cache.cc revision 12630:2208bf99bffd
1/*
2 * Copyright (c) 2010-2018 ARM Limited
3 * All rights reserved.
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder.  You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2002-2005 The Regents of The University of Michigan
15 * Copyright (c) 2010,2015 Advanced Micro Devices, Inc.
16 * All rights reserved.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions are
20 * met: redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer;
22 * redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution;
25 * neither the name of the copyright holders nor the names of its
26 * contributors may be used to endorse or promote products derived from
27 * this software without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40 *
41 * Authors: Erik Hallnor
42 *          Dave Greene
43 *          Nathan Binkert
44 *          Steve Reinhardt
45 *          Ron Dreslinski
46 *          Andreas Sandberg
47 *          Nikos Nikoleris
48 */
49
50/**
51 * @file
52 * Cache definitions.
53 */
54
55#include "mem/cache/cache.hh"
56
57#include "base/logging.hh"
58#include "base/types.hh"
59#include "debug/Cache.hh"
60#include "debug/CachePort.hh"
61#include "debug/CacheTags.hh"
62#include "debug/CacheVerbose.hh"
63#include "mem/cache/blk.hh"
64#include "mem/cache/mshr.hh"
65#include "mem/cache/prefetch/base.hh"
66#include "sim/sim_exit.hh"
67
68Cache::Cache(const CacheParams *p)
69    : BaseCache(p, p->system->cacheLineSize()),
70      tags(p->tags),
71      prefetcher(p->prefetcher),
72      doFastWrites(true),
73      prefetchOnAccess(p->prefetch_on_access),
74      clusivity(p->clusivity),
75      writebackClean(p->writeback_clean),
76      tempBlockWriteback(nullptr),
77      writebackTempBlockAtomicEvent([this]{ writebackTempBlockAtomic(); },
78                                    name(), false,
79                                    EventBase::Delayed_Writeback_Pri)
80{
81    tempBlock = new CacheBlk();
82    tempBlock->data = new uint8_t[blkSize];
83
84    cpuSidePort = new CpuSidePort(p->name + ".cpu_side", this,
85                                  "CpuSidePort");
86    memSidePort = new MemSidePort(p->name + ".mem_side", this,
87                                  "MemSidePort");
88
89    tags->setCache(this);
90    if (prefetcher)
91        prefetcher->setCache(this);
92}
93
94Cache::~Cache()
95{
96    delete [] tempBlock->data;
97    delete tempBlock;
98
99    delete cpuSidePort;
100    delete memSidePort;
101}
102
103void
104Cache::regStats()
105{
106    BaseCache::regStats();
107}
108
109void
110Cache::cmpAndSwap(CacheBlk *blk, PacketPtr pkt)
111{
112    assert(pkt->isRequest());
113
114    uint64_t overwrite_val;
115    bool overwrite_mem;
116    uint64_t condition_val64;
117    uint32_t condition_val32;
118
119    int offset = tags->extractBlkOffset(pkt->getAddr());
120    uint8_t *blk_data = blk->data + offset;
121
122    assert(sizeof(uint64_t) >= pkt->getSize());
123
124    overwrite_mem = true;
125    // keep a copy of our possible write value, and copy what is at the
126    // memory address into the packet
127    pkt->writeData((uint8_t *)&overwrite_val);
128    pkt->setData(blk_data);
129
130    if (pkt->req->isCondSwap()) {
131        if (pkt->getSize() == sizeof(uint64_t)) {
132            condition_val64 = pkt->req->getExtraData();
133            overwrite_mem = !std::memcmp(&condition_val64, blk_data,
134                                         sizeof(uint64_t));
135        } else if (pkt->getSize() == sizeof(uint32_t)) {
136            condition_val32 = (uint32_t)pkt->req->getExtraData();
137            overwrite_mem = !std::memcmp(&condition_val32, blk_data,
138                                         sizeof(uint32_t));
139        } else
140            panic("Invalid size for conditional read/write\n");
141    }
142
143    if (overwrite_mem) {
144        std::memcpy(blk_data, &overwrite_val, pkt->getSize());
145        blk->status |= BlkDirty;
146    }
147}
148
149
150void
151Cache::satisfyRequest(PacketPtr pkt, CacheBlk *blk,
152                      bool deferred_response, bool pending_downgrade)
153{
154    assert(pkt->isRequest());
155
156    assert(blk && blk->isValid());
157    // Occasionally this is not true... if we are a lower-level cache
158    // satisfying a string of Read and ReadEx requests from
159    // upper-level caches, a Read will mark the block as shared but we
160    // can satisfy a following ReadEx anyway since we can rely on the
161    // Read requester(s) to have buffered the ReadEx snoop and to
162    // invalidate their blocks after receiving them.
163    // assert(!pkt->needsWritable() || blk->isWritable());
164    assert(pkt->getOffset(blkSize) + pkt->getSize() <= blkSize);
165
166    // Check RMW operations first since both isRead() and
167    // isWrite() will be true for them
168    if (pkt->cmd == MemCmd::SwapReq) {
169        cmpAndSwap(blk, pkt);
170    } else if (pkt->isWrite()) {
171        // we have the block in a writable state and can go ahead,
172        // note that the line may be also be considered writable in
173        // downstream caches along the path to memory, but always
174        // Exclusive, and never Modified
175        assert(blk->isWritable());
176        // Write or WriteLine at the first cache with block in writable state
177        if (blk->checkWrite(pkt)) {
178            pkt->writeDataToBlock(blk->data, blkSize);
179        }
180        // Always mark the line as dirty (and thus transition to the
181        // Modified state) even if we are a failed StoreCond so we
182        // supply data to any snoops that have appended themselves to
183        // this cache before knowing the store will fail.
184        blk->status |= BlkDirty;
185        DPRINTF(CacheVerbose, "%s for %s (write)\n", __func__, pkt->print());
186    } else if (pkt->isRead()) {
187        if (pkt->isLLSC()) {
188            blk->trackLoadLocked(pkt);
189        }
190
191        // all read responses have a data payload
192        assert(pkt->hasRespData());
193        pkt->setDataFromBlock(blk->data, blkSize);
194
195        // determine if this read is from a (coherent) cache or not
196        if (pkt->fromCache()) {
197            assert(pkt->getSize() == blkSize);
198            // special handling for coherent block requests from
199            // upper-level caches
200            if (pkt->needsWritable()) {
201                // sanity check
202                assert(pkt->cmd == MemCmd::ReadExReq ||
203                       pkt->cmd == MemCmd::SCUpgradeFailReq);
204                assert(!pkt->hasSharers());
205
206                // if we have a dirty copy, make sure the recipient
207                // keeps it marked dirty (in the modified state)
208                if (blk->isDirty()) {
209                    pkt->setCacheResponding();
210                    blk->status &= ~BlkDirty;
211                }
212            } else if (blk->isWritable() && !pending_downgrade &&
213                       !pkt->hasSharers() &&
214                       pkt->cmd != MemCmd::ReadCleanReq) {
215                // we can give the requester a writable copy on a read
216                // request if:
217                // - we have a writable copy at this level (& below)
218                // - we don't have a pending snoop from below
219                //   signaling another read request
220                // - no other cache above has a copy (otherwise it
221                //   would have set hasSharers flag when
222                //   snooping the packet)
223                // - the read has explicitly asked for a clean
224                //   copy of the line
225                if (blk->isDirty()) {
226                    // special considerations if we're owner:
227                    if (!deferred_response) {
228                        // respond with the line in Modified state
229                        // (cacheResponding set, hasSharers not set)
230                        pkt->setCacheResponding();
231
232                        // if this cache is mostly inclusive, we
233                        // keep the block in the Exclusive state,
234                        // and pass it upwards as Modified
235                        // (writable and dirty), hence we have
236                        // multiple caches, all on the same path
237                        // towards memory, all considering the
238                        // same block writable, but only one
239                        // considering it Modified
240
241                        // we get away with multiple caches (on
242                        // the same path to memory) considering
243                        // the block writeable as we always enter
244                        // the cache hierarchy through a cache,
245                        // and first snoop upwards in all other
246                        // branches
247                        blk->status &= ~BlkDirty;
248                    } else {
249                        // if we're responding after our own miss,
250                        // there's a window where the recipient didn't
251                        // know it was getting ownership and may not
252                        // have responded to snoops correctly, so we
253                        // have to respond with a shared line
254                        pkt->setHasSharers();
255                    }
256                }
257            } else {
258                // otherwise only respond with a shared copy
259                pkt->setHasSharers();
260            }
261        }
262    } else if (pkt->isUpgrade()) {
263        // sanity check
264        assert(!pkt->hasSharers());
265
266        if (blk->isDirty()) {
267            // we were in the Owned state, and a cache above us that
268            // has the line in Shared state needs to be made aware
269            // that the data it already has is in fact dirty
270            pkt->setCacheResponding();
271            blk->status &= ~BlkDirty;
272        }
273    } else {
274        assert(pkt->isInvalidate());
275        invalidateBlock(blk);
276        DPRINTF(CacheVerbose, "%s for %s (invalidation)\n", __func__,
277                pkt->print());
278    }
279}
280
281/////////////////////////////////////////////////////
282//
283// Access path: requests coming in from the CPU side
284//
285/////////////////////////////////////////////////////
286
287bool
288Cache::access(PacketPtr pkt, CacheBlk *&blk, Cycles &lat,
289              PacketList &writebacks)
290{
291    // sanity check
292    assert(pkt->isRequest());
293
294    chatty_assert(!(isReadOnly && pkt->isWrite()),
295                  "Should never see a write in a read-only cache %s\n",
296                  name());
297
298    DPRINTF(CacheVerbose, "%s for %s\n", __func__, pkt->print());
299
300    if (pkt->req->isUncacheable()) {
301        DPRINTF(Cache, "uncacheable: %s\n", pkt->print());
302
303        // flush and invalidate any existing block
304        CacheBlk *old_blk(tags->findBlock(pkt->getAddr(), pkt->isSecure()));
305        if (old_blk && old_blk->isValid()) {
306            if (old_blk->isDirty() || writebackClean)
307                writebacks.push_back(writebackBlk(old_blk));
308            else
309                writebacks.push_back(cleanEvictBlk(old_blk));
310            invalidateBlock(old_blk);
311        }
312
313        blk = nullptr;
314        // lookupLatency is the latency in case the request is uncacheable.
315        lat = lookupLatency;
316        return false;
317    }
318
319    // Here lat is the value passed as parameter to accessBlock() function
320    // that can modify its value.
321    blk = tags->accessBlock(pkt->getAddr(), pkt->isSecure(), lat);
322
323    DPRINTF(Cache, "%s %s\n", pkt->print(),
324            blk ? "hit " + blk->print() : "miss");
325
326    if (pkt->req->isCacheMaintenance()) {
327        // A cache maintenance operation is always forwarded to the
328        // memory below even if the block is found in dirty state.
329
330        // We defer any changes to the state of the block until we
331        // create and mark as in service the mshr for the downstream
332        // packet.
333        return false;
334    }
335
336    if (pkt->isEviction()) {
337        // We check for presence of block in above caches before issuing
338        // Writeback or CleanEvict to write buffer. Therefore the only
339        // possible cases can be of a CleanEvict packet coming from above
340        // encountering a Writeback generated in this cache peer cache and
341        // waiting in the write buffer. Cases of upper level peer caches
342        // generating CleanEvict and Writeback or simply CleanEvict and
343        // CleanEvict almost simultaneously will be caught by snoops sent out
344        // by crossbar.
345        WriteQueueEntry *wb_entry = writeBuffer.findMatch(pkt->getAddr(),
346                                                          pkt->isSecure());
347        if (wb_entry) {
348            assert(wb_entry->getNumTargets() == 1);
349            PacketPtr wbPkt = wb_entry->getTarget()->pkt;
350            assert(wbPkt->isWriteback());
351
352            if (pkt->isCleanEviction()) {
353                // The CleanEvict and WritebackClean snoops into other
354                // peer caches of the same level while traversing the
355                // crossbar. If a copy of the block is found, the
356                // packet is deleted in the crossbar. Hence, none of
357                // the other upper level caches connected to this
358                // cache have the block, so we can clear the
359                // BLOCK_CACHED flag in the Writeback if set and
360                // discard the CleanEvict by returning true.
361                wbPkt->clearBlockCached();
362                return true;
363            } else {
364                assert(pkt->cmd == MemCmd::WritebackDirty);
365                // Dirty writeback from above trumps our clean
366                // writeback... discard here
367                // Note: markInService will remove entry from writeback buffer.
368                markInService(wb_entry);
369                delete wbPkt;
370            }
371        }
372    }
373
374    // Writeback handling is special case.  We can write the block into
375    // the cache without having a writeable copy (or any copy at all).
376    if (pkt->isWriteback()) {
377        assert(blkSize == pkt->getSize());
378
379        // we could get a clean writeback while we are having
380        // outstanding accesses to a block, do the simple thing for
381        // now and drop the clean writeback so that we do not upset
382        // any ordering/decisions about ownership already taken
383        if (pkt->cmd == MemCmd::WritebackClean &&
384            mshrQueue.findMatch(pkt->getAddr(), pkt->isSecure())) {
385            DPRINTF(Cache, "Clean writeback %#llx to block with MSHR, "
386                    "dropping\n", pkt->getAddr());
387            return true;
388        }
389
390        if (blk == nullptr) {
391            // need to do a replacement
392            blk = allocateBlock(pkt->getAddr(), pkt->isSecure(), writebacks);
393            if (blk == nullptr) {
394                // no replaceable block available: give up, fwd to next level.
395                incMissCount(pkt);
396                return false;
397            }
398            tags->insertBlock(pkt, blk);
399
400            blk->status = (BlkValid | BlkReadable);
401            if (pkt->isSecure()) {
402                blk->status |= BlkSecure;
403            }
404        }
405        // only mark the block dirty if we got a writeback command,
406        // and leave it as is for a clean writeback
407        if (pkt->cmd == MemCmd::WritebackDirty) {
408            assert(!blk->isDirty());
409            blk->status |= BlkDirty;
410        }
411        // if the packet does not have sharers, it is passing
412        // writable, and we got the writeback in Modified or Exclusive
413        // state, if not we are in the Owned or Shared state
414        if (!pkt->hasSharers()) {
415            blk->status |= BlkWritable;
416        }
417        // nothing else to do; writeback doesn't expect response
418        assert(!pkt->needsResponse());
419        std::memcpy(blk->data, pkt->getConstPtr<uint8_t>(), blkSize);
420        DPRINTF(Cache, "%s new state is %s\n", __func__, blk->print());
421        incHitCount(pkt);
422        // populate the time when the block will be ready to access.
423        blk->whenReady = clockEdge(fillLatency) + pkt->headerDelay +
424            pkt->payloadDelay;
425        return true;
426    } else if (pkt->cmd == MemCmd::CleanEvict) {
427        if (blk != nullptr) {
428            // Found the block in the tags, need to stop CleanEvict from
429            // propagating further down the hierarchy. Returning true will
430            // treat the CleanEvict like a satisfied write request and delete
431            // it.
432            return true;
433        }
434        // We didn't find the block here, propagate the CleanEvict further
435        // down the memory hierarchy. Returning false will treat the CleanEvict
436        // like a Writeback which could not find a replaceable block so has to
437        // go to next level.
438        return false;
439    } else if (pkt->cmd == MemCmd::WriteClean) {
440        // WriteClean handling is a special case. We can allocate a
441        // block directly if it doesn't exist and we can update the
442        // block immediately. The WriteClean transfers the ownership
443        // of the block as well.
444        assert(blkSize == pkt->getSize());
445
446        if (!blk) {
447            if (pkt->writeThrough()) {
448                // if this is a write through packet, we don't try to
449                // allocate if the block is not present
450                return false;
451            } else {
452                // a writeback that misses needs to allocate a new block
453                blk = allocateBlock(pkt->getAddr(), pkt->isSecure(),
454                                    writebacks);
455                if (!blk) {
456                    // no replaceable block available: give up, fwd to
457                    // next level.
458                    incMissCount(pkt);
459                    return false;
460                }
461                tags->insertBlock(pkt, blk);
462
463                blk->status = (BlkValid | BlkReadable);
464                if (pkt->isSecure()) {
465                    blk->status |= BlkSecure;
466                }
467            }
468        }
469
470        // at this point either this is a writeback or a write-through
471        // write clean operation and the block is already in this
472        // cache, we need to update the data and the block flags
473        assert(blk);
474        assert(!blk->isDirty());
475        if (!pkt->writeThrough()) {
476            blk->status |= BlkDirty;
477        }
478        // nothing else to do; writeback doesn't expect response
479        assert(!pkt->needsResponse());
480        std::memcpy(blk->data, pkt->getConstPtr<uint8_t>(), blkSize);
481        DPRINTF(Cache, "%s new state is %s\n", __func__, blk->print());
482
483        incHitCount(pkt);
484        // populate the time when the block will be ready to access.
485        blk->whenReady = clockEdge(fillLatency) + pkt->headerDelay +
486            pkt->payloadDelay;
487        // if this a write-through packet it will be sent to cache
488        // below
489        return !pkt->writeThrough();
490    } else if (blk && (pkt->needsWritable() ? blk->isWritable() :
491                       blk->isReadable())) {
492        // OK to satisfy access
493        incHitCount(pkt);
494        satisfyRequest(pkt, blk);
495        maintainClusivity(pkt->fromCache(), blk);
496
497        return true;
498    }
499
500    // Can't satisfy access normally... either no block (blk == nullptr)
501    // or have block but need writable
502
503    incMissCount(pkt);
504
505    if (blk == nullptr && pkt->isLLSC() && pkt->isWrite()) {
506        // complete miss on store conditional... just give up now
507        pkt->req->setExtraData(0);
508        return true;
509    }
510
511    return false;
512}
513
514void
515Cache::maintainClusivity(bool from_cache, CacheBlk *blk)
516{
517    if (from_cache && blk && blk->isValid() && !blk->isDirty() &&
518        clusivity == Enums::mostly_excl) {
519        // if we have responded to a cache, and our block is still
520        // valid, but not dirty, and this cache is mostly exclusive
521        // with respect to the cache above, drop the block
522        invalidateBlock(blk);
523    }
524}
525
526void
527Cache::doWritebacks(PacketList& writebacks, Tick forward_time)
528{
529    while (!writebacks.empty()) {
530        PacketPtr wbPkt = writebacks.front();
531        // We use forwardLatency here because we are copying writebacks to
532        // write buffer.
533
534        // Call isCachedAbove for Writebacks, CleanEvicts and
535        // WriteCleans to discover if the block is cached above.
536        if (isCachedAbove(wbPkt)) {
537            if (wbPkt->cmd == MemCmd::CleanEvict) {
538                // Delete CleanEvict because cached copies exist above. The
539                // packet destructor will delete the request object because
540                // this is a non-snoop request packet which does not require a
541                // response.
542                delete wbPkt;
543            } else if (wbPkt->cmd == MemCmd::WritebackClean) {
544                // clean writeback, do not send since the block is
545                // still cached above
546                assert(writebackClean);
547                delete wbPkt;
548            } else {
549                assert(wbPkt->cmd == MemCmd::WritebackDirty ||
550                       wbPkt->cmd == MemCmd::WriteClean);
551                // Set BLOCK_CACHED flag in Writeback and send below, so that
552                // the Writeback does not reset the bit corresponding to this
553                // address in the snoop filter below.
554                wbPkt->setBlockCached();
555                allocateWriteBuffer(wbPkt, forward_time);
556            }
557        } else {
558            // If the block is not cached above, send packet below. Both
559            // CleanEvict and Writeback with BLOCK_CACHED flag cleared will
560            // reset the bit corresponding to this address in the snoop filter
561            // below.
562            allocateWriteBuffer(wbPkt, forward_time);
563        }
564        writebacks.pop_front();
565    }
566}
567
568void
569Cache::doWritebacksAtomic(PacketList& writebacks)
570{
571    while (!writebacks.empty()) {
572        PacketPtr wbPkt = writebacks.front();
573        // Call isCachedAbove for both Writebacks and CleanEvicts. If
574        // isCachedAbove returns true we set BLOCK_CACHED flag in Writebacks
575        // and discard CleanEvicts.
576        if (isCachedAbove(wbPkt, false)) {
577            if (wbPkt->cmd == MemCmd::WritebackDirty ||
578                wbPkt->cmd == MemCmd::WriteClean) {
579                // Set BLOCK_CACHED flag in Writeback and send below,
580                // so that the Writeback does not reset the bit
581                // corresponding to this address in the snoop filter
582                // below. We can discard CleanEvicts because cached
583                // copies exist above. Atomic mode isCachedAbove
584                // modifies packet to set BLOCK_CACHED flag
585                memSidePort->sendAtomic(wbPkt);
586            }
587        } else {
588            // If the block is not cached above, send packet below. Both
589            // CleanEvict and Writeback with BLOCK_CACHED flag cleared will
590            // reset the bit corresponding to this address in the snoop filter
591            // below.
592            memSidePort->sendAtomic(wbPkt);
593        }
594        writebacks.pop_front();
595        // In case of CleanEvicts, the packet destructor will delete the
596        // request object because this is a non-snoop request packet which
597        // does not require a response.
598        delete wbPkt;
599    }
600}
601
602
603void
604Cache::recvTimingSnoopResp(PacketPtr pkt)
605{
606    DPRINTF(Cache, "%s for %s\n", __func__, pkt->print());
607
608    assert(pkt->isResponse());
609    assert(!system->bypassCaches());
610
611    // determine if the response is from a snoop request we created
612    // (in which case it should be in the outstandingSnoop), or if we
613    // merely forwarded someone else's snoop request
614    const bool forwardAsSnoop = outstandingSnoop.find(pkt->req) ==
615        outstandingSnoop.end();
616
617    if (!forwardAsSnoop) {
618        // the packet came from this cache, so sink it here and do not
619        // forward it
620        assert(pkt->cmd == MemCmd::HardPFResp);
621
622        outstandingSnoop.erase(pkt->req);
623
624        DPRINTF(Cache, "Got prefetch response from above for addr "
625                "%#llx (%s)\n", pkt->getAddr(), pkt->isSecure() ? "s" : "ns");
626        recvTimingResp(pkt);
627        return;
628    }
629
630    // forwardLatency is set here because there is a response from an
631    // upper level cache.
632    // To pay the delay that occurs if the packet comes from the bus,
633    // we charge also headerDelay.
634    Tick snoop_resp_time = clockEdge(forwardLatency) + pkt->headerDelay;
635    // Reset the timing of the packet.
636    pkt->headerDelay = pkt->payloadDelay = 0;
637    memSidePort->schedTimingSnoopResp(pkt, snoop_resp_time);
638}
639
640void
641Cache::promoteWholeLineWrites(PacketPtr pkt)
642{
643    // Cache line clearing instructions
644    if (doFastWrites && (pkt->cmd == MemCmd::WriteReq) &&
645        (pkt->getSize() == blkSize) && (pkt->getOffset(blkSize) == 0)) {
646        pkt->cmd = MemCmd::WriteLineReq;
647        DPRINTF(Cache, "packet promoted from Write to WriteLineReq\n");
648    }
649}
650
651void
652Cache::recvTimingReq(PacketPtr pkt)
653{
654    DPRINTF(CacheTags, "%s tags:\n%s\n", __func__, tags->print());
655
656    assert(pkt->isRequest());
657
658    // Just forward the packet if caches are disabled.
659    if (system->bypassCaches()) {
660        // @todo This should really enqueue the packet rather
661        bool M5_VAR_USED success = memSidePort->sendTimingReq(pkt);
662        assert(success);
663        return;
664    }
665
666    promoteWholeLineWrites(pkt);
667
668    // Cache maintenance operations have to visit all the caches down
669    // to the specified xbar (PoC, PoU, etc.). Even if a cache above
670    // is responding we forward the packet to the memory below rather
671    // than creating an express snoop.
672    if (pkt->cacheResponding()) {
673        // a cache above us (but not where the packet came from) is
674        // responding to the request, in other words it has the line
675        // in Modified or Owned state
676        DPRINTF(Cache, "Cache above responding to %s: not responding\n",
677                pkt->print());
678
679        // if the packet needs the block to be writable, and the cache
680        // that has promised to respond (setting the cache responding
681        // flag) is not providing writable (it is in Owned rather than
682        // the Modified state), we know that there may be other Shared
683        // copies in the system; go out and invalidate them all
684        assert(pkt->needsWritable() && !pkt->responderHadWritable());
685
686        // an upstream cache that had the line in Owned state
687        // (dirty, but not writable), is responding and thus
688        // transferring the dirty line from one branch of the
689        // cache hierarchy to another
690
691        // send out an express snoop and invalidate all other
692        // copies (snooping a packet that needs writable is the
693        // same as an invalidation), thus turning the Owned line
694        // into a Modified line, note that we don't invalidate the
695        // block in the current cache or any other cache on the
696        // path to memory
697
698        // create a downstream express snoop with cleared packet
699        // flags, there is no need to allocate any data as the
700        // packet is merely used to co-ordinate state transitions
701        Packet *snoop_pkt = new Packet(pkt, true, false);
702
703        // also reset the bus time that the original packet has
704        // not yet paid for
705        snoop_pkt->headerDelay = snoop_pkt->payloadDelay = 0;
706
707        // make this an instantaneous express snoop, and let the
708        // other caches in the system know that the another cache
709        // is responding, because we have found the authorative
710        // copy (Modified or Owned) that will supply the right
711        // data
712        snoop_pkt->setExpressSnoop();
713        snoop_pkt->setCacheResponding();
714
715        // this express snoop travels towards the memory, and at
716        // every crossbar it is snooped upwards thus reaching
717        // every cache in the system
718        bool M5_VAR_USED success = memSidePort->sendTimingReq(snoop_pkt);
719        // express snoops always succeed
720        assert(success);
721
722        // main memory will delete the snoop packet
723
724        // queue for deletion, as opposed to immediate deletion, as
725        // the sending cache is still relying on the packet
726        pendingDelete.reset(pkt);
727
728        // no need to take any further action in this particular cache
729        // as an upstram cache has already committed to responding,
730        // and we have already sent out any express snoops in the
731        // section above to ensure all other copies in the system are
732        // invalidated
733        return;
734    }
735
736    // anything that is merely forwarded pays for the forward latency and
737    // the delay provided by the crossbar
738    Tick forward_time = clockEdge(forwardLatency) + pkt->headerDelay;
739
740    // We use lookupLatency here because it is used to specify the latency
741    // to access.
742    Cycles lat = lookupLatency;
743    CacheBlk *blk = nullptr;
744    bool satisfied = false;
745    {
746        PacketList writebacks;
747        // Note that lat is passed by reference here. The function
748        // access() calls accessBlock() which can modify lat value.
749        satisfied = access(pkt, blk, lat, writebacks);
750
751        // copy writebacks to write buffer here to ensure they logically
752        // proceed anything happening below
753        doWritebacks(writebacks, forward_time);
754    }
755
756    // Here we charge the headerDelay that takes into account the latencies
757    // of the bus, if the packet comes from it.
758    // The latency charged it is just lat that is the value of lookupLatency
759    // modified by access() function, or if not just lookupLatency.
760    // In case of a hit we are neglecting response latency.
761    // In case of a miss we are neglecting forward latency.
762    Tick request_time = clockEdge(lat) + pkt->headerDelay;
763    // Here we reset the timing of the packet.
764    pkt->headerDelay = pkt->payloadDelay = 0;
765
766    // track time of availability of next prefetch, if any
767    Tick next_pf_time = MaxTick;
768
769    bool needsResponse = pkt->needsResponse();
770
771    if (satisfied) {
772        // should never be satisfying an uncacheable access as we
773        // flush and invalidate any existing block as part of the
774        // lookup
775        assert(!pkt->req->isUncacheable());
776
777        // hit (for all other request types)
778
779        if (prefetcher && (prefetchOnAccess ||
780                           (blk && blk->wasPrefetched()))) {
781            if (blk)
782                blk->status &= ~BlkHWPrefetched;
783
784            // Don't notify on SWPrefetch
785            if (!pkt->cmd.isSWPrefetch()) {
786                assert(!pkt->req->isCacheMaintenance());
787                next_pf_time = prefetcher->notify(pkt);
788            }
789        }
790
791        if (needsResponse) {
792            pkt->makeTimingResponse();
793            // @todo: Make someone pay for this
794            pkt->headerDelay = pkt->payloadDelay = 0;
795
796            // In this case we are considering request_time that takes
797            // into account the delay of the xbar, if any, and just
798            // lat, neglecting responseLatency, modelling hit latency
799            // just as lookupLatency or or the value of lat overriden
800            // by access(), that calls accessBlock() function.
801            cpuSidePort->schedTimingResp(pkt, request_time, true);
802        } else {
803            DPRINTF(Cache, "%s satisfied %s, no response needed\n", __func__,
804                    pkt->print());
805
806            // queue the packet for deletion, as the sending cache is
807            // still relying on it; if the block is found in access(),
808            // CleanEvict and Writeback messages will be deleted
809            // here as well
810            pendingDelete.reset(pkt);
811        }
812    } else {
813        // miss
814
815        Addr blk_addr = pkt->getBlockAddr(blkSize);
816
817        // ignore any existing MSHR if we are dealing with an
818        // uncacheable request
819        MSHR *mshr = pkt->req->isUncacheable() ? nullptr :
820            mshrQueue.findMatch(blk_addr, pkt->isSecure());
821
822        // Software prefetch handling:
823        // To keep the core from waiting on data it won't look at
824        // anyway, send back a response with dummy data. Miss handling
825        // will continue asynchronously. Unfortunately, the core will
826        // insist upon freeing original Packet/Request, so we have to
827        // create a new pair with a different lifecycle. Note that this
828        // processing happens before any MSHR munging on the behalf of
829        // this request because this new Request will be the one stored
830        // into the MSHRs, not the original.
831        if (pkt->cmd.isSWPrefetch()) {
832            assert(needsResponse);
833            assert(pkt->req->hasPaddr());
834            assert(!pkt->req->isUncacheable());
835
836            // There's no reason to add a prefetch as an additional target
837            // to an existing MSHR. If an outstanding request is already
838            // in progress, there is nothing for the prefetch to do.
839            // If this is the case, we don't even create a request at all.
840            PacketPtr pf = nullptr;
841
842            if (!mshr) {
843                // copy the request and create a new SoftPFReq packet
844                RequestPtr req = new Request(pkt->req->getPaddr(),
845                                             pkt->req->getSize(),
846                                             pkt->req->getFlags(),
847                                             pkt->req->masterId());
848                pf = new Packet(req, pkt->cmd);
849                pf->allocate();
850                assert(pf->getAddr() == pkt->getAddr());
851                assert(pf->getSize() == pkt->getSize());
852            }
853
854            pkt->makeTimingResponse();
855
856            // request_time is used here, taking into account lat and the delay
857            // charged if the packet comes from the xbar.
858            cpuSidePort->schedTimingResp(pkt, request_time, true);
859
860            // If an outstanding request is in progress (we found an
861            // MSHR) this is set to null
862            pkt = pf;
863        }
864
865        if (mshr) {
866            /// MSHR hit
867            /// @note writebacks will be checked in getNextMSHR()
868            /// for any conflicting requests to the same block
869
870            //@todo remove hw_pf here
871
872            // Coalesce unless it was a software prefetch (see above).
873            if (pkt) {
874                assert(!pkt->isWriteback());
875                // CleanEvicts corresponding to blocks which have
876                // outstanding requests in MSHRs are simply sunk here
877                if (pkt->cmd == MemCmd::CleanEvict) {
878                    pendingDelete.reset(pkt);
879                } else if (pkt->cmd == MemCmd::WriteClean) {
880                    // A WriteClean should never coalesce with any
881                    // outstanding cache maintenance requests.
882
883                    // We use forward_time here because there is an
884                    // uncached memory write, forwarded to WriteBuffer.
885                    allocateWriteBuffer(pkt, forward_time);
886                } else {
887                    DPRINTF(Cache, "%s coalescing MSHR for %s\n", __func__,
888                            pkt->print());
889
890                    assert(pkt->req->masterId() < system->maxMasters());
891                    mshr_hits[pkt->cmdToIndex()][pkt->req->masterId()]++;
892                    // We use forward_time here because it is the same
893                    // considering new targets. We have multiple
894                    // requests for the same address here. It
895                    // specifies the latency to allocate an internal
896                    // buffer and to schedule an event to the queued
897                    // port and also takes into account the additional
898                    // delay of the xbar.
899                    mshr->allocateTarget(pkt, forward_time, order++,
900                                         allocOnFill(pkt->cmd));
901                    if (mshr->getNumTargets() == numTarget) {
902                        noTargetMSHR = mshr;
903                        setBlocked(Blocked_NoTargets);
904                        // need to be careful with this... if this mshr isn't
905                        // ready yet (i.e. time > curTick()), we don't want to
906                        // move it ahead of mshrs that are ready
907                        // mshrQueue.moveToFront(mshr);
908                    }
909                }
910                // We should call the prefetcher reguardless if the request is
911                // satisfied or not, reguardless if the request is in the MSHR
912                // or not.  The request could be a ReadReq hit, but still not
913                // satisfied (potentially because of a prior write to the same
914                // cache line.  So, even when not satisfied, tehre is an MSHR
915                // already allocated for this, we need to let the prefetcher
916                // know about the request
917                if (prefetcher) {
918                    // Don't notify on SWPrefetch
919                    if (!pkt->cmd.isSWPrefetch() &&
920                        !pkt->req->isCacheMaintenance())
921                        next_pf_time = prefetcher->notify(pkt);
922                }
923            }
924        } else {
925            // no MSHR
926            assert(pkt->req->masterId() < system->maxMasters());
927            if (pkt->req->isUncacheable()) {
928                mshr_uncacheable[pkt->cmdToIndex()][pkt->req->masterId()]++;
929            } else {
930                mshr_misses[pkt->cmdToIndex()][pkt->req->masterId()]++;
931            }
932
933            if (pkt->isEviction() || pkt->cmd == MemCmd::WriteClean ||
934                (pkt->req->isUncacheable() && pkt->isWrite())) {
935                // We use forward_time here because there is an
936                // uncached memory write, forwarded to WriteBuffer.
937                allocateWriteBuffer(pkt, forward_time);
938            } else {
939                if (blk && blk->isValid()) {
940                    // should have flushed and have no valid block
941                    assert(!pkt->req->isUncacheable());
942
943                    // If we have a write miss to a valid block, we
944                    // need to mark the block non-readable.  Otherwise
945                    // if we allow reads while there's an outstanding
946                    // write miss, the read could return stale data
947                    // out of the cache block... a more aggressive
948                    // system could detect the overlap (if any) and
949                    // forward data out of the MSHRs, but we don't do
950                    // that yet.  Note that we do need to leave the
951                    // block valid so that it stays in the cache, in
952                    // case we get an upgrade response (and hence no
953                    // new data) when the write miss completes.
954                    // As long as CPUs do proper store/load forwarding
955                    // internally, and have a sufficiently weak memory
956                    // model, this is probably unnecessary, but at some
957                    // point it must have seemed like we needed it...
958                    assert((pkt->needsWritable() && !blk->isWritable()) ||
959                           pkt->req->isCacheMaintenance());
960                    blk->status &= ~BlkReadable;
961                }
962                // Here we are using forward_time, modelling the latency of
963                // a miss (outbound) just as forwardLatency, neglecting the
964                // lookupLatency component.
965                allocateMissBuffer(pkt, forward_time);
966            }
967
968            if (prefetcher) {
969                // Don't notify on SWPrefetch
970                if (!pkt->cmd.isSWPrefetch() &&
971                    !pkt->req->isCacheMaintenance())
972                    next_pf_time = prefetcher->notify(pkt);
973            }
974        }
975    }
976
977    if (next_pf_time != MaxTick)
978        schedMemSideSendEvent(next_pf_time);
979}
980
981PacketPtr
982Cache::createMissPacket(PacketPtr cpu_pkt, CacheBlk *blk,
983                        bool needsWritable) const
984{
985    // should never see evictions here
986    assert(!cpu_pkt->isEviction());
987
988    bool blkValid = blk && blk->isValid();
989
990    if (cpu_pkt->req->isUncacheable() ||
991        (!blkValid && cpu_pkt->isUpgrade()) ||
992        cpu_pkt->cmd == MemCmd::InvalidateReq || cpu_pkt->isClean()) {
993        // uncacheable requests and upgrades from upper-level caches
994        // that missed completely just go through as is
995        return nullptr;
996    }
997
998    assert(cpu_pkt->needsResponse());
999
1000    MemCmd cmd;
1001    // @TODO make useUpgrades a parameter.
1002    // Note that ownership protocols require upgrade, otherwise a
1003    // write miss on a shared owned block will generate a ReadExcl,
1004    // which will clobber the owned copy.
1005    const bool useUpgrades = true;
1006    if (cpu_pkt->cmd == MemCmd::WriteLineReq) {
1007        assert(!blkValid || !blk->isWritable());
1008        // forward as invalidate to all other caches, this gives us
1009        // the line in Exclusive state, and invalidates all other
1010        // copies
1011        cmd = MemCmd::InvalidateReq;
1012    } else if (blkValid && useUpgrades) {
1013        // only reason to be here is that blk is read only and we need
1014        // it to be writable
1015        assert(needsWritable);
1016        assert(!blk->isWritable());
1017        cmd = cpu_pkt->isLLSC() ? MemCmd::SCUpgradeReq : MemCmd::UpgradeReq;
1018    } else if (cpu_pkt->cmd == MemCmd::SCUpgradeFailReq ||
1019               cpu_pkt->cmd == MemCmd::StoreCondFailReq) {
1020        // Even though this SC will fail, we still need to send out the
1021        // request and get the data to supply it to other snoopers in the case
1022        // where the determination the StoreCond fails is delayed due to
1023        // all caches not being on the same local bus.
1024        cmd = MemCmd::SCUpgradeFailReq;
1025    } else {
1026        // block is invalid
1027
1028        // If the request does not need a writable there are two cases
1029        // where we need to ensure the response will not fetch the
1030        // block in dirty state:
1031        // * this cache is read only and it does not perform
1032        //   writebacks,
1033        // * this cache is mostly exclusive and will not fill (since
1034        //   it does not fill it will have to writeback the dirty data
1035        //   immediately which generates uneccesary writebacks).
1036        bool force_clean_rsp = isReadOnly || clusivity == Enums::mostly_excl;
1037        cmd = needsWritable ? MemCmd::ReadExReq :
1038            (force_clean_rsp ? MemCmd::ReadCleanReq : MemCmd::ReadSharedReq);
1039    }
1040    PacketPtr pkt = new Packet(cpu_pkt->req, cmd, blkSize);
1041
1042    // if there are upstream caches that have already marked the
1043    // packet as having sharers (not passing writable), pass that info
1044    // downstream
1045    if (cpu_pkt->hasSharers() && !needsWritable) {
1046        // note that cpu_pkt may have spent a considerable time in the
1047        // MSHR queue and that the information could possibly be out
1048        // of date, however, there is no harm in conservatively
1049        // assuming the block has sharers
1050        pkt->setHasSharers();
1051        DPRINTF(Cache, "%s: passing hasSharers from %s to %s\n",
1052                __func__, cpu_pkt->print(), pkt->print());
1053    }
1054
1055    // the packet should be block aligned
1056    assert(pkt->getAddr() == pkt->getBlockAddr(blkSize));
1057
1058    pkt->allocate();
1059    DPRINTF(Cache, "%s: created %s from %s\n", __func__, pkt->print(),
1060            cpu_pkt->print());
1061    return pkt;
1062}
1063
1064
1065Tick
1066Cache::recvAtomic(PacketPtr pkt)
1067{
1068    // We are in atomic mode so we pay just for lookupLatency here.
1069    Cycles lat = lookupLatency;
1070
1071    // Forward the request if the system is in cache bypass mode.
1072    if (system->bypassCaches())
1073        return ticksToCycles(memSidePort->sendAtomic(pkt));
1074
1075    promoteWholeLineWrites(pkt);
1076
1077    // follow the same flow as in recvTimingReq, and check if a cache
1078    // above us is responding
1079    if (pkt->cacheResponding() && !pkt->isClean()) {
1080        assert(!pkt->req->isCacheInvalidate());
1081        DPRINTF(Cache, "Cache above responding to %s: not responding\n",
1082                pkt->print());
1083
1084        // if a cache is responding, and it had the line in Owned
1085        // rather than Modified state, we need to invalidate any
1086        // copies that are not on the same path to memory
1087        assert(pkt->needsWritable() && !pkt->responderHadWritable());
1088        lat += ticksToCycles(memSidePort->sendAtomic(pkt));
1089
1090        return lat * clockPeriod();
1091    }
1092
1093    // should assert here that there are no outstanding MSHRs or
1094    // writebacks... that would mean that someone used an atomic
1095    // access in timing mode
1096
1097    CacheBlk *blk = nullptr;
1098    PacketList writebacks;
1099    bool satisfied = access(pkt, blk, lat, writebacks);
1100
1101    if (pkt->isClean() && blk && blk->isDirty()) {
1102        // A cache clean opearation is looking for a dirty
1103        // block. If a dirty block is encountered a WriteClean
1104        // will update any copies to the path to the memory
1105        // until the point of reference.
1106        DPRINTF(CacheVerbose, "%s: packet %s found block: %s\n",
1107                __func__, pkt->print(), blk->print());
1108        PacketPtr wb_pkt = writecleanBlk(blk, pkt->req->getDest(), pkt->id);
1109        writebacks.push_back(wb_pkt);
1110        pkt->setSatisfied();
1111    }
1112
1113    // handle writebacks resulting from the access here to ensure they
1114    // logically proceed anything happening below
1115    doWritebacksAtomic(writebacks);
1116
1117    if (!satisfied) {
1118        // MISS
1119
1120        // deal with the packets that go through the write path of
1121        // the cache, i.e. any evictions and writes
1122        if (pkt->isEviction() || pkt->cmd == MemCmd::WriteClean ||
1123            (pkt->req->isUncacheable() && pkt->isWrite())) {
1124            lat += ticksToCycles(memSidePort->sendAtomic(pkt));
1125            return lat * clockPeriod();
1126        }
1127        // only misses left
1128
1129        PacketPtr bus_pkt = createMissPacket(pkt, blk, pkt->needsWritable());
1130
1131        bool is_forward = (bus_pkt == nullptr);
1132
1133        if (is_forward) {
1134            // just forwarding the same request to the next level
1135            // no local cache operation involved
1136            bus_pkt = pkt;
1137        }
1138
1139        DPRINTF(Cache, "%s: Sending an atomic %s\n", __func__,
1140                bus_pkt->print());
1141
1142#if TRACING_ON
1143        CacheBlk::State old_state = blk ? blk->status : 0;
1144#endif
1145
1146        lat += ticksToCycles(memSidePort->sendAtomic(bus_pkt));
1147
1148        bool is_invalidate = bus_pkt->isInvalidate();
1149
1150        // We are now dealing with the response handling
1151        DPRINTF(Cache, "%s: Receive response: %s in state %i\n", __func__,
1152                bus_pkt->print(), old_state);
1153
1154        // If packet was a forward, the response (if any) is already
1155        // in place in the bus_pkt == pkt structure, so we don't need
1156        // to do anything.  Otherwise, use the separate bus_pkt to
1157        // generate response to pkt and then delete it.
1158        if (!is_forward) {
1159            if (pkt->needsResponse()) {
1160                assert(bus_pkt->isResponse());
1161                if (bus_pkt->isError()) {
1162                    pkt->makeAtomicResponse();
1163                    pkt->copyError(bus_pkt);
1164                } else if (pkt->cmd == MemCmd::WriteLineReq) {
1165                    // note the use of pkt, not bus_pkt here.
1166
1167                    // write-line request to the cache that promoted
1168                    // the write to a whole line
1169                    blk = handleFill(pkt, blk, writebacks,
1170                                     allocOnFill(pkt->cmd));
1171                    assert(blk != NULL);
1172                    is_invalidate = false;
1173                    satisfyRequest(pkt, blk);
1174                } else if (bus_pkt->isRead() ||
1175                           bus_pkt->cmd == MemCmd::UpgradeResp) {
1176                    // we're updating cache state to allow us to
1177                    // satisfy the upstream request from the cache
1178                    blk = handleFill(bus_pkt, blk, writebacks,
1179                                     allocOnFill(pkt->cmd));
1180                    satisfyRequest(pkt, blk);
1181                    maintainClusivity(pkt->fromCache(), blk);
1182                } else {
1183                    // we're satisfying the upstream request without
1184                    // modifying cache state, e.g., a write-through
1185                    pkt->makeAtomicResponse();
1186                }
1187            }
1188            delete bus_pkt;
1189        }
1190
1191        if (is_invalidate && blk && blk->isValid()) {
1192            invalidateBlock(blk);
1193        }
1194    }
1195
1196    // Note that we don't invoke the prefetcher at all in atomic mode.
1197    // It's not clear how to do it properly, particularly for
1198    // prefetchers that aggressively generate prefetch candidates and
1199    // rely on bandwidth contention to throttle them; these will tend
1200    // to pollute the cache in atomic mode since there is no bandwidth
1201    // contention.  If we ever do want to enable prefetching in atomic
1202    // mode, though, this is the place to do it... see timingAccess()
1203    // for an example (though we'd want to issue the prefetch(es)
1204    // immediately rather than calling requestMemSideBus() as we do
1205    // there).
1206
1207    // do any writebacks resulting from the response handling
1208    doWritebacksAtomic(writebacks);
1209
1210    // if we used temp block, check to see if its valid and if so
1211    // clear it out, but only do so after the call to recvAtomic is
1212    // finished so that any downstream observers (such as a snoop
1213    // filter), first see the fill, and only then see the eviction
1214    if (blk == tempBlock && tempBlock->isValid()) {
1215        // the atomic CPU calls recvAtomic for fetch and load/store
1216        // sequentuially, and we may already have a tempBlock
1217        // writeback from the fetch that we have not yet sent
1218        if (tempBlockWriteback) {
1219            // if that is the case, write the prevoius one back, and
1220            // do not schedule any new event
1221            writebackTempBlockAtomic();
1222        } else {
1223            // the writeback/clean eviction happens after the call to
1224            // recvAtomic has finished (but before any successive
1225            // calls), so that the response handling from the fill is
1226            // allowed to happen first
1227            schedule(writebackTempBlockAtomicEvent, curTick());
1228        }
1229
1230        tempBlockWriteback = (blk->isDirty() || writebackClean) ?
1231            writebackBlk(blk) : cleanEvictBlk(blk);
1232        invalidateBlock(blk);
1233    }
1234
1235    if (pkt->needsResponse()) {
1236        pkt->makeAtomicResponse();
1237    }
1238
1239    return lat * clockPeriod();
1240}
1241
1242
1243void
1244Cache::functionalAccess(PacketPtr pkt, bool fromCpuSide)
1245{
1246    if (system->bypassCaches()) {
1247        // Packets from the memory side are snoop request and
1248        // shouldn't happen in bypass mode.
1249        assert(fromCpuSide);
1250
1251        // The cache should be flushed if we are in cache bypass mode,
1252        // so we don't need to check if we need to update anything.
1253        memSidePort->sendFunctional(pkt);
1254        return;
1255    }
1256
1257    Addr blk_addr = pkt->getBlockAddr(blkSize);
1258    bool is_secure = pkt->isSecure();
1259    CacheBlk *blk = tags->findBlock(pkt->getAddr(), is_secure);
1260    MSHR *mshr = mshrQueue.findMatch(blk_addr, is_secure);
1261
1262    pkt->pushLabel(name());
1263
1264    CacheBlkPrintWrapper cbpw(blk);
1265
1266    // Note that just because an L2/L3 has valid data doesn't mean an
1267    // L1 doesn't have a more up-to-date modified copy that still
1268    // needs to be found.  As a result we always update the request if
1269    // we have it, but only declare it satisfied if we are the owner.
1270
1271    // see if we have data at all (owned or otherwise)
1272    bool have_data = blk && blk->isValid()
1273        && pkt->checkFunctional(&cbpw, blk_addr, is_secure, blkSize,
1274                                blk->data);
1275
1276    // data we have is dirty if marked as such or if we have an
1277    // in-service MSHR that is pending a modified line
1278    bool have_dirty =
1279        have_data && (blk->isDirty() ||
1280                      (mshr && mshr->inService && mshr->isPendingModified()));
1281
1282    bool done = have_dirty
1283        || cpuSidePort->checkFunctional(pkt)
1284        || mshrQueue.checkFunctional(pkt, blk_addr)
1285        || writeBuffer.checkFunctional(pkt, blk_addr)
1286        || memSidePort->checkFunctional(pkt);
1287
1288    DPRINTF(CacheVerbose, "%s: %s %s%s%s\n", __func__,  pkt->print(),
1289            (blk && blk->isValid()) ? "valid " : "",
1290            have_data ? "data " : "", done ? "done " : "");
1291
1292    // We're leaving the cache, so pop cache->name() label
1293    pkt->popLabel();
1294
1295    if (done) {
1296        pkt->makeResponse();
1297    } else {
1298        // if it came as a request from the CPU side then make sure it
1299        // continues towards the memory side
1300        if (fromCpuSide) {
1301            memSidePort->sendFunctional(pkt);
1302        } else if (cpuSidePort->isSnooping()) {
1303            // if it came from the memory side, it must be a snoop request
1304            // and we should only forward it if we are forwarding snoops
1305            cpuSidePort->sendFunctionalSnoop(pkt);
1306        }
1307    }
1308}
1309
1310
1311/////////////////////////////////////////////////////
1312//
1313// Response handling: responses from the memory side
1314//
1315/////////////////////////////////////////////////////
1316
1317
1318void
1319Cache::handleUncacheableWriteResp(PacketPtr pkt)
1320{
1321    Tick completion_time = clockEdge(responseLatency) +
1322        pkt->headerDelay + pkt->payloadDelay;
1323
1324    // Reset the bus additional time as it is now accounted for
1325    pkt->headerDelay = pkt->payloadDelay = 0;
1326
1327    cpuSidePort->schedTimingResp(pkt, completion_time, true);
1328}
1329
1330void
1331Cache::recvTimingResp(PacketPtr pkt)
1332{
1333    assert(pkt->isResponse());
1334
1335    // all header delay should be paid for by the crossbar, unless
1336    // this is a prefetch response from above
1337    panic_if(pkt->headerDelay != 0 && pkt->cmd != MemCmd::HardPFResp,
1338             "%s saw a non-zero packet delay\n", name());
1339
1340    bool is_error = pkt->isError();
1341
1342    if (is_error) {
1343        DPRINTF(Cache, "%s: Cache received %s with error\n", __func__,
1344                pkt->print());
1345    }
1346
1347    DPRINTF(Cache, "%s: Handling response %s\n", __func__,
1348            pkt->print());
1349
1350    // if this is a write, we should be looking at an uncacheable
1351    // write
1352    if (pkt->isWrite()) {
1353        assert(pkt->req->isUncacheable());
1354        handleUncacheableWriteResp(pkt);
1355        return;
1356    }
1357
1358    // we have dealt with any (uncacheable) writes above, from here on
1359    // we know we are dealing with an MSHR due to a miss or a prefetch
1360    MSHR *mshr = dynamic_cast<MSHR*>(pkt->popSenderState());
1361    assert(mshr);
1362
1363    if (mshr == noTargetMSHR) {
1364        // we always clear at least one target
1365        clearBlocked(Blocked_NoTargets);
1366        noTargetMSHR = nullptr;
1367    }
1368
1369    // Initial target is used just for stats
1370    MSHR::Target *initial_tgt = mshr->getTarget();
1371    int stats_cmd_idx = initial_tgt->pkt->cmdToIndex();
1372    Tick miss_latency = curTick() - initial_tgt->recvTime;
1373
1374    if (pkt->req->isUncacheable()) {
1375        assert(pkt->req->masterId() < system->maxMasters());
1376        mshr_uncacheable_lat[stats_cmd_idx][pkt->req->masterId()] +=
1377            miss_latency;
1378    } else {
1379        assert(pkt->req->masterId() < system->maxMasters());
1380        mshr_miss_latency[stats_cmd_idx][pkt->req->masterId()] +=
1381            miss_latency;
1382    }
1383
1384    bool wasFull = mshrQueue.isFull();
1385
1386    PacketList writebacks;
1387
1388    Tick forward_time = clockEdge(forwardLatency) + pkt->headerDelay;
1389
1390    bool is_fill = !mshr->isForward &&
1391        (pkt->isRead() || pkt->cmd == MemCmd::UpgradeResp);
1392
1393    CacheBlk *blk = tags->findBlock(pkt->getAddr(), pkt->isSecure());
1394    const bool valid_blk = blk && blk->isValid();
1395    // If the response indicates that there are no sharers and we
1396    // either had the block already or the response is filling we can
1397    // promote our copy to writable
1398    if (!pkt->hasSharers() &&
1399        (is_fill || (valid_blk && !pkt->req->isCacheInvalidate()))) {
1400        mshr->promoteWritable();
1401    }
1402
1403    if (is_fill && !is_error) {
1404        DPRINTF(Cache, "Block for addr %#llx being updated in Cache\n",
1405                pkt->getAddr());
1406
1407        blk = handleFill(pkt, blk, writebacks, mshr->allocOnFill());
1408        assert(blk != nullptr);
1409    }
1410
1411    // allow invalidation responses originating from write-line
1412    // requests to be discarded
1413    bool is_invalidate = pkt->isInvalidate();
1414
1415    // The block was marked as not readable while there was a pending
1416    // cache maintenance operation, restore its flag.
1417    if (pkt->isClean() && !is_invalidate && valid_blk) {
1418        blk->status |= BlkReadable;
1419    }
1420
1421    // First offset for critical word first calculations
1422    int initial_offset = initial_tgt->pkt->getOffset(blkSize);
1423
1424    bool from_cache = false;
1425    MSHR::TargetList targets = mshr->extractServiceableTargets(pkt);
1426    for (auto &target: targets) {
1427        Packet *tgt_pkt = target.pkt;
1428        switch (target.source) {
1429          case MSHR::Target::FromCPU:
1430            Tick completion_time;
1431            // Here we charge on completion_time the delay of the xbar if the
1432            // packet comes from it, charged on headerDelay.
1433            completion_time = pkt->headerDelay;
1434
1435            // Software prefetch handling for cache closest to core
1436            if (tgt_pkt->cmd.isSWPrefetch()) {
1437                // a software prefetch would have already been ack'd
1438                // immediately with dummy data so the core would be able to
1439                // retire it. This request completes right here, so we
1440                // deallocate it.
1441                delete tgt_pkt->req;
1442                delete tgt_pkt;
1443                break; // skip response
1444            }
1445
1446            // keep track of whether we have responded to another
1447            // cache
1448            from_cache = from_cache || tgt_pkt->fromCache();
1449
1450            // unlike the other packet flows, where data is found in other
1451            // caches or memory and brought back, write-line requests always
1452            // have the data right away, so the above check for "is fill?"
1453            // cannot actually be determined until examining the stored MSHR
1454            // state. We "catch up" with that logic here, which is duplicated
1455            // from above.
1456            if (tgt_pkt->cmd == MemCmd::WriteLineReq) {
1457                assert(!is_error);
1458                // we got the block in a writable state, so promote
1459                // any deferred targets if possible
1460                mshr->promoteWritable();
1461                // NB: we use the original packet here and not the response!
1462                blk = handleFill(tgt_pkt, blk, writebacks,
1463                                 targets.allocOnFill);
1464                assert(blk != nullptr);
1465
1466                // treat as a fill, and discard the invalidation
1467                // response
1468                is_fill = true;
1469                is_invalidate = false;
1470            }
1471
1472            if (is_fill) {
1473                satisfyRequest(tgt_pkt, blk, true, mshr->hasPostDowngrade());
1474
1475                // How many bytes past the first request is this one
1476                int transfer_offset =
1477                    tgt_pkt->getOffset(blkSize) - initial_offset;
1478                if (transfer_offset < 0) {
1479                    transfer_offset += blkSize;
1480                }
1481
1482                // If not critical word (offset) return payloadDelay.
1483                // responseLatency is the latency of the return path
1484                // from lower level caches/memory to an upper level cache or
1485                // the core.
1486                completion_time += clockEdge(responseLatency) +
1487                    (transfer_offset ? pkt->payloadDelay : 0);
1488
1489                assert(!tgt_pkt->req->isUncacheable());
1490
1491                assert(tgt_pkt->req->masterId() < system->maxMasters());
1492                missLatency[tgt_pkt->cmdToIndex()][tgt_pkt->req->masterId()] +=
1493                    completion_time - target.recvTime;
1494            } else if (pkt->cmd == MemCmd::UpgradeFailResp) {
1495                // failed StoreCond upgrade
1496                assert(tgt_pkt->cmd == MemCmd::StoreCondReq ||
1497                       tgt_pkt->cmd == MemCmd::StoreCondFailReq ||
1498                       tgt_pkt->cmd == MemCmd::SCUpgradeFailReq);
1499                // responseLatency is the latency of the return path
1500                // from lower level caches/memory to an upper level cache or
1501                // the core.
1502                completion_time += clockEdge(responseLatency) +
1503                    pkt->payloadDelay;
1504                tgt_pkt->req->setExtraData(0);
1505            } else {
1506                // We are about to send a response to a cache above
1507                // that asked for an invalidation; we need to
1508                // invalidate our copy immediately as the most
1509                // up-to-date copy of the block will now be in the
1510                // cache above. It will also prevent this cache from
1511                // responding (if the block was previously dirty) to
1512                // snoops as they should snoop the caches above where
1513                // they will get the response from.
1514                if (is_invalidate && blk && blk->isValid()) {
1515                    invalidateBlock(blk);
1516                }
1517                // not a cache fill, just forwarding response
1518                // responseLatency is the latency of the return path
1519                // from lower level cahces/memory to the core.
1520                completion_time += clockEdge(responseLatency) +
1521                    pkt->payloadDelay;
1522                if (pkt->isRead() && !is_error) {
1523                    // sanity check
1524                    assert(pkt->getAddr() == tgt_pkt->getAddr());
1525                    assert(pkt->getSize() >= tgt_pkt->getSize());
1526
1527                    tgt_pkt->setData(pkt->getConstPtr<uint8_t>());
1528                }
1529            }
1530            tgt_pkt->makeTimingResponse();
1531            // if this packet is an error copy that to the new packet
1532            if (is_error)
1533                tgt_pkt->copyError(pkt);
1534            if (tgt_pkt->cmd == MemCmd::ReadResp &&
1535                (is_invalidate || mshr->hasPostInvalidate())) {
1536                // If intermediate cache got ReadRespWithInvalidate,
1537                // propagate that.  Response should not have
1538                // isInvalidate() set otherwise.
1539                tgt_pkt->cmd = MemCmd::ReadRespWithInvalidate;
1540                DPRINTF(Cache, "%s: updated cmd to %s\n", __func__,
1541                        tgt_pkt->print());
1542            }
1543            // Reset the bus additional time as it is now accounted for
1544            tgt_pkt->headerDelay = tgt_pkt->payloadDelay = 0;
1545            cpuSidePort->schedTimingResp(tgt_pkt, completion_time, true);
1546            break;
1547
1548          case MSHR::Target::FromPrefetcher:
1549            assert(tgt_pkt->cmd == MemCmd::HardPFReq);
1550            if (blk)
1551                blk->status |= BlkHWPrefetched;
1552            delete tgt_pkt->req;
1553            delete tgt_pkt;
1554            break;
1555
1556          case MSHR::Target::FromSnoop:
1557            // I don't believe that a snoop can be in an error state
1558            assert(!is_error);
1559            // response to snoop request
1560            DPRINTF(Cache, "processing deferred snoop...\n");
1561            // If the response is invalidating, a snooping target can
1562            // be satisfied if it is also invalidating. If the reponse is, not
1563            // only invalidating, but more specifically an InvalidateResp and
1564            // the MSHR was created due to an InvalidateReq then a cache above
1565            // is waiting to satisfy a WriteLineReq. In this case even an
1566            // non-invalidating snoop is added as a target here since this is
1567            // the ordering point. When the InvalidateResp reaches this cache,
1568            // the snooping target will snoop further the cache above with the
1569            // WriteLineReq.
1570            assert(!is_invalidate || pkt->cmd == MemCmd::InvalidateResp ||
1571                   pkt->req->isCacheMaintenance() ||
1572                   mshr->hasPostInvalidate());
1573            handleSnoop(tgt_pkt, blk, true, true, mshr->hasPostInvalidate());
1574            break;
1575
1576          default:
1577            panic("Illegal target->source enum %d\n", target.source);
1578        }
1579    }
1580
1581    maintainClusivity(from_cache, blk);
1582
1583    if (blk && blk->isValid()) {
1584        // an invalidate response stemming from a write line request
1585        // should not invalidate the block, so check if the
1586        // invalidation should be discarded
1587        if (is_invalidate || mshr->hasPostInvalidate()) {
1588            invalidateBlock(blk);
1589        } else if (mshr->hasPostDowngrade()) {
1590            blk->status &= ~BlkWritable;
1591        }
1592    }
1593
1594    if (mshr->promoteDeferredTargets()) {
1595        // avoid later read getting stale data while write miss is
1596        // outstanding.. see comment in timingAccess()
1597        if (blk) {
1598            blk->status &= ~BlkReadable;
1599        }
1600        mshrQueue.markPending(mshr);
1601        schedMemSideSendEvent(clockEdge() + pkt->payloadDelay);
1602    } else {
1603        mshrQueue.deallocate(mshr);
1604        if (wasFull && !mshrQueue.isFull()) {
1605            clearBlocked(Blocked_NoMSHRs);
1606        }
1607
1608        // Request the bus for a prefetch if this deallocation freed enough
1609        // MSHRs for a prefetch to take place
1610        if (prefetcher && mshrQueue.canPrefetch()) {
1611            Tick next_pf_time = std::max(prefetcher->nextPrefetchReadyTime(),
1612                                         clockEdge());
1613            if (next_pf_time != MaxTick)
1614                schedMemSideSendEvent(next_pf_time);
1615        }
1616    }
1617    // reset the xbar additional timinig  as it is now accounted for
1618    pkt->headerDelay = pkt->payloadDelay = 0;
1619
1620    // copy writebacks to write buffer
1621    doWritebacks(writebacks, forward_time);
1622
1623    // if we used temp block, check to see if its valid and then clear it out
1624    if (blk == tempBlock && tempBlock->isValid()) {
1625        // We use forwardLatency here because we are copying
1626        // Writebacks/CleanEvicts to write buffer. It specifies the latency to
1627        // allocate an internal buffer and to schedule an event to the
1628        // queued port.
1629        if (blk->isDirty() || writebackClean) {
1630            PacketPtr wbPkt = writebackBlk(blk);
1631            allocateWriteBuffer(wbPkt, forward_time);
1632            // Set BLOCK_CACHED flag if cached above.
1633            if (isCachedAbove(wbPkt))
1634                wbPkt->setBlockCached();
1635        } else {
1636            PacketPtr wcPkt = cleanEvictBlk(blk);
1637            // Check to see if block is cached above. If not allocate
1638            // write buffer
1639            if (isCachedAbove(wcPkt))
1640                delete wcPkt;
1641            else
1642                allocateWriteBuffer(wcPkt, forward_time);
1643        }
1644        invalidateBlock(blk);
1645    }
1646
1647    DPRINTF(CacheVerbose, "%s: Leaving with %s\n", __func__, pkt->print());
1648    delete pkt;
1649}
1650
1651PacketPtr
1652Cache::writebackBlk(CacheBlk *blk)
1653{
1654    chatty_assert(!isReadOnly || writebackClean,
1655                  "Writeback from read-only cache");
1656    assert(blk && blk->isValid() && (blk->isDirty() || writebackClean));
1657
1658    writebacks[Request::wbMasterId]++;
1659
1660    Request *req = new Request(tags->regenerateBlkAddr(blk), blkSize, 0,
1661                               Request::wbMasterId);
1662    if (blk->isSecure())
1663        req->setFlags(Request::SECURE);
1664
1665    req->taskId(blk->task_id);
1666
1667    PacketPtr pkt =
1668        new Packet(req, blk->isDirty() ?
1669                   MemCmd::WritebackDirty : MemCmd::WritebackClean);
1670
1671    DPRINTF(Cache, "Create Writeback %s writable: %d, dirty: %d\n",
1672            pkt->print(), blk->isWritable(), blk->isDirty());
1673
1674    if (blk->isWritable()) {
1675        // not asserting shared means we pass the block in modified
1676        // state, mark our own block non-writeable
1677        blk->status &= ~BlkWritable;
1678    } else {
1679        // we are in the Owned state, tell the receiver
1680        pkt->setHasSharers();
1681    }
1682
1683    // make sure the block is not marked dirty
1684    blk->status &= ~BlkDirty;
1685
1686    pkt->allocate();
1687    std::memcpy(pkt->getPtr<uint8_t>(), blk->data, blkSize);
1688
1689    return pkt;
1690}
1691
1692PacketPtr
1693Cache::writecleanBlk(CacheBlk *blk, Request::Flags dest, PacketId id)
1694{
1695    Request *req = new Request(tags->regenerateBlkAddr(blk), blkSize, 0,
1696                               Request::wbMasterId);
1697    if (blk->isSecure()) {
1698        req->setFlags(Request::SECURE);
1699    }
1700    req->taskId(blk->task_id);
1701
1702    PacketPtr pkt = new Packet(req, MemCmd::WriteClean, blkSize, id);
1703
1704    if (dest) {
1705        req->setFlags(dest);
1706        pkt->setWriteThrough();
1707    }
1708
1709    DPRINTF(Cache, "Create %s writable: %d, dirty: %d\n", pkt->print(),
1710            blk->isWritable(), blk->isDirty());
1711
1712    if (blk->isWritable()) {
1713        // not asserting shared means we pass the block in modified
1714        // state, mark our own block non-writeable
1715        blk->status &= ~BlkWritable;
1716    } else {
1717        // we are in the Owned state, tell the receiver
1718        pkt->setHasSharers();
1719    }
1720
1721    // make sure the block is not marked dirty
1722    blk->status &= ~BlkDirty;
1723
1724    pkt->allocate();
1725    std::memcpy(pkt->getPtr<uint8_t>(), blk->data, blkSize);
1726
1727    return pkt;
1728}
1729
1730
1731PacketPtr
1732Cache::cleanEvictBlk(CacheBlk *blk)
1733{
1734    assert(!writebackClean);
1735    assert(blk && blk->isValid() && !blk->isDirty());
1736    // Creating a zero sized write, a message to the snoop filter
1737    Request *req =
1738        new Request(tags->regenerateBlkAddr(blk), blkSize, 0,
1739                    Request::wbMasterId);
1740    if (blk->isSecure())
1741        req->setFlags(Request::SECURE);
1742
1743    req->taskId(blk->task_id);
1744
1745    PacketPtr pkt = new Packet(req, MemCmd::CleanEvict);
1746    pkt->allocate();
1747    DPRINTF(Cache, "Create CleanEvict %s\n", pkt->print());
1748
1749    return pkt;
1750}
1751
1752void
1753Cache::memWriteback()
1754{
1755    CacheBlkVisitorWrapper visitor(*this, &Cache::writebackVisitor);
1756    tags->forEachBlk(visitor);
1757}
1758
1759void
1760Cache::memInvalidate()
1761{
1762    CacheBlkVisitorWrapper visitor(*this, &Cache::invalidateVisitor);
1763    tags->forEachBlk(visitor);
1764}
1765
1766bool
1767Cache::isDirty() const
1768{
1769    CacheBlkIsDirtyVisitor visitor;
1770    tags->forEachBlk(visitor);
1771
1772    return visitor.isDirty();
1773}
1774
1775bool
1776Cache::writebackVisitor(CacheBlk &blk)
1777{
1778    if (blk.isDirty()) {
1779        assert(blk.isValid());
1780
1781        Request request(tags->regenerateBlkAddr(&blk), blkSize, 0,
1782                        Request::funcMasterId);
1783        request.taskId(blk.task_id);
1784        if (blk.isSecure()) {
1785            request.setFlags(Request::SECURE);
1786        }
1787
1788        Packet packet(&request, MemCmd::WriteReq);
1789        packet.dataStatic(blk.data);
1790
1791        memSidePort->sendFunctional(&packet);
1792
1793        blk.status &= ~BlkDirty;
1794    }
1795
1796    return true;
1797}
1798
1799bool
1800Cache::invalidateVisitor(CacheBlk &blk)
1801{
1802
1803    if (blk.isDirty())
1804        warn_once("Invalidating dirty cache lines. Expect things to break.\n");
1805
1806    if (blk.isValid()) {
1807        assert(!blk.isDirty());
1808        invalidateBlock(&blk);
1809    }
1810
1811    return true;
1812}
1813
1814CacheBlk*
1815Cache::allocateBlock(Addr addr, bool is_secure, PacketList &writebacks)
1816{
1817    // Find replacement victim
1818    CacheBlk *blk = tags->findVictim(addr);
1819
1820    // It is valid to return nullptr if there is no victim
1821    if (!blk)
1822        return nullptr;
1823
1824    if (blk->isValid()) {
1825        Addr repl_addr = tags->regenerateBlkAddr(blk);
1826        MSHR *repl_mshr = mshrQueue.findMatch(repl_addr, blk->isSecure());
1827        if (repl_mshr) {
1828            // must be an outstanding upgrade or clean request
1829            // on a block we're about to replace...
1830            assert((!blk->isWritable() && repl_mshr->needsWritable()) ||
1831                   repl_mshr->isCleaning());
1832            // too hard to replace block with transient state
1833            // allocation failed, block not inserted
1834            return nullptr;
1835        } else {
1836            DPRINTF(Cache, "replacement: replacing %#llx (%s) with %#llx "
1837                    "(%s): %s\n", repl_addr, blk->isSecure() ? "s" : "ns",
1838                    addr, is_secure ? "s" : "ns",
1839                    blk->isDirty() ? "writeback" : "clean");
1840
1841            if (blk->wasPrefetched()) {
1842                unusedPrefetches++;
1843            }
1844            // Will send up Writeback/CleanEvict snoops via isCachedAbove
1845            // when pushing this writeback list into the write buffer.
1846            if (blk->isDirty() || writebackClean) {
1847                // Save writeback packet for handling by caller
1848                writebacks.push_back(writebackBlk(blk));
1849            } else {
1850                writebacks.push_back(cleanEvictBlk(blk));
1851            }
1852        }
1853    }
1854
1855    return blk;
1856}
1857
1858void
1859Cache::invalidateBlock(CacheBlk *blk)
1860{
1861    if (blk != tempBlock)
1862        tags->invalidate(blk);
1863    blk->invalidate();
1864}
1865
1866// Note that the reason we return a list of writebacks rather than
1867// inserting them directly in the write buffer is that this function
1868// is called by both atomic and timing-mode accesses, and in atomic
1869// mode we don't mess with the write buffer (we just perform the
1870// writebacks atomically once the original request is complete).
1871CacheBlk*
1872Cache::handleFill(PacketPtr pkt, CacheBlk *blk, PacketList &writebacks,
1873                  bool allocate)
1874{
1875    assert(pkt->isResponse() || pkt->cmd == MemCmd::WriteLineReq);
1876    Addr addr = pkt->getAddr();
1877    bool is_secure = pkt->isSecure();
1878#if TRACING_ON
1879    CacheBlk::State old_state = blk ? blk->status : 0;
1880#endif
1881
1882    // When handling a fill, we should have no writes to this line.
1883    assert(addr == pkt->getBlockAddr(blkSize));
1884    assert(!writeBuffer.findMatch(addr, is_secure));
1885
1886    if (blk == nullptr) {
1887        // better have read new data...
1888        assert(pkt->hasData());
1889
1890        // only read responses and write-line requests have data;
1891        // note that we don't write the data here for write-line - that
1892        // happens in the subsequent call to satisfyRequest
1893        assert(pkt->isRead() || pkt->cmd == MemCmd::WriteLineReq);
1894
1895        // need to do a replacement if allocating, otherwise we stick
1896        // with the temporary storage
1897        blk = allocate ? allocateBlock(addr, is_secure, writebacks) : nullptr;
1898
1899        if (blk == nullptr) {
1900            // No replaceable block or a mostly exclusive
1901            // cache... just use temporary storage to complete the
1902            // current request and then get rid of it
1903            assert(!tempBlock->isValid());
1904            blk = tempBlock;
1905            tempBlock->set = tags->extractSet(addr);
1906            tempBlock->tag = tags->extractTag(addr);
1907            if (is_secure) {
1908                tempBlock->status |= BlkSecure;
1909            }
1910            DPRINTF(Cache, "using temp block for %#llx (%s)\n", addr,
1911                    is_secure ? "s" : "ns");
1912        } else {
1913            tags->insertBlock(pkt, blk);
1914        }
1915
1916        // we should never be overwriting a valid block
1917        assert(!blk->isValid());
1918    } else {
1919        // existing block... probably an upgrade
1920        assert(blk->tag == tags->extractTag(addr));
1921        // either we're getting new data or the block should already be valid
1922        assert(pkt->hasData() || blk->isValid());
1923        // don't clear block status... if block is already dirty we
1924        // don't want to lose that
1925    }
1926
1927    if (is_secure)
1928        blk->status |= BlkSecure;
1929    blk->status |= BlkValid | BlkReadable;
1930
1931    // sanity check for whole-line writes, which should always be
1932    // marked as writable as part of the fill, and then later marked
1933    // dirty as part of satisfyRequest
1934    if (pkt->cmd == MemCmd::WriteLineReq) {
1935        assert(!pkt->hasSharers());
1936    }
1937
1938    // here we deal with setting the appropriate state of the line,
1939    // and we start by looking at the hasSharers flag, and ignore the
1940    // cacheResponding flag (normally signalling dirty data) if the
1941    // packet has sharers, thus the line is never allocated as Owned
1942    // (dirty but not writable), and always ends up being either
1943    // Shared, Exclusive or Modified, see Packet::setCacheResponding
1944    // for more details
1945    if (!pkt->hasSharers()) {
1946        // we could get a writable line from memory (rather than a
1947        // cache) even in a read-only cache, note that we set this bit
1948        // even for a read-only cache, possibly revisit this decision
1949        blk->status |= BlkWritable;
1950
1951        // check if we got this via cache-to-cache transfer (i.e., from a
1952        // cache that had the block in Modified or Owned state)
1953        if (pkt->cacheResponding()) {
1954            // we got the block in Modified state, and invalidated the
1955            // owners copy
1956            blk->status |= BlkDirty;
1957
1958            chatty_assert(!isReadOnly, "Should never see dirty snoop response "
1959                          "in read-only cache %s\n", name());
1960        }
1961    }
1962
1963    DPRINTF(Cache, "Block addr %#llx (%s) moving from state %x to %s\n",
1964            addr, is_secure ? "s" : "ns", old_state, blk->print());
1965
1966    // if we got new data, copy it in (checking for a read response
1967    // and a response that has data is the same in the end)
1968    if (pkt->isRead()) {
1969        // sanity checks
1970        assert(pkt->hasData());
1971        assert(pkt->getSize() == blkSize);
1972
1973        std::memcpy(blk->data, pkt->getConstPtr<uint8_t>(), blkSize);
1974    }
1975    // We pay for fillLatency here.
1976    blk->whenReady = clockEdge() + fillLatency * clockPeriod() +
1977        pkt->payloadDelay;
1978
1979    return blk;
1980}
1981
1982
1983/////////////////////////////////////////////////////
1984//
1985// Snoop path: requests coming in from the memory side
1986//
1987/////////////////////////////////////////////////////
1988
1989void
1990Cache::doTimingSupplyResponse(PacketPtr req_pkt, const uint8_t *blk_data,
1991                              bool already_copied, bool pending_inval)
1992{
1993    // sanity check
1994    assert(req_pkt->isRequest());
1995    assert(req_pkt->needsResponse());
1996
1997    DPRINTF(Cache, "%s: for %s\n", __func__, req_pkt->print());
1998    // timing-mode snoop responses require a new packet, unless we
1999    // already made a copy...
2000    PacketPtr pkt = req_pkt;
2001    if (!already_copied)
2002        // do not clear flags, and allocate space for data if the
2003        // packet needs it (the only packets that carry data are read
2004        // responses)
2005        pkt = new Packet(req_pkt, false, req_pkt->isRead());
2006
2007    assert(req_pkt->req->isUncacheable() || req_pkt->isInvalidate() ||
2008           pkt->hasSharers());
2009    pkt->makeTimingResponse();
2010    if (pkt->isRead()) {
2011        pkt->setDataFromBlock(blk_data, blkSize);
2012    }
2013    if (pkt->cmd == MemCmd::ReadResp && pending_inval) {
2014        // Assume we defer a response to a read from a far-away cache
2015        // A, then later defer a ReadExcl from a cache B on the same
2016        // bus as us. We'll assert cacheResponding in both cases, but
2017        // in the latter case cacheResponding will keep the
2018        // invalidation from reaching cache A. This special response
2019        // tells cache A that it gets the block to satisfy its read,
2020        // but must immediately invalidate it.
2021        pkt->cmd = MemCmd::ReadRespWithInvalidate;
2022    }
2023    // Here we consider forward_time, paying for just forward latency and
2024    // also charging the delay provided by the xbar.
2025    // forward_time is used as send_time in next allocateWriteBuffer().
2026    Tick forward_time = clockEdge(forwardLatency) + pkt->headerDelay;
2027    // Here we reset the timing of the packet.
2028    pkt->headerDelay = pkt->payloadDelay = 0;
2029    DPRINTF(CacheVerbose, "%s: created response: %s tick: %lu\n", __func__,
2030            pkt->print(), forward_time);
2031    memSidePort->schedTimingSnoopResp(pkt, forward_time, true);
2032}
2033
2034uint32_t
2035Cache::handleSnoop(PacketPtr pkt, CacheBlk *blk, bool is_timing,
2036                   bool is_deferred, bool pending_inval)
2037{
2038    DPRINTF(CacheVerbose, "%s: for %s\n", __func__, pkt->print());
2039    // deferred snoops can only happen in timing mode
2040    assert(!(is_deferred && !is_timing));
2041    // pending_inval only makes sense on deferred snoops
2042    assert(!(pending_inval && !is_deferred));
2043    assert(pkt->isRequest());
2044
2045    // the packet may get modified if we or a forwarded snooper
2046    // responds in atomic mode, so remember a few things about the
2047    // original packet up front
2048    bool invalidate = pkt->isInvalidate();
2049    bool M5_VAR_USED needs_writable = pkt->needsWritable();
2050
2051    // at the moment we could get an uncacheable write which does not
2052    // have the invalidate flag, and we need a suitable way of dealing
2053    // with this case
2054    panic_if(invalidate && pkt->req->isUncacheable(),
2055             "%s got an invalidating uncacheable snoop request %s",
2056             name(), pkt->print());
2057
2058    uint32_t snoop_delay = 0;
2059
2060    if (forwardSnoops) {
2061        // first propagate snoop upward to see if anyone above us wants to
2062        // handle it.  save & restore packet src since it will get
2063        // rewritten to be relative to cpu-side bus (if any)
2064        bool alreadyResponded = pkt->cacheResponding();
2065        if (is_timing) {
2066            // copy the packet so that we can clear any flags before
2067            // forwarding it upwards, we also allocate data (passing
2068            // the pointer along in case of static data), in case
2069            // there is a snoop hit in upper levels
2070            Packet snoopPkt(pkt, true, true);
2071            snoopPkt.setExpressSnoop();
2072            // the snoop packet does not need to wait any additional
2073            // time
2074            snoopPkt.headerDelay = snoopPkt.payloadDelay = 0;
2075            cpuSidePort->sendTimingSnoopReq(&snoopPkt);
2076
2077            // add the header delay (including crossbar and snoop
2078            // delays) of the upward snoop to the snoop delay for this
2079            // cache
2080            snoop_delay += snoopPkt.headerDelay;
2081
2082            if (snoopPkt.cacheResponding()) {
2083                // cache-to-cache response from some upper cache
2084                assert(!alreadyResponded);
2085                pkt->setCacheResponding();
2086            }
2087            // upstream cache has the block, or has an outstanding
2088            // MSHR, pass the flag on
2089            if (snoopPkt.hasSharers()) {
2090                pkt->setHasSharers();
2091            }
2092            // If this request is a prefetch or clean evict and an upper level
2093            // signals block present, make sure to propagate the block
2094            // presence to the requester.
2095            if (snoopPkt.isBlockCached()) {
2096                pkt->setBlockCached();
2097            }
2098            // If the request was satisfied by snooping the cache
2099            // above, mark the original packet as satisfied too.
2100            if (snoopPkt.satisfied()) {
2101                pkt->setSatisfied();
2102            }
2103        } else {
2104            cpuSidePort->sendAtomicSnoop(pkt);
2105            if (!alreadyResponded && pkt->cacheResponding()) {
2106                // cache-to-cache response from some upper cache:
2107                // forward response to original requester
2108                assert(pkt->isResponse());
2109            }
2110        }
2111    }
2112
2113    bool respond = false;
2114    bool blk_valid = blk && blk->isValid();
2115    if (pkt->isClean()) {
2116        if (blk_valid && blk->isDirty()) {
2117            DPRINTF(CacheVerbose, "%s: packet (snoop) %s found block: %s\n",
2118                    __func__, pkt->print(), blk->print());
2119            PacketPtr wb_pkt = writecleanBlk(blk, pkt->req->getDest(), pkt->id);
2120            PacketList writebacks;
2121            writebacks.push_back(wb_pkt);
2122
2123            if (is_timing) {
2124                // anything that is merely forwarded pays for the forward
2125                // latency and the delay provided by the crossbar
2126                Tick forward_time = clockEdge(forwardLatency) +
2127                    pkt->headerDelay;
2128                doWritebacks(writebacks, forward_time);
2129            } else {
2130                doWritebacksAtomic(writebacks);
2131            }
2132            pkt->setSatisfied();
2133        }
2134    } else if (!blk_valid) {
2135        DPRINTF(CacheVerbose, "%s: snoop miss for %s\n", __func__,
2136                pkt->print());
2137        if (is_deferred) {
2138            // we no longer have the block, and will not respond, but a
2139            // packet was allocated in MSHR::handleSnoop and we have
2140            // to delete it
2141            assert(pkt->needsResponse());
2142
2143            // we have passed the block to a cache upstream, that
2144            // cache should be responding
2145            assert(pkt->cacheResponding());
2146
2147            delete pkt;
2148        }
2149        return snoop_delay;
2150    } else {
2151        DPRINTF(Cache, "%s: snoop hit for %s, old state is %s\n", __func__,
2152                pkt->print(), blk->print());
2153
2154        // We may end up modifying both the block state and the packet (if
2155        // we respond in atomic mode), so just figure out what to do now
2156        // and then do it later. We respond to all snoops that need
2157        // responses provided we have the block in dirty state. The
2158        // invalidation itself is taken care of below. We don't respond to
2159        // cache maintenance operations as this is done by the destination
2160        // xbar.
2161        respond = blk->isDirty() && pkt->needsResponse();
2162
2163        chatty_assert(!(isReadOnly && blk->isDirty()), "Should never have "
2164                      "a dirty block in a read-only cache %s\n", name());
2165    }
2166
2167    // Invalidate any prefetch's from below that would strip write permissions
2168    // MemCmd::HardPFReq is only observed by upstream caches.  After missing
2169    // above and in it's own cache, a new MemCmd::ReadReq is created that
2170    // downstream caches observe.
2171    if (pkt->mustCheckAbove()) {
2172        DPRINTF(Cache, "Found addr %#llx in upper level cache for snoop %s "
2173                "from lower cache\n", pkt->getAddr(), pkt->print());
2174        pkt->setBlockCached();
2175        return snoop_delay;
2176    }
2177
2178    if (pkt->isRead() && !invalidate) {
2179        // reading without requiring the line in a writable state
2180        assert(!needs_writable);
2181        pkt->setHasSharers();
2182
2183        // if the requesting packet is uncacheable, retain the line in
2184        // the current state, otherwhise unset the writable flag,
2185        // which means we go from Modified to Owned (and will respond
2186        // below), remain in Owned (and will respond below), from
2187        // Exclusive to Shared, or remain in Shared
2188        if (!pkt->req->isUncacheable())
2189            blk->status &= ~BlkWritable;
2190        DPRINTF(Cache, "new state is %s\n", blk->print());
2191    }
2192
2193    if (respond) {
2194        // prevent anyone else from responding, cache as well as
2195        // memory, and also prevent any memory from even seeing the
2196        // request
2197        pkt->setCacheResponding();
2198        if (!pkt->isClean() && blk->isWritable()) {
2199            // inform the cache hierarchy that this cache had the line
2200            // in the Modified state so that we avoid unnecessary
2201            // invalidations (see Packet::setResponderHadWritable)
2202            pkt->setResponderHadWritable();
2203
2204            // in the case of an uncacheable request there is no point
2205            // in setting the responderHadWritable flag, but since the
2206            // recipient does not care there is no harm in doing so
2207        } else {
2208            // if the packet has needsWritable set we invalidate our
2209            // copy below and all other copies will be invalidates
2210            // through express snoops, and if needsWritable is not set
2211            // we already called setHasSharers above
2212        }
2213
2214        // if we are returning a writable and dirty (Modified) line,
2215        // we should be invalidating the line
2216        panic_if(!invalidate && !pkt->hasSharers(),
2217                 "%s is passing a Modified line through %s, "
2218                 "but keeping the block", name(), pkt->print());
2219
2220        if (is_timing) {
2221            doTimingSupplyResponse(pkt, blk->data, is_deferred, pending_inval);
2222        } else {
2223            pkt->makeAtomicResponse();
2224            // packets such as upgrades do not actually have any data
2225            // payload
2226            if (pkt->hasData())
2227                pkt->setDataFromBlock(blk->data, blkSize);
2228        }
2229    }
2230
2231    if (!respond && is_deferred) {
2232        assert(pkt->needsResponse());
2233
2234        // if we copied the deferred packet with the intention to
2235        // respond, but are not responding, then a cache above us must
2236        // be, and we can use this as the indication of whether this
2237        // is a packet where we created a copy of the request or not
2238        if (!pkt->cacheResponding()) {
2239            delete pkt->req;
2240        }
2241
2242        delete pkt;
2243    }
2244
2245    // Do this last in case it deallocates block data or something
2246    // like that
2247    if (blk_valid && invalidate) {
2248        invalidateBlock(blk);
2249        DPRINTF(Cache, "new state is %s\n", blk->print());
2250    }
2251
2252    return snoop_delay;
2253}
2254
2255
2256void
2257Cache::recvTimingSnoopReq(PacketPtr pkt)
2258{
2259    DPRINTF(CacheVerbose, "%s: for %s\n", __func__, pkt->print());
2260
2261    // Snoops shouldn't happen when bypassing caches
2262    assert(!system->bypassCaches());
2263
2264    // no need to snoop requests that are not in range
2265    if (!inRange(pkt->getAddr())) {
2266        return;
2267    }
2268
2269    bool is_secure = pkt->isSecure();
2270    CacheBlk *blk = tags->findBlock(pkt->getAddr(), is_secure);
2271
2272    Addr blk_addr = pkt->getBlockAddr(blkSize);
2273    MSHR *mshr = mshrQueue.findMatch(blk_addr, is_secure);
2274
2275    // Update the latency cost of the snoop so that the crossbar can
2276    // account for it. Do not overwrite what other neighbouring caches
2277    // have already done, rather take the maximum. The update is
2278    // tentative, for cases where we return before an upward snoop
2279    // happens below.
2280    pkt->snoopDelay = std::max<uint32_t>(pkt->snoopDelay,
2281                                         lookupLatency * clockPeriod());
2282
2283    // Inform request(Prefetch, CleanEvict or Writeback) from below of
2284    // MSHR hit, set setBlockCached.
2285    if (mshr && pkt->mustCheckAbove()) {
2286        DPRINTF(Cache, "Setting block cached for %s from lower cache on "
2287                "mshr hit\n", pkt->print());
2288        pkt->setBlockCached();
2289        return;
2290    }
2291
2292    // Bypass any existing cache maintenance requests if the request
2293    // has been satisfied already (i.e., the dirty block has been
2294    // found).
2295    if (mshr && pkt->req->isCacheMaintenance() && pkt->satisfied()) {
2296        return;
2297    }
2298
2299    // Let the MSHR itself track the snoop and decide whether we want
2300    // to go ahead and do the regular cache snoop
2301    if (mshr && mshr->handleSnoop(pkt, order++)) {
2302        DPRINTF(Cache, "Deferring snoop on in-service MSHR to blk %#llx (%s)."
2303                "mshrs: %s\n", blk_addr, is_secure ? "s" : "ns",
2304                mshr->print());
2305
2306        if (mshr->getNumTargets() > numTarget)
2307            warn("allocating bonus target for snoop"); //handle later
2308        return;
2309    }
2310
2311    //We also need to check the writeback buffers and handle those
2312    WriteQueueEntry *wb_entry = writeBuffer.findMatch(blk_addr, is_secure);
2313    if (wb_entry) {
2314        DPRINTF(Cache, "Snoop hit in writeback to addr %#llx (%s)\n",
2315                pkt->getAddr(), is_secure ? "s" : "ns");
2316        // Expect to see only Writebacks and/or CleanEvicts here, both of
2317        // which should not be generated for uncacheable data.
2318        assert(!wb_entry->isUncacheable());
2319        // There should only be a single request responsible for generating
2320        // Writebacks/CleanEvicts.
2321        assert(wb_entry->getNumTargets() == 1);
2322        PacketPtr wb_pkt = wb_entry->getTarget()->pkt;
2323        assert(wb_pkt->isEviction() || wb_pkt->cmd == MemCmd::WriteClean);
2324
2325        if (pkt->isEviction()) {
2326            // if the block is found in the write queue, set the BLOCK_CACHED
2327            // flag for Writeback/CleanEvict snoop. On return the snoop will
2328            // propagate the BLOCK_CACHED flag in Writeback packets and prevent
2329            // any CleanEvicts from travelling down the memory hierarchy.
2330            pkt->setBlockCached();
2331            DPRINTF(Cache, "%s: Squashing %s from lower cache on writequeue "
2332                    "hit\n", __func__, pkt->print());
2333            return;
2334        }
2335
2336        // conceptually writebacks are no different to other blocks in
2337        // this cache, so the behaviour is modelled after handleSnoop,
2338        // the difference being that instead of querying the block
2339        // state to determine if it is dirty and writable, we use the
2340        // command and fields of the writeback packet
2341        bool respond = wb_pkt->cmd == MemCmd::WritebackDirty &&
2342            pkt->needsResponse();
2343        bool have_writable = !wb_pkt->hasSharers();
2344        bool invalidate = pkt->isInvalidate();
2345
2346        if (!pkt->req->isUncacheable() && pkt->isRead() && !invalidate) {
2347            assert(!pkt->needsWritable());
2348            pkt->setHasSharers();
2349            wb_pkt->setHasSharers();
2350        }
2351
2352        if (respond) {
2353            pkt->setCacheResponding();
2354
2355            if (have_writable) {
2356                pkt->setResponderHadWritable();
2357            }
2358
2359            doTimingSupplyResponse(pkt, wb_pkt->getConstPtr<uint8_t>(),
2360                                   false, false);
2361        }
2362
2363        if (invalidate && wb_pkt->cmd != MemCmd::WriteClean) {
2364            // Invalidation trumps our writeback... discard here
2365            // Note: markInService will remove entry from writeback buffer.
2366            markInService(wb_entry);
2367            delete wb_pkt;
2368        }
2369    }
2370
2371    // If this was a shared writeback, there may still be
2372    // other shared copies above that require invalidation.
2373    // We could be more selective and return here if the
2374    // request is non-exclusive or if the writeback is
2375    // exclusive.
2376    uint32_t snoop_delay = handleSnoop(pkt, blk, true, false, false);
2377
2378    // Override what we did when we first saw the snoop, as we now
2379    // also have the cost of the upwards snoops to account for
2380    pkt->snoopDelay = std::max<uint32_t>(pkt->snoopDelay, snoop_delay +
2381                                         lookupLatency * clockPeriod());
2382}
2383
2384bool
2385Cache::CpuSidePort::recvTimingSnoopResp(PacketPtr pkt)
2386{
2387    // Express snoop responses from master to slave, e.g., from L1 to L2
2388    cache->recvTimingSnoopResp(pkt);
2389    return true;
2390}
2391
2392Tick
2393Cache::recvAtomicSnoop(PacketPtr pkt)
2394{
2395    // Snoops shouldn't happen when bypassing caches
2396    assert(!system->bypassCaches());
2397
2398    // no need to snoop requests that are not in range.
2399    if (!inRange(pkt->getAddr())) {
2400        return 0;
2401    }
2402
2403    CacheBlk *blk = tags->findBlock(pkt->getAddr(), pkt->isSecure());
2404    uint32_t snoop_delay = handleSnoop(pkt, blk, false, false, false);
2405    return snoop_delay + lookupLatency * clockPeriod();
2406}
2407
2408
2409QueueEntry*
2410Cache::getNextQueueEntry()
2411{
2412    // Check both MSHR queue and write buffer for potential requests,
2413    // note that null does not mean there is no request, it could
2414    // simply be that it is not ready
2415    MSHR *miss_mshr  = mshrQueue.getNext();
2416    WriteQueueEntry *wq_entry = writeBuffer.getNext();
2417
2418    // If we got a write buffer request ready, first priority is a
2419    // full write buffer, otherwise we favour the miss requests
2420    if (wq_entry && (writeBuffer.isFull() || !miss_mshr)) {
2421        // need to search MSHR queue for conflicting earlier miss.
2422        MSHR *conflict_mshr =
2423            mshrQueue.findPending(wq_entry->blkAddr,
2424                                  wq_entry->isSecure);
2425
2426        if (conflict_mshr && conflict_mshr->order < wq_entry->order) {
2427            // Service misses in order until conflict is cleared.
2428            return conflict_mshr;
2429
2430            // @todo Note that we ignore the ready time of the conflict here
2431        }
2432
2433        // No conflicts; issue write
2434        return wq_entry;
2435    } else if (miss_mshr) {
2436        // need to check for conflicting earlier writeback
2437        WriteQueueEntry *conflict_mshr =
2438            writeBuffer.findPending(miss_mshr->blkAddr,
2439                                    miss_mshr->isSecure);
2440        if (conflict_mshr) {
2441            // not sure why we don't check order here... it was in the
2442            // original code but commented out.
2443
2444            // The only way this happens is if we are
2445            // doing a write and we didn't have permissions
2446            // then subsequently saw a writeback (owned got evicted)
2447            // We need to make sure to perform the writeback first
2448            // To preserve the dirty data, then we can issue the write
2449
2450            // should we return wq_entry here instead?  I.e. do we
2451            // have to flush writes in order?  I don't think so... not
2452            // for Alpha anyway.  Maybe for x86?
2453            return conflict_mshr;
2454
2455            // @todo Note that we ignore the ready time of the conflict here
2456        }
2457
2458        // No conflicts; issue read
2459        return miss_mshr;
2460    }
2461
2462    // fall through... no pending requests.  Try a prefetch.
2463    assert(!miss_mshr && !wq_entry);
2464    if (prefetcher && mshrQueue.canPrefetch()) {
2465        // If we have a miss queue slot, we can try a prefetch
2466        PacketPtr pkt = prefetcher->getPacket();
2467        if (pkt) {
2468            Addr pf_addr = pkt->getBlockAddr(blkSize);
2469            if (!tags->findBlock(pf_addr, pkt->isSecure()) &&
2470                !mshrQueue.findMatch(pf_addr, pkt->isSecure()) &&
2471                !writeBuffer.findMatch(pf_addr, pkt->isSecure())) {
2472                // Update statistic on number of prefetches issued
2473                // (hwpf_mshr_misses)
2474                assert(pkt->req->masterId() < system->maxMasters());
2475                mshr_misses[pkt->cmdToIndex()][pkt->req->masterId()]++;
2476
2477                // allocate an MSHR and return it, note
2478                // that we send the packet straight away, so do not
2479                // schedule the send
2480                return allocateMissBuffer(pkt, curTick(), false);
2481            } else {
2482                // free the request and packet
2483                delete pkt->req;
2484                delete pkt;
2485            }
2486        }
2487    }
2488
2489    return nullptr;
2490}
2491
2492bool
2493Cache::isCachedAbove(PacketPtr pkt, bool is_timing) const
2494{
2495    if (!forwardSnoops)
2496        return false;
2497    // Mirroring the flow of HardPFReqs, the cache sends CleanEvict and
2498    // Writeback snoops into upper level caches to check for copies of the
2499    // same block. Using the BLOCK_CACHED flag with the Writeback/CleanEvict
2500    // packet, the cache can inform the crossbar below of presence or absence
2501    // of the block.
2502    if (is_timing) {
2503        Packet snoop_pkt(pkt, true, false);
2504        snoop_pkt.setExpressSnoop();
2505        // Assert that packet is either Writeback or CleanEvict and not a
2506        // prefetch request because prefetch requests need an MSHR and may
2507        // generate a snoop response.
2508        assert(pkt->isEviction() || pkt->cmd == MemCmd::WriteClean);
2509        snoop_pkt.senderState = nullptr;
2510        cpuSidePort->sendTimingSnoopReq(&snoop_pkt);
2511        // Writeback/CleanEvict snoops do not generate a snoop response.
2512        assert(!(snoop_pkt.cacheResponding()));
2513        return snoop_pkt.isBlockCached();
2514    } else {
2515        cpuSidePort->sendAtomicSnoop(pkt);
2516        return pkt->isBlockCached();
2517    }
2518}
2519
2520Tick
2521Cache::nextQueueReadyTime() const
2522{
2523    Tick nextReady = std::min(mshrQueue.nextReadyTime(),
2524                              writeBuffer.nextReadyTime());
2525
2526    // Don't signal prefetch ready time if no MSHRs available
2527    // Will signal once enoguh MSHRs are deallocated
2528    if (prefetcher && mshrQueue.canPrefetch()) {
2529        nextReady = std::min(nextReady,
2530                             prefetcher->nextPrefetchReadyTime());
2531    }
2532
2533    return nextReady;
2534}
2535
2536bool
2537Cache::sendMSHRQueuePacket(MSHR* mshr)
2538{
2539    assert(mshr);
2540
2541    // use request from 1st target
2542    PacketPtr tgt_pkt = mshr->getTarget()->pkt;
2543
2544    DPRINTF(Cache, "%s: MSHR %s\n", __func__, tgt_pkt->print());
2545
2546    CacheBlk *blk = tags->findBlock(mshr->blkAddr, mshr->isSecure);
2547
2548    if (tgt_pkt->cmd == MemCmd::HardPFReq && forwardSnoops) {
2549        // we should never have hardware prefetches to allocated
2550        // blocks
2551        assert(blk == nullptr);
2552
2553        // We need to check the caches above us to verify that
2554        // they don't have a copy of this block in the dirty state
2555        // at the moment. Without this check we could get a stale
2556        // copy from memory that might get used in place of the
2557        // dirty one.
2558        Packet snoop_pkt(tgt_pkt, true, false);
2559        snoop_pkt.setExpressSnoop();
2560        // We are sending this packet upwards, but if it hits we will
2561        // get a snoop response that we end up treating just like a
2562        // normal response, hence it needs the MSHR as its sender
2563        // state
2564        snoop_pkt.senderState = mshr;
2565        cpuSidePort->sendTimingSnoopReq(&snoop_pkt);
2566
2567        // Check to see if the prefetch was squashed by an upper cache (to
2568        // prevent us from grabbing the line) or if a Check to see if a
2569        // writeback arrived between the time the prefetch was placed in
2570        // the MSHRs and when it was selected to be sent or if the
2571        // prefetch was squashed by an upper cache.
2572
2573        // It is important to check cacheResponding before
2574        // prefetchSquashed. If another cache has committed to
2575        // responding, it will be sending a dirty response which will
2576        // arrive at the MSHR allocated for this request. Checking the
2577        // prefetchSquash first may result in the MSHR being
2578        // prematurely deallocated.
2579        if (snoop_pkt.cacheResponding()) {
2580            auto M5_VAR_USED r = outstandingSnoop.insert(snoop_pkt.req);
2581            assert(r.second);
2582
2583            // if we are getting a snoop response with no sharers it
2584            // will be allocated as Modified
2585            bool pending_modified_resp = !snoop_pkt.hasSharers();
2586            markInService(mshr, pending_modified_resp);
2587
2588            DPRINTF(Cache, "Upward snoop of prefetch for addr"
2589                    " %#x (%s) hit\n",
2590                    tgt_pkt->getAddr(), tgt_pkt->isSecure()? "s": "ns");
2591            return false;
2592        }
2593
2594        if (snoop_pkt.isBlockCached()) {
2595            DPRINTF(Cache, "Block present, prefetch squashed by cache.  "
2596                    "Deallocating mshr target %#x.\n",
2597                    mshr->blkAddr);
2598
2599            // Deallocate the mshr target
2600            if (mshrQueue.forceDeallocateTarget(mshr)) {
2601                // Clear block if this deallocation resulted freed an
2602                // mshr when all had previously been utilized
2603                clearBlocked(Blocked_NoMSHRs);
2604            }
2605
2606            // given that no response is expected, delete Request and Packet
2607            delete tgt_pkt->req;
2608            delete tgt_pkt;
2609
2610            return false;
2611        }
2612    }
2613
2614    // either a prefetch that is not present upstream, or a normal
2615    // MSHR request, proceed to get the packet to send downstream
2616    PacketPtr pkt = createMissPacket(tgt_pkt, blk, mshr->needsWritable());
2617
2618    mshr->isForward = (pkt == nullptr);
2619
2620    if (mshr->isForward) {
2621        // not a cache block request, but a response is expected
2622        // make copy of current packet to forward, keep current
2623        // copy for response handling
2624        pkt = new Packet(tgt_pkt, false, true);
2625        assert(!pkt->isWrite());
2626    }
2627
2628    // play it safe and append (rather than set) the sender state,
2629    // as forwarded packets may already have existing state
2630    pkt->pushSenderState(mshr);
2631
2632    if (pkt->isClean() && blk && blk->isDirty()) {
2633        // A cache clean opearation is looking for a dirty block. Mark
2634        // the packet so that the destination xbar can determine that
2635        // there will be a follow-up write packet as well.
2636        pkt->setSatisfied();
2637    }
2638
2639    if (!memSidePort->sendTimingReq(pkt)) {
2640        // we are awaiting a retry, but we
2641        // delete the packet and will be creating a new packet
2642        // when we get the opportunity
2643        delete pkt;
2644
2645        // note that we have now masked any requestBus and
2646        // schedSendEvent (we will wait for a retry before
2647        // doing anything), and this is so even if we do not
2648        // care about this packet and might override it before
2649        // it gets retried
2650        return true;
2651    } else {
2652        // As part of the call to sendTimingReq the packet is
2653        // forwarded to all neighbouring caches (and any caches
2654        // above them) as a snoop. Thus at this point we know if
2655        // any of the neighbouring caches are responding, and if
2656        // so, we know it is dirty, and we can determine if it is
2657        // being passed as Modified, making our MSHR the ordering
2658        // point
2659        bool pending_modified_resp = !pkt->hasSharers() &&
2660            pkt->cacheResponding();
2661        markInService(mshr, pending_modified_resp);
2662        if (pkt->isClean() && blk && blk->isDirty()) {
2663            // A cache clean opearation is looking for a dirty
2664            // block. If a dirty block is encountered a WriteClean
2665            // will update any copies to the path to the memory
2666            // until the point of reference.
2667            DPRINTF(CacheVerbose, "%s: packet %s found block: %s\n",
2668                    __func__, pkt->print(), blk->print());
2669            PacketPtr wb_pkt = writecleanBlk(blk, pkt->req->getDest(),
2670                                             pkt->id);
2671            PacketList writebacks;
2672            writebacks.push_back(wb_pkt);
2673            doWritebacks(writebacks, 0);
2674        }
2675
2676        return false;
2677    }
2678}
2679
2680bool
2681Cache::sendWriteQueuePacket(WriteQueueEntry* wq_entry)
2682{
2683    assert(wq_entry);
2684
2685    // always a single target for write queue entries
2686    PacketPtr tgt_pkt = wq_entry->getTarget()->pkt;
2687
2688    DPRINTF(Cache, "%s: write %s\n", __func__, tgt_pkt->print());
2689
2690    // forward as is, both for evictions and uncacheable writes
2691    if (!memSidePort->sendTimingReq(tgt_pkt)) {
2692        // note that we have now masked any requestBus and
2693        // schedSendEvent (we will wait for a retry before
2694        // doing anything), and this is so even if we do not
2695        // care about this packet and might override it before
2696        // it gets retried
2697        return true;
2698    } else {
2699        markInService(wq_entry);
2700        return false;
2701    }
2702}
2703
2704void
2705Cache::serialize(CheckpointOut &cp) const
2706{
2707    bool dirty(isDirty());
2708
2709    if (dirty) {
2710        warn("*** The cache still contains dirty data. ***\n");
2711        warn("    Make sure to drain the system using the correct flags.\n");
2712        warn("    This checkpoint will not restore correctly and dirty data "
2713             "    in the cache will be lost!\n");
2714    }
2715
2716    // Since we don't checkpoint the data in the cache, any dirty data
2717    // will be lost when restoring from a checkpoint of a system that
2718    // wasn't drained properly. Flag the checkpoint as invalid if the
2719    // cache contains dirty data.
2720    bool bad_checkpoint(dirty);
2721    SERIALIZE_SCALAR(bad_checkpoint);
2722}
2723
2724void
2725Cache::unserialize(CheckpointIn &cp)
2726{
2727    bool bad_checkpoint;
2728    UNSERIALIZE_SCALAR(bad_checkpoint);
2729    if (bad_checkpoint) {
2730        fatal("Restoring from checkpoints with dirty caches is not supported "
2731              "in the classic memory system. Please remove any caches or "
2732              " drain them properly before taking checkpoints.\n");
2733    }
2734}
2735
2736///////////////
2737//
2738// CpuSidePort
2739//
2740///////////////
2741
2742AddrRangeList
2743Cache::CpuSidePort::getAddrRanges() const
2744{
2745    return cache->getAddrRanges();
2746}
2747
2748bool
2749Cache::CpuSidePort::tryTiming(PacketPtr pkt)
2750{
2751    assert(!cache->system->bypassCaches());
2752
2753    // always let express snoop packets through if even if blocked
2754    if (pkt->isExpressSnoop()) {
2755        return true;
2756    } else if (isBlocked() || mustSendRetry) {
2757        // either already committed to send a retry, or blocked
2758        mustSendRetry = true;
2759        return false;
2760    }
2761    mustSendRetry = false;
2762    return true;
2763}
2764
2765bool
2766Cache::CpuSidePort::recvTimingReq(PacketPtr pkt)
2767{
2768    assert(!cache->system->bypassCaches());
2769
2770    // always let express snoop packets through if even if blocked
2771    if (pkt->isExpressSnoop() || tryTiming(pkt)) {
2772        cache->recvTimingReq(pkt);
2773        return true;
2774    }
2775    return false;
2776}
2777
2778Tick
2779Cache::CpuSidePort::recvAtomic(PacketPtr pkt)
2780{
2781    return cache->recvAtomic(pkt);
2782}
2783
2784void
2785Cache::CpuSidePort::recvFunctional(PacketPtr pkt)
2786{
2787    // functional request
2788    cache->functionalAccess(pkt, true);
2789}
2790
2791Cache::
2792CpuSidePort::CpuSidePort(const std::string &_name, Cache *_cache,
2793                         const std::string &_label)
2794    : BaseCache::CacheSlavePort(_name, _cache, _label), cache(_cache)
2795{
2796}
2797
2798Cache*
2799CacheParams::create()
2800{
2801    assert(tags);
2802    assert(replacement_policy);
2803
2804    return new Cache(this);
2805}
2806///////////////
2807//
2808// MemSidePort
2809//
2810///////////////
2811
2812bool
2813Cache::MemSidePort::recvTimingResp(PacketPtr pkt)
2814{
2815    cache->recvTimingResp(pkt);
2816    return true;
2817}
2818
2819// Express snooping requests to memside port
2820void
2821Cache::MemSidePort::recvTimingSnoopReq(PacketPtr pkt)
2822{
2823    // handle snooping requests
2824    cache->recvTimingSnoopReq(pkt);
2825}
2826
2827Tick
2828Cache::MemSidePort::recvAtomicSnoop(PacketPtr pkt)
2829{
2830    return cache->recvAtomicSnoop(pkt);
2831}
2832
2833void
2834Cache::MemSidePort::recvFunctionalSnoop(PacketPtr pkt)
2835{
2836    // functional snoop (note that in contrast to atomic we don't have
2837    // a specific functionalSnoop method, as they have the same
2838    // behaviour regardless)
2839    cache->functionalAccess(pkt, false);
2840}
2841
2842void
2843Cache::CacheReqPacketQueue::sendDeferredPacket()
2844{
2845    // sanity check
2846    assert(!waitingOnRetry);
2847
2848    // there should never be any deferred request packets in the
2849    // queue, instead we resly on the cache to provide the packets
2850    // from the MSHR queue or write queue
2851    assert(deferredPacketReadyTime() == MaxTick);
2852
2853    // check for request packets (requests & writebacks)
2854    QueueEntry* entry = cache.getNextQueueEntry();
2855
2856    if (!entry) {
2857        // can happen if e.g. we attempt a writeback and fail, but
2858        // before the retry, the writeback is eliminated because
2859        // we snoop another cache's ReadEx.
2860    } else {
2861        // let our snoop responses go first if there are responses to
2862        // the same addresses
2863        if (checkConflictingSnoop(entry->blkAddr)) {
2864            return;
2865        }
2866        waitingOnRetry = entry->sendPacket(cache);
2867    }
2868
2869    // if we succeeded and are not waiting for a retry, schedule the
2870    // next send considering when the next queue is ready, note that
2871    // snoop responses have their own packet queue and thus schedule
2872    // their own events
2873    if (!waitingOnRetry) {
2874        schedSendEvent(cache.nextQueueReadyTime());
2875    }
2876}
2877
2878Cache::
2879MemSidePort::MemSidePort(const std::string &_name, Cache *_cache,
2880                         const std::string &_label)
2881    : BaseCache::CacheMasterPort(_name, _cache, _reqQueue, _snoopRespQueue),
2882      _reqQueue(*_cache, *this, _snoopRespQueue, _label),
2883      _snoopRespQueue(*_cache, *this, _label), cache(_cache)
2884{
2885}
2886