cache.cc revision 12348:bef2d9d3c353
1/*
2 * Copyright (c) 2010-2017 ARM Limited
3 * All rights reserved.
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder.  You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2002-2005 The Regents of The University of Michigan
15 * Copyright (c) 2010,2015 Advanced Micro Devices, Inc.
16 * All rights reserved.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions are
20 * met: redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer;
22 * redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution;
25 * neither the name of the copyright holders nor the names of its
26 * contributors may be used to endorse or promote products derived from
27 * this software without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40 *
41 * Authors: Erik Hallnor
42 *          Dave Greene
43 *          Nathan Binkert
44 *          Steve Reinhardt
45 *          Ron Dreslinski
46 *          Andreas Sandberg
47 */
48
49/**
50 * @file
51 * Cache definitions.
52 */
53
54#include "mem/cache/cache.hh"
55
56#include "base/logging.hh"
57#include "base/types.hh"
58#include "debug/Cache.hh"
59#include "debug/CachePort.hh"
60#include "debug/CacheTags.hh"
61#include "debug/CacheVerbose.hh"
62#include "mem/cache/blk.hh"
63#include "mem/cache/mshr.hh"
64#include "mem/cache/prefetch/base.hh"
65#include "sim/sim_exit.hh"
66
67Cache::Cache(const CacheParams *p)
68    : BaseCache(p, p->system->cacheLineSize()),
69      tags(p->tags),
70      prefetcher(p->prefetcher),
71      doFastWrites(true),
72      prefetchOnAccess(p->prefetch_on_access),
73      clusivity(p->clusivity),
74      writebackClean(p->writeback_clean),
75      tempBlockWriteback(nullptr),
76      writebackTempBlockAtomicEvent([this]{ writebackTempBlockAtomic(); },
77                                    name(), false,
78                                    EventBase::Delayed_Writeback_Pri)
79{
80    tempBlock = new CacheBlk();
81    tempBlock->data = new uint8_t[blkSize];
82
83    cpuSidePort = new CpuSidePort(p->name + ".cpu_side", this,
84                                  "CpuSidePort");
85    memSidePort = new MemSidePort(p->name + ".mem_side", this,
86                                  "MemSidePort");
87
88    tags->setCache(this);
89    if (prefetcher)
90        prefetcher->setCache(this);
91}
92
93Cache::~Cache()
94{
95    delete [] tempBlock->data;
96    delete tempBlock;
97
98    delete cpuSidePort;
99    delete memSidePort;
100}
101
102void
103Cache::regStats()
104{
105    BaseCache::regStats();
106}
107
108void
109Cache::cmpAndSwap(CacheBlk *blk, PacketPtr pkt)
110{
111    assert(pkt->isRequest());
112
113    uint64_t overwrite_val;
114    bool overwrite_mem;
115    uint64_t condition_val64;
116    uint32_t condition_val32;
117
118    int offset = tags->extractBlkOffset(pkt->getAddr());
119    uint8_t *blk_data = blk->data + offset;
120
121    assert(sizeof(uint64_t) >= pkt->getSize());
122
123    overwrite_mem = true;
124    // keep a copy of our possible write value, and copy what is at the
125    // memory address into the packet
126    pkt->writeData((uint8_t *)&overwrite_val);
127    pkt->setData(blk_data);
128
129    if (pkt->req->isCondSwap()) {
130        if (pkt->getSize() == sizeof(uint64_t)) {
131            condition_val64 = pkt->req->getExtraData();
132            overwrite_mem = !std::memcmp(&condition_val64, blk_data,
133                                         sizeof(uint64_t));
134        } else if (pkt->getSize() == sizeof(uint32_t)) {
135            condition_val32 = (uint32_t)pkt->req->getExtraData();
136            overwrite_mem = !std::memcmp(&condition_val32, blk_data,
137                                         sizeof(uint32_t));
138        } else
139            panic("Invalid size for conditional read/write\n");
140    }
141
142    if (overwrite_mem) {
143        std::memcpy(blk_data, &overwrite_val, pkt->getSize());
144        blk->status |= BlkDirty;
145    }
146}
147
148
149void
150Cache::satisfyRequest(PacketPtr pkt, CacheBlk *blk,
151                      bool deferred_response, bool pending_downgrade)
152{
153    assert(pkt->isRequest());
154
155    assert(blk && blk->isValid());
156    // Occasionally this is not true... if we are a lower-level cache
157    // satisfying a string of Read and ReadEx requests from
158    // upper-level caches, a Read will mark the block as shared but we
159    // can satisfy a following ReadEx anyway since we can rely on the
160    // Read requester(s) to have buffered the ReadEx snoop and to
161    // invalidate their blocks after receiving them.
162    // assert(!pkt->needsWritable() || blk->isWritable());
163    assert(pkt->getOffset(blkSize) + pkt->getSize() <= blkSize);
164
165    // Check RMW operations first since both isRead() and
166    // isWrite() will be true for them
167    if (pkt->cmd == MemCmd::SwapReq) {
168        cmpAndSwap(blk, pkt);
169    } else if (pkt->isWrite()) {
170        // we have the block in a writable state and can go ahead,
171        // note that the line may be also be considered writable in
172        // downstream caches along the path to memory, but always
173        // Exclusive, and never Modified
174        assert(blk->isWritable());
175        // Write or WriteLine at the first cache with block in writable state
176        if (blk->checkWrite(pkt)) {
177            pkt->writeDataToBlock(blk->data, blkSize);
178        }
179        // Always mark the line as dirty (and thus transition to the
180        // Modified state) even if we are a failed StoreCond so we
181        // supply data to any snoops that have appended themselves to
182        // this cache before knowing the store will fail.
183        blk->status |= BlkDirty;
184        DPRINTF(CacheVerbose, "%s for %s (write)\n", __func__, pkt->print());
185    } else if (pkt->isRead()) {
186        if (pkt->isLLSC()) {
187            blk->trackLoadLocked(pkt);
188        }
189
190        // all read responses have a data payload
191        assert(pkt->hasRespData());
192        pkt->setDataFromBlock(blk->data, blkSize);
193
194        // determine if this read is from a (coherent) cache or not
195        if (pkt->fromCache()) {
196            assert(pkt->getSize() == blkSize);
197            // special handling for coherent block requests from
198            // upper-level caches
199            if (pkt->needsWritable()) {
200                // sanity check
201                assert(pkt->cmd == MemCmd::ReadExReq ||
202                       pkt->cmd == MemCmd::SCUpgradeFailReq);
203                assert(!pkt->hasSharers());
204
205                // if we have a dirty copy, make sure the recipient
206                // keeps it marked dirty (in the modified state)
207                if (blk->isDirty()) {
208                    pkt->setCacheResponding();
209                    blk->status &= ~BlkDirty;
210                }
211            } else if (blk->isWritable() && !pending_downgrade &&
212                       !pkt->hasSharers() &&
213                       pkt->cmd != MemCmd::ReadCleanReq) {
214                // we can give the requester a writable copy on a read
215                // request if:
216                // - we have a writable copy at this level (& below)
217                // - we don't have a pending snoop from below
218                //   signaling another read request
219                // - no other cache above has a copy (otherwise it
220                //   would have set hasSharers flag when
221                //   snooping the packet)
222                // - the read has explicitly asked for a clean
223                //   copy of the line
224                if (blk->isDirty()) {
225                    // special considerations if we're owner:
226                    if (!deferred_response) {
227                        // respond with the line in Modified state
228                        // (cacheResponding set, hasSharers not set)
229                        pkt->setCacheResponding();
230
231                        // if this cache is mostly inclusive, we
232                        // keep the block in the Exclusive state,
233                        // and pass it upwards as Modified
234                        // (writable and dirty), hence we have
235                        // multiple caches, all on the same path
236                        // towards memory, all considering the
237                        // same block writable, but only one
238                        // considering it Modified
239
240                        // we get away with multiple caches (on
241                        // the same path to memory) considering
242                        // the block writeable as we always enter
243                        // the cache hierarchy through a cache,
244                        // and first snoop upwards in all other
245                        // branches
246                        blk->status &= ~BlkDirty;
247                    } else {
248                        // if we're responding after our own miss,
249                        // there's a window where the recipient didn't
250                        // know it was getting ownership and may not
251                        // have responded to snoops correctly, so we
252                        // have to respond with a shared line
253                        pkt->setHasSharers();
254                    }
255                }
256            } else {
257                // otherwise only respond with a shared copy
258                pkt->setHasSharers();
259            }
260        }
261    } else if (pkt->isUpgrade()) {
262        // sanity check
263        assert(!pkt->hasSharers());
264
265        if (blk->isDirty()) {
266            // we were in the Owned state, and a cache above us that
267            // has the line in Shared state needs to be made aware
268            // that the data it already has is in fact dirty
269            pkt->setCacheResponding();
270            blk->status &= ~BlkDirty;
271        }
272    } else {
273        assert(pkt->isInvalidate());
274        invalidateBlock(blk);
275        DPRINTF(CacheVerbose, "%s for %s (invalidation)\n", __func__,
276                pkt->print());
277    }
278}
279
280/////////////////////////////////////////////////////
281//
282// Access path: requests coming in from the CPU side
283//
284/////////////////////////////////////////////////////
285
286bool
287Cache::access(PacketPtr pkt, CacheBlk *&blk, Cycles &lat,
288              PacketList &writebacks)
289{
290    // sanity check
291    assert(pkt->isRequest());
292
293    chatty_assert(!(isReadOnly && pkt->isWrite()),
294                  "Should never see a write in a read-only cache %s\n",
295                  name());
296
297    DPRINTF(CacheVerbose, "%s for %s\n", __func__, pkt->print());
298
299    if (pkt->req->isUncacheable()) {
300        DPRINTF(Cache, "uncacheable: %s\n", pkt->print());
301
302        // flush and invalidate any existing block
303        CacheBlk *old_blk(tags->findBlock(pkt->getAddr(), pkt->isSecure()));
304        if (old_blk && old_blk->isValid()) {
305            if (old_blk->isDirty() || writebackClean)
306                writebacks.push_back(writebackBlk(old_blk));
307            else
308                writebacks.push_back(cleanEvictBlk(old_blk));
309            invalidateBlock(old_blk);
310        }
311
312        blk = nullptr;
313        // lookupLatency is the latency in case the request is uncacheable.
314        lat = lookupLatency;
315        return false;
316    }
317
318    // Here lat is the value passed as parameter to accessBlock() function
319    // that can modify its value.
320    blk = tags->accessBlock(pkt->getAddr(), pkt->isSecure(), lat);
321
322    DPRINTF(Cache, "%s %s\n", pkt->print(),
323            blk ? "hit " + blk->print() : "miss");
324
325
326    if (pkt->isEviction()) {
327        // We check for presence of block in above caches before issuing
328        // Writeback or CleanEvict to write buffer. Therefore the only
329        // possible cases can be of a CleanEvict packet coming from above
330        // encountering a Writeback generated in this cache peer cache and
331        // waiting in the write buffer. Cases of upper level peer caches
332        // generating CleanEvict and Writeback or simply CleanEvict and
333        // CleanEvict almost simultaneously will be caught by snoops sent out
334        // by crossbar.
335        WriteQueueEntry *wb_entry = writeBuffer.findMatch(pkt->getAddr(),
336                                                          pkt->isSecure());
337        if (wb_entry) {
338            assert(wb_entry->getNumTargets() == 1);
339            PacketPtr wbPkt = wb_entry->getTarget()->pkt;
340            assert(wbPkt->isWriteback());
341
342            if (pkt->isCleanEviction()) {
343                // The CleanEvict and WritebackClean snoops into other
344                // peer caches of the same level while traversing the
345                // crossbar. If a copy of the block is found, the
346                // packet is deleted in the crossbar. Hence, none of
347                // the other upper level caches connected to this
348                // cache have the block, so we can clear the
349                // BLOCK_CACHED flag in the Writeback if set and
350                // discard the CleanEvict by returning true.
351                wbPkt->clearBlockCached();
352                return true;
353            } else {
354                assert(pkt->cmd == MemCmd::WritebackDirty);
355                // Dirty writeback from above trumps our clean
356                // writeback... discard here
357                // Note: markInService will remove entry from writeback buffer.
358                markInService(wb_entry);
359                delete wbPkt;
360            }
361        }
362    }
363
364    // Writeback handling is special case.  We can write the block into
365    // the cache without having a writeable copy (or any copy at all).
366    if (pkt->isWriteback()) {
367        assert(blkSize == pkt->getSize());
368
369        // we could get a clean writeback while we are having
370        // outstanding accesses to a block, do the simple thing for
371        // now and drop the clean writeback so that we do not upset
372        // any ordering/decisions about ownership already taken
373        if (pkt->cmd == MemCmd::WritebackClean &&
374            mshrQueue.findMatch(pkt->getAddr(), pkt->isSecure())) {
375            DPRINTF(Cache, "Clean writeback %#llx to block with MSHR, "
376                    "dropping\n", pkt->getAddr());
377            return true;
378        }
379
380        if (blk == nullptr) {
381            // need to do a replacement
382            blk = allocateBlock(pkt->getAddr(), pkt->isSecure(), writebacks);
383            if (blk == nullptr) {
384                // no replaceable block available: give up, fwd to next level.
385                incMissCount(pkt);
386                return false;
387            }
388            tags->insertBlock(pkt, blk);
389
390            blk->status = (BlkValid | BlkReadable);
391            if (pkt->isSecure()) {
392                blk->status |= BlkSecure;
393            }
394        }
395        // only mark the block dirty if we got a writeback command,
396        // and leave it as is for a clean writeback
397        if (pkt->cmd == MemCmd::WritebackDirty) {
398            blk->status |= BlkDirty;
399        }
400        // if the packet does not have sharers, it is passing
401        // writable, and we got the writeback in Modified or Exclusive
402        // state, if not we are in the Owned or Shared state
403        if (!pkt->hasSharers()) {
404            blk->status |= BlkWritable;
405        }
406        // nothing else to do; writeback doesn't expect response
407        assert(!pkt->needsResponse());
408        std::memcpy(blk->data, pkt->getConstPtr<uint8_t>(), blkSize);
409        DPRINTF(Cache, "%s new state is %s\n", __func__, blk->print());
410        incHitCount(pkt);
411        return true;
412    } else if (pkt->cmd == MemCmd::CleanEvict) {
413        if (blk != nullptr) {
414            // Found the block in the tags, need to stop CleanEvict from
415            // propagating further down the hierarchy. Returning true will
416            // treat the CleanEvict like a satisfied write request and delete
417            // it.
418            return true;
419        }
420        // We didn't find the block here, propagate the CleanEvict further
421        // down the memory hierarchy. Returning false will treat the CleanEvict
422        // like a Writeback which could not find a replaceable block so has to
423        // go to next level.
424        return false;
425    } else if (pkt->cmd == MemCmd::WriteClean) {
426        // WriteClean handling is a special case. We can allocate a
427        // block directly if it doesn't exist and we can update the
428        // block immediately. The WriteClean transfers the ownership
429        // of the block as well.
430        assert(blkSize == pkt->getSize());
431
432        if (!blk) {
433            if (pkt->writeThrough()) {
434                // if this is a write through packet, we don't try to
435                // allocate if the block is not present
436                return false;
437            } else {
438                // a writeback that misses needs to allocate a new block
439                blk = allocateBlock(pkt->getAddr(), pkt->isSecure(),
440                                    writebacks);
441                if (!blk) {
442                    // no replaceable block available: give up, fwd to
443                    // next level.
444                    incMissCount(pkt);
445                    return false;
446                }
447                tags->insertBlock(pkt, blk);
448
449                blk->status = (BlkValid | BlkReadable);
450                if (pkt->isSecure()) {
451                    blk->status |= BlkSecure;
452                }
453            }
454        }
455
456        // at this point either this is a writeback or a write-through
457        // write clean operation and the block is already in this
458        // cache, we need to update the data and the block flags
459        assert(blk);
460        if (!pkt->writeThrough()) {
461            blk->status |= BlkDirty;
462        }
463        // nothing else to do; writeback doesn't expect response
464        assert(!pkt->needsResponse());
465        std::memcpy(blk->data, pkt->getConstPtr<uint8_t>(), blkSize);
466        DPRINTF(Cache, "%s new state is %s\n", __func__, blk->print());
467
468        incHitCount(pkt);
469        // populate the time when the block will be ready to access.
470        blk->whenReady = clockEdge(fillLatency) + pkt->headerDelay +
471            pkt->payloadDelay;
472        // if this a write-through packet it will be sent to cache
473        // below
474        return !pkt->writeThrough();
475    } else if (blk && (pkt->needsWritable() ? blk->isWritable() :
476                       blk->isReadable())) {
477        // OK to satisfy access
478        incHitCount(pkt);
479        satisfyRequest(pkt, blk);
480        maintainClusivity(pkt->fromCache(), blk);
481
482        return true;
483    }
484
485    // Can't satisfy access normally... either no block (blk == nullptr)
486    // or have block but need writable
487
488    incMissCount(pkt);
489
490    if (blk == nullptr && pkt->isLLSC() && pkt->isWrite()) {
491        // complete miss on store conditional... just give up now
492        pkt->req->setExtraData(0);
493        return true;
494    }
495
496    return false;
497}
498
499void
500Cache::maintainClusivity(bool from_cache, CacheBlk *blk)
501{
502    if (from_cache && blk && blk->isValid() && !blk->isDirty() &&
503        clusivity == Enums::mostly_excl) {
504        // if we have responded to a cache, and our block is still
505        // valid, but not dirty, and this cache is mostly exclusive
506        // with respect to the cache above, drop the block
507        invalidateBlock(blk);
508    }
509}
510
511void
512Cache::doWritebacks(PacketList& writebacks, Tick forward_time)
513{
514    while (!writebacks.empty()) {
515        PacketPtr wbPkt = writebacks.front();
516        // We use forwardLatency here because we are copying writebacks to
517        // write buffer.
518
519        // Call isCachedAbove for Writebacks, CleanEvicts and
520        // WriteCleans to discover if the block is cached above.
521        if (isCachedAbove(wbPkt)) {
522            if (wbPkt->cmd == MemCmd::CleanEvict) {
523                // Delete CleanEvict because cached copies exist above. The
524                // packet destructor will delete the request object because
525                // this is a non-snoop request packet which does not require a
526                // response.
527                delete wbPkt;
528            } else if (wbPkt->cmd == MemCmd::WritebackClean) {
529                // clean writeback, do not send since the block is
530                // still cached above
531                assert(writebackClean);
532                delete wbPkt;
533            } else {
534                assert(wbPkt->cmd == MemCmd::WritebackDirty ||
535                       wbPkt->cmd == MemCmd::WriteClean);
536                // Set BLOCK_CACHED flag in Writeback and send below, so that
537                // the Writeback does not reset the bit corresponding to this
538                // address in the snoop filter below.
539                wbPkt->setBlockCached();
540                allocateWriteBuffer(wbPkt, forward_time);
541            }
542        } else {
543            // If the block is not cached above, send packet below. Both
544            // CleanEvict and Writeback with BLOCK_CACHED flag cleared will
545            // reset the bit corresponding to this address in the snoop filter
546            // below.
547            allocateWriteBuffer(wbPkt, forward_time);
548        }
549        writebacks.pop_front();
550    }
551}
552
553void
554Cache::doWritebacksAtomic(PacketList& writebacks)
555{
556    while (!writebacks.empty()) {
557        PacketPtr wbPkt = writebacks.front();
558        // Call isCachedAbove for both Writebacks and CleanEvicts. If
559        // isCachedAbove returns true we set BLOCK_CACHED flag in Writebacks
560        // and discard CleanEvicts.
561        if (isCachedAbove(wbPkt, false)) {
562            if (wbPkt->cmd == MemCmd::WritebackDirty ||
563                wbPkt->cmd == MemCmd::WriteClean) {
564                // Set BLOCK_CACHED flag in Writeback and send below,
565                // so that the Writeback does not reset the bit
566                // corresponding to this address in the snoop filter
567                // below. We can discard CleanEvicts because cached
568                // copies exist above. Atomic mode isCachedAbove
569                // modifies packet to set BLOCK_CACHED flag
570                memSidePort->sendAtomic(wbPkt);
571            }
572        } else {
573            // If the block is not cached above, send packet below. Both
574            // CleanEvict and Writeback with BLOCK_CACHED flag cleared will
575            // reset the bit corresponding to this address in the snoop filter
576            // below.
577            memSidePort->sendAtomic(wbPkt);
578        }
579        writebacks.pop_front();
580        // In case of CleanEvicts, the packet destructor will delete the
581        // request object because this is a non-snoop request packet which
582        // does not require a response.
583        delete wbPkt;
584    }
585}
586
587
588void
589Cache::recvTimingSnoopResp(PacketPtr pkt)
590{
591    DPRINTF(Cache, "%s for %s\n", __func__, pkt->print());
592
593    assert(pkt->isResponse());
594    assert(!system->bypassCaches());
595
596    // determine if the response is from a snoop request we created
597    // (in which case it should be in the outstandingSnoop), or if we
598    // merely forwarded someone else's snoop request
599    const bool forwardAsSnoop = outstandingSnoop.find(pkt->req) ==
600        outstandingSnoop.end();
601
602    if (!forwardAsSnoop) {
603        // the packet came from this cache, so sink it here and do not
604        // forward it
605        assert(pkt->cmd == MemCmd::HardPFResp);
606
607        outstandingSnoop.erase(pkt->req);
608
609        DPRINTF(Cache, "Got prefetch response from above for addr "
610                "%#llx (%s)\n", pkt->getAddr(), pkt->isSecure() ? "s" : "ns");
611        recvTimingResp(pkt);
612        return;
613    }
614
615    // forwardLatency is set here because there is a response from an
616    // upper level cache.
617    // To pay the delay that occurs if the packet comes from the bus,
618    // we charge also headerDelay.
619    Tick snoop_resp_time = clockEdge(forwardLatency) + pkt->headerDelay;
620    // Reset the timing of the packet.
621    pkt->headerDelay = pkt->payloadDelay = 0;
622    memSidePort->schedTimingSnoopResp(pkt, snoop_resp_time);
623}
624
625void
626Cache::promoteWholeLineWrites(PacketPtr pkt)
627{
628    // Cache line clearing instructions
629    if (doFastWrites && (pkt->cmd == MemCmd::WriteReq) &&
630        (pkt->getSize() == blkSize) && (pkt->getOffset(blkSize) == 0)) {
631        pkt->cmd = MemCmd::WriteLineReq;
632        DPRINTF(Cache, "packet promoted from Write to WriteLineReq\n");
633    }
634}
635
636bool
637Cache::recvTimingReq(PacketPtr pkt)
638{
639    DPRINTF(CacheTags, "%s tags:\n%s\n", __func__, tags->print());
640
641    assert(pkt->isRequest());
642
643    // Just forward the packet if caches are disabled.
644    if (system->bypassCaches()) {
645        // @todo This should really enqueue the packet rather
646        bool M5_VAR_USED success = memSidePort->sendTimingReq(pkt);
647        assert(success);
648        return true;
649    }
650
651    promoteWholeLineWrites(pkt);
652
653    if (pkt->cacheResponding()) {
654        // a cache above us (but not where the packet came from) is
655        // responding to the request, in other words it has the line
656        // in Modified or Owned state
657        DPRINTF(Cache, "Cache above responding to %s: not responding\n",
658                pkt->print());
659
660        // if the packet needs the block to be writable, and the cache
661        // that has promised to respond (setting the cache responding
662        // flag) is not providing writable (it is in Owned rather than
663        // the Modified state), we know that there may be other Shared
664        // copies in the system; go out and invalidate them all
665        assert(pkt->needsWritable() && !pkt->responderHadWritable());
666
667        // an upstream cache that had the line in Owned state
668        // (dirty, but not writable), is responding and thus
669        // transferring the dirty line from one branch of the
670        // cache hierarchy to another
671
672        // send out an express snoop and invalidate all other
673        // copies (snooping a packet that needs writable is the
674        // same as an invalidation), thus turning the Owned line
675        // into a Modified line, note that we don't invalidate the
676        // block in the current cache or any other cache on the
677        // path to memory
678
679        // create a downstream express snoop with cleared packet
680        // flags, there is no need to allocate any data as the
681        // packet is merely used to co-ordinate state transitions
682        Packet *snoop_pkt = new Packet(pkt, true, false);
683
684        // also reset the bus time that the original packet has
685        // not yet paid for
686        snoop_pkt->headerDelay = snoop_pkt->payloadDelay = 0;
687
688        // make this an instantaneous express snoop, and let the
689        // other caches in the system know that the another cache
690        // is responding, because we have found the authorative
691        // copy (Modified or Owned) that will supply the right
692        // data
693        snoop_pkt->setExpressSnoop();
694        snoop_pkt->setCacheResponding();
695
696        // this express snoop travels towards the memory, and at
697        // every crossbar it is snooped upwards thus reaching
698        // every cache in the system
699        bool M5_VAR_USED success = memSidePort->sendTimingReq(snoop_pkt);
700        // express snoops always succeed
701        assert(success);
702
703        // main memory will delete the snoop packet
704
705        // queue for deletion, as opposed to immediate deletion, as
706        // the sending cache is still relying on the packet
707        pendingDelete.reset(pkt);
708
709        // no need to take any further action in this particular cache
710        // as an upstram cache has already committed to responding,
711        // and we have already sent out any express snoops in the
712        // section above to ensure all other copies in the system are
713        // invalidated
714        return true;
715    }
716
717    // anything that is merely forwarded pays for the forward latency and
718    // the delay provided by the crossbar
719    Tick forward_time = clockEdge(forwardLatency) + pkt->headerDelay;
720
721    // We use lookupLatency here because it is used to specify the latency
722    // to access.
723    Cycles lat = lookupLatency;
724    CacheBlk *blk = nullptr;
725    bool satisfied = false;
726    {
727        PacketList writebacks;
728        // Note that lat is passed by reference here. The function
729        // access() calls accessBlock() which can modify lat value.
730        satisfied = access(pkt, blk, lat, writebacks);
731
732        // copy writebacks to write buffer here to ensure they logically
733        // proceed anything happening below
734        doWritebacks(writebacks, forward_time);
735    }
736
737    // Here we charge the headerDelay that takes into account the latencies
738    // of the bus, if the packet comes from it.
739    // The latency charged it is just lat that is the value of lookupLatency
740    // modified by access() function, or if not just lookupLatency.
741    // In case of a hit we are neglecting response latency.
742    // In case of a miss we are neglecting forward latency.
743    Tick request_time = clockEdge(lat) + pkt->headerDelay;
744    // Here we reset the timing of the packet.
745    pkt->headerDelay = pkt->payloadDelay = 0;
746
747    // track time of availability of next prefetch, if any
748    Tick next_pf_time = MaxTick;
749
750    bool needsResponse = pkt->needsResponse();
751
752    if (satisfied) {
753        // should never be satisfying an uncacheable access as we
754        // flush and invalidate any existing block as part of the
755        // lookup
756        assert(!pkt->req->isUncacheable());
757
758        // hit (for all other request types)
759
760        if (prefetcher && (prefetchOnAccess ||
761                           (blk && blk->wasPrefetched()))) {
762            if (blk)
763                blk->status &= ~BlkHWPrefetched;
764
765            // Don't notify on SWPrefetch
766            if (!pkt->cmd.isSWPrefetch())
767                next_pf_time = prefetcher->notify(pkt);
768        }
769
770        if (needsResponse) {
771            pkt->makeTimingResponse();
772            // @todo: Make someone pay for this
773            pkt->headerDelay = pkt->payloadDelay = 0;
774
775            // In this case we are considering request_time that takes
776            // into account the delay of the xbar, if any, and just
777            // lat, neglecting responseLatency, modelling hit latency
778            // just as lookupLatency or or the value of lat overriden
779            // by access(), that calls accessBlock() function.
780            cpuSidePort->schedTimingResp(pkt, request_time, true);
781        } else {
782            DPRINTF(Cache, "%s satisfied %s, no response needed\n", __func__,
783                    pkt->print());
784
785            // queue the packet for deletion, as the sending cache is
786            // still relying on it; if the block is found in access(),
787            // CleanEvict and Writeback messages will be deleted
788            // here as well
789            pendingDelete.reset(pkt);
790        }
791    } else {
792        // miss
793
794        Addr blk_addr = pkt->getBlockAddr(blkSize);
795
796        // ignore any existing MSHR if we are dealing with an
797        // uncacheable request
798        MSHR *mshr = pkt->req->isUncacheable() ? nullptr :
799            mshrQueue.findMatch(blk_addr, pkt->isSecure());
800
801        // Software prefetch handling:
802        // To keep the core from waiting on data it won't look at
803        // anyway, send back a response with dummy data. Miss handling
804        // will continue asynchronously. Unfortunately, the core will
805        // insist upon freeing original Packet/Request, so we have to
806        // create a new pair with a different lifecycle. Note that this
807        // processing happens before any MSHR munging on the behalf of
808        // this request because this new Request will be the one stored
809        // into the MSHRs, not the original.
810        if (pkt->cmd.isSWPrefetch()) {
811            assert(needsResponse);
812            assert(pkt->req->hasPaddr());
813            assert(!pkt->req->isUncacheable());
814
815            // There's no reason to add a prefetch as an additional target
816            // to an existing MSHR. If an outstanding request is already
817            // in progress, there is nothing for the prefetch to do.
818            // If this is the case, we don't even create a request at all.
819            PacketPtr pf = nullptr;
820
821            if (!mshr) {
822                // copy the request and create a new SoftPFReq packet
823                RequestPtr req = new Request(pkt->req->getPaddr(),
824                                             pkt->req->getSize(),
825                                             pkt->req->getFlags(),
826                                             pkt->req->masterId());
827                pf = new Packet(req, pkt->cmd);
828                pf->allocate();
829                assert(pf->getAddr() == pkt->getAddr());
830                assert(pf->getSize() == pkt->getSize());
831            }
832
833            pkt->makeTimingResponse();
834
835            // request_time is used here, taking into account lat and the delay
836            // charged if the packet comes from the xbar.
837            cpuSidePort->schedTimingResp(pkt, request_time, true);
838
839            // If an outstanding request is in progress (we found an
840            // MSHR) this is set to null
841            pkt = pf;
842        }
843
844        if (mshr) {
845            /// MSHR hit
846            /// @note writebacks will be checked in getNextMSHR()
847            /// for any conflicting requests to the same block
848
849            //@todo remove hw_pf here
850
851            // Coalesce unless it was a software prefetch (see above).
852            if (pkt) {
853                assert(!pkt->isWriteback());
854                // CleanEvicts corresponding to blocks which have
855                // outstanding requests in MSHRs are simply sunk here
856                if (pkt->cmd == MemCmd::CleanEvict) {
857                    pendingDelete.reset(pkt);
858                } else {
859                    DPRINTF(Cache, "%s coalescing MSHR for %s\n", __func__,
860                            pkt->print());
861
862                    assert(pkt->req->masterId() < system->maxMasters());
863                    mshr_hits[pkt->cmdToIndex()][pkt->req->masterId()]++;
864                    // We use forward_time here because it is the same
865                    // considering new targets. We have multiple
866                    // requests for the same address here. It
867                    // specifies the latency to allocate an internal
868                    // buffer and to schedule an event to the queued
869                    // port and also takes into account the additional
870                    // delay of the xbar.
871                    mshr->allocateTarget(pkt, forward_time, order++,
872                                         allocOnFill(pkt->cmd));
873                    if (mshr->getNumTargets() == numTarget) {
874                        noTargetMSHR = mshr;
875                        setBlocked(Blocked_NoTargets);
876                        // need to be careful with this... if this mshr isn't
877                        // ready yet (i.e. time > curTick()), we don't want to
878                        // move it ahead of mshrs that are ready
879                        // mshrQueue.moveToFront(mshr);
880                    }
881                }
882                // We should call the prefetcher reguardless if the request is
883                // satisfied or not, reguardless if the request is in the MSHR
884                // or not.  The request could be a ReadReq hit, but still not
885                // satisfied (potentially because of a prior write to the same
886                // cache line.  So, even when not satisfied, tehre is an MSHR
887                // already allocated for this, we need to let the prefetcher
888                // know about the request
889                if (prefetcher) {
890                    // Don't notify on SWPrefetch
891                    if (!pkt->cmd.isSWPrefetch())
892                        next_pf_time = prefetcher->notify(pkt);
893                }
894            }
895        } else {
896            // no MSHR
897            assert(pkt->req->masterId() < system->maxMasters());
898            if (pkt->req->isUncacheable()) {
899                mshr_uncacheable[pkt->cmdToIndex()][pkt->req->masterId()]++;
900            } else {
901                mshr_misses[pkt->cmdToIndex()][pkt->req->masterId()]++;
902            }
903
904            if (pkt->isEviction() || pkt->cmd == MemCmd::WriteClean ||
905                (pkt->req->isUncacheable() && pkt->isWrite())) {
906                // We use forward_time here because there is an
907                // uncached memory write, forwarded to WriteBuffer.
908                allocateWriteBuffer(pkt, forward_time);
909            } else {
910                if (blk && blk->isValid()) {
911                    // should have flushed and have no valid block
912                    assert(!pkt->req->isUncacheable());
913
914                    // If we have a write miss to a valid block, we
915                    // need to mark the block non-readable.  Otherwise
916                    // if we allow reads while there's an outstanding
917                    // write miss, the read could return stale data
918                    // out of the cache block... a more aggressive
919                    // system could detect the overlap (if any) and
920                    // forward data out of the MSHRs, but we don't do
921                    // that yet.  Note that we do need to leave the
922                    // block valid so that it stays in the cache, in
923                    // case we get an upgrade response (and hence no
924                    // new data) when the write miss completes.
925                    // As long as CPUs do proper store/load forwarding
926                    // internally, and have a sufficiently weak memory
927                    // model, this is probably unnecessary, but at some
928                    // point it must have seemed like we needed it...
929                    assert(pkt->needsWritable());
930                    assert(!blk->isWritable());
931                    blk->status &= ~BlkReadable;
932                }
933                // Here we are using forward_time, modelling the latency of
934                // a miss (outbound) just as forwardLatency, neglecting the
935                // lookupLatency component.
936                allocateMissBuffer(pkt, forward_time);
937            }
938
939            if (prefetcher) {
940                // Don't notify on SWPrefetch
941                if (!pkt->cmd.isSWPrefetch())
942                    next_pf_time = prefetcher->notify(pkt);
943            }
944        }
945    }
946
947    if (next_pf_time != MaxTick)
948        schedMemSideSendEvent(next_pf_time);
949
950    return true;
951}
952
953PacketPtr
954Cache::createMissPacket(PacketPtr cpu_pkt, CacheBlk *blk,
955                        bool needsWritable) const
956{
957    // should never see evictions here
958    assert(!cpu_pkt->isEviction());
959
960    bool blkValid = blk && blk->isValid();
961
962    if (cpu_pkt->req->isUncacheable() ||
963        (!blkValid && cpu_pkt->isUpgrade()) ||
964        cpu_pkt->cmd == MemCmd::InvalidateReq) {
965        // uncacheable requests and upgrades from upper-level caches
966        // that missed completely just go through as is
967        return nullptr;
968    }
969
970    assert(cpu_pkt->needsResponse());
971
972    MemCmd cmd;
973    // @TODO make useUpgrades a parameter.
974    // Note that ownership protocols require upgrade, otherwise a
975    // write miss on a shared owned block will generate a ReadExcl,
976    // which will clobber the owned copy.
977    const bool useUpgrades = true;
978    if (cpu_pkt->cmd == MemCmd::WriteLineReq) {
979        assert(!blkValid || !blk->isWritable());
980        // forward as invalidate to all other caches, this gives us
981        // the line in Exclusive state, and invalidates all other
982        // copies
983        cmd = MemCmd::InvalidateReq;
984    } else if (blkValid && useUpgrades) {
985        // only reason to be here is that blk is read only and we need
986        // it to be writable
987        assert(needsWritable);
988        assert(!blk->isWritable());
989        cmd = cpu_pkt->isLLSC() ? MemCmd::SCUpgradeReq : MemCmd::UpgradeReq;
990    } else if (cpu_pkt->cmd == MemCmd::SCUpgradeFailReq ||
991               cpu_pkt->cmd == MemCmd::StoreCondFailReq) {
992        // Even though this SC will fail, we still need to send out the
993        // request and get the data to supply it to other snoopers in the case
994        // where the determination the StoreCond fails is delayed due to
995        // all caches not being on the same local bus.
996        cmd = MemCmd::SCUpgradeFailReq;
997    } else {
998        // block is invalid
999        cmd = needsWritable ? MemCmd::ReadExReq :
1000            (isReadOnly ? MemCmd::ReadCleanReq : MemCmd::ReadSharedReq);
1001    }
1002    PacketPtr pkt = new Packet(cpu_pkt->req, cmd, blkSize);
1003
1004    // if there are upstream caches that have already marked the
1005    // packet as having sharers (not passing writable), pass that info
1006    // downstream
1007    if (cpu_pkt->hasSharers() && !needsWritable) {
1008        // note that cpu_pkt may have spent a considerable time in the
1009        // MSHR queue and that the information could possibly be out
1010        // of date, however, there is no harm in conservatively
1011        // assuming the block has sharers
1012        pkt->setHasSharers();
1013        DPRINTF(Cache, "%s: passing hasSharers from %s to %s\n",
1014                __func__, cpu_pkt->print(), pkt->print());
1015    }
1016
1017    // the packet should be block aligned
1018    assert(pkt->getAddr() == pkt->getBlockAddr(blkSize));
1019
1020    pkt->allocate();
1021    DPRINTF(Cache, "%s: created %s from %s\n", __func__, pkt->print(),
1022            cpu_pkt->print());
1023    return pkt;
1024}
1025
1026
1027Tick
1028Cache::recvAtomic(PacketPtr pkt)
1029{
1030    // We are in atomic mode so we pay just for lookupLatency here.
1031    Cycles lat = lookupLatency;
1032
1033    // Forward the request if the system is in cache bypass mode.
1034    if (system->bypassCaches())
1035        return ticksToCycles(memSidePort->sendAtomic(pkt));
1036
1037    promoteWholeLineWrites(pkt);
1038
1039    // follow the same flow as in recvTimingReq, and check if a cache
1040    // above us is responding
1041    if (pkt->cacheResponding()) {
1042        DPRINTF(Cache, "Cache above responding to %s: not responding\n",
1043                pkt->print());
1044
1045        // if a cache is responding, and it had the line in Owned
1046        // rather than Modified state, we need to invalidate any
1047        // copies that are not on the same path to memory
1048        assert(pkt->needsWritable() && !pkt->responderHadWritable());
1049        lat += ticksToCycles(memSidePort->sendAtomic(pkt));
1050
1051        return lat * clockPeriod();
1052    }
1053
1054    // should assert here that there are no outstanding MSHRs or
1055    // writebacks... that would mean that someone used an atomic
1056    // access in timing mode
1057
1058    CacheBlk *blk = nullptr;
1059    PacketList writebacks;
1060    bool satisfied = access(pkt, blk, lat, writebacks);
1061
1062    // handle writebacks resulting from the access here to ensure they
1063    // logically proceed anything happening below
1064    doWritebacksAtomic(writebacks);
1065
1066    if (!satisfied) {
1067        // MISS
1068
1069        // deal with the packets that go through the write path of
1070        // the cache, i.e. any evictions and writes
1071        if (pkt->isEviction() || pkt->cmd == MemCmd::WriteClean ||
1072            (pkt->req->isUncacheable() && pkt->isWrite())) {
1073            lat += ticksToCycles(memSidePort->sendAtomic(pkt));
1074            return lat * clockPeriod();
1075        }
1076        // only misses left
1077
1078        PacketPtr bus_pkt = createMissPacket(pkt, blk, pkt->needsWritable());
1079
1080        bool is_forward = (bus_pkt == nullptr);
1081
1082        if (is_forward) {
1083            // just forwarding the same request to the next level
1084            // no local cache operation involved
1085            bus_pkt = pkt;
1086        }
1087
1088        DPRINTF(Cache, "%s: Sending an atomic %s\n", __func__,
1089                bus_pkt->print());
1090
1091#if TRACING_ON
1092        CacheBlk::State old_state = blk ? blk->status : 0;
1093#endif
1094
1095        lat += ticksToCycles(memSidePort->sendAtomic(bus_pkt));
1096
1097        bool is_invalidate = bus_pkt->isInvalidate();
1098
1099        // We are now dealing with the response handling
1100        DPRINTF(Cache, "%s: Receive response: %s in state %i\n", __func__,
1101                bus_pkt->print(), old_state);
1102
1103        // If packet was a forward, the response (if any) is already
1104        // in place in the bus_pkt == pkt structure, so we don't need
1105        // to do anything.  Otherwise, use the separate bus_pkt to
1106        // generate response to pkt and then delete it.
1107        if (!is_forward) {
1108            if (pkt->needsResponse()) {
1109                assert(bus_pkt->isResponse());
1110                if (bus_pkt->isError()) {
1111                    pkt->makeAtomicResponse();
1112                    pkt->copyError(bus_pkt);
1113                } else if (pkt->cmd == MemCmd::WriteLineReq) {
1114                    // note the use of pkt, not bus_pkt here.
1115
1116                    // write-line request to the cache that promoted
1117                    // the write to a whole line
1118                    blk = handleFill(pkt, blk, writebacks,
1119                                     allocOnFill(pkt->cmd));
1120                    assert(blk != NULL);
1121                    is_invalidate = false;
1122                    satisfyRequest(pkt, blk);
1123                } else if (bus_pkt->isRead() ||
1124                           bus_pkt->cmd == MemCmd::UpgradeResp) {
1125                    // we're updating cache state to allow us to
1126                    // satisfy the upstream request from the cache
1127                    blk = handleFill(bus_pkt, blk, writebacks,
1128                                     allocOnFill(pkt->cmd));
1129                    satisfyRequest(pkt, blk);
1130                    maintainClusivity(pkt->fromCache(), blk);
1131                } else {
1132                    // we're satisfying the upstream request without
1133                    // modifying cache state, e.g., a write-through
1134                    pkt->makeAtomicResponse();
1135                }
1136            }
1137            delete bus_pkt;
1138        }
1139
1140        if (is_invalidate && blk && blk->isValid()) {
1141            invalidateBlock(blk);
1142        }
1143    }
1144
1145    // Note that we don't invoke the prefetcher at all in atomic mode.
1146    // It's not clear how to do it properly, particularly for
1147    // prefetchers that aggressively generate prefetch candidates and
1148    // rely on bandwidth contention to throttle them; these will tend
1149    // to pollute the cache in atomic mode since there is no bandwidth
1150    // contention.  If we ever do want to enable prefetching in atomic
1151    // mode, though, this is the place to do it... see timingAccess()
1152    // for an example (though we'd want to issue the prefetch(es)
1153    // immediately rather than calling requestMemSideBus() as we do
1154    // there).
1155
1156    // do any writebacks resulting from the response handling
1157    doWritebacksAtomic(writebacks);
1158
1159    // if we used temp block, check to see if its valid and if so
1160    // clear it out, but only do so after the call to recvAtomic is
1161    // finished so that any downstream observers (such as a snoop
1162    // filter), first see the fill, and only then see the eviction
1163    if (blk == tempBlock && tempBlock->isValid()) {
1164        // the atomic CPU calls recvAtomic for fetch and load/store
1165        // sequentuially, and we may already have a tempBlock
1166        // writeback from the fetch that we have not yet sent
1167        if (tempBlockWriteback) {
1168            // if that is the case, write the prevoius one back, and
1169            // do not schedule any new event
1170            writebackTempBlockAtomic();
1171        } else {
1172            // the writeback/clean eviction happens after the call to
1173            // recvAtomic has finished (but before any successive
1174            // calls), so that the response handling from the fill is
1175            // allowed to happen first
1176            schedule(writebackTempBlockAtomicEvent, curTick());
1177        }
1178
1179        tempBlockWriteback = (blk->isDirty() || writebackClean) ?
1180            writebackBlk(blk) : cleanEvictBlk(blk);
1181        invalidateBlock(blk);
1182    }
1183
1184    if (pkt->needsResponse()) {
1185        pkt->makeAtomicResponse();
1186    }
1187
1188    return lat * clockPeriod();
1189}
1190
1191
1192void
1193Cache::functionalAccess(PacketPtr pkt, bool fromCpuSide)
1194{
1195    if (system->bypassCaches()) {
1196        // Packets from the memory side are snoop request and
1197        // shouldn't happen in bypass mode.
1198        assert(fromCpuSide);
1199
1200        // The cache should be flushed if we are in cache bypass mode,
1201        // so we don't need to check if we need to update anything.
1202        memSidePort->sendFunctional(pkt);
1203        return;
1204    }
1205
1206    Addr blk_addr = pkt->getBlockAddr(blkSize);
1207    bool is_secure = pkt->isSecure();
1208    CacheBlk *blk = tags->findBlock(pkt->getAddr(), is_secure);
1209    MSHR *mshr = mshrQueue.findMatch(blk_addr, is_secure);
1210
1211    pkt->pushLabel(name());
1212
1213    CacheBlkPrintWrapper cbpw(blk);
1214
1215    // Note that just because an L2/L3 has valid data doesn't mean an
1216    // L1 doesn't have a more up-to-date modified copy that still
1217    // needs to be found.  As a result we always update the request if
1218    // we have it, but only declare it satisfied if we are the owner.
1219
1220    // see if we have data at all (owned or otherwise)
1221    bool have_data = blk && blk->isValid()
1222        && pkt->checkFunctional(&cbpw, blk_addr, is_secure, blkSize,
1223                                blk->data);
1224
1225    // data we have is dirty if marked as such or if we have an
1226    // in-service MSHR that is pending a modified line
1227    bool have_dirty =
1228        have_data && (blk->isDirty() ||
1229                      (mshr && mshr->inService && mshr->isPendingModified()));
1230
1231    bool done = have_dirty
1232        || cpuSidePort->checkFunctional(pkt)
1233        || mshrQueue.checkFunctional(pkt, blk_addr)
1234        || writeBuffer.checkFunctional(pkt, blk_addr)
1235        || memSidePort->checkFunctional(pkt);
1236
1237    DPRINTF(CacheVerbose, "%s: %s %s%s%s\n", __func__,  pkt->print(),
1238            (blk && blk->isValid()) ? "valid " : "",
1239            have_data ? "data " : "", done ? "done " : "");
1240
1241    // We're leaving the cache, so pop cache->name() label
1242    pkt->popLabel();
1243
1244    if (done) {
1245        pkt->makeResponse();
1246    } else {
1247        // if it came as a request from the CPU side then make sure it
1248        // continues towards the memory side
1249        if (fromCpuSide) {
1250            memSidePort->sendFunctional(pkt);
1251        } else if (cpuSidePort->isSnooping()) {
1252            // if it came from the memory side, it must be a snoop request
1253            // and we should only forward it if we are forwarding snoops
1254            cpuSidePort->sendFunctionalSnoop(pkt);
1255        }
1256    }
1257}
1258
1259
1260/////////////////////////////////////////////////////
1261//
1262// Response handling: responses from the memory side
1263//
1264/////////////////////////////////////////////////////
1265
1266
1267void
1268Cache::handleUncacheableWriteResp(PacketPtr pkt)
1269{
1270    Tick completion_time = clockEdge(responseLatency) +
1271        pkt->headerDelay + pkt->payloadDelay;
1272
1273    // Reset the bus additional time as it is now accounted for
1274    pkt->headerDelay = pkt->payloadDelay = 0;
1275
1276    cpuSidePort->schedTimingResp(pkt, completion_time, true);
1277}
1278
1279void
1280Cache::recvTimingResp(PacketPtr pkt)
1281{
1282    assert(pkt->isResponse());
1283
1284    // all header delay should be paid for by the crossbar, unless
1285    // this is a prefetch response from above
1286    panic_if(pkt->headerDelay != 0 && pkt->cmd != MemCmd::HardPFResp,
1287             "%s saw a non-zero packet delay\n", name());
1288
1289    bool is_error = pkt->isError();
1290
1291    if (is_error) {
1292        DPRINTF(Cache, "%s: Cache received %s with error\n", __func__,
1293                pkt->print());
1294    }
1295
1296    DPRINTF(Cache, "%s: Handling response %s\n", __func__,
1297            pkt->print());
1298
1299    // if this is a write, we should be looking at an uncacheable
1300    // write
1301    if (pkt->isWrite()) {
1302        assert(pkt->req->isUncacheable());
1303        handleUncacheableWriteResp(pkt);
1304        return;
1305    }
1306
1307    // we have dealt with any (uncacheable) writes above, from here on
1308    // we know we are dealing with an MSHR due to a miss or a prefetch
1309    MSHR *mshr = dynamic_cast<MSHR*>(pkt->popSenderState());
1310    assert(mshr);
1311
1312    if (mshr == noTargetMSHR) {
1313        // we always clear at least one target
1314        clearBlocked(Blocked_NoTargets);
1315        noTargetMSHR = nullptr;
1316    }
1317
1318    // Initial target is used just for stats
1319    MSHR::Target *initial_tgt = mshr->getTarget();
1320    int stats_cmd_idx = initial_tgt->pkt->cmdToIndex();
1321    Tick miss_latency = curTick() - initial_tgt->recvTime;
1322
1323    if (pkt->req->isUncacheable()) {
1324        assert(pkt->req->masterId() < system->maxMasters());
1325        mshr_uncacheable_lat[stats_cmd_idx][pkt->req->masterId()] +=
1326            miss_latency;
1327    } else {
1328        assert(pkt->req->masterId() < system->maxMasters());
1329        mshr_miss_latency[stats_cmd_idx][pkt->req->masterId()] +=
1330            miss_latency;
1331    }
1332
1333    bool wasFull = mshrQueue.isFull();
1334
1335    PacketList writebacks;
1336
1337    Tick forward_time = clockEdge(forwardLatency) + pkt->headerDelay;
1338
1339    bool is_fill = !mshr->isForward &&
1340        (pkt->isRead() || pkt->cmd == MemCmd::UpgradeResp);
1341
1342    CacheBlk *blk = tags->findBlock(pkt->getAddr(), pkt->isSecure());
1343    const bool valid_blk = blk && blk->isValid();
1344    // If the response indicates that there are no sharers and we
1345    // either had the block already or the response is filling we can
1346    // promote our copy to writable
1347    if (!pkt->hasSharers() && (is_fill || valid_blk)) {
1348        mshr->promoteWritable();
1349    }
1350
1351    if (is_fill && !is_error) {
1352        DPRINTF(Cache, "Block for addr %#llx being updated in Cache\n",
1353                pkt->getAddr());
1354
1355        blk = handleFill(pkt, blk, writebacks, mshr->allocOnFill());
1356        assert(blk != nullptr);
1357    }
1358
1359    // allow invalidation responses originating from write-line
1360    // requests to be discarded
1361    bool is_invalidate = pkt->isInvalidate();
1362
1363    // First offset for critical word first calculations
1364    int initial_offset = initial_tgt->pkt->getOffset(blkSize);
1365
1366    bool from_cache = false;
1367    MSHR::TargetList targets = mshr->extractServiceableTargets(pkt);
1368    for (auto &target: targets) {
1369        Packet *tgt_pkt = target.pkt;
1370        switch (target.source) {
1371          case MSHR::Target::FromCPU:
1372            Tick completion_time;
1373            // Here we charge on completion_time the delay of the xbar if the
1374            // packet comes from it, charged on headerDelay.
1375            completion_time = pkt->headerDelay;
1376
1377            // Software prefetch handling for cache closest to core
1378            if (tgt_pkt->cmd.isSWPrefetch()) {
1379                // a software prefetch would have already been ack'd
1380                // immediately with dummy data so the core would be able to
1381                // retire it. This request completes right here, so we
1382                // deallocate it.
1383                delete tgt_pkt->req;
1384                delete tgt_pkt;
1385                break; // skip response
1386            }
1387
1388            // keep track of whether we have responded to another
1389            // cache
1390            from_cache = from_cache || tgt_pkt->fromCache();
1391
1392            // unlike the other packet flows, where data is found in other
1393            // caches or memory and brought back, write-line requests always
1394            // have the data right away, so the above check for "is fill?"
1395            // cannot actually be determined until examining the stored MSHR
1396            // state. We "catch up" with that logic here, which is duplicated
1397            // from above.
1398            if (tgt_pkt->cmd == MemCmd::WriteLineReq) {
1399                assert(!is_error);
1400                // we got the block in a writable state, so promote
1401                // any deferred targets if possible
1402                mshr->promoteWritable();
1403                // NB: we use the original packet here and not the response!
1404                blk = handleFill(tgt_pkt, blk, writebacks,
1405                                 targets.allocOnFill);
1406                assert(blk != nullptr);
1407
1408                // treat as a fill, and discard the invalidation
1409                // response
1410                is_fill = true;
1411                is_invalidate = false;
1412            }
1413
1414            if (is_fill) {
1415                satisfyRequest(tgt_pkt, blk, true, mshr->hasPostDowngrade());
1416
1417                // How many bytes past the first request is this one
1418                int transfer_offset =
1419                    tgt_pkt->getOffset(blkSize) - initial_offset;
1420                if (transfer_offset < 0) {
1421                    transfer_offset += blkSize;
1422                }
1423
1424                // If not critical word (offset) return payloadDelay.
1425                // responseLatency is the latency of the return path
1426                // from lower level caches/memory to an upper level cache or
1427                // the core.
1428                completion_time += clockEdge(responseLatency) +
1429                    (transfer_offset ? pkt->payloadDelay : 0);
1430
1431                assert(!tgt_pkt->req->isUncacheable());
1432
1433                assert(tgt_pkt->req->masterId() < system->maxMasters());
1434                missLatency[tgt_pkt->cmdToIndex()][tgt_pkt->req->masterId()] +=
1435                    completion_time - target.recvTime;
1436            } else if (pkt->cmd == MemCmd::UpgradeFailResp) {
1437                // failed StoreCond upgrade
1438                assert(tgt_pkt->cmd == MemCmd::StoreCondReq ||
1439                       tgt_pkt->cmd == MemCmd::StoreCondFailReq ||
1440                       tgt_pkt->cmd == MemCmd::SCUpgradeFailReq);
1441                // responseLatency is the latency of the return path
1442                // from lower level caches/memory to an upper level cache or
1443                // the core.
1444                completion_time += clockEdge(responseLatency) +
1445                    pkt->payloadDelay;
1446                tgt_pkt->req->setExtraData(0);
1447            } else {
1448                // We are about to send a response to a cache above
1449                // that asked for an invalidation; we need to
1450                // invalidate our copy immediately as the most
1451                // up-to-date copy of the block will now be in the
1452                // cache above. It will also prevent this cache from
1453                // responding (if the block was previously dirty) to
1454                // snoops as they should snoop the caches above where
1455                // they will get the response from.
1456                if (is_invalidate && blk && blk->isValid()) {
1457                    invalidateBlock(blk);
1458                }
1459                // not a cache fill, just forwarding response
1460                // responseLatency is the latency of the return path
1461                // from lower level cahces/memory to the core.
1462                completion_time += clockEdge(responseLatency) +
1463                    pkt->payloadDelay;
1464                if (pkt->isRead() && !is_error) {
1465                    // sanity check
1466                    assert(pkt->getAddr() == tgt_pkt->getAddr());
1467                    assert(pkt->getSize() >= tgt_pkt->getSize());
1468
1469                    tgt_pkt->setData(pkt->getConstPtr<uint8_t>());
1470                }
1471            }
1472            tgt_pkt->makeTimingResponse();
1473            // if this packet is an error copy that to the new packet
1474            if (is_error)
1475                tgt_pkt->copyError(pkt);
1476            if (tgt_pkt->cmd == MemCmd::ReadResp &&
1477                (is_invalidate || mshr->hasPostInvalidate())) {
1478                // If intermediate cache got ReadRespWithInvalidate,
1479                // propagate that.  Response should not have
1480                // isInvalidate() set otherwise.
1481                tgt_pkt->cmd = MemCmd::ReadRespWithInvalidate;
1482                DPRINTF(Cache, "%s: updated cmd to %s\n", __func__,
1483                        tgt_pkt->print());
1484            }
1485            // Reset the bus additional time as it is now accounted for
1486            tgt_pkt->headerDelay = tgt_pkt->payloadDelay = 0;
1487            cpuSidePort->schedTimingResp(tgt_pkt, completion_time, true);
1488            break;
1489
1490          case MSHR::Target::FromPrefetcher:
1491            assert(tgt_pkt->cmd == MemCmd::HardPFReq);
1492            if (blk)
1493                blk->status |= BlkHWPrefetched;
1494            delete tgt_pkt->req;
1495            delete tgt_pkt;
1496            break;
1497
1498          case MSHR::Target::FromSnoop:
1499            // I don't believe that a snoop can be in an error state
1500            assert(!is_error);
1501            // response to snoop request
1502            DPRINTF(Cache, "processing deferred snoop...\n");
1503            // If the response is invalidating, a snooping target can
1504            // be satisfied if it is also invalidating. If the reponse is, not
1505            // only invalidating, but more specifically an InvalidateResp, the
1506            // MSHR was created due to an InvalidateReq and a cache above is
1507            // waiting to satisfy a WriteLineReq. In this case even an
1508            // non-invalidating snoop is added as a target here since this is
1509            // the ordering point. When the InvalidateResp reaches this cache,
1510            // the snooping target will snoop further the cache above with the
1511            // WriteLineReq.
1512            assert(!(is_invalidate &&
1513                     pkt->cmd != MemCmd::InvalidateResp &&
1514                     !mshr->hasPostInvalidate()));
1515            handleSnoop(tgt_pkt, blk, true, true, mshr->hasPostInvalidate());
1516            break;
1517
1518          default:
1519            panic("Illegal target->source enum %d\n", target.source);
1520        }
1521    }
1522
1523    maintainClusivity(from_cache, blk);
1524
1525    if (blk && blk->isValid()) {
1526        // an invalidate response stemming from a write line request
1527        // should not invalidate the block, so check if the
1528        // invalidation should be discarded
1529        if (is_invalidate || mshr->hasPostInvalidate()) {
1530            invalidateBlock(blk);
1531        } else if (mshr->hasPostDowngrade()) {
1532            blk->status &= ~BlkWritable;
1533        }
1534    }
1535
1536    if (mshr->promoteDeferredTargets()) {
1537        // avoid later read getting stale data while write miss is
1538        // outstanding.. see comment in timingAccess()
1539        if (blk) {
1540            blk->status &= ~BlkReadable;
1541        }
1542        mshrQueue.markPending(mshr);
1543        schedMemSideSendEvent(clockEdge() + pkt->payloadDelay);
1544    } else {
1545        mshrQueue.deallocate(mshr);
1546        if (wasFull && !mshrQueue.isFull()) {
1547            clearBlocked(Blocked_NoMSHRs);
1548        }
1549
1550        // Request the bus for a prefetch if this deallocation freed enough
1551        // MSHRs for a prefetch to take place
1552        if (prefetcher && mshrQueue.canPrefetch()) {
1553            Tick next_pf_time = std::max(prefetcher->nextPrefetchReadyTime(),
1554                                         clockEdge());
1555            if (next_pf_time != MaxTick)
1556                schedMemSideSendEvent(next_pf_time);
1557        }
1558    }
1559    // reset the xbar additional timinig  as it is now accounted for
1560    pkt->headerDelay = pkt->payloadDelay = 0;
1561
1562    // copy writebacks to write buffer
1563    doWritebacks(writebacks, forward_time);
1564
1565    // if we used temp block, check to see if its valid and then clear it out
1566    if (blk == tempBlock && tempBlock->isValid()) {
1567        // We use forwardLatency here because we are copying
1568        // Writebacks/CleanEvicts to write buffer. It specifies the latency to
1569        // allocate an internal buffer and to schedule an event to the
1570        // queued port.
1571        if (blk->isDirty() || writebackClean) {
1572            PacketPtr wbPkt = writebackBlk(blk);
1573            allocateWriteBuffer(wbPkt, forward_time);
1574            // Set BLOCK_CACHED flag if cached above.
1575            if (isCachedAbove(wbPkt))
1576                wbPkt->setBlockCached();
1577        } else {
1578            PacketPtr wcPkt = cleanEvictBlk(blk);
1579            // Check to see if block is cached above. If not allocate
1580            // write buffer
1581            if (isCachedAbove(wcPkt))
1582                delete wcPkt;
1583            else
1584                allocateWriteBuffer(wcPkt, forward_time);
1585        }
1586        invalidateBlock(blk);
1587    }
1588
1589    DPRINTF(CacheVerbose, "%s: Leaving with %s\n", __func__, pkt->print());
1590    delete pkt;
1591}
1592
1593PacketPtr
1594Cache::writebackBlk(CacheBlk *blk)
1595{
1596    chatty_assert(!isReadOnly || writebackClean,
1597                  "Writeback from read-only cache");
1598    assert(blk && blk->isValid() && (blk->isDirty() || writebackClean));
1599
1600    writebacks[Request::wbMasterId]++;
1601
1602    Request *req = new Request(tags->regenerateBlkAddr(blk->tag, blk->set),
1603                               blkSize, 0, Request::wbMasterId);
1604    if (blk->isSecure())
1605        req->setFlags(Request::SECURE);
1606
1607    req->taskId(blk->task_id);
1608    blk->task_id= ContextSwitchTaskId::Unknown;
1609    blk->tickInserted = curTick();
1610
1611    PacketPtr pkt =
1612        new Packet(req, blk->isDirty() ?
1613                   MemCmd::WritebackDirty : MemCmd::WritebackClean);
1614
1615    DPRINTF(Cache, "Create Writeback %s writable: %d, dirty: %d\n",
1616            pkt->print(), blk->isWritable(), blk->isDirty());
1617
1618    if (blk->isWritable()) {
1619        // not asserting shared means we pass the block in modified
1620        // state, mark our own block non-writeable
1621        blk->status &= ~BlkWritable;
1622    } else {
1623        // we are in the Owned state, tell the receiver
1624        pkt->setHasSharers();
1625    }
1626
1627    // make sure the block is not marked dirty
1628    blk->status &= ~BlkDirty;
1629
1630    pkt->allocate();
1631    std::memcpy(pkt->getPtr<uint8_t>(), blk->data, blkSize);
1632
1633    return pkt;
1634}
1635
1636PacketPtr
1637Cache::writecleanBlk(CacheBlk *blk, Request::Flags dest)
1638{
1639    Request *req = new Request(tags->regenerateBlkAddr(blk->tag, blk->set),
1640                               blkSize, 0, Request::wbMasterId);
1641    if (blk->isSecure()) {
1642        req->setFlags(Request::SECURE);
1643    }
1644    req->taskId(blk->task_id);
1645    blk->task_id = ContextSwitchTaskId::Unknown;
1646    PacketPtr pkt = new Packet(req, MemCmd::WriteClean);
1647    DPRINTF(Cache, "Create %s writable: %d, dirty: %d\n", pkt->print(),
1648            blk->isWritable(), blk->isDirty());
1649    // make sure the block is not marked dirty
1650    blk->status &= ~BlkDirty;
1651    pkt->allocate();
1652    // We inform the cache below that the block has sharers in the
1653    // system as we retain our copy.
1654    pkt->setHasSharers();
1655    if (dest) {
1656        req->setFlags(dest);
1657        pkt->setWriteThrough();
1658    }
1659    std::memcpy(pkt->getPtr<uint8_t>(), blk->data, blkSize);
1660    return pkt;
1661}
1662
1663
1664PacketPtr
1665Cache::cleanEvictBlk(CacheBlk *blk)
1666{
1667    assert(!writebackClean);
1668    assert(blk && blk->isValid() && !blk->isDirty());
1669    // Creating a zero sized write, a message to the snoop filter
1670    Request *req =
1671        new Request(tags->regenerateBlkAddr(blk->tag, blk->set), blkSize, 0,
1672                    Request::wbMasterId);
1673    if (blk->isSecure())
1674        req->setFlags(Request::SECURE);
1675
1676    req->taskId(blk->task_id);
1677    blk->task_id = ContextSwitchTaskId::Unknown;
1678    blk->tickInserted = curTick();
1679
1680    PacketPtr pkt = new Packet(req, MemCmd::CleanEvict);
1681    pkt->allocate();
1682    DPRINTF(Cache, "Create CleanEvict %s\n", pkt->print());
1683
1684    return pkt;
1685}
1686
1687void
1688Cache::memWriteback()
1689{
1690    CacheBlkVisitorWrapper visitor(*this, &Cache::writebackVisitor);
1691    tags->forEachBlk(visitor);
1692}
1693
1694void
1695Cache::memInvalidate()
1696{
1697    CacheBlkVisitorWrapper visitor(*this, &Cache::invalidateVisitor);
1698    tags->forEachBlk(visitor);
1699}
1700
1701bool
1702Cache::isDirty() const
1703{
1704    CacheBlkIsDirtyVisitor visitor;
1705    tags->forEachBlk(visitor);
1706
1707    return visitor.isDirty();
1708}
1709
1710bool
1711Cache::writebackVisitor(CacheBlk &blk)
1712{
1713    if (blk.isDirty()) {
1714        assert(blk.isValid());
1715
1716        Request request(tags->regenerateBlkAddr(blk.tag, blk.set),
1717                        blkSize, 0, Request::funcMasterId);
1718        request.taskId(blk.task_id);
1719        if (blk.isSecure()) {
1720            request.setFlags(Request::SECURE);
1721        }
1722
1723        Packet packet(&request, MemCmd::WriteReq);
1724        packet.dataStatic(blk.data);
1725
1726        memSidePort->sendFunctional(&packet);
1727
1728        blk.status &= ~BlkDirty;
1729    }
1730
1731    return true;
1732}
1733
1734bool
1735Cache::invalidateVisitor(CacheBlk &blk)
1736{
1737
1738    if (blk.isDirty())
1739        warn_once("Invalidating dirty cache lines. Expect things to break.\n");
1740
1741    if (blk.isValid()) {
1742        assert(!blk.isDirty());
1743        invalidateBlock(&blk);
1744    }
1745
1746    return true;
1747}
1748
1749CacheBlk*
1750Cache::allocateBlock(Addr addr, bool is_secure, PacketList &writebacks)
1751{
1752    CacheBlk *blk = tags->findVictim(addr);
1753
1754    // It is valid to return nullptr if there is no victim
1755    if (!blk)
1756        return nullptr;
1757
1758    if (blk->isValid()) {
1759        Addr repl_addr = tags->regenerateBlkAddr(blk->tag, blk->set);
1760        MSHR *repl_mshr = mshrQueue.findMatch(repl_addr, blk->isSecure());
1761        if (repl_mshr) {
1762            // must be an outstanding upgrade request
1763            // on a block we're about to replace...
1764            assert(!blk->isWritable() || blk->isDirty());
1765            assert(repl_mshr->needsWritable());
1766            // too hard to replace block with transient state
1767            // allocation failed, block not inserted
1768            return nullptr;
1769        } else {
1770            DPRINTF(Cache, "replacement: replacing %#llx (%s) with %#llx "
1771                    "(%s): %s\n", repl_addr, blk->isSecure() ? "s" : "ns",
1772                    addr, is_secure ? "s" : "ns",
1773                    blk->isDirty() ? "writeback" : "clean");
1774
1775            if (blk->wasPrefetched()) {
1776                unusedPrefetches++;
1777            }
1778            // Will send up Writeback/CleanEvict snoops via isCachedAbove
1779            // when pushing this writeback list into the write buffer.
1780            if (blk->isDirty() || writebackClean) {
1781                // Save writeback packet for handling by caller
1782                writebacks.push_back(writebackBlk(blk));
1783            } else {
1784                writebacks.push_back(cleanEvictBlk(blk));
1785            }
1786        }
1787    }
1788
1789    return blk;
1790}
1791
1792void
1793Cache::invalidateBlock(CacheBlk *blk)
1794{
1795    if (blk != tempBlock)
1796        tags->invalidate(blk);
1797    blk->invalidate();
1798}
1799
1800// Note that the reason we return a list of writebacks rather than
1801// inserting them directly in the write buffer is that this function
1802// is called by both atomic and timing-mode accesses, and in atomic
1803// mode we don't mess with the write buffer (we just perform the
1804// writebacks atomically once the original request is complete).
1805CacheBlk*
1806Cache::handleFill(PacketPtr pkt, CacheBlk *blk, PacketList &writebacks,
1807                  bool allocate)
1808{
1809    assert(pkt->isResponse() || pkt->cmd == MemCmd::WriteLineReq);
1810    Addr addr = pkt->getAddr();
1811    bool is_secure = pkt->isSecure();
1812#if TRACING_ON
1813    CacheBlk::State old_state = blk ? blk->status : 0;
1814#endif
1815
1816    // When handling a fill, we should have no writes to this line.
1817    assert(addr == pkt->getBlockAddr(blkSize));
1818    assert(!writeBuffer.findMatch(addr, is_secure));
1819
1820    if (blk == nullptr) {
1821        // better have read new data...
1822        assert(pkt->hasData());
1823
1824        // only read responses and write-line requests have data;
1825        // note that we don't write the data here for write-line - that
1826        // happens in the subsequent call to satisfyRequest
1827        assert(pkt->isRead() || pkt->cmd == MemCmd::WriteLineReq);
1828
1829        // need to do a replacement if allocating, otherwise we stick
1830        // with the temporary storage
1831        blk = allocate ? allocateBlock(addr, is_secure, writebacks) : nullptr;
1832
1833        if (blk == nullptr) {
1834            // No replaceable block or a mostly exclusive
1835            // cache... just use temporary storage to complete the
1836            // current request and then get rid of it
1837            assert(!tempBlock->isValid());
1838            blk = tempBlock;
1839            tempBlock->set = tags->extractSet(addr);
1840            tempBlock->tag = tags->extractTag(addr);
1841            // @todo: set security state as well...
1842            DPRINTF(Cache, "using temp block for %#llx (%s)\n", addr,
1843                    is_secure ? "s" : "ns");
1844        } else {
1845            tags->insertBlock(pkt, blk);
1846        }
1847
1848        // we should never be overwriting a valid block
1849        assert(!blk->isValid());
1850    } else {
1851        // existing block... probably an upgrade
1852        assert(blk->tag == tags->extractTag(addr));
1853        // either we're getting new data or the block should already be valid
1854        assert(pkt->hasData() || blk->isValid());
1855        // don't clear block status... if block is already dirty we
1856        // don't want to lose that
1857    }
1858
1859    if (is_secure)
1860        blk->status |= BlkSecure;
1861    blk->status |= BlkValid | BlkReadable;
1862
1863    // sanity check for whole-line writes, which should always be
1864    // marked as writable as part of the fill, and then later marked
1865    // dirty as part of satisfyRequest
1866    if (pkt->cmd == MemCmd::WriteLineReq) {
1867        assert(!pkt->hasSharers());
1868    }
1869
1870    // here we deal with setting the appropriate state of the line,
1871    // and we start by looking at the hasSharers flag, and ignore the
1872    // cacheResponding flag (normally signalling dirty data) if the
1873    // packet has sharers, thus the line is never allocated as Owned
1874    // (dirty but not writable), and always ends up being either
1875    // Shared, Exclusive or Modified, see Packet::setCacheResponding
1876    // for more details
1877    if (!pkt->hasSharers()) {
1878        // we could get a writable line from memory (rather than a
1879        // cache) even in a read-only cache, note that we set this bit
1880        // even for a read-only cache, possibly revisit this decision
1881        blk->status |= BlkWritable;
1882
1883        // check if we got this via cache-to-cache transfer (i.e., from a
1884        // cache that had the block in Modified or Owned state)
1885        if (pkt->cacheResponding()) {
1886            // we got the block in Modified state, and invalidated the
1887            // owners copy
1888            blk->status |= BlkDirty;
1889
1890            chatty_assert(!isReadOnly, "Should never see dirty snoop response "
1891                          "in read-only cache %s\n", name());
1892        }
1893    }
1894
1895    DPRINTF(Cache, "Block addr %#llx (%s) moving from state %x to %s\n",
1896            addr, is_secure ? "s" : "ns", old_state, blk->print());
1897
1898    // if we got new data, copy it in (checking for a read response
1899    // and a response that has data is the same in the end)
1900    if (pkt->isRead()) {
1901        // sanity checks
1902        assert(pkt->hasData());
1903        assert(pkt->getSize() == blkSize);
1904
1905        std::memcpy(blk->data, pkt->getConstPtr<uint8_t>(), blkSize);
1906    }
1907    // We pay for fillLatency here.
1908    blk->whenReady = clockEdge() + fillLatency * clockPeriod() +
1909        pkt->payloadDelay;
1910
1911    return blk;
1912}
1913
1914
1915/////////////////////////////////////////////////////
1916//
1917// Snoop path: requests coming in from the memory side
1918//
1919/////////////////////////////////////////////////////
1920
1921void
1922Cache::doTimingSupplyResponse(PacketPtr req_pkt, const uint8_t *blk_data,
1923                              bool already_copied, bool pending_inval)
1924{
1925    // sanity check
1926    assert(req_pkt->isRequest());
1927    assert(req_pkt->needsResponse());
1928
1929    DPRINTF(Cache, "%s: for %s\n", __func__, req_pkt->print());
1930    // timing-mode snoop responses require a new packet, unless we
1931    // already made a copy...
1932    PacketPtr pkt = req_pkt;
1933    if (!already_copied)
1934        // do not clear flags, and allocate space for data if the
1935        // packet needs it (the only packets that carry data are read
1936        // responses)
1937        pkt = new Packet(req_pkt, false, req_pkt->isRead());
1938
1939    assert(req_pkt->req->isUncacheable() || req_pkt->isInvalidate() ||
1940           pkt->hasSharers());
1941    pkt->makeTimingResponse();
1942    if (pkt->isRead()) {
1943        pkt->setDataFromBlock(blk_data, blkSize);
1944    }
1945    if (pkt->cmd == MemCmd::ReadResp && pending_inval) {
1946        // Assume we defer a response to a read from a far-away cache
1947        // A, then later defer a ReadExcl from a cache B on the same
1948        // bus as us. We'll assert cacheResponding in both cases, but
1949        // in the latter case cacheResponding will keep the
1950        // invalidation from reaching cache A. This special response
1951        // tells cache A that it gets the block to satisfy its read,
1952        // but must immediately invalidate it.
1953        pkt->cmd = MemCmd::ReadRespWithInvalidate;
1954    }
1955    // Here we consider forward_time, paying for just forward latency and
1956    // also charging the delay provided by the xbar.
1957    // forward_time is used as send_time in next allocateWriteBuffer().
1958    Tick forward_time = clockEdge(forwardLatency) + pkt->headerDelay;
1959    // Here we reset the timing of the packet.
1960    pkt->headerDelay = pkt->payloadDelay = 0;
1961    DPRINTF(CacheVerbose, "%s: created response: %s tick: %lu\n", __func__,
1962            pkt->print(), forward_time);
1963    memSidePort->schedTimingSnoopResp(pkt, forward_time, true);
1964}
1965
1966uint32_t
1967Cache::handleSnoop(PacketPtr pkt, CacheBlk *blk, bool is_timing,
1968                   bool is_deferred, bool pending_inval)
1969{
1970    DPRINTF(CacheVerbose, "%s: for %s\n", __func__, pkt->print());
1971    // deferred snoops can only happen in timing mode
1972    assert(!(is_deferred && !is_timing));
1973    // pending_inval only makes sense on deferred snoops
1974    assert(!(pending_inval && !is_deferred));
1975    assert(pkt->isRequest());
1976
1977    // the packet may get modified if we or a forwarded snooper
1978    // responds in atomic mode, so remember a few things about the
1979    // original packet up front
1980    bool invalidate = pkt->isInvalidate();
1981    bool M5_VAR_USED needs_writable = pkt->needsWritable();
1982
1983    // at the moment we could get an uncacheable write which does not
1984    // have the invalidate flag, and we need a suitable way of dealing
1985    // with this case
1986    panic_if(invalidate && pkt->req->isUncacheable(),
1987             "%s got an invalidating uncacheable snoop request %s",
1988             name(), pkt->print());
1989
1990    uint32_t snoop_delay = 0;
1991
1992    if (forwardSnoops) {
1993        // first propagate snoop upward to see if anyone above us wants to
1994        // handle it.  save & restore packet src since it will get
1995        // rewritten to be relative to cpu-side bus (if any)
1996        bool alreadyResponded = pkt->cacheResponding();
1997        if (is_timing) {
1998            // copy the packet so that we can clear any flags before
1999            // forwarding it upwards, we also allocate data (passing
2000            // the pointer along in case of static data), in case
2001            // there is a snoop hit in upper levels
2002            Packet snoopPkt(pkt, true, true);
2003            snoopPkt.setExpressSnoop();
2004            // the snoop packet does not need to wait any additional
2005            // time
2006            snoopPkt.headerDelay = snoopPkt.payloadDelay = 0;
2007            cpuSidePort->sendTimingSnoopReq(&snoopPkt);
2008
2009            // add the header delay (including crossbar and snoop
2010            // delays) of the upward snoop to the snoop delay for this
2011            // cache
2012            snoop_delay += snoopPkt.headerDelay;
2013
2014            if (snoopPkt.cacheResponding()) {
2015                // cache-to-cache response from some upper cache
2016                assert(!alreadyResponded);
2017                pkt->setCacheResponding();
2018            }
2019            // upstream cache has the block, or has an outstanding
2020            // MSHR, pass the flag on
2021            if (snoopPkt.hasSharers()) {
2022                pkt->setHasSharers();
2023            }
2024            // If this request is a prefetch or clean evict and an upper level
2025            // signals block present, make sure to propagate the block
2026            // presence to the requester.
2027            if (snoopPkt.isBlockCached()) {
2028                pkt->setBlockCached();
2029            }
2030        } else {
2031            cpuSidePort->sendAtomicSnoop(pkt);
2032            if (!alreadyResponded && pkt->cacheResponding()) {
2033                // cache-to-cache response from some upper cache:
2034                // forward response to original requester
2035                assert(pkt->isResponse());
2036            }
2037        }
2038    }
2039
2040    if (!blk || !blk->isValid()) {
2041        DPRINTF(CacheVerbose, "%s: snoop miss for %s\n", __func__,
2042                pkt->print());
2043        if (is_deferred) {
2044            // we no longer have the block, and will not respond, but a
2045            // packet was allocated in MSHR::handleSnoop and we have
2046            // to delete it
2047            assert(pkt->needsResponse());
2048
2049            // we have passed the block to a cache upstream, that
2050            // cache should be responding
2051            assert(pkt->cacheResponding());
2052
2053            delete pkt;
2054        }
2055        return snoop_delay;
2056    } else {
2057        DPRINTF(Cache, "%s: snoop hit for %s, old state is %s\n", __func__,
2058                pkt->print(), blk->print());
2059    }
2060
2061    chatty_assert(!(isReadOnly && blk->isDirty()),
2062                  "Should never have a dirty block in a read-only cache %s\n",
2063                  name());
2064
2065    // We may end up modifying both the block state and the packet (if
2066    // we respond in atomic mode), so just figure out what to do now
2067    // and then do it later. We respond to all snoops that need
2068    // responses provided we have the block in dirty state. The
2069    // invalidation itself is taken care of below.
2070    bool respond = blk->isDirty() && pkt->needsResponse();
2071    bool have_writable = blk->isWritable();
2072
2073    // Invalidate any prefetch's from below that would strip write permissions
2074    // MemCmd::HardPFReq is only observed by upstream caches.  After missing
2075    // above and in it's own cache, a new MemCmd::ReadReq is created that
2076    // downstream caches observe.
2077    if (pkt->mustCheckAbove()) {
2078        DPRINTF(Cache, "Found addr %#llx in upper level cache for snoop %s "
2079                "from lower cache\n", pkt->getAddr(), pkt->print());
2080        pkt->setBlockCached();
2081        return snoop_delay;
2082    }
2083
2084    if (pkt->isRead() && !invalidate) {
2085        // reading without requiring the line in a writable state
2086        assert(!needs_writable);
2087        pkt->setHasSharers();
2088
2089        // if the requesting packet is uncacheable, retain the line in
2090        // the current state, otherwhise unset the writable flag,
2091        // which means we go from Modified to Owned (and will respond
2092        // below), remain in Owned (and will respond below), from
2093        // Exclusive to Shared, or remain in Shared
2094        if (!pkt->req->isUncacheable())
2095            blk->status &= ~BlkWritable;
2096    }
2097
2098    if (respond) {
2099        // prevent anyone else from responding, cache as well as
2100        // memory, and also prevent any memory from even seeing the
2101        // request
2102        pkt->setCacheResponding();
2103        if (have_writable) {
2104            // inform the cache hierarchy that this cache had the line
2105            // in the Modified state so that we avoid unnecessary
2106            // invalidations (see Packet::setResponderHadWritable)
2107            pkt->setResponderHadWritable();
2108
2109            // in the case of an uncacheable request there is no point
2110            // in setting the responderHadWritable flag, but since the
2111            // recipient does not care there is no harm in doing so
2112        } else {
2113            // if the packet has needsWritable set we invalidate our
2114            // copy below and all other copies will be invalidates
2115            // through express snoops, and if needsWritable is not set
2116            // we already called setHasSharers above
2117        }
2118
2119        // if we are returning a writable and dirty (Modified) line,
2120        // we should be invalidating the line
2121        panic_if(!invalidate && !pkt->hasSharers(),
2122                 "%s is passing a Modified line through %s, "
2123                 "but keeping the block", name(), pkt->print());
2124
2125        if (is_timing) {
2126            doTimingSupplyResponse(pkt, blk->data, is_deferred, pending_inval);
2127        } else {
2128            pkt->makeAtomicResponse();
2129            // packets such as upgrades do not actually have any data
2130            // payload
2131            if (pkt->hasData())
2132                pkt->setDataFromBlock(blk->data, blkSize);
2133        }
2134    }
2135
2136    if (!respond && is_deferred) {
2137        assert(pkt->needsResponse());
2138
2139        // if we copied the deferred packet with the intention to
2140        // respond, but are not responding, then a cache above us must
2141        // be, and we can use this as the indication of whether this
2142        // is a packet where we created a copy of the request or not
2143        if (!pkt->cacheResponding()) {
2144            delete pkt->req;
2145        }
2146
2147        delete pkt;
2148    }
2149
2150    // Do this last in case it deallocates block data or something
2151    // like that
2152    if (invalidate) {
2153        invalidateBlock(blk);
2154    }
2155
2156    DPRINTF(Cache, "new state is %s\n", blk->print());
2157
2158    return snoop_delay;
2159}
2160
2161
2162void
2163Cache::recvTimingSnoopReq(PacketPtr pkt)
2164{
2165    DPRINTF(CacheVerbose, "%s: for %s\n", __func__, pkt->print());
2166
2167    // Snoops shouldn't happen when bypassing caches
2168    assert(!system->bypassCaches());
2169
2170    // no need to snoop requests that are not in range
2171    if (!inRange(pkt->getAddr())) {
2172        return;
2173    }
2174
2175    bool is_secure = pkt->isSecure();
2176    CacheBlk *blk = tags->findBlock(pkt->getAddr(), is_secure);
2177
2178    Addr blk_addr = pkt->getBlockAddr(blkSize);
2179    MSHR *mshr = mshrQueue.findMatch(blk_addr, is_secure);
2180
2181    // Update the latency cost of the snoop so that the crossbar can
2182    // account for it. Do not overwrite what other neighbouring caches
2183    // have already done, rather take the maximum. The update is
2184    // tentative, for cases where we return before an upward snoop
2185    // happens below.
2186    pkt->snoopDelay = std::max<uint32_t>(pkt->snoopDelay,
2187                                         lookupLatency * clockPeriod());
2188
2189    // Inform request(Prefetch, CleanEvict or Writeback) from below of
2190    // MSHR hit, set setBlockCached.
2191    if (mshr && pkt->mustCheckAbove()) {
2192        DPRINTF(Cache, "Setting block cached for %s from lower cache on "
2193                "mshr hit\n", pkt->print());
2194        pkt->setBlockCached();
2195        return;
2196    }
2197
2198    // Let the MSHR itself track the snoop and decide whether we want
2199    // to go ahead and do the regular cache snoop
2200    if (mshr && mshr->handleSnoop(pkt, order++)) {
2201        DPRINTF(Cache, "Deferring snoop on in-service MSHR to blk %#llx (%s)."
2202                "mshrs: %s\n", blk_addr, is_secure ? "s" : "ns",
2203                mshr->print());
2204
2205        if (mshr->getNumTargets() > numTarget)
2206            warn("allocating bonus target for snoop"); //handle later
2207        return;
2208    }
2209
2210    //We also need to check the writeback buffers and handle those
2211    WriteQueueEntry *wb_entry = writeBuffer.findMatch(blk_addr, is_secure);
2212    if (wb_entry) {
2213        DPRINTF(Cache, "Snoop hit in writeback to addr %#llx (%s)\n",
2214                pkt->getAddr(), is_secure ? "s" : "ns");
2215        // Expect to see only Writebacks and/or CleanEvicts here, both of
2216        // which should not be generated for uncacheable data.
2217        assert(!wb_entry->isUncacheable());
2218        // There should only be a single request responsible for generating
2219        // Writebacks/CleanEvicts.
2220        assert(wb_entry->getNumTargets() == 1);
2221        PacketPtr wb_pkt = wb_entry->getTarget()->pkt;
2222        assert(wb_pkt->isEviction() || wb_pkt->cmd == MemCmd::WriteClean);
2223
2224        if (pkt->isEviction()) {
2225            // if the block is found in the write queue, set the BLOCK_CACHED
2226            // flag for Writeback/CleanEvict snoop. On return the snoop will
2227            // propagate the BLOCK_CACHED flag in Writeback packets and prevent
2228            // any CleanEvicts from travelling down the memory hierarchy.
2229            pkt->setBlockCached();
2230            DPRINTF(Cache, "%s: Squashing %s from lower cache on writequeue "
2231                    "hit\n", __func__, pkt->print());
2232            return;
2233        }
2234
2235        // conceptually writebacks are no different to other blocks in
2236        // this cache, so the behaviour is modelled after handleSnoop,
2237        // the difference being that instead of querying the block
2238        // state to determine if it is dirty and writable, we use the
2239        // command and fields of the writeback packet
2240        bool respond = wb_pkt->cmd == MemCmd::WritebackDirty &&
2241            pkt->needsResponse();
2242        bool have_writable = !wb_pkt->hasSharers();
2243        bool invalidate = pkt->isInvalidate();
2244
2245        if (!pkt->req->isUncacheable() && pkt->isRead() && !invalidate) {
2246            assert(!pkt->needsWritable());
2247            pkt->setHasSharers();
2248            wb_pkt->setHasSharers();
2249        }
2250
2251        if (respond) {
2252            pkt->setCacheResponding();
2253
2254            if (have_writable) {
2255                pkt->setResponderHadWritable();
2256            }
2257
2258            doTimingSupplyResponse(pkt, wb_pkt->getConstPtr<uint8_t>(),
2259                                   false, false);
2260        }
2261
2262        if (invalidate) {
2263            // Invalidation trumps our writeback... discard here
2264            // Note: markInService will remove entry from writeback buffer.
2265            markInService(wb_entry);
2266            delete wb_pkt;
2267        }
2268    }
2269
2270    // If this was a shared writeback, there may still be
2271    // other shared copies above that require invalidation.
2272    // We could be more selective and return here if the
2273    // request is non-exclusive or if the writeback is
2274    // exclusive.
2275    uint32_t snoop_delay = handleSnoop(pkt, blk, true, false, false);
2276
2277    // Override what we did when we first saw the snoop, as we now
2278    // also have the cost of the upwards snoops to account for
2279    pkt->snoopDelay = std::max<uint32_t>(pkt->snoopDelay, snoop_delay +
2280                                         lookupLatency * clockPeriod());
2281}
2282
2283bool
2284Cache::CpuSidePort::recvTimingSnoopResp(PacketPtr pkt)
2285{
2286    // Express snoop responses from master to slave, e.g., from L1 to L2
2287    cache->recvTimingSnoopResp(pkt);
2288    return true;
2289}
2290
2291Tick
2292Cache::recvAtomicSnoop(PacketPtr pkt)
2293{
2294    // Snoops shouldn't happen when bypassing caches
2295    assert(!system->bypassCaches());
2296
2297    // no need to snoop requests that are not in range.
2298    if (!inRange(pkt->getAddr())) {
2299        return 0;
2300    }
2301
2302    CacheBlk *blk = tags->findBlock(pkt->getAddr(), pkt->isSecure());
2303    uint32_t snoop_delay = handleSnoop(pkt, blk, false, false, false);
2304    return snoop_delay + lookupLatency * clockPeriod();
2305}
2306
2307
2308QueueEntry*
2309Cache::getNextQueueEntry()
2310{
2311    // Check both MSHR queue and write buffer for potential requests,
2312    // note that null does not mean there is no request, it could
2313    // simply be that it is not ready
2314    MSHR *miss_mshr  = mshrQueue.getNext();
2315    WriteQueueEntry *wq_entry = writeBuffer.getNext();
2316
2317    // If we got a write buffer request ready, first priority is a
2318    // full write buffer, otherwise we favour the miss requests
2319    if (wq_entry && (writeBuffer.isFull() || !miss_mshr)) {
2320        // need to search MSHR queue for conflicting earlier miss.
2321        MSHR *conflict_mshr =
2322            mshrQueue.findPending(wq_entry->blkAddr,
2323                                  wq_entry->isSecure);
2324
2325        if (conflict_mshr && conflict_mshr->order < wq_entry->order) {
2326            // Service misses in order until conflict is cleared.
2327            return conflict_mshr;
2328
2329            // @todo Note that we ignore the ready time of the conflict here
2330        }
2331
2332        // No conflicts; issue write
2333        return wq_entry;
2334    } else if (miss_mshr) {
2335        // need to check for conflicting earlier writeback
2336        WriteQueueEntry *conflict_mshr =
2337            writeBuffer.findPending(miss_mshr->blkAddr,
2338                                    miss_mshr->isSecure);
2339        if (conflict_mshr) {
2340            // not sure why we don't check order here... it was in the
2341            // original code but commented out.
2342
2343            // The only way this happens is if we are
2344            // doing a write and we didn't have permissions
2345            // then subsequently saw a writeback (owned got evicted)
2346            // We need to make sure to perform the writeback first
2347            // To preserve the dirty data, then we can issue the write
2348
2349            // should we return wq_entry here instead?  I.e. do we
2350            // have to flush writes in order?  I don't think so... not
2351            // for Alpha anyway.  Maybe for x86?
2352            return conflict_mshr;
2353
2354            // @todo Note that we ignore the ready time of the conflict here
2355        }
2356
2357        // No conflicts; issue read
2358        return miss_mshr;
2359    }
2360
2361    // fall through... no pending requests.  Try a prefetch.
2362    assert(!miss_mshr && !wq_entry);
2363    if (prefetcher && mshrQueue.canPrefetch()) {
2364        // If we have a miss queue slot, we can try a prefetch
2365        PacketPtr pkt = prefetcher->getPacket();
2366        if (pkt) {
2367            Addr pf_addr = pkt->getBlockAddr(blkSize);
2368            if (!tags->findBlock(pf_addr, pkt->isSecure()) &&
2369                !mshrQueue.findMatch(pf_addr, pkt->isSecure()) &&
2370                !writeBuffer.findMatch(pf_addr, pkt->isSecure())) {
2371                // Update statistic on number of prefetches issued
2372                // (hwpf_mshr_misses)
2373                assert(pkt->req->masterId() < system->maxMasters());
2374                mshr_misses[pkt->cmdToIndex()][pkt->req->masterId()]++;
2375
2376                // allocate an MSHR and return it, note
2377                // that we send the packet straight away, so do not
2378                // schedule the send
2379                return allocateMissBuffer(pkt, curTick(), false);
2380            } else {
2381                // free the request and packet
2382                delete pkt->req;
2383                delete pkt;
2384            }
2385        }
2386    }
2387
2388    return nullptr;
2389}
2390
2391bool
2392Cache::isCachedAbove(PacketPtr pkt, bool is_timing) const
2393{
2394    if (!forwardSnoops)
2395        return false;
2396    // Mirroring the flow of HardPFReqs, the cache sends CleanEvict and
2397    // Writeback snoops into upper level caches to check for copies of the
2398    // same block. Using the BLOCK_CACHED flag with the Writeback/CleanEvict
2399    // packet, the cache can inform the crossbar below of presence or absence
2400    // of the block.
2401    if (is_timing) {
2402        Packet snoop_pkt(pkt, true, false);
2403        snoop_pkt.setExpressSnoop();
2404        // Assert that packet is either Writeback or CleanEvict and not a
2405        // prefetch request because prefetch requests need an MSHR and may
2406        // generate a snoop response.
2407        assert(pkt->isEviction() || pkt->cmd == MemCmd::WriteClean);
2408        snoop_pkt.senderState = nullptr;
2409        cpuSidePort->sendTimingSnoopReq(&snoop_pkt);
2410        // Writeback/CleanEvict snoops do not generate a snoop response.
2411        assert(!(snoop_pkt.cacheResponding()));
2412        return snoop_pkt.isBlockCached();
2413    } else {
2414        cpuSidePort->sendAtomicSnoop(pkt);
2415        return pkt->isBlockCached();
2416    }
2417}
2418
2419Tick
2420Cache::nextQueueReadyTime() const
2421{
2422    Tick nextReady = std::min(mshrQueue.nextReadyTime(),
2423                              writeBuffer.nextReadyTime());
2424
2425    // Don't signal prefetch ready time if no MSHRs available
2426    // Will signal once enoguh MSHRs are deallocated
2427    if (prefetcher && mshrQueue.canPrefetch()) {
2428        nextReady = std::min(nextReady,
2429                             prefetcher->nextPrefetchReadyTime());
2430    }
2431
2432    return nextReady;
2433}
2434
2435bool
2436Cache::sendMSHRQueuePacket(MSHR* mshr)
2437{
2438    assert(mshr);
2439
2440    // use request from 1st target
2441    PacketPtr tgt_pkt = mshr->getTarget()->pkt;
2442
2443    DPRINTF(Cache, "%s: MSHR %s\n", __func__, tgt_pkt->print());
2444
2445    CacheBlk *blk = tags->findBlock(mshr->blkAddr, mshr->isSecure);
2446
2447    if (tgt_pkt->cmd == MemCmd::HardPFReq && forwardSnoops) {
2448        // we should never have hardware prefetches to allocated
2449        // blocks
2450        assert(blk == nullptr);
2451
2452        // We need to check the caches above us to verify that
2453        // they don't have a copy of this block in the dirty state
2454        // at the moment. Without this check we could get a stale
2455        // copy from memory that might get used in place of the
2456        // dirty one.
2457        Packet snoop_pkt(tgt_pkt, true, false);
2458        snoop_pkt.setExpressSnoop();
2459        // We are sending this packet upwards, but if it hits we will
2460        // get a snoop response that we end up treating just like a
2461        // normal response, hence it needs the MSHR as its sender
2462        // state
2463        snoop_pkt.senderState = mshr;
2464        cpuSidePort->sendTimingSnoopReq(&snoop_pkt);
2465
2466        // Check to see if the prefetch was squashed by an upper cache (to
2467        // prevent us from grabbing the line) or if a Check to see if a
2468        // writeback arrived between the time the prefetch was placed in
2469        // the MSHRs and when it was selected to be sent or if the
2470        // prefetch was squashed by an upper cache.
2471
2472        // It is important to check cacheResponding before
2473        // prefetchSquashed. If another cache has committed to
2474        // responding, it will be sending a dirty response which will
2475        // arrive at the MSHR allocated for this request. Checking the
2476        // prefetchSquash first may result in the MSHR being
2477        // prematurely deallocated.
2478        if (snoop_pkt.cacheResponding()) {
2479            auto M5_VAR_USED r = outstandingSnoop.insert(snoop_pkt.req);
2480            assert(r.second);
2481
2482            // if we are getting a snoop response with no sharers it
2483            // will be allocated as Modified
2484            bool pending_modified_resp = !snoop_pkt.hasSharers();
2485            markInService(mshr, pending_modified_resp);
2486
2487            DPRINTF(Cache, "Upward snoop of prefetch for addr"
2488                    " %#x (%s) hit\n",
2489                    tgt_pkt->getAddr(), tgt_pkt->isSecure()? "s": "ns");
2490            return false;
2491        }
2492
2493        if (snoop_pkt.isBlockCached()) {
2494            DPRINTF(Cache, "Block present, prefetch squashed by cache.  "
2495                    "Deallocating mshr target %#x.\n",
2496                    mshr->blkAddr);
2497
2498            // Deallocate the mshr target
2499            if (mshrQueue.forceDeallocateTarget(mshr)) {
2500                // Clear block if this deallocation resulted freed an
2501                // mshr when all had previously been utilized
2502                clearBlocked(Blocked_NoMSHRs);
2503            }
2504
2505            // given that no response is expected, delete Request and Packet
2506            delete tgt_pkt->req;
2507            delete tgt_pkt;
2508
2509            return false;
2510        }
2511    }
2512
2513    // either a prefetch that is not present upstream, or a normal
2514    // MSHR request, proceed to get the packet to send downstream
2515    PacketPtr pkt = createMissPacket(tgt_pkt, blk, mshr->needsWritable());
2516
2517    mshr->isForward = (pkt == nullptr);
2518
2519    if (mshr->isForward) {
2520        // not a cache block request, but a response is expected
2521        // make copy of current packet to forward, keep current
2522        // copy for response handling
2523        pkt = new Packet(tgt_pkt, false, true);
2524        assert(!pkt->isWrite());
2525    }
2526
2527    // play it safe and append (rather than set) the sender state,
2528    // as forwarded packets may already have existing state
2529    pkt->pushSenderState(mshr);
2530
2531    if (!memSidePort->sendTimingReq(pkt)) {
2532        // we are awaiting a retry, but we
2533        // delete the packet and will be creating a new packet
2534        // when we get the opportunity
2535        delete pkt;
2536
2537        // note that we have now masked any requestBus and
2538        // schedSendEvent (we will wait for a retry before
2539        // doing anything), and this is so even if we do not
2540        // care about this packet and might override it before
2541        // it gets retried
2542        return true;
2543    } else {
2544        // As part of the call to sendTimingReq the packet is
2545        // forwarded to all neighbouring caches (and any caches
2546        // above them) as a snoop. Thus at this point we know if
2547        // any of the neighbouring caches are responding, and if
2548        // so, we know it is dirty, and we can determine if it is
2549        // being passed as Modified, making our MSHR the ordering
2550        // point
2551        bool pending_modified_resp = !pkt->hasSharers() &&
2552            pkt->cacheResponding();
2553        markInService(mshr, pending_modified_resp);
2554        return false;
2555    }
2556}
2557
2558bool
2559Cache::sendWriteQueuePacket(WriteQueueEntry* wq_entry)
2560{
2561    assert(wq_entry);
2562
2563    // always a single target for write queue entries
2564    PacketPtr tgt_pkt = wq_entry->getTarget()->pkt;
2565
2566    DPRINTF(Cache, "%s: write %s\n", __func__, tgt_pkt->print());
2567
2568    // forward as is, both for evictions and uncacheable writes
2569    if (!memSidePort->sendTimingReq(tgt_pkt)) {
2570        // note that we have now masked any requestBus and
2571        // schedSendEvent (we will wait for a retry before
2572        // doing anything), and this is so even if we do not
2573        // care about this packet and might override it before
2574        // it gets retried
2575        return true;
2576    } else {
2577        markInService(wq_entry);
2578        return false;
2579    }
2580}
2581
2582void
2583Cache::serialize(CheckpointOut &cp) const
2584{
2585    bool dirty(isDirty());
2586
2587    if (dirty) {
2588        warn("*** The cache still contains dirty data. ***\n");
2589        warn("    Make sure to drain the system using the correct flags.\n");
2590        warn("    This checkpoint will not restore correctly and dirty data "
2591             "    in the cache will be lost!\n");
2592    }
2593
2594    // Since we don't checkpoint the data in the cache, any dirty data
2595    // will be lost when restoring from a checkpoint of a system that
2596    // wasn't drained properly. Flag the checkpoint as invalid if the
2597    // cache contains dirty data.
2598    bool bad_checkpoint(dirty);
2599    SERIALIZE_SCALAR(bad_checkpoint);
2600}
2601
2602void
2603Cache::unserialize(CheckpointIn &cp)
2604{
2605    bool bad_checkpoint;
2606    UNSERIALIZE_SCALAR(bad_checkpoint);
2607    if (bad_checkpoint) {
2608        fatal("Restoring from checkpoints with dirty caches is not supported "
2609              "in the classic memory system. Please remove any caches or "
2610              " drain them properly before taking checkpoints.\n");
2611    }
2612}
2613
2614///////////////
2615//
2616// CpuSidePort
2617//
2618///////////////
2619
2620AddrRangeList
2621Cache::CpuSidePort::getAddrRanges() const
2622{
2623    return cache->getAddrRanges();
2624}
2625
2626bool
2627Cache::CpuSidePort::tryTiming(PacketPtr pkt)
2628{
2629    assert(!cache->system->bypassCaches());
2630
2631    // always let express snoop packets through if even if blocked
2632    if (pkt->isExpressSnoop()) {
2633        return true;
2634    } else if (isBlocked() || mustSendRetry) {
2635        // either already committed to send a retry, or blocked
2636        mustSendRetry = true;
2637        return false;
2638    }
2639    mustSendRetry = false;
2640    return true;
2641}
2642
2643bool
2644Cache::CpuSidePort::recvTimingReq(PacketPtr pkt)
2645{
2646    assert(!cache->system->bypassCaches());
2647
2648    // always let express snoop packets through if even if blocked
2649    if (pkt->isExpressSnoop()) {
2650        bool M5_VAR_USED bypass_success = cache->recvTimingReq(pkt);
2651        assert(bypass_success);
2652        return true;
2653    }
2654
2655    return tryTiming(pkt) && cache->recvTimingReq(pkt);
2656}
2657
2658Tick
2659Cache::CpuSidePort::recvAtomic(PacketPtr pkt)
2660{
2661    return cache->recvAtomic(pkt);
2662}
2663
2664void
2665Cache::CpuSidePort::recvFunctional(PacketPtr pkt)
2666{
2667    // functional request
2668    cache->functionalAccess(pkt, true);
2669}
2670
2671Cache::
2672CpuSidePort::CpuSidePort(const std::string &_name, Cache *_cache,
2673                         const std::string &_label)
2674    : BaseCache::CacheSlavePort(_name, _cache, _label), cache(_cache)
2675{
2676}
2677
2678Cache*
2679CacheParams::create()
2680{
2681    assert(tags);
2682
2683    return new Cache(this);
2684}
2685///////////////
2686//
2687// MemSidePort
2688//
2689///////////////
2690
2691bool
2692Cache::MemSidePort::recvTimingResp(PacketPtr pkt)
2693{
2694    cache->recvTimingResp(pkt);
2695    return true;
2696}
2697
2698// Express snooping requests to memside port
2699void
2700Cache::MemSidePort::recvTimingSnoopReq(PacketPtr pkt)
2701{
2702    // handle snooping requests
2703    cache->recvTimingSnoopReq(pkt);
2704}
2705
2706Tick
2707Cache::MemSidePort::recvAtomicSnoop(PacketPtr pkt)
2708{
2709    return cache->recvAtomicSnoop(pkt);
2710}
2711
2712void
2713Cache::MemSidePort::recvFunctionalSnoop(PacketPtr pkt)
2714{
2715    // functional snoop (note that in contrast to atomic we don't have
2716    // a specific functionalSnoop method, as they have the same
2717    // behaviour regardless)
2718    cache->functionalAccess(pkt, false);
2719}
2720
2721void
2722Cache::CacheReqPacketQueue::sendDeferredPacket()
2723{
2724    // sanity check
2725    assert(!waitingOnRetry);
2726
2727    // there should never be any deferred request packets in the
2728    // queue, instead we resly on the cache to provide the packets
2729    // from the MSHR queue or write queue
2730    assert(deferredPacketReadyTime() == MaxTick);
2731
2732    // check for request packets (requests & writebacks)
2733    QueueEntry* entry = cache.getNextQueueEntry();
2734
2735    if (!entry) {
2736        // can happen if e.g. we attempt a writeback and fail, but
2737        // before the retry, the writeback is eliminated because
2738        // we snoop another cache's ReadEx.
2739    } else {
2740        // let our snoop responses go first if there are responses to
2741        // the same addresses
2742        if (checkConflictingSnoop(entry->blkAddr)) {
2743            return;
2744        }
2745        waitingOnRetry = entry->sendPacket(cache);
2746    }
2747
2748    // if we succeeded and are not waiting for a retry, schedule the
2749    // next send considering when the next queue is ready, note that
2750    // snoop responses have their own packet queue and thus schedule
2751    // their own events
2752    if (!waitingOnRetry) {
2753        schedSendEvent(cache.nextQueueReadyTime());
2754    }
2755}
2756
2757Cache::
2758MemSidePort::MemSidePort(const std::string &_name, Cache *_cache,
2759                         const std::string &_label)
2760    : BaseCache::CacheMasterPort(_name, _cache, _reqQueue, _snoopRespQueue),
2761      _reqQueue(*_cache, *this, _snoopRespQueue, _label),
2762      _snoopRespQueue(*_cache, *this, _label), cache(_cache)
2763{
2764}
2765