1/*
2 * Copyright (c) 2010-2019 ARM Limited
3 * All rights reserved.
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder.  You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2002-2005 The Regents of The University of Michigan
15 * Copyright (c) 2010,2015 Advanced Micro Devices, Inc.
16 * All rights reserved.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions are
20 * met: redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer;
22 * redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution;
25 * neither the name of the copyright holders nor the names of its
26 * contributors may be used to endorse or promote products derived from
27 * this software without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40 *
41 * Authors: Erik Hallnor
42 *          Dave Greene
43 *          Nathan Binkert
44 *          Steve Reinhardt
45 *          Ron Dreslinski
46 *          Andreas Sandberg
47 *          Nikos Nikoleris
48 */
49
50/**
51 * @file
52 * Cache definitions.
53 */
54
55#include "mem/cache/cache.hh"
56
57#include <cassert>
58
59#include "base/compiler.hh"
60#include "base/logging.hh"
61#include "base/trace.hh"
62#include "base/types.hh"
63#include "debug/Cache.hh"
64#include "debug/CacheTags.hh"
65#include "debug/CacheVerbose.hh"
66#include "enums/Clusivity.hh"
67#include "mem/cache/cache_blk.hh"
68#include "mem/cache/mshr.hh"
69#include "mem/cache/tags/base.hh"
70#include "mem/cache/write_queue_entry.hh"
71#include "mem/request.hh"
72#include "params/Cache.hh"
73
74Cache::Cache(const CacheParams *p)
75    : BaseCache(p, p->system->cacheLineSize()),
76      doFastWrites(true)
77{
78}
79
80void
81Cache::satisfyRequest(PacketPtr pkt, CacheBlk *blk,
82                      bool deferred_response, bool pending_downgrade)
83{
84    BaseCache::satisfyRequest(pkt, blk);
85
86    if (pkt->isRead()) {
87        // determine if this read is from a (coherent) cache or not
88        if (pkt->fromCache()) {
89            assert(pkt->getSize() == blkSize);
90            // special handling for coherent block requests from
91            // upper-level caches
92            if (pkt->needsWritable()) {
93                // sanity check
94                assert(pkt->cmd == MemCmd::ReadExReq ||
95                       pkt->cmd == MemCmd::SCUpgradeFailReq);
96                assert(!pkt->hasSharers());
97
98                // if we have a dirty copy, make sure the recipient
99                // keeps it marked dirty (in the modified state)
100                if (blk->isDirty()) {
101                    pkt->setCacheResponding();
102                    blk->status &= ~BlkDirty;
103                }
104            } else if (blk->isWritable() && !pending_downgrade &&
105                       !pkt->hasSharers() &&
106                       pkt->cmd != MemCmd::ReadCleanReq) {
107                // we can give the requester a writable copy on a read
108                // request if:
109                // - we have a writable copy at this level (& below)
110                // - we don't have a pending snoop from below
111                //   signaling another read request
112                // - no other cache above has a copy (otherwise it
113                //   would have set hasSharers flag when
114                //   snooping the packet)
115                // - the read has explicitly asked for a clean
116                //   copy of the line
117                if (blk->isDirty()) {
118                    // special considerations if we're owner:
119                    if (!deferred_response) {
120                        // respond with the line in Modified state
121                        // (cacheResponding set, hasSharers not set)
122                        pkt->setCacheResponding();
123
124                        // if this cache is mostly inclusive, we
125                        // keep the block in the Exclusive state,
126                        // and pass it upwards as Modified
127                        // (writable and dirty), hence we have
128                        // multiple caches, all on the same path
129                        // towards memory, all considering the
130                        // same block writable, but only one
131                        // considering it Modified
132
133                        // we get away with multiple caches (on
134                        // the same path to memory) considering
135                        // the block writeable as we always enter
136                        // the cache hierarchy through a cache,
137                        // and first snoop upwards in all other
138                        // branches
139                        blk->status &= ~BlkDirty;
140                    } else {
141                        // if we're responding after our own miss,
142                        // there's a window where the recipient didn't
143                        // know it was getting ownership and may not
144                        // have responded to snoops correctly, so we
145                        // have to respond with a shared line
146                        pkt->setHasSharers();
147                    }
148                }
149            } else {
150                // otherwise only respond with a shared copy
151                pkt->setHasSharers();
152            }
153        }
154    }
155}
156
157/////////////////////////////////////////////////////
158//
159// Access path: requests coming in from the CPU side
160//
161/////////////////////////////////////////////////////
162
163bool
164Cache::access(PacketPtr pkt, CacheBlk *&blk, Cycles &lat,
165              PacketList &writebacks)
166{
167
168    if (pkt->req->isUncacheable()) {
169        assert(pkt->isRequest());
170
171        chatty_assert(!(isReadOnly && pkt->isWrite()),
172                      "Should never see a write in a read-only cache %s\n",
173                      name());
174
175        DPRINTF(Cache, "%s for %s\n", __func__, pkt->print());
176
177        // flush and invalidate any existing block
178        CacheBlk *old_blk(tags->findBlock(pkt->getAddr(), pkt->isSecure()));
179        if (old_blk && old_blk->isValid()) {
180            BaseCache::evictBlock(old_blk, writebacks);
181        }
182
183        blk = nullptr;
184        // lookupLatency is the latency in case the request is uncacheable.
185        lat = lookupLatency;
186        return false;
187    }
188
189    return BaseCache::access(pkt, blk, lat, writebacks);
190}
191
192void
193Cache::doWritebacks(PacketList& writebacks, Tick forward_time)
194{
195    while (!writebacks.empty()) {
196        PacketPtr wbPkt = writebacks.front();
197        // We use forwardLatency here because we are copying writebacks to
198        // write buffer.
199
200        // Call isCachedAbove for Writebacks, CleanEvicts and
201        // WriteCleans to discover if the block is cached above.
202        if (isCachedAbove(wbPkt)) {
203            if (wbPkt->cmd == MemCmd::CleanEvict) {
204                // Delete CleanEvict because cached copies exist above. The
205                // packet destructor will delete the request object because
206                // this is a non-snoop request packet which does not require a
207                // response.
208                delete wbPkt;
209            } else if (wbPkt->cmd == MemCmd::WritebackClean) {
210                // clean writeback, do not send since the block is
211                // still cached above
212                assert(writebackClean);
213                delete wbPkt;
214            } else {
215                assert(wbPkt->cmd == MemCmd::WritebackDirty ||
216                       wbPkt->cmd == MemCmd::WriteClean);
217                // Set BLOCK_CACHED flag in Writeback and send below, so that
218                // the Writeback does not reset the bit corresponding to this
219                // address in the snoop filter below.
220                wbPkt->setBlockCached();
221                allocateWriteBuffer(wbPkt, forward_time);
222            }
223        } else {
224            // If the block is not cached above, send packet below. Both
225            // CleanEvict and Writeback with BLOCK_CACHED flag cleared will
226            // reset the bit corresponding to this address in the snoop filter
227            // below.
228            allocateWriteBuffer(wbPkt, forward_time);
229        }
230        writebacks.pop_front();
231    }
232}
233
234void
235Cache::doWritebacksAtomic(PacketList& writebacks)
236{
237    while (!writebacks.empty()) {
238        PacketPtr wbPkt = writebacks.front();
239        // Call isCachedAbove for both Writebacks and CleanEvicts. If
240        // isCachedAbove returns true we set BLOCK_CACHED flag in Writebacks
241        // and discard CleanEvicts.
242        if (isCachedAbove(wbPkt, false)) {
243            if (wbPkt->cmd == MemCmd::WritebackDirty ||
244                wbPkt->cmd == MemCmd::WriteClean) {
245                // Set BLOCK_CACHED flag in Writeback and send below,
246                // so that the Writeback does not reset the bit
247                // corresponding to this address in the snoop filter
248                // below. We can discard CleanEvicts because cached
249                // copies exist above. Atomic mode isCachedAbove
250                // modifies packet to set BLOCK_CACHED flag
251                memSidePort.sendAtomic(wbPkt);
252            }
253        } else {
254            // If the block is not cached above, send packet below. Both
255            // CleanEvict and Writeback with BLOCK_CACHED flag cleared will
256            // reset the bit corresponding to this address in the snoop filter
257            // below.
258            memSidePort.sendAtomic(wbPkt);
259        }
260        writebacks.pop_front();
261        // In case of CleanEvicts, the packet destructor will delete the
262        // request object because this is a non-snoop request packet which
263        // does not require a response.
264        delete wbPkt;
265    }
266}
267
268
269void
270Cache::recvTimingSnoopResp(PacketPtr pkt)
271{
272    DPRINTF(Cache, "%s for %s\n", __func__, pkt->print());
273
274    // determine if the response is from a snoop request we created
275    // (in which case it should be in the outstandingSnoop), or if we
276    // merely forwarded someone else's snoop request
277    const bool forwardAsSnoop = outstandingSnoop.find(pkt->req) ==
278        outstandingSnoop.end();
279
280    if (!forwardAsSnoop) {
281        // the packet came from this cache, so sink it here and do not
282        // forward it
283        assert(pkt->cmd == MemCmd::HardPFResp);
284
285        outstandingSnoop.erase(pkt->req);
286
287        DPRINTF(Cache, "Got prefetch response from above for addr "
288                "%#llx (%s)\n", pkt->getAddr(), pkt->isSecure() ? "s" : "ns");
289        recvTimingResp(pkt);
290        return;
291    }
292
293    // forwardLatency is set here because there is a response from an
294    // upper level cache.
295    // To pay the delay that occurs if the packet comes from the bus,
296    // we charge also headerDelay.
297    Tick snoop_resp_time = clockEdge(forwardLatency) + pkt->headerDelay;
298    // Reset the timing of the packet.
299    pkt->headerDelay = pkt->payloadDelay = 0;
300    memSidePort.schedTimingSnoopResp(pkt, snoop_resp_time);
301}
302
303void
304Cache::promoteWholeLineWrites(PacketPtr pkt)
305{
306    // Cache line clearing instructions
307    if (doFastWrites && (pkt->cmd == MemCmd::WriteReq) &&
308        (pkt->getSize() == blkSize) && (pkt->getOffset(blkSize) == 0) &&
309        !pkt->isMaskedWrite()) {
310        pkt->cmd = MemCmd::WriteLineReq;
311        DPRINTF(Cache, "packet promoted from Write to WriteLineReq\n");
312    }
313}
314
315void
316Cache::handleTimingReqHit(PacketPtr pkt, CacheBlk *blk, Tick request_time)
317{
318    // should never be satisfying an uncacheable access as we
319    // flush and invalidate any existing block as part of the
320    // lookup
321    assert(!pkt->req->isUncacheable());
322
323    BaseCache::handleTimingReqHit(pkt, blk, request_time);
324}
325
326void
327Cache::handleTimingReqMiss(PacketPtr pkt, CacheBlk *blk, Tick forward_time,
328                           Tick request_time)
329{
330    if (pkt->req->isUncacheable()) {
331        // ignore any existing MSHR if we are dealing with an
332        // uncacheable request
333
334        // should have flushed and have no valid block
335        assert(!blk || !blk->isValid());
336
337        mshr_uncacheable[pkt->cmdToIndex()][pkt->req->masterId()]++;
338
339        if (pkt->isWrite()) {
340            allocateWriteBuffer(pkt, forward_time);
341        } else {
342            assert(pkt->isRead());
343
344            // uncacheable accesses always allocate a new MSHR
345
346            // Here we are using forward_time, modelling the latency of
347            // a miss (outbound) just as forwardLatency, neglecting the
348            // lookupLatency component.
349            allocateMissBuffer(pkt, forward_time);
350        }
351
352        return;
353    }
354
355    Addr blk_addr = pkt->getBlockAddr(blkSize);
356
357    MSHR *mshr = mshrQueue.findMatch(blk_addr, pkt->isSecure());
358
359    // Software prefetch handling:
360    // To keep the core from waiting on data it won't look at
361    // anyway, send back a response with dummy data. Miss handling
362    // will continue asynchronously. Unfortunately, the core will
363    // insist upon freeing original Packet/Request, so we have to
364    // create a new pair with a different lifecycle. Note that this
365    // processing happens before any MSHR munging on the behalf of
366    // this request because this new Request will be the one stored
367    // into the MSHRs, not the original.
368    if (pkt->cmd.isSWPrefetch()) {
369        assert(pkt->needsResponse());
370        assert(pkt->req->hasPaddr());
371        assert(!pkt->req->isUncacheable());
372
373        // There's no reason to add a prefetch as an additional target
374        // to an existing MSHR. If an outstanding request is already
375        // in progress, there is nothing for the prefetch to do.
376        // If this is the case, we don't even create a request at all.
377        PacketPtr pf = nullptr;
378
379        if (!mshr) {
380            // copy the request and create a new SoftPFReq packet
381            RequestPtr req = std::make_shared<Request>(pkt->req->getPaddr(),
382                                                       pkt->req->getSize(),
383                                                       pkt->req->getFlags(),
384                                                       pkt->req->masterId());
385            pf = new Packet(req, pkt->cmd);
386            pf->allocate();
387            assert(pf->matchAddr(pkt));
388            assert(pf->getSize() == pkt->getSize());
389        }
390
391        pkt->makeTimingResponse();
392
393        // request_time is used here, taking into account lat and the delay
394        // charged if the packet comes from the xbar.
395        cpuSidePort.schedTimingResp(pkt, request_time);
396
397        // If an outstanding request is in progress (we found an
398        // MSHR) this is set to null
399        pkt = pf;
400    }
401
402    BaseCache::handleTimingReqMiss(pkt, mshr, blk, forward_time, request_time);
403}
404
405void
406Cache::recvTimingReq(PacketPtr pkt)
407{
408    DPRINTF(CacheTags, "%s tags:\n%s\n", __func__, tags->print());
409
410    promoteWholeLineWrites(pkt);
411
412    if (pkt->cacheResponding()) {
413        // a cache above us (but not where the packet came from) is
414        // responding to the request, in other words it has the line
415        // in Modified or Owned state
416        DPRINTF(Cache, "Cache above responding to %s: not responding\n",
417                pkt->print());
418
419        // if the packet needs the block to be writable, and the cache
420        // that has promised to respond (setting the cache responding
421        // flag) is not providing writable (it is in Owned rather than
422        // the Modified state), we know that there may be other Shared
423        // copies in the system; go out and invalidate them all
424        assert(pkt->needsWritable() && !pkt->responderHadWritable());
425
426        // an upstream cache that had the line in Owned state
427        // (dirty, but not writable), is responding and thus
428        // transferring the dirty line from one branch of the
429        // cache hierarchy to another
430
431        // send out an express snoop and invalidate all other
432        // copies (snooping a packet that needs writable is the
433        // same as an invalidation), thus turning the Owned line
434        // into a Modified line, note that we don't invalidate the
435        // block in the current cache or any other cache on the
436        // path to memory
437
438        // create a downstream express snoop with cleared packet
439        // flags, there is no need to allocate any data as the
440        // packet is merely used to co-ordinate state transitions
441        Packet *snoop_pkt = new Packet(pkt, true, false);
442
443        // also reset the bus time that the original packet has
444        // not yet paid for
445        snoop_pkt->headerDelay = snoop_pkt->payloadDelay = 0;
446
447        // make this an instantaneous express snoop, and let the
448        // other caches in the system know that the another cache
449        // is responding, because we have found the authorative
450        // copy (Modified or Owned) that will supply the right
451        // data
452        snoop_pkt->setExpressSnoop();
453        snoop_pkt->setCacheResponding();
454
455        // this express snoop travels towards the memory, and at
456        // every crossbar it is snooped upwards thus reaching
457        // every cache in the system
458        bool M5_VAR_USED success = memSidePort.sendTimingReq(snoop_pkt);
459        // express snoops always succeed
460        assert(success);
461
462        // main memory will delete the snoop packet
463
464        // queue for deletion, as opposed to immediate deletion, as
465        // the sending cache is still relying on the packet
466        pendingDelete.reset(pkt);
467
468        // no need to take any further action in this particular cache
469        // as an upstram cache has already committed to responding,
470        // and we have already sent out any express snoops in the
471        // section above to ensure all other copies in the system are
472        // invalidated
473        return;
474    }
475
476    BaseCache::recvTimingReq(pkt);
477}
478
479PacketPtr
480Cache::createMissPacket(PacketPtr cpu_pkt, CacheBlk *blk,
481                        bool needsWritable,
482                        bool is_whole_line_write) const
483{
484    // should never see evictions here
485    assert(!cpu_pkt->isEviction());
486
487    bool blkValid = blk && blk->isValid();
488
489    if (cpu_pkt->req->isUncacheable() ||
490        (!blkValid && cpu_pkt->isUpgrade()) ||
491        cpu_pkt->cmd == MemCmd::InvalidateReq || cpu_pkt->isClean()) {
492        // uncacheable requests and upgrades from upper-level caches
493        // that missed completely just go through as is
494        return nullptr;
495    }
496
497    assert(cpu_pkt->needsResponse());
498
499    MemCmd cmd;
500    // @TODO make useUpgrades a parameter.
501    // Note that ownership protocols require upgrade, otherwise a
502    // write miss on a shared owned block will generate a ReadExcl,
503    // which will clobber the owned copy.
504    const bool useUpgrades = true;
505    assert(cpu_pkt->cmd != MemCmd::WriteLineReq || is_whole_line_write);
506    if (is_whole_line_write) {
507        assert(!blkValid || !blk->isWritable());
508        // forward as invalidate to all other caches, this gives us
509        // the line in Exclusive state, and invalidates all other
510        // copies
511        cmd = MemCmd::InvalidateReq;
512    } else if (blkValid && useUpgrades) {
513        // only reason to be here is that blk is read only and we need
514        // it to be writable
515        assert(needsWritable);
516        assert(!blk->isWritable());
517        cmd = cpu_pkt->isLLSC() ? MemCmd::SCUpgradeReq : MemCmd::UpgradeReq;
518    } else if (cpu_pkt->cmd == MemCmd::SCUpgradeFailReq ||
519               cpu_pkt->cmd == MemCmd::StoreCondFailReq) {
520        // Even though this SC will fail, we still need to send out the
521        // request and get the data to supply it to other snoopers in the case
522        // where the determination the StoreCond fails is delayed due to
523        // all caches not being on the same local bus.
524        cmd = MemCmd::SCUpgradeFailReq;
525    } else {
526        // block is invalid
527
528        // If the request does not need a writable there are two cases
529        // where we need to ensure the response will not fetch the
530        // block in dirty state:
531        // * this cache is read only and it does not perform
532        //   writebacks,
533        // * this cache is mostly exclusive and will not fill (since
534        //   it does not fill it will have to writeback the dirty data
535        //   immediately which generates uneccesary writebacks).
536        bool force_clean_rsp = isReadOnly || clusivity == Enums::mostly_excl;
537        cmd = needsWritable ? MemCmd::ReadExReq :
538            (force_clean_rsp ? MemCmd::ReadCleanReq : MemCmd::ReadSharedReq);
539    }
540    PacketPtr pkt = new Packet(cpu_pkt->req, cmd, blkSize);
541
542    // if there are upstream caches that have already marked the
543    // packet as having sharers (not passing writable), pass that info
544    // downstream
545    if (cpu_pkt->hasSharers() && !needsWritable) {
546        // note that cpu_pkt may have spent a considerable time in the
547        // MSHR queue and that the information could possibly be out
548        // of date, however, there is no harm in conservatively
549        // assuming the block has sharers
550        pkt->setHasSharers();
551        DPRINTF(Cache, "%s: passing hasSharers from %s to %s\n",
552                __func__, cpu_pkt->print(), pkt->print());
553    }
554
555    // the packet should be block aligned
556    assert(pkt->getAddr() == pkt->getBlockAddr(blkSize));
557
558    pkt->allocate();
559    DPRINTF(Cache, "%s: created %s from %s\n", __func__, pkt->print(),
560            cpu_pkt->print());
561    return pkt;
562}
563
564
565Cycles
566Cache::handleAtomicReqMiss(PacketPtr pkt, CacheBlk *&blk,
567                           PacketList &writebacks)
568{
569    // deal with the packets that go through the write path of
570    // the cache, i.e. any evictions and writes
571    if (pkt->isEviction() || pkt->cmd == MemCmd::WriteClean ||
572        (pkt->req->isUncacheable() && pkt->isWrite())) {
573        Cycles latency = ticksToCycles(memSidePort.sendAtomic(pkt));
574
575        // at this point, if the request was an uncacheable write
576        // request, it has been satisfied by a memory below and the
577        // packet carries the response back
578        assert(!(pkt->req->isUncacheable() && pkt->isWrite()) ||
579               pkt->isResponse());
580
581        return latency;
582    }
583
584    // only misses left
585
586    PacketPtr bus_pkt = createMissPacket(pkt, blk, pkt->needsWritable(),
587                                         pkt->isWholeLineWrite(blkSize));
588
589    bool is_forward = (bus_pkt == nullptr);
590
591    if (is_forward) {
592        // just forwarding the same request to the next level
593        // no local cache operation involved
594        bus_pkt = pkt;
595    }
596
597    DPRINTF(Cache, "%s: Sending an atomic %s\n", __func__,
598            bus_pkt->print());
599
600#if TRACING_ON
601    CacheBlk::State old_state = blk ? blk->status : 0;
602#endif
603
604    Cycles latency = ticksToCycles(memSidePort.sendAtomic(bus_pkt));
605
606    bool is_invalidate = bus_pkt->isInvalidate();
607
608    // We are now dealing with the response handling
609    DPRINTF(Cache, "%s: Receive response: %s in state %i\n", __func__,
610            bus_pkt->print(), old_state);
611
612    // If packet was a forward, the response (if any) is already
613    // in place in the bus_pkt == pkt structure, so we don't need
614    // to do anything.  Otherwise, use the separate bus_pkt to
615    // generate response to pkt and then delete it.
616    if (!is_forward) {
617        if (pkt->needsResponse()) {
618            assert(bus_pkt->isResponse());
619            if (bus_pkt->isError()) {
620                pkt->makeAtomicResponse();
621                pkt->copyError(bus_pkt);
622            } else if (pkt->isWholeLineWrite(blkSize)) {
623                // note the use of pkt, not bus_pkt here.
624
625                // write-line request to the cache that promoted
626                // the write to a whole line
627                const bool allocate = allocOnFill(pkt->cmd) &&
628                    (!writeAllocator || writeAllocator->allocate());
629                blk = handleFill(bus_pkt, blk, writebacks, allocate);
630                assert(blk != NULL);
631                is_invalidate = false;
632                satisfyRequest(pkt, blk);
633            } else if (bus_pkt->isRead() ||
634                       bus_pkt->cmd == MemCmd::UpgradeResp) {
635                // we're updating cache state to allow us to
636                // satisfy the upstream request from the cache
637                blk = handleFill(bus_pkt, blk, writebacks,
638                                 allocOnFill(pkt->cmd));
639                satisfyRequest(pkt, blk);
640                maintainClusivity(pkt->fromCache(), blk);
641            } else {
642                // we're satisfying the upstream request without
643                // modifying cache state, e.g., a write-through
644                pkt->makeAtomicResponse();
645            }
646        }
647        delete bus_pkt;
648    }
649
650    if (is_invalidate && blk && blk->isValid()) {
651        invalidateBlock(blk);
652    }
653
654    return latency;
655}
656
657Tick
658Cache::recvAtomic(PacketPtr pkt)
659{
660    promoteWholeLineWrites(pkt);
661
662    // follow the same flow as in recvTimingReq, and check if a cache
663    // above us is responding
664    if (pkt->cacheResponding()) {
665        assert(!pkt->req->isCacheInvalidate());
666        DPRINTF(Cache, "Cache above responding to %s: not responding\n",
667                pkt->print());
668
669        // if a cache is responding, and it had the line in Owned
670        // rather than Modified state, we need to invalidate any
671        // copies that are not on the same path to memory
672        assert(pkt->needsWritable() && !pkt->responderHadWritable());
673
674        return memSidePort.sendAtomic(pkt);
675    }
676
677    return BaseCache::recvAtomic(pkt);
678}
679
680
681/////////////////////////////////////////////////////
682//
683// Response handling: responses from the memory side
684//
685/////////////////////////////////////////////////////
686
687
688void
689Cache::serviceMSHRTargets(MSHR *mshr, const PacketPtr pkt, CacheBlk *blk)
690{
691    QueueEntry::Target *initial_tgt = mshr->getTarget();
692    // First offset for critical word first calculations
693    const int initial_offset = initial_tgt->pkt->getOffset(blkSize);
694
695    const bool is_error = pkt->isError();
696    // allow invalidation responses originating from write-line
697    // requests to be discarded
698    bool is_invalidate = pkt->isInvalidate() &&
699        !mshr->wasWholeLineWrite;
700
701    MSHR::TargetList targets = mshr->extractServiceableTargets(pkt);
702    for (auto &target: targets) {
703        Packet *tgt_pkt = target.pkt;
704        switch (target.source) {
705          case MSHR::Target::FromCPU:
706            Tick completion_time;
707            // Here we charge on completion_time the delay of the xbar if the
708            // packet comes from it, charged on headerDelay.
709            completion_time = pkt->headerDelay;
710
711            // Software prefetch handling for cache closest to core
712            if (tgt_pkt->cmd.isSWPrefetch()) {
713                if (tgt_pkt->needsWritable()) {
714                    // All other copies of the block were invalidated and we
715                    // have an exclusive copy.
716
717                    // The coherence protocol assumes that if we fetched an
718                    // exclusive copy of the block, we have the intention to
719                    // modify it. Therefore the MSHR for the PrefetchExReq has
720                    // been the point of ordering and this cache has commited
721                    // to respond to snoops for the block.
722                    //
723                    // In most cases this is true anyway - a PrefetchExReq
724                    // will be followed by a WriteReq. However, if that
725                    // doesn't happen, the block is not marked as dirty and
726                    // the cache doesn't respond to snoops that has committed
727                    // to do so.
728                    //
729                    // To avoid deadlocks in cases where there is a snoop
730                    // between the PrefetchExReq and the expected WriteReq, we
731                    // proactively mark the block as Dirty.
732                    assert(blk);
733                    blk->status |= BlkDirty;
734
735                    panic_if(isReadOnly, "Prefetch exclusive requests from "
736                            "read-only cache %s\n", name());
737                }
738
739                // a software prefetch would have already been ack'd
740                // immediately with dummy data so the core would be able to
741                // retire it. This request completes right here, so we
742                // deallocate it.
743                delete tgt_pkt;
744                break; // skip response
745            }
746
747            // unlike the other packet flows, where data is found in other
748            // caches or memory and brought back, write-line requests always
749            // have the data right away, so the above check for "is fill?"
750            // cannot actually be determined until examining the stored MSHR
751            // state. We "catch up" with that logic here, which is duplicated
752            // from above.
753            if (tgt_pkt->cmd == MemCmd::WriteLineReq) {
754                assert(!is_error);
755                assert(blk);
756                assert(blk->isWritable());
757            }
758
759            if (blk && blk->isValid() && !mshr->isForward) {
760                satisfyRequest(tgt_pkt, blk, true, mshr->hasPostDowngrade());
761
762                // How many bytes past the first request is this one
763                int transfer_offset =
764                    tgt_pkt->getOffset(blkSize) - initial_offset;
765                if (transfer_offset < 0) {
766                    transfer_offset += blkSize;
767                }
768
769                // If not critical word (offset) return payloadDelay.
770                // responseLatency is the latency of the return path
771                // from lower level caches/memory to an upper level cache or
772                // the core.
773                completion_time += clockEdge(responseLatency) +
774                    (transfer_offset ? pkt->payloadDelay : 0);
775
776                assert(!tgt_pkt->req->isUncacheable());
777
778                assert(tgt_pkt->req->masterId() < system->maxMasters());
779                missLatency[tgt_pkt->cmdToIndex()][tgt_pkt->req->masterId()] +=
780                    completion_time - target.recvTime;
781            } else if (pkt->cmd == MemCmd::UpgradeFailResp) {
782                // failed StoreCond upgrade
783                assert(tgt_pkt->cmd == MemCmd::StoreCondReq ||
784                       tgt_pkt->cmd == MemCmd::StoreCondFailReq ||
785                       tgt_pkt->cmd == MemCmd::SCUpgradeFailReq);
786                // responseLatency is the latency of the return path
787                // from lower level caches/memory to an upper level cache or
788                // the core.
789                completion_time += clockEdge(responseLatency) +
790                    pkt->payloadDelay;
791                tgt_pkt->req->setExtraData(0);
792            } else {
793                // We are about to send a response to a cache above
794                // that asked for an invalidation; we need to
795                // invalidate our copy immediately as the most
796                // up-to-date copy of the block will now be in the
797                // cache above. It will also prevent this cache from
798                // responding (if the block was previously dirty) to
799                // snoops as they should snoop the caches above where
800                // they will get the response from.
801                if (is_invalidate && blk && blk->isValid()) {
802                    invalidateBlock(blk);
803                }
804                // not a cache fill, just forwarding response
805                // responseLatency is the latency of the return path
806                // from lower level cahces/memory to the core.
807                completion_time += clockEdge(responseLatency) +
808                    pkt->payloadDelay;
809                if (pkt->isRead() && !is_error) {
810                    // sanity check
811                    assert(pkt->matchAddr(tgt_pkt));
812                    assert(pkt->getSize() >= tgt_pkt->getSize());
813
814                    tgt_pkt->setData(pkt->getConstPtr<uint8_t>());
815                }
816
817                // this response did not allocate here and therefore
818                // it was not consumed, make sure that any flags are
819                // carried over to cache above
820                tgt_pkt->copyResponderFlags(pkt);
821            }
822            tgt_pkt->makeTimingResponse();
823            // if this packet is an error copy that to the new packet
824            if (is_error)
825                tgt_pkt->copyError(pkt);
826            if (tgt_pkt->cmd == MemCmd::ReadResp &&
827                (is_invalidate || mshr->hasPostInvalidate())) {
828                // If intermediate cache got ReadRespWithInvalidate,
829                // propagate that.  Response should not have
830                // isInvalidate() set otherwise.
831                tgt_pkt->cmd = MemCmd::ReadRespWithInvalidate;
832                DPRINTF(Cache, "%s: updated cmd to %s\n", __func__,
833                        tgt_pkt->print());
834            }
835            // Reset the bus additional time as it is now accounted for
836            tgt_pkt->headerDelay = tgt_pkt->payloadDelay = 0;
837            cpuSidePort.schedTimingResp(tgt_pkt, completion_time);
838            break;
839
840          case MSHR::Target::FromPrefetcher:
841            assert(tgt_pkt->cmd == MemCmd::HardPFReq);
842            if (blk)
843                blk->status |= BlkHWPrefetched;
844            delete tgt_pkt;
845            break;
846
847          case MSHR::Target::FromSnoop:
848            // I don't believe that a snoop can be in an error state
849            assert(!is_error);
850            // response to snoop request
851            DPRINTF(Cache, "processing deferred snoop...\n");
852            // If the response is invalidating, a snooping target can
853            // be satisfied if it is also invalidating. If the reponse is, not
854            // only invalidating, but more specifically an InvalidateResp and
855            // the MSHR was created due to an InvalidateReq then a cache above
856            // is waiting to satisfy a WriteLineReq. In this case even an
857            // non-invalidating snoop is added as a target here since this is
858            // the ordering point. When the InvalidateResp reaches this cache,
859            // the snooping target will snoop further the cache above with the
860            // WriteLineReq.
861            assert(!is_invalidate || pkt->cmd == MemCmd::InvalidateResp ||
862                   pkt->req->isCacheMaintenance() ||
863                   mshr->hasPostInvalidate());
864            handleSnoop(tgt_pkt, blk, true, true, mshr->hasPostInvalidate());
865            break;
866
867          default:
868            panic("Illegal target->source enum %d\n", target.source);
869        }
870    }
871
872    maintainClusivity(targets.hasFromCache, blk);
873
874    if (blk && blk->isValid()) {
875        // an invalidate response stemming from a write line request
876        // should not invalidate the block, so check if the
877        // invalidation should be discarded
878        if (is_invalidate || mshr->hasPostInvalidate()) {
879            invalidateBlock(blk);
880        } else if (mshr->hasPostDowngrade()) {
881            blk->status &= ~BlkWritable;
882        }
883    }
884}
885
886PacketPtr
887Cache::evictBlock(CacheBlk *blk)
888{
889    PacketPtr pkt = (blk->isDirty() || writebackClean) ?
890        writebackBlk(blk) : cleanEvictBlk(blk);
891
892    invalidateBlock(blk);
893
894    return pkt;
895}
896
897PacketPtr
898Cache::cleanEvictBlk(CacheBlk *blk)
899{
900    assert(!writebackClean);
901    assert(blk && blk->isValid() && !blk->isDirty());
902
903    // Creating a zero sized write, a message to the snoop filter
904    RequestPtr req = std::make_shared<Request>(
905        regenerateBlkAddr(blk), blkSize, 0, Request::wbMasterId);
906
907    if (blk->isSecure())
908        req->setFlags(Request::SECURE);
909
910    req->taskId(blk->task_id);
911
912    PacketPtr pkt = new Packet(req, MemCmd::CleanEvict);
913    pkt->allocate();
914    DPRINTF(Cache, "Create CleanEvict %s\n", pkt->print());
915
916    return pkt;
917}
918
919/////////////////////////////////////////////////////
920//
921// Snoop path: requests coming in from the memory side
922//
923/////////////////////////////////////////////////////
924
925void
926Cache::doTimingSupplyResponse(PacketPtr req_pkt, const uint8_t *blk_data,
927                              bool already_copied, bool pending_inval)
928{
929    // sanity check
930    assert(req_pkt->isRequest());
931    assert(req_pkt->needsResponse());
932
933    DPRINTF(Cache, "%s: for %s\n", __func__, req_pkt->print());
934    // timing-mode snoop responses require a new packet, unless we
935    // already made a copy...
936    PacketPtr pkt = req_pkt;
937    if (!already_copied)
938        // do not clear flags, and allocate space for data if the
939        // packet needs it (the only packets that carry data are read
940        // responses)
941        pkt = new Packet(req_pkt, false, req_pkt->isRead());
942
943    assert(req_pkt->req->isUncacheable() || req_pkt->isInvalidate() ||
944           pkt->hasSharers());
945    pkt->makeTimingResponse();
946    if (pkt->isRead()) {
947        pkt->setDataFromBlock(blk_data, blkSize);
948    }
949    if (pkt->cmd == MemCmd::ReadResp && pending_inval) {
950        // Assume we defer a response to a read from a far-away cache
951        // A, then later defer a ReadExcl from a cache B on the same
952        // bus as us. We'll assert cacheResponding in both cases, but
953        // in the latter case cacheResponding will keep the
954        // invalidation from reaching cache A. This special response
955        // tells cache A that it gets the block to satisfy its read,
956        // but must immediately invalidate it.
957        pkt->cmd = MemCmd::ReadRespWithInvalidate;
958    }
959    // Here we consider forward_time, paying for just forward latency and
960    // also charging the delay provided by the xbar.
961    // forward_time is used as send_time in next allocateWriteBuffer().
962    Tick forward_time = clockEdge(forwardLatency) + pkt->headerDelay;
963    // Here we reset the timing of the packet.
964    pkt->headerDelay = pkt->payloadDelay = 0;
965    DPRINTF(CacheVerbose, "%s: created response: %s tick: %lu\n", __func__,
966            pkt->print(), forward_time);
967    memSidePort.schedTimingSnoopResp(pkt, forward_time);
968}
969
970uint32_t
971Cache::handleSnoop(PacketPtr pkt, CacheBlk *blk, bool is_timing,
972                   bool is_deferred, bool pending_inval)
973{
974    DPRINTF(CacheVerbose, "%s: for %s\n", __func__, pkt->print());
975    // deferred snoops can only happen in timing mode
976    assert(!(is_deferred && !is_timing));
977    // pending_inval only makes sense on deferred snoops
978    assert(!(pending_inval && !is_deferred));
979    assert(pkt->isRequest());
980
981    // the packet may get modified if we or a forwarded snooper
982    // responds in atomic mode, so remember a few things about the
983    // original packet up front
984    bool invalidate = pkt->isInvalidate();
985    bool M5_VAR_USED needs_writable = pkt->needsWritable();
986
987    // at the moment we could get an uncacheable write which does not
988    // have the invalidate flag, and we need a suitable way of dealing
989    // with this case
990    panic_if(invalidate && pkt->req->isUncacheable(),
991             "%s got an invalidating uncacheable snoop request %s",
992             name(), pkt->print());
993
994    uint32_t snoop_delay = 0;
995
996    if (forwardSnoops) {
997        // first propagate snoop upward to see if anyone above us wants to
998        // handle it.  save & restore packet src since it will get
999        // rewritten to be relative to cpu-side bus (if any)
1000        if (is_timing) {
1001            // copy the packet so that we can clear any flags before
1002            // forwarding it upwards, we also allocate data (passing
1003            // the pointer along in case of static data), in case
1004            // there is a snoop hit in upper levels
1005            Packet snoopPkt(pkt, true, true);
1006            snoopPkt.setExpressSnoop();
1007            // the snoop packet does not need to wait any additional
1008            // time
1009            snoopPkt.headerDelay = snoopPkt.payloadDelay = 0;
1010            cpuSidePort.sendTimingSnoopReq(&snoopPkt);
1011
1012            // add the header delay (including crossbar and snoop
1013            // delays) of the upward snoop to the snoop delay for this
1014            // cache
1015            snoop_delay += snoopPkt.headerDelay;
1016
1017            // If this request is a prefetch or clean evict and an upper level
1018            // signals block present, make sure to propagate the block
1019            // presence to the requester.
1020            if (snoopPkt.isBlockCached()) {
1021                pkt->setBlockCached();
1022            }
1023            // If the request was satisfied by snooping the cache
1024            // above, mark the original packet as satisfied too.
1025            if (snoopPkt.satisfied()) {
1026                pkt->setSatisfied();
1027            }
1028
1029            // Copy over flags from the snoop response to make sure we
1030            // inform the final destination
1031            pkt->copyResponderFlags(&snoopPkt);
1032        } else {
1033            bool already_responded = pkt->cacheResponding();
1034            cpuSidePort.sendAtomicSnoop(pkt);
1035            if (!already_responded && pkt->cacheResponding()) {
1036                // cache-to-cache response from some upper cache:
1037                // forward response to original requester
1038                assert(pkt->isResponse());
1039            }
1040        }
1041    }
1042
1043    bool respond = false;
1044    bool blk_valid = blk && blk->isValid();
1045    if (pkt->isClean()) {
1046        if (blk_valid && blk->isDirty()) {
1047            DPRINTF(CacheVerbose, "%s: packet (snoop) %s found block: %s\n",
1048                    __func__, pkt->print(), blk->print());
1049            PacketPtr wb_pkt = writecleanBlk(blk, pkt->req->getDest(), pkt->id);
1050            PacketList writebacks;
1051            writebacks.push_back(wb_pkt);
1052
1053            if (is_timing) {
1054                // anything that is merely forwarded pays for the forward
1055                // latency and the delay provided by the crossbar
1056                Tick forward_time = clockEdge(forwardLatency) +
1057                    pkt->headerDelay;
1058                doWritebacks(writebacks, forward_time);
1059            } else {
1060                doWritebacksAtomic(writebacks);
1061            }
1062            pkt->setSatisfied();
1063        }
1064    } else if (!blk_valid) {
1065        DPRINTF(CacheVerbose, "%s: snoop miss for %s\n", __func__,
1066                pkt->print());
1067        if (is_deferred) {
1068            // we no longer have the block, and will not respond, but a
1069            // packet was allocated in MSHR::handleSnoop and we have
1070            // to delete it
1071            assert(pkt->needsResponse());
1072
1073            // we have passed the block to a cache upstream, that
1074            // cache should be responding
1075            assert(pkt->cacheResponding());
1076
1077            delete pkt;
1078        }
1079        return snoop_delay;
1080    } else {
1081        DPRINTF(Cache, "%s: snoop hit for %s, old state is %s\n", __func__,
1082                pkt->print(), blk->print());
1083
1084        // We may end up modifying both the block state and the packet (if
1085        // we respond in atomic mode), so just figure out what to do now
1086        // and then do it later. We respond to all snoops that need
1087        // responses provided we have the block in dirty state. The
1088        // invalidation itself is taken care of below. We don't respond to
1089        // cache maintenance operations as this is done by the destination
1090        // xbar.
1091        respond = blk->isDirty() && pkt->needsResponse();
1092
1093        chatty_assert(!(isReadOnly && blk->isDirty()), "Should never have "
1094                      "a dirty block in a read-only cache %s\n", name());
1095    }
1096
1097    // Invalidate any prefetch's from below that would strip write permissions
1098    // MemCmd::HardPFReq is only observed by upstream caches.  After missing
1099    // above and in it's own cache, a new MemCmd::ReadReq is created that
1100    // downstream caches observe.
1101    if (pkt->mustCheckAbove()) {
1102        DPRINTF(Cache, "Found addr %#llx in upper level cache for snoop %s "
1103                "from lower cache\n", pkt->getAddr(), pkt->print());
1104        pkt->setBlockCached();
1105        return snoop_delay;
1106    }
1107
1108    if (pkt->isRead() && !invalidate) {
1109        // reading without requiring the line in a writable state
1110        assert(!needs_writable);
1111        pkt->setHasSharers();
1112
1113        // if the requesting packet is uncacheable, retain the line in
1114        // the current state, otherwhise unset the writable flag,
1115        // which means we go from Modified to Owned (and will respond
1116        // below), remain in Owned (and will respond below), from
1117        // Exclusive to Shared, or remain in Shared
1118        if (!pkt->req->isUncacheable())
1119            blk->status &= ~BlkWritable;
1120        DPRINTF(Cache, "new state is %s\n", blk->print());
1121    }
1122
1123    if (respond) {
1124        // prevent anyone else from responding, cache as well as
1125        // memory, and also prevent any memory from even seeing the
1126        // request
1127        pkt->setCacheResponding();
1128        if (!pkt->isClean() && blk->isWritable()) {
1129            // inform the cache hierarchy that this cache had the line
1130            // in the Modified state so that we avoid unnecessary
1131            // invalidations (see Packet::setResponderHadWritable)
1132            pkt->setResponderHadWritable();
1133
1134            // in the case of an uncacheable request there is no point
1135            // in setting the responderHadWritable flag, but since the
1136            // recipient does not care there is no harm in doing so
1137        } else {
1138            // if the packet has needsWritable set we invalidate our
1139            // copy below and all other copies will be invalidates
1140            // through express snoops, and if needsWritable is not set
1141            // we already called setHasSharers above
1142        }
1143
1144        // if we are returning a writable and dirty (Modified) line,
1145        // we should be invalidating the line
1146        panic_if(!invalidate && !pkt->hasSharers(),
1147                 "%s is passing a Modified line through %s, "
1148                 "but keeping the block", name(), pkt->print());
1149
1150        if (is_timing) {
1151            doTimingSupplyResponse(pkt, blk->data, is_deferred, pending_inval);
1152        } else {
1153            pkt->makeAtomicResponse();
1154            // packets such as upgrades do not actually have any data
1155            // payload
1156            if (pkt->hasData())
1157                pkt->setDataFromBlock(blk->data, blkSize);
1158        }
1159
1160        // When a block is compressed, it must first be decompressed before
1161        // being read, and this increases the snoop delay.
1162        if (compressor && pkt->isRead()) {
1163            snoop_delay += compressor->getDecompressionLatency(blk);
1164        }
1165    }
1166
1167    if (!respond && is_deferred) {
1168        assert(pkt->needsResponse());
1169        delete pkt;
1170    }
1171
1172    // Do this last in case it deallocates block data or something
1173    // like that
1174    if (blk_valid && invalidate) {
1175        invalidateBlock(blk);
1176        DPRINTF(Cache, "new state is %s\n", blk->print());
1177    }
1178
1179    return snoop_delay;
1180}
1181
1182
1183void
1184Cache::recvTimingSnoopReq(PacketPtr pkt)
1185{
1186    DPRINTF(CacheVerbose, "%s: for %s\n", __func__, pkt->print());
1187
1188    // no need to snoop requests that are not in range
1189    if (!inRange(pkt->getAddr())) {
1190        return;
1191    }
1192
1193    bool is_secure = pkt->isSecure();
1194    CacheBlk *blk = tags->findBlock(pkt->getAddr(), is_secure);
1195
1196    Addr blk_addr = pkt->getBlockAddr(blkSize);
1197    MSHR *mshr = mshrQueue.findMatch(blk_addr, is_secure);
1198
1199    // Update the latency cost of the snoop so that the crossbar can
1200    // account for it. Do not overwrite what other neighbouring caches
1201    // have already done, rather take the maximum. The update is
1202    // tentative, for cases where we return before an upward snoop
1203    // happens below.
1204    pkt->snoopDelay = std::max<uint32_t>(pkt->snoopDelay,
1205                                         lookupLatency * clockPeriod());
1206
1207    // Inform request(Prefetch, CleanEvict or Writeback) from below of
1208    // MSHR hit, set setBlockCached.
1209    if (mshr && pkt->mustCheckAbove()) {
1210        DPRINTF(Cache, "Setting block cached for %s from lower cache on "
1211                "mshr hit\n", pkt->print());
1212        pkt->setBlockCached();
1213        return;
1214    }
1215
1216    // Let the MSHR itself track the snoop and decide whether we want
1217    // to go ahead and do the regular cache snoop
1218    if (mshr && mshr->handleSnoop(pkt, order++)) {
1219        DPRINTF(Cache, "Deferring snoop on in-service MSHR to blk %#llx (%s)."
1220                "mshrs: %s\n", blk_addr, is_secure ? "s" : "ns",
1221                mshr->print());
1222
1223        if (mshr->getNumTargets() > numTarget)
1224            warn("allocating bonus target for snoop"); //handle later
1225        return;
1226    }
1227
1228    //We also need to check the writeback buffers and handle those
1229    WriteQueueEntry *wb_entry = writeBuffer.findMatch(blk_addr, is_secure);
1230    if (wb_entry) {
1231        DPRINTF(Cache, "Snoop hit in writeback to addr %#llx (%s)\n",
1232                pkt->getAddr(), is_secure ? "s" : "ns");
1233        // Expect to see only Writebacks and/or CleanEvicts here, both of
1234        // which should not be generated for uncacheable data.
1235        assert(!wb_entry->isUncacheable());
1236        // There should only be a single request responsible for generating
1237        // Writebacks/CleanEvicts.
1238        assert(wb_entry->getNumTargets() == 1);
1239        PacketPtr wb_pkt = wb_entry->getTarget()->pkt;
1240        assert(wb_pkt->isEviction() || wb_pkt->cmd == MemCmd::WriteClean);
1241
1242        if (pkt->isEviction()) {
1243            // if the block is found in the write queue, set the BLOCK_CACHED
1244            // flag for Writeback/CleanEvict snoop. On return the snoop will
1245            // propagate the BLOCK_CACHED flag in Writeback packets and prevent
1246            // any CleanEvicts from travelling down the memory hierarchy.
1247            pkt->setBlockCached();
1248            DPRINTF(Cache, "%s: Squashing %s from lower cache on writequeue "
1249                    "hit\n", __func__, pkt->print());
1250            return;
1251        }
1252
1253        // conceptually writebacks are no different to other blocks in
1254        // this cache, so the behaviour is modelled after handleSnoop,
1255        // the difference being that instead of querying the block
1256        // state to determine if it is dirty and writable, we use the
1257        // command and fields of the writeback packet
1258        bool respond = wb_pkt->cmd == MemCmd::WritebackDirty &&
1259            pkt->needsResponse();
1260        bool have_writable = !wb_pkt->hasSharers();
1261        bool invalidate = pkt->isInvalidate();
1262
1263        if (!pkt->req->isUncacheable() && pkt->isRead() && !invalidate) {
1264            assert(!pkt->needsWritable());
1265            pkt->setHasSharers();
1266            wb_pkt->setHasSharers();
1267        }
1268
1269        if (respond) {
1270            pkt->setCacheResponding();
1271
1272            if (have_writable) {
1273                pkt->setResponderHadWritable();
1274            }
1275
1276            doTimingSupplyResponse(pkt, wb_pkt->getConstPtr<uint8_t>(),
1277                                   false, false);
1278        }
1279
1280        if (invalidate && wb_pkt->cmd != MemCmd::WriteClean) {
1281            // Invalidation trumps our writeback... discard here
1282            // Note: markInService will remove entry from writeback buffer.
1283            markInService(wb_entry);
1284            delete wb_pkt;
1285        }
1286    }
1287
1288    // If this was a shared writeback, there may still be
1289    // other shared copies above that require invalidation.
1290    // We could be more selective and return here if the
1291    // request is non-exclusive or if the writeback is
1292    // exclusive.
1293    uint32_t snoop_delay = handleSnoop(pkt, blk, true, false, false);
1294
1295    // Override what we did when we first saw the snoop, as we now
1296    // also have the cost of the upwards snoops to account for
1297    pkt->snoopDelay = std::max<uint32_t>(pkt->snoopDelay, snoop_delay +
1298                                         lookupLatency * clockPeriod());
1299}
1300
1301Tick
1302Cache::recvAtomicSnoop(PacketPtr pkt)
1303{
1304    // no need to snoop requests that are not in range.
1305    if (!inRange(pkt->getAddr())) {
1306        return 0;
1307    }
1308
1309    CacheBlk *blk = tags->findBlock(pkt->getAddr(), pkt->isSecure());
1310    uint32_t snoop_delay = handleSnoop(pkt, blk, false, false, false);
1311    return snoop_delay + lookupLatency * clockPeriod();
1312}
1313
1314bool
1315Cache::isCachedAbove(PacketPtr pkt, bool is_timing)
1316{
1317    if (!forwardSnoops)
1318        return false;
1319    // Mirroring the flow of HardPFReqs, the cache sends CleanEvict and
1320    // Writeback snoops into upper level caches to check for copies of the
1321    // same block. Using the BLOCK_CACHED flag with the Writeback/CleanEvict
1322    // packet, the cache can inform the crossbar below of presence or absence
1323    // of the block.
1324    if (is_timing) {
1325        Packet snoop_pkt(pkt, true, false);
1326        snoop_pkt.setExpressSnoop();
1327        // Assert that packet is either Writeback or CleanEvict and not a
1328        // prefetch request because prefetch requests need an MSHR and may
1329        // generate a snoop response.
1330        assert(pkt->isEviction() || pkt->cmd == MemCmd::WriteClean);
1331        snoop_pkt.senderState = nullptr;
1332        cpuSidePort.sendTimingSnoopReq(&snoop_pkt);
1333        // Writeback/CleanEvict snoops do not generate a snoop response.
1334        assert(!(snoop_pkt.cacheResponding()));
1335        return snoop_pkt.isBlockCached();
1336    } else {
1337        cpuSidePort.sendAtomicSnoop(pkt);
1338        return pkt->isBlockCached();
1339    }
1340}
1341
1342bool
1343Cache::sendMSHRQueuePacket(MSHR* mshr)
1344{
1345    assert(mshr);
1346
1347    // use request from 1st target
1348    PacketPtr tgt_pkt = mshr->getTarget()->pkt;
1349
1350    if (tgt_pkt->cmd == MemCmd::HardPFReq && forwardSnoops) {
1351        DPRINTF(Cache, "%s: MSHR %s\n", __func__, tgt_pkt->print());
1352
1353        // we should never have hardware prefetches to allocated
1354        // blocks
1355        assert(!tags->findBlock(mshr->blkAddr, mshr->isSecure));
1356
1357        // We need to check the caches above us to verify that
1358        // they don't have a copy of this block in the dirty state
1359        // at the moment. Without this check we could get a stale
1360        // copy from memory that might get used in place of the
1361        // dirty one.
1362        Packet snoop_pkt(tgt_pkt, true, false);
1363        snoop_pkt.setExpressSnoop();
1364        // We are sending this packet upwards, but if it hits we will
1365        // get a snoop response that we end up treating just like a
1366        // normal response, hence it needs the MSHR as its sender
1367        // state
1368        snoop_pkt.senderState = mshr;
1369        cpuSidePort.sendTimingSnoopReq(&snoop_pkt);
1370
1371        // Check to see if the prefetch was squashed by an upper cache (to
1372        // prevent us from grabbing the line) or if a Check to see if a
1373        // writeback arrived between the time the prefetch was placed in
1374        // the MSHRs and when it was selected to be sent or if the
1375        // prefetch was squashed by an upper cache.
1376
1377        // It is important to check cacheResponding before
1378        // prefetchSquashed. If another cache has committed to
1379        // responding, it will be sending a dirty response which will
1380        // arrive at the MSHR allocated for this request. Checking the
1381        // prefetchSquash first may result in the MSHR being
1382        // prematurely deallocated.
1383        if (snoop_pkt.cacheResponding()) {
1384            auto M5_VAR_USED r = outstandingSnoop.insert(snoop_pkt.req);
1385            assert(r.second);
1386
1387            // if we are getting a snoop response with no sharers it
1388            // will be allocated as Modified
1389            bool pending_modified_resp = !snoop_pkt.hasSharers();
1390            markInService(mshr, pending_modified_resp);
1391
1392            DPRINTF(Cache, "Upward snoop of prefetch for addr"
1393                    " %#x (%s) hit\n",
1394                    tgt_pkt->getAddr(), tgt_pkt->isSecure()? "s": "ns");
1395            return false;
1396        }
1397
1398        if (snoop_pkt.isBlockCached()) {
1399            DPRINTF(Cache, "Block present, prefetch squashed by cache.  "
1400                    "Deallocating mshr target %#x.\n",
1401                    mshr->blkAddr);
1402
1403            // Deallocate the mshr target
1404            if (mshrQueue.forceDeallocateTarget(mshr)) {
1405                // Clear block if this deallocation resulted freed an
1406                // mshr when all had previously been utilized
1407                clearBlocked(Blocked_NoMSHRs);
1408            }
1409
1410            // given that no response is expected, delete Request and Packet
1411            delete tgt_pkt;
1412
1413            return false;
1414        }
1415    }
1416
1417    return BaseCache::sendMSHRQueuePacket(mshr);
1418}
1419
1420Cache*
1421CacheParams::create()
1422{
1423    assert(tags);
1424    assert(replacement_policy);
1425
1426    return new Cache(this);
1427}
1428