->data);
1290
1291    // data we have is dirty if marked as such or if we have an
1292    // in-service MSHR that is pending a modified line
1293    bool have_dirty =
1294        have_data && (blk->isDirty() ||
1295                      (mshr && mshr->inService && mshr->isPendingModified()));
1296
1297    bool done = have_dirty
1298        || cpuSidePort->checkFunctional(pkt)
1299        || mshrQueue.checkFunctional(pkt, blk_addr)
1300        || writeBuffer.checkFunctional(pkt, blk_addr)
1301        || memSidePort->checkFunctional(pkt);
1302
1303    DPRINTF(CacheVerbose, "%s: %s %s%s%s\n", __func__,  pkt->print(),
1304            (blk && blk->isValid()) ? "valid " : "",
1305            have_data ? "data " : "", done ? "done " : "");
1306
1307    // We're leaving the cache, so pop cache->name() label
1308    pkt->popLabel();
1309
1310    if (done) {
1311        pkt->makeResponse();
1312    } else {
1313        // if it came as a request from the CPU side then make sure it
1314        // continues towards the memory side
1315        if (fromCpuSide) {
1316            memSidePort->sendFunctional(pkt);
1317        } else if (cpuSidePort->isSnooping()) {
1318            // if it came from the memory side, it must be a snoop request
1319            // and we should only forward it if we are forwarding snoops
1320            cpuSidePort->sendFunctionalSnoop(pkt);
1321        }
1322    }
1323}
1324
1325
1326/////////////////////////////////////////////////////
1327//
1328// Response handling: responses from the memory side
1329//
1330/////////////////////////////////////////////////////
1331
1332
1333void
1334Cache::handleUncacheableWriteResp(PacketPtr pkt)
1335{
1336    Tick completion_time = clockEdge(responseLatency) +
1337        pkt->headerDelay + pkt->payloadDelay;
1338
1339    // Reset the bus additional time as it is now accounted for
1340    pkt->headerDelay = pkt->payloadDelay = 0;
1341
1342    cpuSidePort->schedTimingResp(pkt, completion_time, true);
1343}
1344
1345void
1346Cache::serviceMSHRTargets(MSHR *mshr, const PacketPtr pkt, CacheBlk *blk,
1347                          PacketList &writebacks)
1348{
1349    MSHR::Target *initial_tgt = mshr->getTarget();
1350    // First offset for critical word first calculations
1351    const int initial_offset = initial_tgt->pkt->getOffset(blkSize);
1352
1353    const bool is_error = pkt->isError();
1354    bool is_fill = !mshr->isForward &&
1355        (pkt->isRead() || pkt->cmd == MemCmd::UpgradeResp);
1356    // allow invalidation responses originating from write-line
1357    // requests to be discarded
1358    bool is_invalidate = pkt->isInvalidate();
1359
1360    MSHR::TargetList targets = mshr->extractServiceableTargets(pkt);
1361    for (auto &target: targets) {
1362        Packet *tgt_pkt = target.pkt;
1363        switch (target.source) {
1364          case MSHR::Target::FromCPU:
1365            Tick completion_time;
1366            // Here we charge on completion_time the delay of the xbar if the
1367            // packet comes from it, charged on headerDelay.
1368            completion_time = pkt->headerDelay;
1369
1370            // Software prefetch handling for cache closest to core
1371            if (tgt_pkt->cmd.isSWPrefetch()) {
1372                // a software prefetch would have already been ack'd
1373                // immediately with dummy data so the core would be able to
1374                // retire it. This request completes right here, so we
1375                // deallocate it.
1376                delete tgt_pkt->req;
1377                delete tgt_pkt;
1378                break; // skip response
1379            }
1380
1381            // unlike the other packet flows, where data is found in other
1382            // caches or memory and brought back, write-line requests always
1383            // have the data right away, so the above check for "is fill?"
1384            // cannot actually be determined until examining the stored MSHR
1385            // state. We "catch up" with that logic here, which is duplicated
1386            // from above.
1387            if (tgt_pkt->cmd == MemCmd::WriteLineReq) {
1388                assert(!is_error);
1389                // we got the block in a writable state, so promote
1390                // any deferred targets if possible
1391                mshr->promoteWritable();
1392                // NB: we use the original packet here and not the response!
1393                blk = handleFill(tgt_pkt, blk, writebacks,
1394                                 targets.allocOnFill);
1395                assert(blk);
1396
1397                // treat as a fill, and discard the invalidation
1398                // response
1399                is_fill = true;
1400                is_invalidate = false;
1401            }
1402
1403            if (is_fill) {
1404                satisfyRequest(tgt_pkt, blk, true, mshr->hasPostDowngrade());
1405
1406                // How many bytes past the first request is this one
1407                int transfer_offset =
1408                    tgt_pkt->getOffset(blkSize) - initial_offset;
1409                if (transfer_offset < 0) {
1410                    transfer_offset += blkSize;
1411                }
1412
1413                // If not critical word (offset) return payloadDelay.
1414                // responseLatency is the latency of the return path
1415                // from lower level caches/memory to an upper level cache or
1416                // the core.
1417                completion_time += clockEdge(responseLatency) +
1418                    (transfer_offset ? pkt->payloadDelay : 0);
1419
1420                assert(!tgt_pkt->req->isUncacheable());
1421
1422                assert(tgt_pkt->req->masterId() < system->maxMasters());
1423                missLatency[tgt_pkt->cmdToIndex()][tgt_pkt->req->masterId()] +=
1424                    completion_time - target.recvTime;
1425            } else if (pkt->cmd == MemCmd::UpgradeFailResp) {
1426                // failed StoreCond upgrade
1427                assert(tgt_pkt->cmd == MemCmd::StoreCondReq ||
1428                       tgt_pkt->cmd == MemCmd::StoreCondFailReq ||
1429                       tgt_pkt->cmd == MemCmd::SCUpgradeFailReq);
1430                // responseLatency is the latency of the return path
1431                // from lower level caches/memory to an upper level cache or
1432                // the core.
1433                completion_time += clockEdge(responseLatency) +
1434                    pkt->payloadDelay;
1435                tgt_pkt->req->setExtraData(0);
1436            } else {
1437                // We are about to send a response to a cache above
1438                // that asked for an invalidation; we need to
1439                // invalidate our copy immediately as the most
1440                // up-to-date copy of the block will now be in the
1441                // cache above. It will also prevent this cache from
1442                // responding (if the block was previously dirty) to
1443                // snoops as they should snoop the caches above where
1444                // they will get the response from.
1445                if (is_invalidate && blk && blk->isValid()) {
1446                    invalidateBlock(blk);
1447                }
1448                // not a cache fill, just forwarding response
1449                // responseLatency is the latency of the return path
1450                // from lower level cahces/memory to the core.
1451                completion_time += clockEdge(responseLatency) +
1452                    pkt->payloadDelay;
1453                if (pkt->isRead() && !is_error) {
1454                    // sanity check
1455                    assert(pkt->getAddr() == tgt_pkt->getAddr());
1456                    assert(pkt->getSize() >= tgt_pkt->getSize());
1457
1458                    tgt_pkt->setData(pkt->getConstPtr<uint8_t>());
1459                }
1460            }
1461            tgt_pkt->makeTimingResponse();
1462            // if this packet is an error copy that to the new packet
1463            if (is_error)
1464                tgt_pkt->copyError(pkt);
1465            if (tgt_pkt->cmd == MemCmd::ReadResp &&
1466                (is_invalidate || mshr->hasPostInvalidate())) {
1467                // If intermediate cache got ReadRespWithInvalidate,
1468                // propagate that.  Response should not have
1469                // isInvalidate() set otherwise.
1470                tgt_pkt->cmd = MemCmd::ReadRespWithInvalidate;
1471                DPRINTF(Cache, "%s: updated cmd to %s\n", __func__,
1472                        tgt_pkt->print());
1473            }
1474            // Reset the bus additional time as it is now accounted for
1475            tgt_pkt->headerDelay = tgt_pkt->payloadDelay = 0;
1476            cpuSidePort->schedTimingResp(tgt_pkt, completion_time, true);
1477            break;
1478
1479          case MSHR::Target::FromPrefetcher:
1480            assert(tgt_pkt->cmd == MemCmd::HardPFReq);
1481            if (blk)
1482                blk->status |= BlkHWPrefetched;
1483            delete tgt_pkt->req;
1484            delete tgt_pkt;
1485            break;
1486
1487          case MSHR::Target::FromSnoop:
1488            // I don't believe that a snoop can be in an error state
1489            assert(!is_error);
1490            // response to snoop request
1491            DPRINTF(Cache, "processing deferred snoop...\n");
1492            // If the response is invalidating, a snooping target can
1493            // be satisfied if it is also invalidating. If the reponse is, not
1494            // only invalidating, but more specifically an InvalidateResp and
1495            // the MSHR was created due to an InvalidateReq then a cache above
1496            // is waiting to satisfy a WriteLineReq. In this case even an
1497            // non-invalidating snoop is added as a target here since this is
1498            // the ordering point. When the InvalidateResp reaches this cache,
1499            // the snooping target will snoop further the cache above with the
1500            // WriteLineReq.
1501            assert(!is_invalidate || pkt->cmd == MemCmd::InvalidateResp ||
1502                   pkt->req->isCacheMaintenance() ||
1503                   mshr->hasPostInvalidate());
1504            handleSnoop(tgt_pkt, blk, true, true, mshr->hasPostInvalidate());
1505            break;
1506
1507          default:
1508            panic("Illegal target->source enum %d\n", target.source);
1509        }
1510    }
1511
1512    maintainClusivity(targets.hasFromCache, blk);
1513
1514    if (blk && blk->isValid()) {
1515        // an invalidate response stemming from a write line request
1516        // should not invalidate the block, so check if the
1517        // invalidation should be discarded
1518        if (is_invalidate || mshr->hasPostInvalidate()) {
1519            invalidateBlock(blk);
1520        } else if (mshr->hasPostDowngrade()) {
1521            blk->status &= ~BlkWritable;
1522        }
1523    }
1524}
1525
1526void
1527Cache::recvTimingResp(PacketPtr pkt)
1528{
1529    assert(pkt->isResponse());
1530
1531    // all header delay should be paid for by the crossbar, unless
1532    // this is a prefetch response from above
1533    panic_if(pkt->headerDelay != 0 && pkt->cmd != MemCmd::HardPFResp,
1534             "%s saw a non-zero packet delay\n", name());
1535
1536    const bool is_error = pkt->isError();
1537
1538    if (is_error) {
1539        DPRINTF(Cache, "%s: Cache received %s with error\n", __func__,
1540                pkt->print());
1541    }
1542
1543    DPRINTF(Cache, "%s: Handling response %s\n", __func__,
1544            pkt->print());
1545
1546    // if this is a write, we should be looking at an uncacheable
1547    // write
1548    if (pkt->isWrite()) {
1549        assert(pkt->req->isUncacheable());
1550        handleUncacheableWriteResp(pkt);
1551        return;
1552    }
1553
1554    // we have dealt with any (uncacheable) writes above, from here on
1555    // we know we are dealing with an MSHR due to a miss or a prefetch
1556    MSHR *mshr = dynamic_cast<MSHR*>(pkt->popSenderState());
1557    assert(mshr);
1558
1559    if (mshr == noTargetMSHR) {
1560        // we always clear at least one target
1561        clearBlocked(Blocked_NoTargets);
1562        noTargetMSHR = nullptr;
1563    }
1564
1565    // Initial target is used just for stats
1566    MSHR::Target *initial_tgt = mshr->getTarget();
1567    int stats_cmd_idx = initial_tgt->pkt->cmdToIndex();
1568    Tick miss_latency = curTick() - initial_tgt->recvTime;
1569
1570    if (pkt->req->isUncacheable()) {
1571        assert(pkt->req->masterId() < system->maxMasters());
1572        mshr_uncacheable_lat[stats_cmd_idx][pkt->req->masterId()] +=
1573            miss_latency;
1574    } else {
1575        assert(pkt->req->masterId() < system->maxMasters());
1576        mshr_miss_latency[stats_cmd_idx][pkt->req->masterId()] +=
1577            miss_latency;
1578    }
1579
1580    PacketList writebacks;
1581
1582    bool is_fill = !mshr->isForward &&
1583        (pkt->isRead() || pkt->cmd == MemCmd::UpgradeResp);
1584
1585    CacheBlk *blk = tags->findBlock(pkt->getAddr(), pkt->isSecure());
1586
1587    if (is_fill && !is_error) {
1588        DPRINTF(Cache, "Block for addr %#llx being updated in Cache\n",
1589                pkt->getAddr());
1590
1591        blk = handleFill(pkt, blk, writebacks, mshr->allocOnFill());
1592        assert(blk != nullptr);
1593    }
1594
1595    if (blk && blk->isValid() && pkt->isClean() && !pkt->isInvalidate()) {
1596        // The block was marked not readable while there was a pending
1597        // cache maintenance operation, restore its flag.
1598        blk->status |= BlkReadable;
1599    }
1600
1601    if (blk && blk->isWritable() && !pkt->req->isCacheInvalidate()) {
1602        // If at this point the referenced block is writable and the
1603        // response is not a cache invalidate, we promote targets that
1604        // were deferred as we couldn't guarrantee a writable copy
1605        mshr->promoteWritable();
1606    }
1607
1608    serviceMSHRTargets(mshr, pkt, blk, writebacks);
1609
1610    if (mshr->promoteDeferredTargets()) {
1611        // avoid later read getting stale data while write miss is
1612        // outstanding.. see comment in timingAccess()
1613        if (blk) {
1614            blk->status &= ~BlkReadable;
1615        }
1616        mshrQueue.markPending(mshr);
1617        schedMemSideSendEvent(clockEdge() + pkt->payloadDelay);
1618    } else {
1619        // while we deallocate an mshr from the queue we still have to
1620        // check the isFull condition before and after as we might
1621        // have been using the reserved entries already
1622        const bool was_full = mshrQueue.isFull();
1623        mshrQueue.deallocate(mshr);
1624        if (was_full && !mshrQueue.isFull()) {
1625            clearBlocked(Blocked_NoMSHRs);
1626        }
1627
1628        // Request the bus for a prefetch if this deallocation freed enough
1629        // MSHRs for a prefetch to take place
1630        if (prefetcher && mshrQueue.canPrefetch()) {
1631            Tick next_pf_time = std::max(prefetcher->nextPrefetchReadyTime(),
1632                                         clockEdge());
1633            if (next_pf_time != MaxTick)
1634                schedMemSideSendEvent(next_pf_time);
1635        }
1636    }
1637
1638    // if we used temp block, check to see if its valid and then clear it out
1639    if (blk == tempBlock && tempBlock->isValid()) {
1640        evictBlock(blk, writebacks);
1641    }
1642
1643    const Tick forward_time = clockEdge(forwardLatency) + pkt->headerDelay;
1644    // copy writebacks to write buffer
1645    doWritebacks(writebacks, forward_time);
1646
1647    DPRINTF(CacheVerbose, "%s: Leaving with %s\n", __func__, pkt->print());
1648    delete pkt;
1649}
1650
1651PacketPtr
1652Cache::evictBlock(CacheBlk *blk)
1653{
1654    PacketPtr pkt = (blk->isDirty() || writebackClean) ?
1655        writebackBlk(blk) : cleanEvictBlk(blk);
1656
1657    invalidateBlock(blk);
1658
1659    return pkt;
1660}
1661
1662void
1663Cache::evictBlock(CacheBlk *blk, PacketList &writebacks)
1664{
1665    PacketPtr pkt = evictBlock(blk);
1666    if (pkt) {
1667        writebacks.push_back(pkt);
1668    }
1669}
1670
1671PacketPtr
1672Cache::writebackBlk(CacheBlk *blk)
1673{
1674    chatty_assert(!isReadOnly || writebackClean,
1675                  "Writeback from read-only cache");
1676    assert(blk && blk->isValid() && (blk->isDirty() || writebackClean));
1677
1678    writebacks[Request::wbMasterId]++;
1679
1680    Request *req = new Request(tags->regenerateBlkAddr(blk), blkSize, 0,
1681                               Request::wbMasterId);
1682    if (blk->isSecure())
1683        req->setFlags(Request::SECURE);
1684
1685    req->taskId(blk->task_id);
1686
1687    PacketPtr pkt =
1688        new Packet(req, blk->isDirty() ?
1689                   MemCmd::WritebackDirty : MemCmd::WritebackClean);
1690
1691    DPRINTF(Cache, "Create Writeback %s writable: %d, dirty: %d\n",
1692            pkt->print(), blk->isWritable(), blk->isDirty());
1693
1694    if (blk->isWritable()) {
1695        // not asserting shared means we pass the block in modified
1696        // state, mark our own block non-writeable
1697        blk->status &= ~BlkWritable;
1698    } else {
1699        // we are in the Owned state, tell the receiver
1700        pkt->setHasSharers();
1701    }
1702
1703    // make sure the block is not marked dirty
1704    blk->status &= ~BlkDirty;
1705
1706    pkt->allocate();
1707    pkt->setDataFromBlock(blk->data, blkSize);
1708
1709    return pkt;
1710}
1711
1712PacketPtr
1713Cache::writecleanBlk(CacheBlk *blk, Request::Flags dest, PacketId id)
1714{
1715    Request *req = new Request(tags->regenerateBlkAddr(blk), blkSize, 0,
1716                               Request::wbMasterId);
1717    if (blk->isSecure()) {
1718        req->setFlags(Request::SECURE);
1719    }
1720    req->taskId(blk->task_id);
1721
1722    PacketPtr pkt = new Packet(req, MemCmd::WriteClean, blkSize, id);
1723
1724    if (dest) {
1725        req->setFlags(dest);
1726        pkt->setWriteThrough();
1727    }
1728
1729    DPRINTF(Cache, "Create %s writable: %d, dirty: %d\n", pkt->print(),
1730            blk->isWritable(), blk->isDirty());
1731
1732    if (blk->isWritable()) {
1733        // not asserting shared means we pass the block in modified
1734        // state, mark our own block non-writeable
1735        blk->status &= ~BlkWritable;
1736    } else {
1737        // we are in the Owned state, tell the receiver
1738        pkt->setHasSharers();
1739    }
1740
1741    // make sure the block is not marked dirty
1742    blk->status &= ~BlkDirty;
1743
1744    pkt->allocate();
1745    pkt->setDataFromBlock(blk->data, blkSize);
1746
1747    return pkt;
1748}
1749
1750
1751PacketPtr
1752Cache::cleanEvictBlk(CacheBlk *blk)
1753{
1754    assert(!writebackClean);
1755    assert(blk && blk->isValid() && !blk->isDirty());
1756    // Creating a zero sized write, a message to the snoop filter
1757    Request *req =
1758        new Request(tags->regenerateBlkAddr(blk), blkSize, 0,
1759                    Request::wbMasterId);
1760    if (blk->isSecure())
1761        req->setFlags(Request::SECURE);
1762
1763    req->taskId(blk->task_id);
1764
1765    PacketPtr pkt = new Packet(req, MemCmd::CleanEvict);
1766    pkt->allocate();
1767    DPRINTF(Cache, "Create CleanEvict %s\n", pkt->print());
1768
1769    return pkt;
1770}
1771
1772void
1773Cache::memWriteback()
1774{
1775    CacheBlkVisitorWrapper visitor(*this, &Cache::writebackVisitor);
1776    tags->forEachBlk(visitor);
1777}
1778
1779void
1780Cache::memInvalidate()
1781{
1782    CacheBlkVisitorWrapper visitor(*this, &Cache::invalidateVisitor);
1783    tags->forEachBlk(visitor);
1784}
1785
1786bool
1787Cache::isDirty() const
1788{
1789    CacheBlkIsDirtyVisitor visitor;
1790    tags->forEachBlk(visitor);
1791
1792    return visitor.isDirty();
1793}
1794
1795bool
1796Cache::writebackVisitor(CacheBlk &blk)
1797{
1798    if (blk.isDirty()) {
1799        assert(blk.isValid());
1800
1801        Request request(tags->regenerateBlkAddr(&blk), blkSize, 0,
1802                        Request::funcMasterId);
1803        request.taskId(blk.task_id);
1804        if (blk.isSecure()) {
1805            request.setFlags(Request::SECURE);
1806        }
1807
1808        Packet packet(&request, MemCmd::WriteReq);
1809        packet.dataStatic(blk.data);
1810
1811        memSidePort->sendFunctional(&packet);
1812
1813        blk.status &= ~BlkDirty;
1814    }
1815
1816    return true;
1817}
1818
1819bool
1820Cache::invalidateVisitor(CacheBlk &blk)
1821{
1822
1823    if (blk.isDirty())
1824        warn_once("Invalidating dirty cache lines. Expect things to break.\n");
1825
1826    if (blk.isValid()) {
1827        assert(!blk.isDirty());
1828        invalidateBlock(&blk);
1829    }
1830
1831    return true;
1832}
1833
1834CacheBlk*
1835Cache::allocateBlock(Addr addr, bool is_secure, PacketList &writebacks)
1836{
1837    // Find replacement victim
1838    CacheBlk *blk = tags->findVictim(addr);
1839
1840    // It is valid to return nullptr if there is no victim
1841    if (!blk)
1842        return nullptr;
1843
1844    if (blk->isValid()) {
1845        Addr repl_addr = tags->regenerateBlkAddr(blk);
1846        MSHR *repl_mshr = mshrQueue.findMatch(repl_addr, blk->isSecure());
1847        if (repl_mshr) {
1848            // must be an outstanding upgrade or clean request
1849            // on a block we're about to replace...
1850            assert((!blk->isWritable() && repl_mshr->needsWritable()) ||
1851                   repl_mshr->isCleaning());
1852            // too hard to replace block with transient state
1853            // allocation failed, block not inserted
1854            return nullptr;
1855        } else {
1856            DPRINTF(Cache, "replacement: replacing %#llx (%s) with %#llx "
1857                    "(%s): %s\n", repl_addr, blk->isSecure() ? "s" : "ns",
1858                    addr, is_secure ? "s" : "ns",
1859                    blk->isDirty() ? "writeback" : "clean");
1860
1861            if (blk->wasPrefetched()) {
1862                unusedPrefetches++;
1863            }
1864            evictBlock(blk, writebacks);
1865            replacements++;
1866        }
1867    }
1868
1869    return blk;
1870}
1871
1872void
1873Cache::invalidateBlock(CacheBlk *blk)
1874{
1875    if (blk != tempBlock)
1876        tags->invalidate(blk);
1877    blk->invalidate();
1878}
1879
1880// Note that the reason we return a list of writebacks rather than
1881// inserting them directly in the write buffer is that this function
1882// is called by both atomic and timing-mode accesses, and in atomic
1883// mode we don't mess with the write buffer (we just perform the
1884// writebacks atomically once the original request is complete).
1885CacheBlk*
1886Cache::handleFill(PacketPtr pkt, CacheBlk *blk, PacketList &writebacks,
1887                  bool allocate)
1888{
1889    assert(pkt->isResponse() || pkt->cmd == MemCmd::WriteLineReq);
1890    Addr addr = pkt->getAddr();
1891    bool is_secure = pkt->isSecure();
1892#if TRACING_ON
1893    CacheBlk::State old_state = blk ? blk->status : 0;
1894#endif
1895
1896    // When handling a fill, we should have no writes to this line.
1897    assert(addr == pkt->getBlockAddr(blkSize));
1898    assert(!writeBuffer.findMatch(addr, is_secure));
1899
1900    if (blk == nullptr) {
1901        // better have read new data...
1902        assert(pkt->hasData());
1903
1904        // only read responses and write-line requests have data;
1905        // note that we don't write the data here for write-line - that
1906        // happens in the subsequent call to satisfyRequest
1907        assert(pkt->isRead() || pkt->cmd == MemCmd::WriteLineReq);
1908
1909        // need to do a replacement if allocating, otherwise we stick
1910        // with the temporary storage
1911        blk = allocate ? allocateBlock(addr, is_secure, writebacks) : nullptr;
1912
1913        if (blk == nullptr) {
1914            // No replaceable block or a mostly exclusive
1915            // cache... just use temporary storage to complete the
1916            // current request and then get rid of it
1917            assert(!tempBlock->isValid());
1918            blk = tempBlock;
1919            tempBlock->set = tags->extractSet(addr);
1920            tempBlock->tag = tags->extractTag(addr);
1921            if (is_secure) {
1922                tempBlock->status |= BlkSecure;
1923            }
1924            DPRINTF(Cache, "using temp block for %#llx (%s)\n", addr,
1925                    is_secure ? "s" : "ns");
1926        } else {
1927            tags->insertBlock(pkt, blk);
1928        }
1929
1930        // we should never be overwriting a valid block
1931        assert(!blk->isValid());
1932    } else {
1933        // existing block... probably an upgrade
1934        assert(blk->tag == tags->extractTag(addr));
1935        // either we're getting new data or the block should already be valid
1936        assert(pkt->hasData() || blk->isValid());
1937        // don't clear block status... if block is already dirty we
1938        // don't want to lose that
1939    }
1940
1941    if (is_secure)
1942        blk->status |= BlkSecure;
1943    blk->status |= BlkValid | BlkReadable;
1944
1945    // sanity check for whole-line writes, which should always be
1946    // marked as writable as part of the fill, and then later marked
1947    // dirty as part of satisfyRequest
1948    if (pkt->cmd == MemCmd::WriteLineReq) {
1949        assert(!pkt->hasSharers());
1950    }
1951
1952    // here we deal with setting the appropriate state of the line,
1953    // and we start by looking at the hasSharers flag, and ignore the
1954    // cacheResponding flag (normally signalling dirty data) if the
1955    // packet has sharers, thus the line is never allocated as Owned
1956    // (dirty but not writable), and always ends up being either
1957    // Shared, Exclusive or Modified, see Packet::setCacheResponding
1958    // for more details
1959    if (!pkt->hasSharers()) {
1960        // we could get a writable line from memory (rather than a
1961        // cache) even in a read-only cache, note that we set this bit
1962        // even for a read-only cache, possibly revisit this decision
1963        blk->status |= BlkWritable;
1964
1965        // check if we got this via cache-to-cache transfer (i.e., from a
1966        // cache that had the block in Modified or Owned state)
1967        if (pkt->cacheResponding()) {
1968            // we got the block in Modified state, and invalidated the
1969            // owners copy
1970            blk->status |= BlkDirty;
1971
1972            chatty_assert(!isReadOnly, "Should never see dirty snoop response "
1973                          "in read-only cache %s\n", name());
1974        }
1975    }
1976
1977    DPRINTF(Cache, "Block addr %#llx (%s) moving from state %x to %s\n",
1978            addr, is_secure ? "s" : "ns", old_state, blk->print());
1979
1980    // if we got new data, copy it in (checking for a read response
1981    // and a response that has data is the same in the end)
1982    if (pkt->isRead()) {
1983        // sanity checks
1984        assert(pkt->hasData());
1985        assert(pkt->getSize() == blkSize);
1986
1987        pkt->writeDataToBlock(blk->data, blkSize);
1988    }
1989    // We pay for fillLatency here.
1990    blk->whenReady = clockEdge() + fillLatency * clockPeriod() +
1991        pkt->payloadDelay;
1992
1993    return blk;
1994}
1995
1996
1997/////////////////////////////////////////////////////
1998//
1999// Snoop path: requests coming in from the memory side
2000//
2001/////////////////////////////////////////////////////
2002
2003void
2004Cache::doTimingSupplyResponse(PacketPtr req_pkt, const uint8_t *blk_data,
2005                              bool already_copied, bool pending_inval)
2006{
2007    // sanity check
2008    assert(req_pkt->isRequest());
2009    assert(req_pkt->needsResponse());
2010
2011    DPRINTF(Cache, "%s: for %s\n", __func__, req_pkt->print());
2012    // timing-mode snoop responses require a new packet, unless we
2013    // already made a copy...
2014    PacketPtr pkt = req_pkt;
2015    if (!already_copied)
2016        // do not clear flags, and allocate space for data if the
2017        // packet needs it (the only packets that carry data are read
2018        // responses)
2019        pkt = new Packet(req_pkt, false, req_pkt->isRead());
2020
2021    assert(req_pkt->req->isUncacheable() || req_pkt->isInvalidate() ||
2022           pkt->hasSharers());
2023    pkt->makeTimingResponse();
2024    if (pkt->isRead()) {
2025        pkt->setDataFromBlock(blk_data, blkSize);
2026    }
2027    if (pkt->cmd == MemCmd::ReadResp && pending_inval) {
2028        // Assume we defer a response to a read from a far-away cache
2029        // A, then later defer a ReadExcl from a cache B on the same
2030        // bus as us. We'll assert cacheResponding in both cases, but
2031        // in the latter case cacheResponding will keep the
2032        // invalidation from reaching cache A. This special response
2033        // tells cache A that it gets the block to satisfy its read,
2034        // but must immediately invalidate it.
2035        pkt->cmd = MemCmd::ReadRespWithInvalidate;
2036    }
2037    // Here we consider forward_time, paying for just forward latency and
2038    // also charging the delay provided by the xbar.
2039    // forward_time is used as send_time in next allocateWriteBuffer().
2040    Tick forward_time = clockEdge(forwardLatency) + pkt->headerDelay;
2041    // Here we reset the timing of the packet.
2042    pkt->headerDelay = pkt->payloadDelay = 0;
2043    DPRINTF(CacheVerbose, "%s: created response: %s tick: %lu\n", __func__,
2044            pkt->print(), forward_time);
2045    memSidePort->schedTimingSnoopResp(pkt, forward_time, true);
2046}
2047
2048uint32_t
2049Cache::handleSnoop(PacketPtr pkt, CacheBlk *blk, bool is_timing,
2050                   bool is_deferred, bool pending_inval)
2051{
2052    DPRINTF(CacheVerbose, "%s: for %s\n", __func__, pkt->print());
2053    // deferred snoops can only happen in timing mode
2054    assert(!(is_deferred && !is_timing));
2055    // pending_inval only makes sense on deferred snoops
2056    assert(!(pending_inval && !is_deferred));
2057    assert(pkt->isRequest());
2058
2059    // the packet may get modified if we or a forwarded snooper
2060    // responds in atomic mode, so remember a few things about the
2061    // original packet up front
2062    bool invalidate = pkt->isInvalidate();
2063    bool M5_VAR_USED needs_writable = pkt->needsWritable();
2064
2065    // at the moment we could get an uncacheable write which does not
2066    // have the invalidate flag, and we need a suitable way of dealing
2067    // with this case
2068    panic_if(invalidate && pkt->req->isUncacheable(),
2069             "%s got an invalidating uncacheable snoop request %s",
2070             name(), pkt->print());
2071
2072    uint32_t snoop_delay = 0;
2073
2074    if (forwardSnoops) {
2075        // first propagate snoop upward to see if anyone above us wants to
2076        // handle it.  save & restore packet src since it will get
2077        // rewritten to be relative to cpu-side bus (if any)
2078        bool alreadyResponded = pkt->cacheResponding();
2079        if (is_timing) {
2080            // copy the packet so that we can clear any flags before
2081            // forwarding it upwards, we also allocate data (passing
2082            // the pointer along in case of static data), in case
2083            // there is a snoop hit in upper levels
2084            Packet snoopPkt(pkt, true, true);
2085            snoopPkt.setExpressSnoop();
2086            // the snoop packet does not need to wait any additional
2087            // time
2088            snoopPkt.headerDelay = snoopPkt.payloadDelay = 0;
2089            cpuSidePort->sendTimingSnoopReq(&snoopPkt);
2090
2091            // add the header delay (including crossbar and snoop
2092            // delays) of the upward snoop to the snoop delay for this
2093            // cache
2094            snoop_delay += snoopPkt.headerDelay;
2095
2096            if (snoopPkt.cacheResponding()) {
2097                // cache-to-cache response from some upper cache
2098                assert(!alreadyResponded);
2099                pkt->setCacheResponding();
2100            }
2101            // upstream cache has the block, or has an outstanding
2102            // MSHR, pass the flag on
2103            if (snoopPkt.hasSharers()) {
2104                pkt->setHasSharers();
2105            }
2106            // If this request is a prefetch or clean evict and an upper level
2107            // signals block present, make sure to propagate the block
2108            // presence to the requester.
2109            if (snoopPkt.isBlockCached()) {
2110                pkt->setBlockCached();
2111            }
2112            // If the request was satisfied by snooping the cache
2113            // above, mark the original packet as satisfied too.
2114            if (snoopPkt.satisfied()) {
2115                pkt->setSatisfied();
2116            }
2117        } else {
2118            cpuSidePort->sendAtomicSnoop(pkt);
2119            if (!alreadyResponded && pkt->cacheResponding()) {
2120                // cache-to-cache response from some upper cache:
2121                // forward response to original requester
2122                assert(pkt->isResponse());
2123            }
2124        }
2125    }
2126
2127    bool respond = false;
2128    bool blk_valid = blk && blk->isValid();
2129    if (pkt->isClean()) {
2130        if (blk_valid && blk->isDirty()) {
2131            DPRINTF(CacheVerbose, "%s: packet (snoop) %s found block: %s\n",
2132                    __func__, pkt->print(), blk->print());
2133            PacketPtr wb_pkt = writecleanBlk(blk, pkt->req->getDest(), pkt->id);
2134            PacketList writebacks;
2135            writebacks.push_back(wb_pkt);
2136
2137            if (is_timing) {
2138                // anything that is merely forwarded pays for the forward
2139                // latency and the delay provided by the crossbar
2140                Tick forward_time = clockEdge(forwardLatency) +
2141                    pkt->headerDelay;
2142                doWritebacks(writebacks, forward_time);
2143            } else {
2144                doWritebacksAtomic(writebacks);
2145            }
2146            pkt->setSatisfied();
2147        }
2148    } else if (!blk_valid) {
2149        DPRINTF(CacheVerbose, "%s: snoop miss for %s\n", __func__,
2150                pkt->print());
2151        if (is_deferred) {
2152            // we no longer have the block, and will not respond, but a
2153            // packet was allocated in MSHR::handleSnoop and we have
2154            // to delete it
2155            assert(pkt->needsResponse());
2156
2157            // we have passed the block to a cache upstream, that
2158            // cache should be responding
2159            assert(pkt->cacheResponding());
2160
2161            delete pkt;
2162        }
2163        return snoop_delay;
2164    } else {
2165        DPRINTF(Cache, "%s: snoop hit for %s, old state is %s\n", __func__,
2166                pkt->print(), blk->print());
2167
2168        // We may end up modifying both the block state and the packet (if
2169        // we respond in atomic mode), so just figure out what to do now
2170        // and then do it later. We respond to all snoops that need
2171        // responses provided we have the block in dirty state. The
2172        // invalidation itself is taken care of below. We don't respond to
2173        // cache maintenance operations as this is done by the destination
2174        // xbar.
2175        respond = blk->isDirty() && pkt->needsResponse();
2176
2177        chatty_assert(!(isReadOnly && blk->isDirty()), "Should never have "
2178                      "a dirty block in a read-only cache %s\n", name());
2179    }
2180
2181    // Invalidate any prefetch's from below that would strip write permissions
2182    // MemCmd::HardPFReq is only observed by upstream caches.  After missing
2183    // above and in it's own cache, a new MemCmd::ReadReq is created that
2184    // downstream caches observe.
2185    if (pkt->mustCheckAbove()) {
2186        DPRINTF(Cache, "Found addr %#llx in upper level cache for snoop %s "
2187                "from lower cache\n", pkt->getAddr(), pkt->print());
2188        pkt->setBlockCached();
2189        return snoop_delay;
2190    }
2191
2192    if (pkt->isRead() && !invalidate) {
2193        // reading without requiring the line in a writable state
2194        assert(!needs_writable);
2195        pkt->setHasSharers();
2196
2197        // if the requesting packet is uncacheable, retain the line in
2198        // the current state, otherwhise unset the writable flag,
2199        // which means we go from Modified to Owned (and will respond
2200        // below), remain in Owned (and will respond below), from
2201        // Exclusive to Shared, or remain in Shared
2202        if (!pkt->req->isUncacheable())
2203            blk->status &= ~BlkWritable;
2204        DPRINTF(Cache, "new state is %s\n", blk->print());
2205    }
2206
2207    if (respond) {
2208        // prevent anyone else from responding, cache as well as
2209        // memory, and also prevent any memory from even seeing the
2210        // request
2211        pkt->setCacheResponding();
2212        if (!pkt->isClean() && blk->isWritable()) {
2213            // inform the cache hierarchy that this cache had the line
2214            // in the Modified state so that we avoid unnecessary
2215            // invalidations (see Packet::setResponderHadWritable)
2216            pkt->setResponderHadWritable();
2217
2218            // in the case of an uncacheable request there is no point
2219            // in setting the responderHadWritable flag, but since the
2220            // recipient does not care there is no harm in doing so
2221        } else {
2222            // if the packet has needsWritable set we invalidate our
2223            // copy below and all other copies will be invalidates
2224            // through express snoops, and if needsWritable is not set
2225            // we already called setHasSharers above
2226        }
2227
2228        // if we are returning a writable and dirty (Modified) line,
2229        // we should be invalidating the line
2230        panic_if(!invalidate && !pkt->hasSharers(),
2231                 "%s is passing a Modified line through %s, "
2232                 "but keeping the block", name(), pkt->print());
2233
2234        if (is_timing) {
2235            doTimingSupplyResponse(pkt, blk->data, is_deferred, pending_inval);
2236        } else {
2237            pkt->makeAtomicResponse();
2238            // packets such as upgrades do not actually have any data
2239            // payload
2240            if (pkt->hasData())
2241                pkt->setDataFromBlock(blk->data, blkSize);
2242        }
2243    }
2244
2245    if (!respond && is_deferred) {
2246        assert(pkt->needsResponse());
2247
2248        // if we copied the deferred packet with the intention to
2249        // respond, but are not responding, then a cache above us must
2250        // be, and we can use this as the indication of whether this
2251        // is a packet where we created a copy of the request or not
2252        if (!pkt->cacheResponding()) {
2253            delete pkt->req;
2254        }
2255
2256        delete pkt;
2257    }
2258
2259    // Do this last in case it deallocates block data or something
2260    // like that
2261    if (blk_valid && invalidate) {
2262        invalidateBlock(blk);
2263        DPRINTF(Cache, "new state is %s\n", blk->print());
2264    }
2265
2266    return snoop_delay;
2267}
2268
2269
2270void
2271Cache::recvTimingSnoopReq(PacketPtr pkt)
2272{
2273    DPRINTF(CacheVerbose, "%s: for %s\n", __func__, pkt->print());
2274
2275    // Snoops shouldn't happen when bypassing caches
2276    assert(!system->bypassCaches());
2277
2278    // no need to snoop requests that are not in range
2279    if (!inRange(pkt->getAddr())) {
2280        return;
2281    }
2282
2283    bool is_secure = pkt->isSecure();
2284    CacheBlk *blk = tags->findBlock(pkt->getAddr(), is_secure);
2285
2286    Addr blk_addr = pkt->getBlockAddr(blkSize);
2287    MSHR *mshr = mshrQueue.findMatch(blk_addr, is_secure);
2288
2289    // Update the latency cost of the snoop so that the crossbar can
2290    // account for it. Do not overwrite what other neighbouring caches
2291    // have already done, rather take the maximum. The update is
2292    // tentative, for cases where we return before an upward snoop
2293    // happens below.
2294    pkt->snoopDelay = std::max<uint32_t>(pkt->snoopDelay,
2295                                         lookupLatency * clockPeriod());
2296
2297    // Inform request(Prefetch, CleanEvict or Writeback) from below of
2298    // MSHR hit, set setBlockCached.
2299    if (mshr && pkt->mustCheckAbove()) {
2300        DPRINTF(Cache, "Setting block cached for %s from lower cache on "
2301                "mshr hit\n", pkt->print());
2302        pkt->setBlockCached();
2303        return;
2304    }
2305
2306    // Bypass any existing cache maintenance requests if the request
2307    // has been satisfied already (i.e., the dirty block has been
2308    // found).
2309    if (mshr && pkt->req->isCacheMaintenance() && pkt->satisfied()) {
2310        return;
2311    }
2312
2313    // Let the MSHR itself track the snoop and decide whether we want
2314    // to go ahead and do the regular cache snoop
2315    if (mshr && mshr->handleSnoop(pkt, order++)) {
2316        DPRINTF(Cache, "Deferring snoop on in-service MSHR to blk %#llx (%s)."
2317                "mshrs: %s\n", blk_addr, is_secure ? "s" : "ns",
2318                mshr->print());
2319
2320        if (mshr->getNumTargets() > numTarget)
2321            warn("allocating bonus target for snoop"); //handle later
2322        return;
2323    }
2324
2325    //We also need to check the writeback buffers and handle those
2326    WriteQueueEntry *wb_entry = writeBuffer.findMatch(blk_addr, is_secure);
2327    if (wb_entry) {
2328        DPRINTF(Cache, "Snoop hit in writeback to addr %#llx (%s)\n",
2329                pkt->getAddr(), is_secure ? "s" : "ns");
2330        // Expect to see only Writebacks and/or CleanEvicts here, both of
2331        // which should not be generated for uncacheable data.
2332        assert(!wb_entry->isUncacheable());
2333        // There should only be a single request responsible for generating
2334        // Writebacks/CleanEvicts.
2335        assert(wb_entry->getNumTargets() == 1);
2336        PacketPtr wb_pkt = wb_entry->getTarget()->pkt;
2337        assert(wb_pkt->isEviction() || wb_pkt->cmd == MemCmd::WriteClean);
2338
2339        if (pkt->isEviction()) {
2340            // if the block is found in the write queue, set the BLOCK_CACHED
2341            // flag for Writeback/CleanEvict snoop. On return the snoop will
2342            // propagate the BLOCK_CACHED flag in Writeback packets and prevent
2343            // any CleanEvicts from travelling down the memory hierarchy.
2344            pkt->setBlockCached();
2345            DPRINTF(Cache, "%s: Squashing %s from lower cache on writequeue "
2346                    "hit\n", __func__, pkt->print());
2347            return;
2348        }
2349
2350        // conceptually writebacks are no different to other blocks in
2351        // this cache, so the behaviour is modelled after handleSnoop,
2352        // the difference being that instead of querying the block
2353        // state to determine if it is dirty and writable, we use the
2354        // command and fields of the writeback packet
2355        bool respond = wb_pkt->cmd == MemCmd::WritebackDirty &&
2356            pkt->needsResponse();
2357        bool have_writable = !wb_pkt->hasSharers();
2358        bool invalidate = pkt->isInvalidate();
2359
2360        if (!pkt->req->isUncacheable() && pkt->isRead() && !invalidate) {
2361            assert(!pkt->needsWritable());
2362            pkt->setHasSharers();
2363            wb_pkt->setHasSharers();
2364        }
2365
2366        if (respond) {
2367            pkt->setCacheResponding();
2368
2369            if (have_writable) {
2370                pkt->setResponderHadWritable();
2371            }
2372
2373            doTimingSupplyResponse(pkt, wb_pkt->getConstPtr<uint8_t>(),
2374                                   false, false);
2375        }
2376
2377        if (invalidate && wb_pkt->cmd != MemCmd::WriteClean) {
2378            // Invalidation trumps our writeback... discard here
2379            // Note: markInService will remove entry from writeback buffer.
2380            markInService(wb_entry);
2381            delete wb_pkt;
2382        }
2383    }
2384
2385    // If this was a shared writeback, there may still be
2386    // other shared copies above that require invalidation.
2387    // We could be more selective and return here if the
2388    // request is non-exclusive or if the writeback is
2389    // exclusive.
2390    uint32_t snoop_delay = handleSnoop(pkt, blk, true, false, false);
2391
2392    // Override what we did when we first saw the snoop, as we now
2393    // also have the cost of the upwards snoops to account for
2394    pkt->snoopDelay = std::max<uint32_t>(pkt->snoopDelay, snoop_delay +
2395                                         lookupLatency * clockPeriod());
2396}
2397
2398bool
2399Cache::CpuSidePort::recvTimingSnoopResp(PacketPtr pkt)
2400{
2401    // Express snoop responses from master to slave, e.g., from L1 to L2
2402    cache->recvTimingSnoopResp(pkt);
2403    return true;
2404}
2405
2406Tick
2407Cache::recvAtomicSnoop(PacketPtr pkt)
2408{
2409    // Snoops shouldn't happen when bypassing caches
2410    assert(!system->bypassCaches());
2411
2412    // no need to snoop requests that are not in range.
2413    if (!inRange(pkt->getAddr())) {
2414        return 0;
2415    }
2416
2417    CacheBlk *blk = tags->findBlock(pkt->getAddr(), pkt->isSecure());
2418    uint32_t snoop_delay = handleSnoop(pkt, blk, false, false, false);
2419    return snoop_delay + lookupLatency * clockPeriod();
2420}
2421
2422
2423QueueEntry*
2424Cache::getNextQueueEntry()
2425{
2426    // Check both MSHR queue and write buffer for potential requests,
2427    // note that null does not mean there is no request, it could
2428    // simply be that it is not ready
2429    MSHR *miss_mshr  = mshrQueue.getNext();
2430    WriteQueueEntry *wq_entry = writeBuffer.getNext();
2431
2432    // If we got a write buffer request ready, first priority is a
2433    // full write buffer, otherwise we favour the miss requests
2434    if (wq_entry && (writeBuffer.isFull() || !miss_mshr)) {
2435        // need to search MSHR queue for conflicting earlier miss.
2436        MSHR *conflict_mshr =
2437            mshrQueue.findPending(wq_entry->blkAddr,
2438                                  wq_entry->isSecure);
2439
2440        if (conflict_mshr && conflict_mshr->order < wq_entry->order) {
2441            // Service misses in order until conflict is cleared.
2442            return conflict_mshr;
2443
2444            // @todo Note that we ignore the ready time of the conflict here
2445        }
2446
2447        // No conflicts; issue write
2448        return wq_entry;
2449    } else if (miss_mshr) {
2450        // need to check for conflicting earlier writeback
2451        WriteQueueEntry *conflict_mshr =
2452            writeBuffer.findPending(miss_mshr->blkAddr,
2453                                    miss_mshr->isSecure);
2454        if (conflict_mshr) {
2455            // not sure why we don't check order here... it was in the
2456            // original code but commented out.
2457
2458            // The only way this happens is if we are
2459            // doing a write and we didn't have permissions
2460            // then subsequently saw a writeback (owned got evicted)
2461            // We need to make sure to perform the writeback first
2462            // To preserve the dirty data, then we can issue the write
2463
2464            // should we return wq_entry here instead?  I.e. do we
2465            // have to flush writes in order?  I don't think so... not
2466            // for Alpha anyway.  Maybe for x86?
2467            return conflict_mshr;
2468
2469            // @todo Note that we ignore the ready time of the conflict here
2470        }
2471
2472        // No conflicts; issue read
2473        return miss_mshr;
2474    }
2475
2476    // fall through... no pending requests.  Try a prefetch.
2477    assert(!miss_mshr && !wq_entry);
2478    if (prefetcher && mshrQueue.canPrefetch()) {
2479        // If we have a miss queue slot, we can try a prefetch
2480        PacketPtr pkt = prefetcher->getPacket();
2481        if (pkt) {
2482            Addr pf_addr = pkt->getBlockAddr(blkSize);
2483            if (!tags->findBlock(pf_addr, pkt->isSecure()) &&
2484                !mshrQueue.findMatch(pf_addr, pkt->isSecure()) &&
2485                !writeBuffer.findMatch(pf_addr, pkt->isSecure())) {
2486                // Update statistic on number of prefetches issued
2487                // (hwpf_mshr_misses)
2488                assert(pkt->req->masterId() < system->maxMasters());
2489                mshr_misses[pkt->cmdToIndex()][pkt->req->masterId()]++;
2490
2491                // allocate an MSHR and return it, note
2492                // that we send the packet straight away, so do not
2493                // schedule the send
2494                return allocateMissBuffer(pkt, curTick(), false);
2495            } else {
2496                // free the request and packet
2497                delete pkt->req;
2498                delete pkt;
2499            }
2500        }
2501    }
2502
2503    return nullptr;
2504}
2505
2506bool
2507Cache::isCachedAbove(PacketPtr pkt, bool is_timing) const
2508{
2509    if (!forwardSnoops)
2510        return false;
2511    // Mirroring the flow of HardPFReqs, the cache sends CleanEvict and
2512    // Writeback snoops into upper level caches to check for copies of the
2513    // same block. Using the BLOCK_CACHED flag with the Writeback/CleanEvict
2514    // packet, the cache can inform the crossbar below of presence or absence
2515    // of the block.
2516    if (is_timing) {
2517        Packet snoop_pkt(pkt, true, false);
2518        snoop_pkt.setExpressSnoop();
2519        // Assert that packet is either Writeback or CleanEvict and not a
2520        // prefetch request because prefetch requests need an MSHR and may
2521        // generate a snoop response.
2522        assert(pkt->isEviction() || pkt->cmd == MemCmd::WriteClean);
2523        snoop_pkt.senderState = nullptr;
2524        cpuSidePort->sendTimingSnoopReq(&snoop_pkt);
2525        // Writeback/CleanEvict snoops do not generate a snoop response.
2526        assert(!(snoop_pkt.cacheResponding()));
2527        return snoop_pkt.isBlockCached();
2528    } else {
2529        cpuSidePort->sendAtomicSnoop(pkt);
2530        return pkt->isBlockCached();
2531    }
2532}
2533
2534Tick
2535Cache::nextQueueReadyTime() const
2536{
2537    Tick nextReady = std::min(mshrQueue.nextReadyTime(),
2538                              writeBuffer.nextReadyTime());
2539
2540    // Don't signal prefetch ready time if no MSHRs available
2541    // Will signal once enoguh MSHRs are deallocated
2542    if (prefetcher && mshrQueue.canPrefetch()) {
2543        nextReady = std::min(nextReady,
2544                             prefetcher->nextPrefetchReadyTime());
2545    }
2546
2547    return nextReady;
2548}
2549
2550bool
2551Cache::sendMSHRQueuePacket(MSHR* mshr)
2552{
2553    assert(mshr);
2554
2555    // use request from 1st target
2556    PacketPtr tgt_pkt = mshr->getTarget()->pkt;
2557
2558    DPRINTF(Cache, "%s: MSHR %s\n", __func__, tgt_pkt->print());
2559
2560    CacheBlk *blk = tags->findBlock(mshr->blkAddr, mshr->isSecure);
2561
2562    if (tgt_pkt->cmd == MemCmd::HardPFReq && forwardSnoops) {
2563        // we should never have hardware prefetches to allocated
2564        // blocks
2565        assert(blk == nullptr);
2566
2567        // We need to check the caches above us to verify that
2568        // they don't have a copy of this block in the dirty state
2569        // at the moment. Without this check we could get a stale
2570        // copy from memory that might get used in place of the
2571        // dirty one.
2572        Packet snoop_pkt(tgt_pkt, true, false);
2573        snoop_pkt.setExpressSnoop();
2574        // We are sending this packet upwards, but if it hits we will
2575        // get a snoop response that we end up treating just like a
2576        // normal response, hence it needs the MSHR as its sender
2577        // state
2578        snoop_pkt.senderState = mshr;
2579        cpuSidePort->sendTimingSnoopReq(&snoop_pkt);
2580
2581        // Check to see if the prefetch was squashed by an upper cache (to
2582        // prevent us from grabbing the line) or if a Check to see if a
2583        // writeback arrived between the time the prefetch was placed in
2584        // the MSHRs and when it was selected to be sent or if the
2585        // prefetch was squashed by an upper cache.
2586
2587        // It is important to check cacheResponding before
2588        // prefetchSquashed. If another cache has committed to
2589        // responding, it will be sending a dirty response which will
2590        // arrive at the MSHR allocated for this request. Checking the
2591        // prefetchSquash first may result in the MSHR being
2592        // prematurely deallocated.
2593        if (snoop_pkt.cacheResponding()) {
2594            auto M5_VAR_USED r = outstandingSnoop.insert(snoop_pkt.req);
2595            assert(r.second);
2596
2597            // if we are getting a snoop response with no sharers it
2598            // will be allocated as Modified
2599            bool pending_modified_resp = !snoop_pkt.hasSharers();
2600            markInService(mshr, pending_modified_resp);
2601
2602            DPRINTF(Cache, "Upward snoop of prefetch for addr"
2603                    " %#x (%s) hit\n",
2604                    tgt_pkt->getAddr(), tgt_pkt->isSecure()? "s": "ns");
2605            return false;
2606        }
2607
2608        if (snoop_pkt.isBlockCached()) {
2609            DPRINTF(Cache, "Block present, prefetch squashed by cache.  "
2610                    "Deallocating mshr target %#x.\n",
2611                    mshr->blkAddr);
2612
2613            // Deallocate the mshr target
2614            if (mshrQueue.forceDeallocateTarget(mshr)) {
2615                // Clear block if this deallocation resulted freed an
2616                // mshr when all had previously been utilized
2617                clearBlocked(Blocked_NoMSHRs);
2618            }
2619
2620            // given that no response is expected, delete Request and Packet
2621            delete tgt_pkt->req;
2622            delete tgt_pkt;
2623
2624            return false;
2625        }
2626    }
2627
2628    // either a prefetch that is not present upstream, or a normal
2629    // MSHR request, proceed to get the packet to send downstream
2630    PacketPtr pkt = createMissPacket(tgt_pkt, blk, mshr->needsWritable());
2631
2632    mshr->isForward = (pkt == nullptr);
2633
2634    if (mshr->isForward) {
2635        // not a cache block request, but a response is expected
2636        // make copy of current packet to forward, keep current
2637        // copy for response handling
2638        pkt = new Packet(tgt_pkt, false, true);
2639        assert(!pkt->isWrite());
2640    }
2641
2642    // play it safe and append (rather than set) the sender state,
2643    // as forwarded packets may already have existing state
2644    pkt->pushSenderState(mshr);
2645
2646    if (pkt->isClean() && blk && blk->isDirty()) {
2647        // A cache clean opearation is looking for a dirty block. Mark
2648        // the packet so that the destination xbar can determine that
2649        // there will be a follow-up write packet as well.
2650        pkt->setSatisfied();
2651    }
2652
2653    if (!memSidePort->sendTimingReq(pkt)) {
2654        // we are awaiting a retry, but we
2655        // delete the packet and will be creating a new packet
2656        // when we get the opportunity
2657        delete pkt;
2658
2659        // note that we have now masked any requestBus and
2660        // schedSendEvent (we will wait for a retry before
2661        // doing anything), and this is so even if we do not
2662        // care about this packet and might override it before
2663        // it gets retried
2664        return true;
2665    } else {
2666        // As part of the call to sendTimingReq the packet is
2667        // forwarded to all neighbouring caches (and any caches
2668        // above them) as a snoop. Thus at this point we know if
2669        // any of the neighbouring caches are responding, and if
2670        // so, we know it is dirty, and we can determine if it is
2671        // being passed as Modified, making our MSHR the ordering
2672        // point
2673        bool pending_modified_resp = !pkt->hasSharers() &&
2674            pkt->cacheResponding();
2675        markInService(mshr, pending_modified_resp);
2676        if (pkt->isClean() && blk && blk->isDirty()) {
2677            // A cache clean opearation is looking for a dirty
2678            // block. If a dirty block is encountered a WriteClean
2679            // will update any copies to the path to the memory
2680            // until the point of reference.
2681            DPRINTF(CacheVerbose, "%s: packet %s found block: %s\n",
2682                    __func__, pkt->print(), blk->print());
2683            PacketPtr wb_pkt = writecleanBlk(blk, pkt->req->getDest(),
2684                                             pkt->id);
2685            PacketList writebacks;
2686            writebacks.push_back(wb_pkt);
2687            doWritebacks(writebacks, 0);
2688        }
2689
2690        return false;
2691    }
2692}
2693
2694bool
2695Cache::sendWriteQueuePacket(WriteQueueEntry* wq_entry)
2696{
2697    assert(wq_entry);
2698
2699    // always a single target for write queue entries
2700    PacketPtr tgt_pkt = wq_entry->getTarget()->pkt;
2701
2702    DPRINTF(Cache, "%s: write %s\n", __func__, tgt_pkt->print());
2703
2704    // forward as is, both for evictions and uncacheable writes
2705    if (!memSidePort->sendTimingReq(tgt_pkt)) {
2706        // note that we have now masked any requestBus and
2707        // schedSendEvent (we will wait for a retry before
2708        // doing anything), and this is so even if we do not
2709        // care about this packet and might override it before
2710        // it gets retried
2711        return true;
2712    } else {
2713        markInService(wq_entry);
2714        return false;
2715    }
2716}
2717
2718void
2719Cache::serialize(CheckpointOut &cp) const
2720{
2721    bool dirty(isDirty());
2722
2723    if (dirty) {
2724        warn("*** The cache still contains dirty data. ***\n");
2725        warn("    Make sure to drain the system using the correct flags.\n");
2726        warn("    This checkpoint will not restore correctly and dirty data "
2727             "    in the cache will be lost!\n");
2728    }
2729
2730    // Since we don't checkpoint the data in the cache, any dirty data
2731    // will be lost when restoring from a checkpoint of a system that
2732    // wasn't drained properly. Flag the checkpoint as invalid if the
2733    // cache contains dirty data.
2734    bool bad_checkpoint(dirty);
2735    SERIALIZE_SCALAR(bad_checkpoint);
2736}
2737
2738void
2739Cache::unserialize(CheckpointIn &cp)
2740{
2741    bool bad_checkpoint;
2742    UNSERIALIZE_SCALAR(bad_checkpoint);
2743    if (bad_checkpoint) {
2744        fatal("Restoring from checkpoints with dirty caches is not supported "
2745              "in the classic memory system. Please remove any caches or "
2746              " drain them properly before taking checkpoints.\n");
2747    }
2748}
2749
2750///////////////
2751//
2752// CpuSidePort
2753//
2754///////////////
2755
2756AddrRangeList
2757Cache::CpuSidePort::getAddrRanges() const
2758{
2759    return cache->getAddrRanges();
2760}
2761
2762bool
2763Cache::CpuSidePort::tryTiming(PacketPtr pkt)
2764{
2765    assert(!cache->system->bypassCaches());
2766
2767    // always let express snoop packets through if even if blocked
2768    if (pkt->isExpressSnoop()) {
2769        return true;
2770    } else if (isBlocked() || mustSendRetry) {
2771        // either already committed to send a retry, or blocked
2772        mustSendRetry = true;
2773        return false;
2774    }
2775    mustSendRetry = false;
2776    return true;
2777}
2778
2779bool
2780Cache::CpuSidePort::recvTimingReq(PacketPtr pkt)
2781{
2782    assert(!cache->system->bypassCaches());
2783
2784    // always let express snoop packets through if even if blocked
2785    if (pkt->isExpressSnoop() || tryTiming(pkt)) {
2786        cache->recvTimingReq(pkt);
2787        return true;
2788    }
2789    return false;
2790}
2791
2792Tick
2793Cache::CpuSidePort::recvAtomic(PacketPtr pkt)
2794{
2795    return cache->recvAtomic(pkt);
2796}
2797
2798void
2799Cache::CpuSidePort::recvFunctional(PacketPtr pkt)
2800{
2801    // functional request
2802    cache->functionalAccess(pkt, true);
2803}
2804
2805Cache::
2806CpuSidePort::CpuSidePort(const std::string &_name, Cache *_cache,
2807                         const std::string &_label)
2808    : BaseCache::CacheSlavePort(_name, _cache, _label), cache(_cache)
2809{
2810}
2811
2812Cache*
2813CacheParams::create()
2814{
2815    assert(tags);
2816    assert(replacement_policy);
2817
2818    return new Cache(this);
2819}
2820///////////////
2821//
2822// MemSidePort
2823//
2824///////////////
2825
2826bool
2827Cache::MemSidePort::recvTimingResp(PacketPtr pkt)
2828{
2829    cache->recvTimingResp(pkt);
2830    return true;
2831}
2832
2833// Express snooping requests to memside port
2834void
2835Cache::MemSidePort::recvTimingSnoopReq(PacketPtr pkt)
2836{
2837    // handle snooping requests
2838    cache->recvTimingSnoopReq(pkt);
2839}
2840
2841Tick
2842Cache::MemSidePort::recvAtomicSnoop(PacketPtr pkt)
2843{
2844    return cache->recvAtomicSnoop(pkt);
2845}
2846
2847void
2848Cache::MemSidePort::recvFunctionalSnoop(PacketPtr pkt)
2849{
2850    // functional snoop (note that in contrast to atomic we don't have
2851    // a specific functionalSnoop method, as they have the same
2852    // behaviour regardless)
2853    cache->functionalAccess(pkt, false);
2854}
2855
2856void
2857Cache::CacheReqPacketQueue::sendDeferredPacket()
2858{
2859    // sanity check
2860    assert(!waitingOnRetry);
2861
2862    // there should never be any deferred request packets in the
2863    // queue, instead we resly on the cache to provide the packets
2864    // from the MSHR queue or write queue
2865    assert(deferredPacketReadyTime() == MaxTick);
2866
2867    // check for request packets (requests & writebacks)
2868    QueueEntry* entry = cache.getNextQueueEntry();
2869
2870    if (!entry) {
2871        // can happen if e.g. we attempt a writeback and fail, but
2872        // before the retry, the writeback is eliminated because
2873        // we snoop another cache's ReadEx.
2874    } else {
2875        // let our snoop responses go first if there are responses to
2876        // the same addresses
2877        if (checkConflictingSnoop(entry->blkAddr)) {
2878            return;
2879        }
2880        waitingOnRetry = entry->sendPacket(cache);
2881    }
2882
2883    // if we succeeded and are not waiting for a retry, schedule the
2884    // next send considering when the next queue is ready, note that
2885    // snoop responses have their own packet queue and thus schedule
2886    // their own events
2887    if (!waitingOnRetry) {
2888        schedSendEvent(cache.nextQueueReadyTime());
2889    }
2890}
2891
2892Cache::
2893MemSidePort::MemSidePort(const std::string &_name, Cache *_cache,
2894                         const std::string &_label)
2895    : BaseCache::CacheMasterPort(_name, _cache, _reqQueue, _snoopRespQueue),
2896      _reqQueue(*_cache, *this, _snoopRespQueue, _label),
2897      _snoopRespQueue(*_cache, *this, _label), cache(_cache)
2898{
2899}
2900