cache.cc revision 12345:70c783a93195
1/*
2 * Copyright (c) 2010-2016 ARM Limited
3 * All rights reserved.
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder.  You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2002-2005 The Regents of The University of Michigan
15 * Copyright (c) 2010,2015 Advanced Micro Devices, Inc.
16 * All rights reserved.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions are
20 * met: redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer;
22 * redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution;
25 * neither the name of the copyright holders nor the names of its
26 * contributors may be used to endorse or promote products derived from
27 * this software without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40 *
41 * Authors: Erik Hallnor
42 *          Dave Greene
43 *          Nathan Binkert
44 *          Steve Reinhardt
45 *          Ron Dreslinski
46 *          Andreas Sandberg
47 */
48
49/**
50 * @file
51 * Cache definitions.
52 */
53
54#include "mem/cache/cache.hh"
55
56#include "base/logging.hh"
57#include "base/types.hh"
58#include "debug/Cache.hh"
59#include "debug/CachePort.hh"
60#include "debug/CacheTags.hh"
61#include "debug/CacheVerbose.hh"
62#include "mem/cache/blk.hh"
63#include "mem/cache/mshr.hh"
64#include "mem/cache/prefetch/base.hh"
65#include "sim/sim_exit.hh"
66
67Cache::Cache(const CacheParams *p)
68    : BaseCache(p, p->system->cacheLineSize()),
69      tags(p->tags),
70      prefetcher(p->prefetcher),
71      doFastWrites(true),
72      prefetchOnAccess(p->prefetch_on_access),
73      clusivity(p->clusivity),
74      writebackClean(p->writeback_clean),
75      tempBlockWriteback(nullptr),
76      writebackTempBlockAtomicEvent([this]{ writebackTempBlockAtomic(); },
77                                    name(), false,
78                                    EventBase::Delayed_Writeback_Pri)
79{
80    tempBlock = new CacheBlk();
81    tempBlock->data = new uint8_t[blkSize];
82
83    cpuSidePort = new CpuSidePort(p->name + ".cpu_side", this,
84                                  "CpuSidePort");
85    memSidePort = new MemSidePort(p->name + ".mem_side", this,
86                                  "MemSidePort");
87
88    tags->setCache(this);
89    if (prefetcher)
90        prefetcher->setCache(this);
91}
92
93Cache::~Cache()
94{
95    delete [] tempBlock->data;
96    delete tempBlock;
97
98    delete cpuSidePort;
99    delete memSidePort;
100}
101
102void
103Cache::regStats()
104{
105    BaseCache::regStats();
106}
107
108void
109Cache::cmpAndSwap(CacheBlk *blk, PacketPtr pkt)
110{
111    assert(pkt->isRequest());
112
113    uint64_t overwrite_val;
114    bool overwrite_mem;
115    uint64_t condition_val64;
116    uint32_t condition_val32;
117
118    int offset = tags->extractBlkOffset(pkt->getAddr());
119    uint8_t *blk_data = blk->data + offset;
120
121    assert(sizeof(uint64_t) >= pkt->getSize());
122
123    overwrite_mem = true;
124    // keep a copy of our possible write value, and copy what is at the
125    // memory address into the packet
126    pkt->writeData((uint8_t *)&overwrite_val);
127    pkt->setData(blk_data);
128
129    if (pkt->req->isCondSwap()) {
130        if (pkt->getSize() == sizeof(uint64_t)) {
131            condition_val64 = pkt->req->getExtraData();
132            overwrite_mem = !std::memcmp(&condition_val64, blk_data,
133                                         sizeof(uint64_t));
134        } else if (pkt->getSize() == sizeof(uint32_t)) {
135            condition_val32 = (uint32_t)pkt->req->getExtraData();
136            overwrite_mem = !std::memcmp(&condition_val32, blk_data,
137                                         sizeof(uint32_t));
138        } else
139            panic("Invalid size for conditional read/write\n");
140    }
141
142    if (overwrite_mem) {
143        std::memcpy(blk_data, &overwrite_val, pkt->getSize());
144        blk->status |= BlkDirty;
145    }
146}
147
148
149void
150Cache::satisfyRequest(PacketPtr pkt, CacheBlk *blk,
151                      bool deferred_response, bool pending_downgrade)
152{
153    assert(pkt->isRequest());
154
155    assert(blk && blk->isValid());
156    // Occasionally this is not true... if we are a lower-level cache
157    // satisfying a string of Read and ReadEx requests from
158    // upper-level caches, a Read will mark the block as shared but we
159    // can satisfy a following ReadEx anyway since we can rely on the
160    // Read requester(s) to have buffered the ReadEx snoop and to
161    // invalidate their blocks after receiving them.
162    // assert(!pkt->needsWritable() || blk->isWritable());
163    assert(pkt->getOffset(blkSize) + pkt->getSize() <= blkSize);
164
165    // Check RMW operations first since both isRead() and
166    // isWrite() will be true for them
167    if (pkt->cmd == MemCmd::SwapReq) {
168        cmpAndSwap(blk, pkt);
169    } else if (pkt->isWrite()) {
170        // we have the block in a writable state and can go ahead,
171        // note that the line may be also be considered writable in
172        // downstream caches along the path to memory, but always
173        // Exclusive, and never Modified
174        assert(blk->isWritable());
175        // Write or WriteLine at the first cache with block in writable state
176        if (blk->checkWrite(pkt)) {
177            pkt->writeDataToBlock(blk->data, blkSize);
178        }
179        // Always mark the line as dirty (and thus transition to the
180        // Modified state) even if we are a failed StoreCond so we
181        // supply data to any snoops that have appended themselves to
182        // this cache before knowing the store will fail.
183        blk->status |= BlkDirty;
184        DPRINTF(CacheVerbose, "%s for %s (write)\n", __func__, pkt->print());
185    } else if (pkt->isRead()) {
186        if (pkt->isLLSC()) {
187            blk->trackLoadLocked(pkt);
188        }
189
190        // all read responses have a data payload
191        assert(pkt->hasRespData());
192        pkt->setDataFromBlock(blk->data, blkSize);
193
194        // determine if this read is from a (coherent) cache or not
195        if (pkt->fromCache()) {
196            assert(pkt->getSize() == blkSize);
197            // special handling for coherent block requests from
198            // upper-level caches
199            if (pkt->needsWritable()) {
200                // sanity check
201                assert(pkt->cmd == MemCmd::ReadExReq ||
202                       pkt->cmd == MemCmd::SCUpgradeFailReq);
203                assert(!pkt->hasSharers());
204
205                // if we have a dirty copy, make sure the recipient
206                // keeps it marked dirty (in the modified state)
207                if (blk->isDirty()) {
208                    pkt->setCacheResponding();
209                    blk->status &= ~BlkDirty;
210                }
211            } else if (blk->isWritable() && !pending_downgrade &&
212                       !pkt->hasSharers() &&
213                       pkt->cmd != MemCmd::ReadCleanReq) {
214                // we can give the requester a writable copy on a read
215                // request if:
216                // - we have a writable copy at this level (& below)
217                // - we don't have a pending snoop from below
218                //   signaling another read request
219                // - no other cache above has a copy (otherwise it
220                //   would have set hasSharers flag when
221                //   snooping the packet)
222                // - the read has explicitly asked for a clean
223                //   copy of the line
224                if (blk->isDirty()) {
225                    // special considerations if we're owner:
226                    if (!deferred_response) {
227                        // respond with the line in Modified state
228                        // (cacheResponding set, hasSharers not set)
229                        pkt->setCacheResponding();
230
231                        // if this cache is mostly inclusive, we
232                        // keep the block in the Exclusive state,
233                        // and pass it upwards as Modified
234                        // (writable and dirty), hence we have
235                        // multiple caches, all on the same path
236                        // towards memory, all considering the
237                        // same block writable, but only one
238                        // considering it Modified
239
240                        // we get away with multiple caches (on
241                        // the same path to memory) considering
242                        // the block writeable as we always enter
243                        // the cache hierarchy through a cache,
244                        // and first snoop upwards in all other
245                        // branches
246                        blk->status &= ~BlkDirty;
247                    } else {
248                        // if we're responding after our own miss,
249                        // there's a window where the recipient didn't
250                        // know it was getting ownership and may not
251                        // have responded to snoops correctly, so we
252                        // have to respond with a shared line
253                        pkt->setHasSharers();
254                    }
255                }
256            } else {
257                // otherwise only respond with a shared copy
258                pkt->setHasSharers();
259            }
260        }
261    } else if (pkt->isUpgrade()) {
262        // sanity check
263        assert(!pkt->hasSharers());
264
265        if (blk->isDirty()) {
266            // we were in the Owned state, and a cache above us that
267            // has the line in Shared state needs to be made aware
268            // that the data it already has is in fact dirty
269            pkt->setCacheResponding();
270            blk->status &= ~BlkDirty;
271        }
272    } else {
273        assert(pkt->isInvalidate());
274        invalidateBlock(blk);
275        DPRINTF(CacheVerbose, "%s for %s (invalidation)\n", __func__,
276                pkt->print());
277    }
278}
279
280/////////////////////////////////////////////////////
281//
282// Access path: requests coming in from the CPU side
283//
284/////////////////////////////////////////////////////
285
286bool
287Cache::access(PacketPtr pkt, CacheBlk *&blk, Cycles &lat,
288              PacketList &writebacks)
289{
290    // sanity check
291    assert(pkt->isRequest());
292
293    chatty_assert(!(isReadOnly && pkt->isWrite()),
294                  "Should never see a write in a read-only cache %s\n",
295                  name());
296
297    DPRINTF(CacheVerbose, "%s for %s\n", __func__, pkt->print());
298
299    if (pkt->req->isUncacheable()) {
300        DPRINTF(Cache, "uncacheable: %s\n", pkt->print());
301
302        // flush and invalidate any existing block
303        CacheBlk *old_blk(tags->findBlock(pkt->getAddr(), pkt->isSecure()));
304        if (old_blk && old_blk->isValid()) {
305            if (old_blk->isDirty() || writebackClean)
306                writebacks.push_back(writebackBlk(old_blk));
307            else
308                writebacks.push_back(cleanEvictBlk(old_blk));
309            invalidateBlock(old_blk);
310        }
311
312        blk = nullptr;
313        // lookupLatency is the latency in case the request is uncacheable.
314        lat = lookupLatency;
315        return false;
316    }
317
318    // Here lat is the value passed as parameter to accessBlock() function
319    // that can modify its value.
320    blk = tags->accessBlock(pkt->getAddr(), pkt->isSecure(), lat);
321
322    DPRINTF(Cache, "%s %s\n", pkt->print(),
323            blk ? "hit " + blk->print() : "miss");
324
325
326    if (pkt->isEviction()) {
327        // We check for presence of block in above caches before issuing
328        // Writeback or CleanEvict to write buffer. Therefore the only
329        // possible cases can be of a CleanEvict packet coming from above
330        // encountering a Writeback generated in this cache peer cache and
331        // waiting in the write buffer. Cases of upper level peer caches
332        // generating CleanEvict and Writeback or simply CleanEvict and
333        // CleanEvict almost simultaneously will be caught by snoops sent out
334        // by crossbar.
335        WriteQueueEntry *wb_entry = writeBuffer.findMatch(pkt->getAddr(),
336                                                          pkt->isSecure());
337        if (wb_entry) {
338            assert(wb_entry->getNumTargets() == 1);
339            PacketPtr wbPkt = wb_entry->getTarget()->pkt;
340            assert(wbPkt->isWriteback());
341
342            if (pkt->isCleanEviction()) {
343                // The CleanEvict and WritebackClean snoops into other
344                // peer caches of the same level while traversing the
345                // crossbar. If a copy of the block is found, the
346                // packet is deleted in the crossbar. Hence, none of
347                // the other upper level caches connected to this
348                // cache have the block, so we can clear the
349                // BLOCK_CACHED flag in the Writeback if set and
350                // discard the CleanEvict by returning true.
351                wbPkt->clearBlockCached();
352                return true;
353            } else {
354                assert(pkt->cmd == MemCmd::WritebackDirty);
355                // Dirty writeback from above trumps our clean
356                // writeback... discard here
357                // Note: markInService will remove entry from writeback buffer.
358                markInService(wb_entry);
359                delete wbPkt;
360            }
361        }
362    }
363
364    // Writeback handling is special case.  We can write the block into
365    // the cache without having a writeable copy (or any copy at all).
366    if (pkt->isWriteback()) {
367        assert(blkSize == pkt->getSize());
368
369        // we could get a clean writeback while we are having
370        // outstanding accesses to a block, do the simple thing for
371        // now and drop the clean writeback so that we do not upset
372        // any ordering/decisions about ownership already taken
373        if (pkt->cmd == MemCmd::WritebackClean &&
374            mshrQueue.findMatch(pkt->getAddr(), pkt->isSecure())) {
375            DPRINTF(Cache, "Clean writeback %#llx to block with MSHR, "
376                    "dropping\n", pkt->getAddr());
377            return true;
378        }
379
380        if (blk == nullptr) {
381            // need to do a replacement
382            blk = allocateBlock(pkt->getAddr(), pkt->isSecure(), writebacks);
383            if (blk == nullptr) {
384                // no replaceable block available: give up, fwd to next level.
385                incMissCount(pkt);
386                return false;
387            }
388            tags->insertBlock(pkt, blk);
389
390            blk->status = (BlkValid | BlkReadable);
391            if (pkt->isSecure()) {
392                blk->status |= BlkSecure;
393            }
394        }
395        // only mark the block dirty if we got a writeback command,
396        // and leave it as is for a clean writeback
397        if (pkt->cmd == MemCmd::WritebackDirty) {
398            blk->status |= BlkDirty;
399        }
400        // if the packet does not have sharers, it is passing
401        // writable, and we got the writeback in Modified or Exclusive
402        // state, if not we are in the Owned or Shared state
403        if (!pkt->hasSharers()) {
404            blk->status |= BlkWritable;
405        }
406        // nothing else to do; writeback doesn't expect response
407        assert(!pkt->needsResponse());
408        std::memcpy(blk->data, pkt->getConstPtr<uint8_t>(), blkSize);
409        DPRINTF(Cache, "%s new state is %s\n", __func__, blk->print());
410        incHitCount(pkt);
411        return true;
412    } else if (pkt->cmd == MemCmd::CleanEvict) {
413        if (blk != nullptr) {
414            // Found the block in the tags, need to stop CleanEvict from
415            // propagating further down the hierarchy. Returning true will
416            // treat the CleanEvict like a satisfied write request and delete
417            // it.
418            return true;
419        }
420        // We didn't find the block here, propagate the CleanEvict further
421        // down the memory hierarchy. Returning false will treat the CleanEvict
422        // like a Writeback which could not find a replaceable block so has to
423        // go to next level.
424        return false;
425    } else if (pkt->cmd == MemCmd::WriteClean) {
426        // WriteClean handling is a special case. We can allocate a
427        // block directly if it doesn't exist and we can update the
428        // block immediately. The WriteClean transfers the ownership
429        // of the block as well.
430        assert(blkSize == pkt->getSize());
431
432        if (!blk) {
433            // a writeback that misses needs to allocate a new block
434            blk = allocateBlock(pkt->getAddr(), pkt->isSecure(),
435                                writebacks);
436            if (!blk) {
437                // no replaceable block available: give up, fwd to
438                // next level.
439                incMissCount(pkt);
440                return false;
441            }
442            tags->insertBlock(pkt, blk);
443
444            blk->status = (BlkValid | BlkReadable);
445            if (pkt->isSecure()) {
446                blk->status |= BlkSecure;
447            }
448        }
449
450        // at this point either this is a writeback or a write-through
451        // write clean operation and the block is already in this
452        // cache, we need to update the data and the block flags
453        assert(blk);
454        blk->status |= BlkDirty;
455        // nothing else to do; writeback doesn't expect response
456        assert(!pkt->needsResponse());
457        std::memcpy(blk->data, pkt->getConstPtr<uint8_t>(), blkSize);
458        DPRINTF(Cache, "%s new state is %s\n", __func__, blk->print());
459
460        incHitCount(pkt);
461        // populate the time when the block will be ready to access.
462        blk->whenReady = clockEdge(fillLatency) + pkt->headerDelay +
463            pkt->payloadDelay;
464        return true;
465    } else if (blk && (pkt->needsWritable() ? blk->isWritable() :
466                       blk->isReadable())) {
467        // OK to satisfy access
468        incHitCount(pkt);
469        satisfyRequest(pkt, blk);
470        maintainClusivity(pkt->fromCache(), blk);
471
472        return true;
473    }
474
475    // Can't satisfy access normally... either no block (blk == nullptr)
476    // or have block but need writable
477
478    incMissCount(pkt);
479
480    if (blk == nullptr && pkt->isLLSC() && pkt->isWrite()) {
481        // complete miss on store conditional... just give up now
482        pkt->req->setExtraData(0);
483        return true;
484    }
485
486    return false;
487}
488
489void
490Cache::maintainClusivity(bool from_cache, CacheBlk *blk)
491{
492    if (from_cache && blk && blk->isValid() && !blk->isDirty() &&
493        clusivity == Enums::mostly_excl) {
494        // if we have responded to a cache, and our block is still
495        // valid, but not dirty, and this cache is mostly exclusive
496        // with respect to the cache above, drop the block
497        invalidateBlock(blk);
498    }
499}
500
501void
502Cache::doWritebacks(PacketList& writebacks, Tick forward_time)
503{
504    while (!writebacks.empty()) {
505        PacketPtr wbPkt = writebacks.front();
506        // We use forwardLatency here because we are copying writebacks to
507        // write buffer.
508
509        // Call isCachedAbove for Writebacks, CleanEvicts and
510        // WriteCleans to discover if the block is cached above.
511        if (isCachedAbove(wbPkt)) {
512            if (wbPkt->cmd == MemCmd::CleanEvict) {
513                // Delete CleanEvict because cached copies exist above. The
514                // packet destructor will delete the request object because
515                // this is a non-snoop request packet which does not require a
516                // response.
517                delete wbPkt;
518            } else if (wbPkt->cmd == MemCmd::WritebackClean) {
519                // clean writeback, do not send since the block is
520                // still cached above
521                assert(writebackClean);
522                delete wbPkt;
523            } else {
524                assert(wbPkt->cmd == MemCmd::WritebackDirty ||
525                       wbPkt->cmd == MemCmd::WriteClean);
526                // Set BLOCK_CACHED flag in Writeback and send below, so that
527                // the Writeback does not reset the bit corresponding to this
528                // address in the snoop filter below.
529                wbPkt->setBlockCached();
530                allocateWriteBuffer(wbPkt, forward_time);
531            }
532        } else {
533            // If the block is not cached above, send packet below. Both
534            // CleanEvict and Writeback with BLOCK_CACHED flag cleared will
535            // reset the bit corresponding to this address in the snoop filter
536            // below.
537            allocateWriteBuffer(wbPkt, forward_time);
538        }
539        writebacks.pop_front();
540    }
541}
542
543void
544Cache::doWritebacksAtomic(PacketList& writebacks)
545{
546    while (!writebacks.empty()) {
547        PacketPtr wbPkt = writebacks.front();
548        // Call isCachedAbove for both Writebacks and CleanEvicts. If
549        // isCachedAbove returns true we set BLOCK_CACHED flag in Writebacks
550        // and discard CleanEvicts.
551        if (isCachedAbove(wbPkt, false)) {
552            if (wbPkt->cmd == MemCmd::WritebackDirty ||
553                wbPkt->cmd == MemCmd::WriteClean) {
554                // Set BLOCK_CACHED flag in Writeback and send below,
555                // so that the Writeback does not reset the bit
556                // corresponding to this address in the snoop filter
557                // below. We can discard CleanEvicts because cached
558                // copies exist above. Atomic mode isCachedAbove
559                // modifies packet to set BLOCK_CACHED flag
560                memSidePort->sendAtomic(wbPkt);
561            }
562        } else {
563            // If the block is not cached above, send packet below. Both
564            // CleanEvict and Writeback with BLOCK_CACHED flag cleared will
565            // reset the bit corresponding to this address in the snoop filter
566            // below.
567            memSidePort->sendAtomic(wbPkt);
568        }
569        writebacks.pop_front();
570        // In case of CleanEvicts, the packet destructor will delete the
571        // request object because this is a non-snoop request packet which
572        // does not require a response.
573        delete wbPkt;
574    }
575}
576
577
578void
579Cache::recvTimingSnoopResp(PacketPtr pkt)
580{
581    DPRINTF(Cache, "%s for %s\n", __func__, pkt->print());
582
583    assert(pkt->isResponse());
584    assert(!system->bypassCaches());
585
586    // determine if the response is from a snoop request we created
587    // (in which case it should be in the outstandingSnoop), or if we
588    // merely forwarded someone else's snoop request
589    const bool forwardAsSnoop = outstandingSnoop.find(pkt->req) ==
590        outstandingSnoop.end();
591
592    if (!forwardAsSnoop) {
593        // the packet came from this cache, so sink it here and do not
594        // forward it
595        assert(pkt->cmd == MemCmd::HardPFResp);
596
597        outstandingSnoop.erase(pkt->req);
598
599        DPRINTF(Cache, "Got prefetch response from above for addr "
600                "%#llx (%s)\n", pkt->getAddr(), pkt->isSecure() ? "s" : "ns");
601        recvTimingResp(pkt);
602        return;
603    }
604
605    // forwardLatency is set here because there is a response from an
606    // upper level cache.
607    // To pay the delay that occurs if the packet comes from the bus,
608    // we charge also headerDelay.
609    Tick snoop_resp_time = clockEdge(forwardLatency) + pkt->headerDelay;
610    // Reset the timing of the packet.
611    pkt->headerDelay = pkt->payloadDelay = 0;
612    memSidePort->schedTimingSnoopResp(pkt, snoop_resp_time);
613}
614
615void
616Cache::promoteWholeLineWrites(PacketPtr pkt)
617{
618    // Cache line clearing instructions
619    if (doFastWrites && (pkt->cmd == MemCmd::WriteReq) &&
620        (pkt->getSize() == blkSize) && (pkt->getOffset(blkSize) == 0)) {
621        pkt->cmd = MemCmd::WriteLineReq;
622        DPRINTF(Cache, "packet promoted from Write to WriteLineReq\n");
623    }
624}
625
626bool
627Cache::recvTimingReq(PacketPtr pkt)
628{
629    DPRINTF(CacheTags, "%s tags:\n%s\n", __func__, tags->print());
630
631    assert(pkt->isRequest());
632
633    // Just forward the packet if caches are disabled.
634    if (system->bypassCaches()) {
635        // @todo This should really enqueue the packet rather
636        bool M5_VAR_USED success = memSidePort->sendTimingReq(pkt);
637        assert(success);
638        return true;
639    }
640
641    promoteWholeLineWrites(pkt);
642
643    if (pkt->cacheResponding()) {
644        // a cache above us (but not where the packet came from) is
645        // responding to the request, in other words it has the line
646        // in Modified or Owned state
647        DPRINTF(Cache, "Cache above responding to %s: not responding\n",
648                pkt->print());
649
650        // if the packet needs the block to be writable, and the cache
651        // that has promised to respond (setting the cache responding
652        // flag) is not providing writable (it is in Owned rather than
653        // the Modified state), we know that there may be other Shared
654        // copies in the system; go out and invalidate them all
655        assert(pkt->needsWritable() && !pkt->responderHadWritable());
656
657        // an upstream cache that had the line in Owned state
658        // (dirty, but not writable), is responding and thus
659        // transferring the dirty line from one branch of the
660        // cache hierarchy to another
661
662        // send out an express snoop and invalidate all other
663        // copies (snooping a packet that needs writable is the
664        // same as an invalidation), thus turning the Owned line
665        // into a Modified line, note that we don't invalidate the
666        // block in the current cache or any other cache on the
667        // path to memory
668
669        // create a downstream express snoop with cleared packet
670        // flags, there is no need to allocate any data as the
671        // packet is merely used to co-ordinate state transitions
672        Packet *snoop_pkt = new Packet(pkt, true, false);
673
674        // also reset the bus time that the original packet has
675        // not yet paid for
676        snoop_pkt->headerDelay = snoop_pkt->payloadDelay = 0;
677
678        // make this an instantaneous express snoop, and let the
679        // other caches in the system know that the another cache
680        // is responding, because we have found the authorative
681        // copy (Modified or Owned) that will supply the right
682        // data
683        snoop_pkt->setExpressSnoop();
684        snoop_pkt->setCacheResponding();
685
686        // this express snoop travels towards the memory, and at
687        // every crossbar it is snooped upwards thus reaching
688        // every cache in the system
689        bool M5_VAR_USED success = memSidePort->sendTimingReq(snoop_pkt);
690        // express snoops always succeed
691        assert(success);
692
693        // main memory will delete the snoop packet
694
695        // queue for deletion, as opposed to immediate deletion, as
696        // the sending cache is still relying on the packet
697        pendingDelete.reset(pkt);
698
699        // no need to take any further action in this particular cache
700        // as an upstram cache has already committed to responding,
701        // and we have already sent out any express snoops in the
702        // section above to ensure all other copies in the system are
703        // invalidated
704        return true;
705    }
706
707    // anything that is merely forwarded pays for the forward latency and
708    // the delay provided by the crossbar
709    Tick forward_time = clockEdge(forwardLatency) + pkt->headerDelay;
710
711    // We use lookupLatency here because it is used to specify the latency
712    // to access.
713    Cycles lat = lookupLatency;
714    CacheBlk *blk = nullptr;
715    bool satisfied = false;
716    {
717        PacketList writebacks;
718        // Note that lat is passed by reference here. The function
719        // access() calls accessBlock() which can modify lat value.
720        satisfied = access(pkt, blk, lat, writebacks);
721
722        // copy writebacks to write buffer here to ensure they logically
723        // proceed anything happening below
724        doWritebacks(writebacks, forward_time);
725    }
726
727    // Here we charge the headerDelay that takes into account the latencies
728    // of the bus, if the packet comes from it.
729    // The latency charged it is just lat that is the value of lookupLatency
730    // modified by access() function, or if not just lookupLatency.
731    // In case of a hit we are neglecting response latency.
732    // In case of a miss we are neglecting forward latency.
733    Tick request_time = clockEdge(lat) + pkt->headerDelay;
734    // Here we reset the timing of the packet.
735    pkt->headerDelay = pkt->payloadDelay = 0;
736
737    // track time of availability of next prefetch, if any
738    Tick next_pf_time = MaxTick;
739
740    bool needsResponse = pkt->needsResponse();
741
742    if (satisfied) {
743        // should never be satisfying an uncacheable access as we
744        // flush and invalidate any existing block as part of the
745        // lookup
746        assert(!pkt->req->isUncacheable());
747
748        // hit (for all other request types)
749
750        if (prefetcher && (prefetchOnAccess ||
751                           (blk && blk->wasPrefetched()))) {
752            if (blk)
753                blk->status &= ~BlkHWPrefetched;
754
755            // Don't notify on SWPrefetch
756            if (!pkt->cmd.isSWPrefetch())
757                next_pf_time = prefetcher->notify(pkt);
758        }
759
760        if (needsResponse) {
761            pkt->makeTimingResponse();
762            // @todo: Make someone pay for this
763            pkt->headerDelay = pkt->payloadDelay = 0;
764
765            // In this case we are considering request_time that takes
766            // into account the delay of the xbar, if any, and just
767            // lat, neglecting responseLatency, modelling hit latency
768            // just as lookupLatency or or the value of lat overriden
769            // by access(), that calls accessBlock() function.
770            cpuSidePort->schedTimingResp(pkt, request_time, true);
771        } else {
772            DPRINTF(Cache, "%s satisfied %s, no response needed\n", __func__,
773                    pkt->print());
774
775            // queue the packet for deletion, as the sending cache is
776            // still relying on it; if the block is found in access(),
777            // CleanEvict and Writeback messages will be deleted
778            // here as well
779            pendingDelete.reset(pkt);
780        }
781    } else {
782        // miss
783
784        Addr blk_addr = pkt->getBlockAddr(blkSize);
785
786        // ignore any existing MSHR if we are dealing with an
787        // uncacheable request
788        MSHR *mshr = pkt->req->isUncacheable() ? nullptr :
789            mshrQueue.findMatch(blk_addr, pkt->isSecure());
790
791        // Software prefetch handling:
792        // To keep the core from waiting on data it won't look at
793        // anyway, send back a response with dummy data. Miss handling
794        // will continue asynchronously. Unfortunately, the core will
795        // insist upon freeing original Packet/Request, so we have to
796        // create a new pair with a different lifecycle. Note that this
797        // processing happens before any MSHR munging on the behalf of
798        // this request because this new Request will be the one stored
799        // into the MSHRs, not the original.
800        if (pkt->cmd.isSWPrefetch()) {
801            assert(needsResponse);
802            assert(pkt->req->hasPaddr());
803            assert(!pkt->req->isUncacheable());
804
805            // There's no reason to add a prefetch as an additional target
806            // to an existing MSHR. If an outstanding request is already
807            // in progress, there is nothing for the prefetch to do.
808            // If this is the case, we don't even create a request at all.
809            PacketPtr pf = nullptr;
810
811            if (!mshr) {
812                // copy the request and create a new SoftPFReq packet
813                RequestPtr req = new Request(pkt->req->getPaddr(),
814                                             pkt->req->getSize(),
815                                             pkt->req->getFlags(),
816                                             pkt->req->masterId());
817                pf = new Packet(req, pkt->cmd);
818                pf->allocate();
819                assert(pf->getAddr() == pkt->getAddr());
820                assert(pf->getSize() == pkt->getSize());
821            }
822
823            pkt->makeTimingResponse();
824
825            // request_time is used here, taking into account lat and the delay
826            // charged if the packet comes from the xbar.
827            cpuSidePort->schedTimingResp(pkt, request_time, true);
828
829            // If an outstanding request is in progress (we found an
830            // MSHR) this is set to null
831            pkt = pf;
832        }
833
834        if (mshr) {
835            /// MSHR hit
836            /// @note writebacks will be checked in getNextMSHR()
837            /// for any conflicting requests to the same block
838
839            //@todo remove hw_pf here
840
841            // Coalesce unless it was a software prefetch (see above).
842            if (pkt) {
843                assert(!pkt->isWriteback());
844                // CleanEvicts corresponding to blocks which have
845                // outstanding requests in MSHRs are simply sunk here
846                if (pkt->cmd == MemCmd::CleanEvict) {
847                    pendingDelete.reset(pkt);
848                } else {
849                    DPRINTF(Cache, "%s coalescing MSHR for %s\n", __func__,
850                            pkt->print());
851
852                    assert(pkt->req->masterId() < system->maxMasters());
853                    mshr_hits[pkt->cmdToIndex()][pkt->req->masterId()]++;
854                    // We use forward_time here because it is the same
855                    // considering new targets. We have multiple
856                    // requests for the same address here. It
857                    // specifies the latency to allocate an internal
858                    // buffer and to schedule an event to the queued
859                    // port and also takes into account the additional
860                    // delay of the xbar.
861                    mshr->allocateTarget(pkt, forward_time, order++,
862                                         allocOnFill(pkt->cmd));
863                    if (mshr->getNumTargets() == numTarget) {
864                        noTargetMSHR = mshr;
865                        setBlocked(Blocked_NoTargets);
866                        // need to be careful with this... if this mshr isn't
867                        // ready yet (i.e. time > curTick()), we don't want to
868                        // move it ahead of mshrs that are ready
869                        // mshrQueue.moveToFront(mshr);
870                    }
871                }
872                // We should call the prefetcher reguardless if the request is
873                // satisfied or not, reguardless if the request is in the MSHR
874                // or not.  The request could be a ReadReq hit, but still not
875                // satisfied (potentially because of a prior write to the same
876                // cache line.  So, even when not satisfied, tehre is an MSHR
877                // already allocated for this, we need to let the prefetcher
878                // know about the request
879                if (prefetcher) {
880                    // Don't notify on SWPrefetch
881                    if (!pkt->cmd.isSWPrefetch())
882                        next_pf_time = prefetcher->notify(pkt);
883                }
884            }
885        } else {
886            // no MSHR
887            assert(pkt->req->masterId() < system->maxMasters());
888            if (pkt->req->isUncacheable()) {
889                mshr_uncacheable[pkt->cmdToIndex()][pkt->req->masterId()]++;
890            } else {
891                mshr_misses[pkt->cmdToIndex()][pkt->req->masterId()]++;
892            }
893
894            if (pkt->isEviction() || pkt->cmd == MemCmd::WriteClean ||
895                (pkt->req->isUncacheable() && pkt->isWrite())) {
896                // We use forward_time here because there is an
897                // uncached memory write, forwarded to WriteBuffer.
898                allocateWriteBuffer(pkt, forward_time);
899            } else {
900                if (blk && blk->isValid()) {
901                    // should have flushed and have no valid block
902                    assert(!pkt->req->isUncacheable());
903
904                    // If we have a write miss to a valid block, we
905                    // need to mark the block non-readable.  Otherwise
906                    // if we allow reads while there's an outstanding
907                    // write miss, the read could return stale data
908                    // out of the cache block... a more aggressive
909                    // system could detect the overlap (if any) and
910                    // forward data out of the MSHRs, but we don't do
911                    // that yet.  Note that we do need to leave the
912                    // block valid so that it stays in the cache, in
913                    // case we get an upgrade response (and hence no
914                    // new data) when the write miss completes.
915                    // As long as CPUs do proper store/load forwarding
916                    // internally, and have a sufficiently weak memory
917                    // model, this is probably unnecessary, but at some
918                    // point it must have seemed like we needed it...
919                    assert(pkt->needsWritable());
920                    assert(!blk->isWritable());
921                    blk->status &= ~BlkReadable;
922                }
923                // Here we are using forward_time, modelling the latency of
924                // a miss (outbound) just as forwardLatency, neglecting the
925                // lookupLatency component.
926                allocateMissBuffer(pkt, forward_time);
927            }
928
929            if (prefetcher) {
930                // Don't notify on SWPrefetch
931                if (!pkt->cmd.isSWPrefetch())
932                    next_pf_time = prefetcher->notify(pkt);
933            }
934        }
935    }
936
937    if (next_pf_time != MaxTick)
938        schedMemSideSendEvent(next_pf_time);
939
940    return true;
941}
942
943PacketPtr
944Cache::createMissPacket(PacketPtr cpu_pkt, CacheBlk *blk,
945                        bool needsWritable) const
946{
947    // should never see evictions here
948    assert(!cpu_pkt->isEviction());
949
950    bool blkValid = blk && blk->isValid();
951
952    if (cpu_pkt->req->isUncacheable() ||
953        (!blkValid && cpu_pkt->isUpgrade()) ||
954        cpu_pkt->cmd == MemCmd::InvalidateReq) {
955        // uncacheable requests and upgrades from upper-level caches
956        // that missed completely just go through as is
957        return nullptr;
958    }
959
960    assert(cpu_pkt->needsResponse());
961
962    MemCmd cmd;
963    // @TODO make useUpgrades a parameter.
964    // Note that ownership protocols require upgrade, otherwise a
965    // write miss on a shared owned block will generate a ReadExcl,
966    // which will clobber the owned copy.
967    const bool useUpgrades = true;
968    if (cpu_pkt->cmd == MemCmd::WriteLineReq) {
969        assert(!blkValid || !blk->isWritable());
970        // forward as invalidate to all other caches, this gives us
971        // the line in Exclusive state, and invalidates all other
972        // copies
973        cmd = MemCmd::InvalidateReq;
974    } else if (blkValid && useUpgrades) {
975        // only reason to be here is that blk is read only and we need
976        // it to be writable
977        assert(needsWritable);
978        assert(!blk->isWritable());
979        cmd = cpu_pkt->isLLSC() ? MemCmd::SCUpgradeReq : MemCmd::UpgradeReq;
980    } else if (cpu_pkt->cmd == MemCmd::SCUpgradeFailReq ||
981               cpu_pkt->cmd == MemCmd::StoreCondFailReq) {
982        // Even though this SC will fail, we still need to send out the
983        // request and get the data to supply it to other snoopers in the case
984        // where the determination the StoreCond fails is delayed due to
985        // all caches not being on the same local bus.
986        cmd = MemCmd::SCUpgradeFailReq;
987    } else {
988        // block is invalid
989        cmd = needsWritable ? MemCmd::ReadExReq :
990            (isReadOnly ? MemCmd::ReadCleanReq : MemCmd::ReadSharedReq);
991    }
992    PacketPtr pkt = new Packet(cpu_pkt->req, cmd, blkSize);
993
994    // if there are upstream caches that have already marked the
995    // packet as having sharers (not passing writable), pass that info
996    // downstream
997    if (cpu_pkt->hasSharers() && !needsWritable) {
998        // note that cpu_pkt may have spent a considerable time in the
999        // MSHR queue and that the information could possibly be out
1000        // of date, however, there is no harm in conservatively
1001        // assuming the block has sharers
1002        pkt->setHasSharers();
1003        DPRINTF(Cache, "%s: passing hasSharers from %s to %s\n",
1004                __func__, cpu_pkt->print(), pkt->print());
1005    }
1006
1007    // the packet should be block aligned
1008    assert(pkt->getAddr() == pkt->getBlockAddr(blkSize));
1009
1010    pkt->allocate();
1011    DPRINTF(Cache, "%s: created %s from %s\n", __func__, pkt->print(),
1012            cpu_pkt->print());
1013    return pkt;
1014}
1015
1016
1017Tick
1018Cache::recvAtomic(PacketPtr pkt)
1019{
1020    // We are in atomic mode so we pay just for lookupLatency here.
1021    Cycles lat = lookupLatency;
1022
1023    // Forward the request if the system is in cache bypass mode.
1024    if (system->bypassCaches())
1025        return ticksToCycles(memSidePort->sendAtomic(pkt));
1026
1027    promoteWholeLineWrites(pkt);
1028
1029    // follow the same flow as in recvTimingReq, and check if a cache
1030    // above us is responding
1031    if (pkt->cacheResponding()) {
1032        DPRINTF(Cache, "Cache above responding to %s: not responding\n",
1033                pkt->print());
1034
1035        // if a cache is responding, and it had the line in Owned
1036        // rather than Modified state, we need to invalidate any
1037        // copies that are not on the same path to memory
1038        assert(pkt->needsWritable() && !pkt->responderHadWritable());
1039        lat += ticksToCycles(memSidePort->sendAtomic(pkt));
1040
1041        return lat * clockPeriod();
1042    }
1043
1044    // should assert here that there are no outstanding MSHRs or
1045    // writebacks... that would mean that someone used an atomic
1046    // access in timing mode
1047
1048    CacheBlk *blk = nullptr;
1049    PacketList writebacks;
1050    bool satisfied = access(pkt, blk, lat, writebacks);
1051
1052    // handle writebacks resulting from the access here to ensure they
1053    // logically proceed anything happening below
1054    doWritebacksAtomic(writebacks);
1055
1056    if (!satisfied) {
1057        // MISS
1058
1059        // deal with the packets that go through the write path of
1060        // the cache, i.e. any evictions and writes
1061        if (pkt->isEviction() || pkt->cmd == MemCmd::WriteClean ||
1062            (pkt->req->isUncacheable() && pkt->isWrite())) {
1063            lat += ticksToCycles(memSidePort->sendAtomic(pkt));
1064            return lat * clockPeriod();
1065        }
1066        // only misses left
1067
1068        PacketPtr bus_pkt = createMissPacket(pkt, blk, pkt->needsWritable());
1069
1070        bool is_forward = (bus_pkt == nullptr);
1071
1072        if (is_forward) {
1073            // just forwarding the same request to the next level
1074            // no local cache operation involved
1075            bus_pkt = pkt;
1076        }
1077
1078        DPRINTF(Cache, "%s: Sending an atomic %s\n", __func__,
1079                bus_pkt->print());
1080
1081#if TRACING_ON
1082        CacheBlk::State old_state = blk ? blk->status : 0;
1083#endif
1084
1085        lat += ticksToCycles(memSidePort->sendAtomic(bus_pkt));
1086
1087        bool is_invalidate = bus_pkt->isInvalidate();
1088
1089        // We are now dealing with the response handling
1090        DPRINTF(Cache, "%s: Receive response: %s in state %i\n", __func__,
1091                bus_pkt->print(), old_state);
1092
1093        // If packet was a forward, the response (if any) is already
1094        // in place in the bus_pkt == pkt structure, so we don't need
1095        // to do anything.  Otherwise, use the separate bus_pkt to
1096        // generate response to pkt and then delete it.
1097        if (!is_forward) {
1098            if (pkt->needsResponse()) {
1099                assert(bus_pkt->isResponse());
1100                if (bus_pkt->isError()) {
1101                    pkt->makeAtomicResponse();
1102                    pkt->copyError(bus_pkt);
1103                } else if (pkt->cmd == MemCmd::WriteLineReq) {
1104                    // note the use of pkt, not bus_pkt here.
1105
1106                    // write-line request to the cache that promoted
1107                    // the write to a whole line
1108                    blk = handleFill(pkt, blk, writebacks,
1109                                     allocOnFill(pkt->cmd));
1110                    assert(blk != NULL);
1111                    is_invalidate = false;
1112                    satisfyRequest(pkt, blk);
1113                } else if (bus_pkt->isRead() ||
1114                           bus_pkt->cmd == MemCmd::UpgradeResp) {
1115                    // we're updating cache state to allow us to
1116                    // satisfy the upstream request from the cache
1117                    blk = handleFill(bus_pkt, blk, writebacks,
1118                                     allocOnFill(pkt->cmd));
1119                    satisfyRequest(pkt, blk);
1120                    maintainClusivity(pkt->fromCache(), blk);
1121                } else {
1122                    // we're satisfying the upstream request without
1123                    // modifying cache state, e.g., a write-through
1124                    pkt->makeAtomicResponse();
1125                }
1126            }
1127            delete bus_pkt;
1128        }
1129
1130        if (is_invalidate && blk && blk->isValid()) {
1131            invalidateBlock(blk);
1132        }
1133    }
1134
1135    // Note that we don't invoke the prefetcher at all in atomic mode.
1136    // It's not clear how to do it properly, particularly for
1137    // prefetchers that aggressively generate prefetch candidates and
1138    // rely on bandwidth contention to throttle them; these will tend
1139    // to pollute the cache in atomic mode since there is no bandwidth
1140    // contention.  If we ever do want to enable prefetching in atomic
1141    // mode, though, this is the place to do it... see timingAccess()
1142    // for an example (though we'd want to issue the prefetch(es)
1143    // immediately rather than calling requestMemSideBus() as we do
1144    // there).
1145
1146    // do any writebacks resulting from the response handling
1147    doWritebacksAtomic(writebacks);
1148
1149    // if we used temp block, check to see if its valid and if so
1150    // clear it out, but only do so after the call to recvAtomic is
1151    // finished so that any downstream observers (such as a snoop
1152    // filter), first see the fill, and only then see the eviction
1153    if (blk == tempBlock && tempBlock->isValid()) {
1154        // the atomic CPU calls recvAtomic for fetch and load/store
1155        // sequentuially, and we may already have a tempBlock
1156        // writeback from the fetch that we have not yet sent
1157        if (tempBlockWriteback) {
1158            // if that is the case, write the prevoius one back, and
1159            // do not schedule any new event
1160            writebackTempBlockAtomic();
1161        } else {
1162            // the writeback/clean eviction happens after the call to
1163            // recvAtomic has finished (but before any successive
1164            // calls), so that the response handling from the fill is
1165            // allowed to happen first
1166            schedule(writebackTempBlockAtomicEvent, curTick());
1167        }
1168
1169        tempBlockWriteback = (blk->isDirty() || writebackClean) ?
1170            writebackBlk(blk) : cleanEvictBlk(blk);
1171        invalidateBlock(blk);
1172    }
1173
1174    if (pkt->needsResponse()) {
1175        pkt->makeAtomicResponse();
1176    }
1177
1178    return lat * clockPeriod();
1179}
1180
1181
1182void
1183Cache::functionalAccess(PacketPtr pkt, bool fromCpuSide)
1184{
1185    if (system->bypassCaches()) {
1186        // Packets from the memory side are snoop request and
1187        // shouldn't happen in bypass mode.
1188        assert(fromCpuSide);
1189
1190        // The cache should be flushed if we are in cache bypass mode,
1191        // so we don't need to check if we need to update anything.
1192        memSidePort->sendFunctional(pkt);
1193        return;
1194    }
1195
1196    Addr blk_addr = pkt->getBlockAddr(blkSize);
1197    bool is_secure = pkt->isSecure();
1198    CacheBlk *blk = tags->findBlock(pkt->getAddr(), is_secure);
1199    MSHR *mshr = mshrQueue.findMatch(blk_addr, is_secure);
1200
1201    pkt->pushLabel(name());
1202
1203    CacheBlkPrintWrapper cbpw(blk);
1204
1205    // Note that just because an L2/L3 has valid data doesn't mean an
1206    // L1 doesn't have a more up-to-date modified copy that still
1207    // needs to be found.  As a result we always update the request if
1208    // we have it, but only declare it satisfied if we are the owner.
1209
1210    // see if we have data at all (owned or otherwise)
1211    bool have_data = blk && blk->isValid()
1212        && pkt->checkFunctional(&cbpw, blk_addr, is_secure, blkSize,
1213                                blk->data);
1214
1215    // data we have is dirty if marked as such or if we have an
1216    // in-service MSHR that is pending a modified line
1217    bool have_dirty =
1218        have_data && (blk->isDirty() ||
1219                      (mshr && mshr->inService && mshr->isPendingModified()));
1220
1221    bool done = have_dirty
1222        || cpuSidePort->checkFunctional(pkt)
1223        || mshrQueue.checkFunctional(pkt, blk_addr)
1224        || writeBuffer.checkFunctional(pkt, blk_addr)
1225        || memSidePort->checkFunctional(pkt);
1226
1227    DPRINTF(CacheVerbose, "%s: %s %s%s%s\n", __func__,  pkt->print(),
1228            (blk && blk->isValid()) ? "valid " : "",
1229            have_data ? "data " : "", done ? "done " : "");
1230
1231    // We're leaving the cache, so pop cache->name() label
1232    pkt->popLabel();
1233
1234    if (done) {
1235        pkt->makeResponse();
1236    } else {
1237        // if it came as a request from the CPU side then make sure it
1238        // continues towards the memory side
1239        if (fromCpuSide) {
1240            memSidePort->sendFunctional(pkt);
1241        } else if (cpuSidePort->isSnooping()) {
1242            // if it came from the memory side, it must be a snoop request
1243            // and we should only forward it if we are forwarding snoops
1244            cpuSidePort->sendFunctionalSnoop(pkt);
1245        }
1246    }
1247}
1248
1249
1250/////////////////////////////////////////////////////
1251//
1252// Response handling: responses from the memory side
1253//
1254/////////////////////////////////////////////////////
1255
1256
1257void
1258Cache::handleUncacheableWriteResp(PacketPtr pkt)
1259{
1260    Tick completion_time = clockEdge(responseLatency) +
1261        pkt->headerDelay + pkt->payloadDelay;
1262
1263    // Reset the bus additional time as it is now accounted for
1264    pkt->headerDelay = pkt->payloadDelay = 0;
1265
1266    cpuSidePort->schedTimingResp(pkt, completion_time, true);
1267}
1268
1269void
1270Cache::recvTimingResp(PacketPtr pkt)
1271{
1272    assert(pkt->isResponse());
1273
1274    // all header delay should be paid for by the crossbar, unless
1275    // this is a prefetch response from above
1276    panic_if(pkt->headerDelay != 0 && pkt->cmd != MemCmd::HardPFResp,
1277             "%s saw a non-zero packet delay\n", name());
1278
1279    bool is_error = pkt->isError();
1280
1281    if (is_error) {
1282        DPRINTF(Cache, "%s: Cache received %s with error\n", __func__,
1283                pkt->print());
1284    }
1285
1286    DPRINTF(Cache, "%s: Handling response %s\n", __func__,
1287            pkt->print());
1288
1289    // if this is a write, we should be looking at an uncacheable
1290    // write
1291    if (pkt->isWrite()) {
1292        assert(pkt->req->isUncacheable());
1293        handleUncacheableWriteResp(pkt);
1294        return;
1295    }
1296
1297    // we have dealt with any (uncacheable) writes above, from here on
1298    // we know we are dealing with an MSHR due to a miss or a prefetch
1299    MSHR *mshr = dynamic_cast<MSHR*>(pkt->popSenderState());
1300    assert(mshr);
1301
1302    if (mshr == noTargetMSHR) {
1303        // we always clear at least one target
1304        clearBlocked(Blocked_NoTargets);
1305        noTargetMSHR = nullptr;
1306    }
1307
1308    // Initial target is used just for stats
1309    MSHR::Target *initial_tgt = mshr->getTarget();
1310    int stats_cmd_idx = initial_tgt->pkt->cmdToIndex();
1311    Tick miss_latency = curTick() - initial_tgt->recvTime;
1312
1313    if (pkt->req->isUncacheable()) {
1314        assert(pkt->req->masterId() < system->maxMasters());
1315        mshr_uncacheable_lat[stats_cmd_idx][pkt->req->masterId()] +=
1316            miss_latency;
1317    } else {
1318        assert(pkt->req->masterId() < system->maxMasters());
1319        mshr_miss_latency[stats_cmd_idx][pkt->req->masterId()] +=
1320            miss_latency;
1321    }
1322
1323    bool wasFull = mshrQueue.isFull();
1324
1325    PacketList writebacks;
1326
1327    Tick forward_time = clockEdge(forwardLatency) + pkt->headerDelay;
1328
1329    // upgrade deferred targets if the response has no sharers, and is
1330    // thus passing writable
1331    if (!pkt->hasSharers()) {
1332        mshr->promoteWritable();
1333    }
1334
1335    bool is_fill = !mshr->isForward &&
1336        (pkt->isRead() || pkt->cmd == MemCmd::UpgradeResp);
1337
1338    CacheBlk *blk = tags->findBlock(pkt->getAddr(), pkt->isSecure());
1339
1340    if (is_fill && !is_error) {
1341        DPRINTF(Cache, "Block for addr %#llx being updated in Cache\n",
1342                pkt->getAddr());
1343
1344        blk = handleFill(pkt, blk, writebacks, mshr->allocOnFill());
1345        assert(blk != nullptr);
1346    }
1347
1348    // allow invalidation responses originating from write-line
1349    // requests to be discarded
1350    bool is_invalidate = pkt->isInvalidate();
1351
1352    // First offset for critical word first calculations
1353    int initial_offset = initial_tgt->pkt->getOffset(blkSize);
1354
1355    bool from_cache = false;
1356    MSHR::TargetList targets = mshr->extractServiceableTargets(pkt);
1357    for (auto &target: targets) {
1358        Packet *tgt_pkt = target.pkt;
1359        switch (target.source) {
1360          case MSHR::Target::FromCPU:
1361            Tick completion_time;
1362            // Here we charge on completion_time the delay of the xbar if the
1363            // packet comes from it, charged on headerDelay.
1364            completion_time = pkt->headerDelay;
1365
1366            // Software prefetch handling for cache closest to core
1367            if (tgt_pkt->cmd.isSWPrefetch()) {
1368                // a software prefetch would have already been ack'd
1369                // immediately with dummy data so the core would be able to
1370                // retire it. This request completes right here, so we
1371                // deallocate it.
1372                delete tgt_pkt->req;
1373                delete tgt_pkt;
1374                break; // skip response
1375            }
1376
1377            // keep track of whether we have responded to another
1378            // cache
1379            from_cache = from_cache || tgt_pkt->fromCache();
1380
1381            // unlike the other packet flows, where data is found in other
1382            // caches or memory and brought back, write-line requests always
1383            // have the data right away, so the above check for "is fill?"
1384            // cannot actually be determined until examining the stored MSHR
1385            // state. We "catch up" with that logic here, which is duplicated
1386            // from above.
1387            if (tgt_pkt->cmd == MemCmd::WriteLineReq) {
1388                assert(!is_error);
1389                // we got the block in a writable state, so promote
1390                // any deferred targets if possible
1391                mshr->promoteWritable();
1392                // NB: we use the original packet here and not the response!
1393                blk = handleFill(tgt_pkt, blk, writebacks,
1394                                 targets.allocOnFill);
1395                assert(blk != nullptr);
1396
1397                // treat as a fill, and discard the invalidation
1398                // response
1399                is_fill = true;
1400                is_invalidate = false;
1401            }
1402
1403            if (is_fill) {
1404                satisfyRequest(tgt_pkt, blk, true, mshr->hasPostDowngrade());
1405
1406                // How many bytes past the first request is this one
1407                int transfer_offset =
1408                    tgt_pkt->getOffset(blkSize) - initial_offset;
1409                if (transfer_offset < 0) {
1410                    transfer_offset += blkSize;
1411                }
1412
1413                // If not critical word (offset) return payloadDelay.
1414                // responseLatency is the latency of the return path
1415                // from lower level caches/memory to an upper level cache or
1416                // the core.
1417                completion_time += clockEdge(responseLatency) +
1418                    (transfer_offset ? pkt->payloadDelay : 0);
1419
1420                assert(!tgt_pkt->req->isUncacheable());
1421
1422                assert(tgt_pkt->req->masterId() < system->maxMasters());
1423                missLatency[tgt_pkt->cmdToIndex()][tgt_pkt->req->masterId()] +=
1424                    completion_time - target.recvTime;
1425            } else if (pkt->cmd == MemCmd::UpgradeFailResp) {
1426                // failed StoreCond upgrade
1427                assert(tgt_pkt->cmd == MemCmd::StoreCondReq ||
1428                       tgt_pkt->cmd == MemCmd::StoreCondFailReq ||
1429                       tgt_pkt->cmd == MemCmd::SCUpgradeFailReq);
1430                // responseLatency is the latency of the return path
1431                // from lower level caches/memory to an upper level cache or
1432                // the core.
1433                completion_time += clockEdge(responseLatency) +
1434                    pkt->payloadDelay;
1435                tgt_pkt->req->setExtraData(0);
1436            } else {
1437                // We are about to send a response to a cache above
1438                // that asked for an invalidation; we need to
1439                // invalidate our copy immediately as the most
1440                // up-to-date copy of the block will now be in the
1441                // cache above. It will also prevent this cache from
1442                // responding (if the block was previously dirty) to
1443                // snoops as they should snoop the caches above where
1444                // they will get the response from.
1445                if (is_invalidate && blk && blk->isValid()) {
1446                    invalidateBlock(blk);
1447                }
1448                // not a cache fill, just forwarding response
1449                // responseLatency is the latency of the return path
1450                // from lower level cahces/memory to the core.
1451                completion_time += clockEdge(responseLatency) +
1452                    pkt->payloadDelay;
1453                if (pkt->isRead() && !is_error) {
1454                    // sanity check
1455                    assert(pkt->getAddr() == tgt_pkt->getAddr());
1456                    assert(pkt->getSize() >= tgt_pkt->getSize());
1457
1458                    tgt_pkt->setData(pkt->getConstPtr<uint8_t>());
1459                }
1460            }
1461            tgt_pkt->makeTimingResponse();
1462            // if this packet is an error copy that to the new packet
1463            if (is_error)
1464                tgt_pkt->copyError(pkt);
1465            if (tgt_pkt->cmd == MemCmd::ReadResp &&
1466                (is_invalidate || mshr->hasPostInvalidate())) {
1467                // If intermediate cache got ReadRespWithInvalidate,
1468                // propagate that.  Response should not have
1469                // isInvalidate() set otherwise.
1470                tgt_pkt->cmd = MemCmd::ReadRespWithInvalidate;
1471                DPRINTF(Cache, "%s: updated cmd to %s\n", __func__,
1472                        tgt_pkt->print());
1473            }
1474            // Reset the bus additional time as it is now accounted for
1475            tgt_pkt->headerDelay = tgt_pkt->payloadDelay = 0;
1476            cpuSidePort->schedTimingResp(tgt_pkt, completion_time, true);
1477            break;
1478
1479          case MSHR::Target::FromPrefetcher:
1480            assert(tgt_pkt->cmd == MemCmd::HardPFReq);
1481            if (blk)
1482                blk->status |= BlkHWPrefetched;
1483            delete tgt_pkt->req;
1484            delete tgt_pkt;
1485            break;
1486
1487          case MSHR::Target::FromSnoop:
1488            // I don't believe that a snoop can be in an error state
1489            assert(!is_error);
1490            // response to snoop request
1491            DPRINTF(Cache, "processing deferred snoop...\n");
1492            // If the response is invalidating, a snooping target can
1493            // be satisfied if it is also invalidating. If the reponse is, not
1494            // only invalidating, but more specifically an InvalidateResp, the
1495            // MSHR was created due to an InvalidateReq and a cache above is
1496            // waiting to satisfy a WriteLineReq. In this case even an
1497            // non-invalidating snoop is added as a target here since this is
1498            // the ordering point. When the InvalidateResp reaches this cache,
1499            // the snooping target will snoop further the cache above with the
1500            // WriteLineReq.
1501            assert(!(is_invalidate &&
1502                     pkt->cmd != MemCmd::InvalidateResp &&
1503                     !mshr->hasPostInvalidate()));
1504            handleSnoop(tgt_pkt, blk, true, true, mshr->hasPostInvalidate());
1505            break;
1506
1507          default:
1508            panic("Illegal target->source enum %d\n", target.source);
1509        }
1510    }
1511
1512    maintainClusivity(from_cache, blk);
1513
1514    if (blk && blk->isValid()) {
1515        // an invalidate response stemming from a write line request
1516        // should not invalidate the block, so check if the
1517        // invalidation should be discarded
1518        if (is_invalidate || mshr->hasPostInvalidate()) {
1519            invalidateBlock(blk);
1520        } else if (mshr->hasPostDowngrade()) {
1521            blk->status &= ~BlkWritable;
1522        }
1523    }
1524
1525    if (mshr->promoteDeferredTargets()) {
1526        // avoid later read getting stale data while write miss is
1527        // outstanding.. see comment in timingAccess()
1528        if (blk) {
1529            blk->status &= ~BlkReadable;
1530        }
1531        mshrQueue.markPending(mshr);
1532        schedMemSideSendEvent(clockEdge() + pkt->payloadDelay);
1533    } else {
1534        mshrQueue.deallocate(mshr);
1535        if (wasFull && !mshrQueue.isFull()) {
1536            clearBlocked(Blocked_NoMSHRs);
1537        }
1538
1539        // Request the bus for a prefetch if this deallocation freed enough
1540        // MSHRs for a prefetch to take place
1541        if (prefetcher && mshrQueue.canPrefetch()) {
1542            Tick next_pf_time = std::max(prefetcher->nextPrefetchReadyTime(),
1543                                         clockEdge());
1544            if (next_pf_time != MaxTick)
1545                schedMemSideSendEvent(next_pf_time);
1546        }
1547    }
1548    // reset the xbar additional timinig  as it is now accounted for
1549    pkt->headerDelay = pkt->payloadDelay = 0;
1550
1551    // copy writebacks to write buffer
1552    doWritebacks(writebacks, forward_time);
1553
1554    // if we used temp block, check to see if its valid and then clear it out
1555    if (blk == tempBlock && tempBlock->isValid()) {
1556        // We use forwardLatency here because we are copying
1557        // Writebacks/CleanEvicts to write buffer. It specifies the latency to
1558        // allocate an internal buffer and to schedule an event to the
1559        // queued port.
1560        if (blk->isDirty() || writebackClean) {
1561            PacketPtr wbPkt = writebackBlk(blk);
1562            allocateWriteBuffer(wbPkt, forward_time);
1563            // Set BLOCK_CACHED flag if cached above.
1564            if (isCachedAbove(wbPkt))
1565                wbPkt->setBlockCached();
1566        } else {
1567            PacketPtr wcPkt = cleanEvictBlk(blk);
1568            // Check to see if block is cached above. If not allocate
1569            // write buffer
1570            if (isCachedAbove(wcPkt))
1571                delete wcPkt;
1572            else
1573                allocateWriteBuffer(wcPkt, forward_time);
1574        }
1575        invalidateBlock(blk);
1576    }
1577
1578    DPRINTF(CacheVerbose, "%s: Leaving with %s\n", __func__, pkt->print());
1579    delete pkt;
1580}
1581
1582PacketPtr
1583Cache::writebackBlk(CacheBlk *blk)
1584{
1585    chatty_assert(!isReadOnly || writebackClean,
1586                  "Writeback from read-only cache");
1587    assert(blk && blk->isValid() && (blk->isDirty() || writebackClean));
1588
1589    writebacks[Request::wbMasterId]++;
1590
1591    Request *req = new Request(tags->regenerateBlkAddr(blk->tag, blk->set),
1592                               blkSize, 0, Request::wbMasterId);
1593    if (blk->isSecure())
1594        req->setFlags(Request::SECURE);
1595
1596    req->taskId(blk->task_id);
1597    blk->task_id= ContextSwitchTaskId::Unknown;
1598    blk->tickInserted = curTick();
1599
1600    PacketPtr pkt =
1601        new Packet(req, blk->isDirty() ?
1602                   MemCmd::WritebackDirty : MemCmd::WritebackClean);
1603
1604    DPRINTF(Cache, "Create Writeback %s writable: %d, dirty: %d\n",
1605            pkt->print(), blk->isWritable(), blk->isDirty());
1606
1607    if (blk->isWritable()) {
1608        // not asserting shared means we pass the block in modified
1609        // state, mark our own block non-writeable
1610        blk->status &= ~BlkWritable;
1611    } else {
1612        // we are in the Owned state, tell the receiver
1613        pkt->setHasSharers();
1614    }
1615
1616    // make sure the block is not marked dirty
1617    blk->status &= ~BlkDirty;
1618
1619    pkt->allocate();
1620    std::memcpy(pkt->getPtr<uint8_t>(), blk->data, blkSize);
1621
1622    return pkt;
1623}
1624
1625PacketPtr
1626Cache::writecleanBlk(CacheBlk *blk)
1627{
1628    Request *req = new Request(tags->regenerateBlkAddr(blk->tag, blk->set),
1629                               blkSize, 0, Request::wbMasterId);
1630    if (blk->isSecure()) {
1631        req->setFlags(Request::SECURE);
1632    }
1633    req->taskId(blk->task_id);
1634    blk->task_id = ContextSwitchTaskId::Unknown;
1635    PacketPtr pkt = new Packet(req, MemCmd::WriteClean);
1636    DPRINTF(Cache, "Create %s writable: %d, dirty: %d\n", pkt->print(),
1637            blk->isWritable(), blk->isDirty());
1638    // make sure the block is not marked dirty
1639    blk->status &= ~BlkDirty;
1640    pkt->allocate();
1641    // We inform the cache below that the block has sharers in the
1642    // system as we retain our copy.
1643    pkt->setHasSharers();
1644    std::memcpy(pkt->getPtr<uint8_t>(), blk->data, blkSize);
1645    return pkt;
1646}
1647
1648
1649PacketPtr
1650Cache::cleanEvictBlk(CacheBlk *blk)
1651{
1652    assert(!writebackClean);
1653    assert(blk && blk->isValid() && !blk->isDirty());
1654    // Creating a zero sized write, a message to the snoop filter
1655    Request *req =
1656        new Request(tags->regenerateBlkAddr(blk->tag, blk->set), blkSize, 0,
1657                    Request::wbMasterId);
1658    if (blk->isSecure())
1659        req->setFlags(Request::SECURE);
1660
1661    req->taskId(blk->task_id);
1662    blk->task_id = ContextSwitchTaskId::Unknown;
1663    blk->tickInserted = curTick();
1664
1665    PacketPtr pkt = new Packet(req, MemCmd::CleanEvict);
1666    pkt->allocate();
1667    DPRINTF(Cache, "Create CleanEvict %s\n", pkt->print());
1668
1669    return pkt;
1670}
1671
1672void
1673Cache::memWriteback()
1674{
1675    CacheBlkVisitorWrapper visitor(*this, &Cache::writebackVisitor);
1676    tags->forEachBlk(visitor);
1677}
1678
1679void
1680Cache::memInvalidate()
1681{
1682    CacheBlkVisitorWrapper visitor(*this, &Cache::invalidateVisitor);
1683    tags->forEachBlk(visitor);
1684}
1685
1686bool
1687Cache::isDirty() const
1688{
1689    CacheBlkIsDirtyVisitor visitor;
1690    tags->forEachBlk(visitor);
1691
1692    return visitor.isDirty();
1693}
1694
1695bool
1696Cache::writebackVisitor(CacheBlk &blk)
1697{
1698    if (blk.isDirty()) {
1699        assert(blk.isValid());
1700
1701        Request request(tags->regenerateBlkAddr(blk.tag, blk.set),
1702                        blkSize, 0, Request::funcMasterId);
1703        request.taskId(blk.task_id);
1704        if (blk.isSecure()) {
1705            request.setFlags(Request::SECURE);
1706        }
1707
1708        Packet packet(&request, MemCmd::WriteReq);
1709        packet.dataStatic(blk.data);
1710
1711        memSidePort->sendFunctional(&packet);
1712
1713        blk.status &= ~BlkDirty;
1714    }
1715
1716    return true;
1717}
1718
1719bool
1720Cache::invalidateVisitor(CacheBlk &blk)
1721{
1722
1723    if (blk.isDirty())
1724        warn_once("Invalidating dirty cache lines. Expect things to break.\n");
1725
1726    if (blk.isValid()) {
1727        assert(!blk.isDirty());
1728        invalidateBlock(&blk);
1729    }
1730
1731    return true;
1732}
1733
1734CacheBlk*
1735Cache::allocateBlock(Addr addr, bool is_secure, PacketList &writebacks)
1736{
1737    CacheBlk *blk = tags->findVictim(addr);
1738
1739    // It is valid to return nullptr if there is no victim
1740    if (!blk)
1741        return nullptr;
1742
1743    if (blk->isValid()) {
1744        Addr repl_addr = tags->regenerateBlkAddr(blk->tag, blk->set);
1745        MSHR *repl_mshr = mshrQueue.findMatch(repl_addr, blk->isSecure());
1746        if (repl_mshr) {
1747            // must be an outstanding upgrade request
1748            // on a block we're about to replace...
1749            assert(!blk->isWritable() || blk->isDirty());
1750            assert(repl_mshr->needsWritable());
1751            // too hard to replace block with transient state
1752            // allocation failed, block not inserted
1753            return nullptr;
1754        } else {
1755            DPRINTF(Cache, "replacement: replacing %#llx (%s) with %#llx "
1756                    "(%s): %s\n", repl_addr, blk->isSecure() ? "s" : "ns",
1757                    addr, is_secure ? "s" : "ns",
1758                    blk->isDirty() ? "writeback" : "clean");
1759
1760            if (blk->wasPrefetched()) {
1761                unusedPrefetches++;
1762            }
1763            // Will send up Writeback/CleanEvict snoops via isCachedAbove
1764            // when pushing this writeback list into the write buffer.
1765            if (blk->isDirty() || writebackClean) {
1766                // Save writeback packet for handling by caller
1767                writebacks.push_back(writebackBlk(blk));
1768            } else {
1769                writebacks.push_back(cleanEvictBlk(blk));
1770            }
1771        }
1772    }
1773
1774    return blk;
1775}
1776
1777void
1778Cache::invalidateBlock(CacheBlk *blk)
1779{
1780    if (blk != tempBlock)
1781        tags->invalidate(blk);
1782    blk->invalidate();
1783}
1784
1785// Note that the reason we return a list of writebacks rather than
1786// inserting them directly in the write buffer is that this function
1787// is called by both atomic and timing-mode accesses, and in atomic
1788// mode we don't mess with the write buffer (we just perform the
1789// writebacks atomically once the original request is complete).
1790CacheBlk*
1791Cache::handleFill(PacketPtr pkt, CacheBlk *blk, PacketList &writebacks,
1792                  bool allocate)
1793{
1794    assert(pkt->isResponse() || pkt->cmd == MemCmd::WriteLineReq);
1795    Addr addr = pkt->getAddr();
1796    bool is_secure = pkt->isSecure();
1797#if TRACING_ON
1798    CacheBlk::State old_state = blk ? blk->status : 0;
1799#endif
1800
1801    // When handling a fill, we should have no writes to this line.
1802    assert(addr == pkt->getBlockAddr(blkSize));
1803    assert(!writeBuffer.findMatch(addr, is_secure));
1804
1805    if (blk == nullptr) {
1806        // better have read new data...
1807        assert(pkt->hasData());
1808
1809        // only read responses and write-line requests have data;
1810        // note that we don't write the data here for write-line - that
1811        // happens in the subsequent call to satisfyRequest
1812        assert(pkt->isRead() || pkt->cmd == MemCmd::WriteLineReq);
1813
1814        // need to do a replacement if allocating, otherwise we stick
1815        // with the temporary storage
1816        blk = allocate ? allocateBlock(addr, is_secure, writebacks) : nullptr;
1817
1818        if (blk == nullptr) {
1819            // No replaceable block or a mostly exclusive
1820            // cache... just use temporary storage to complete the
1821            // current request and then get rid of it
1822            assert(!tempBlock->isValid());
1823            blk = tempBlock;
1824            tempBlock->set = tags->extractSet(addr);
1825            tempBlock->tag = tags->extractTag(addr);
1826            // @todo: set security state as well...
1827            DPRINTF(Cache, "using temp block for %#llx (%s)\n", addr,
1828                    is_secure ? "s" : "ns");
1829        } else {
1830            tags->insertBlock(pkt, blk);
1831        }
1832
1833        // we should never be overwriting a valid block
1834        assert(!blk->isValid());
1835    } else {
1836        // existing block... probably an upgrade
1837        assert(blk->tag == tags->extractTag(addr));
1838        // either we're getting new data or the block should already be valid
1839        assert(pkt->hasData() || blk->isValid());
1840        // don't clear block status... if block is already dirty we
1841        // don't want to lose that
1842    }
1843
1844    if (is_secure)
1845        blk->status |= BlkSecure;
1846    blk->status |= BlkValid | BlkReadable;
1847
1848    // sanity check for whole-line writes, which should always be
1849    // marked as writable as part of the fill, and then later marked
1850    // dirty as part of satisfyRequest
1851    if (pkt->cmd == MemCmd::WriteLineReq) {
1852        assert(!pkt->hasSharers());
1853    }
1854
1855    // here we deal with setting the appropriate state of the line,
1856    // and we start by looking at the hasSharers flag, and ignore the
1857    // cacheResponding flag (normally signalling dirty data) if the
1858    // packet has sharers, thus the line is never allocated as Owned
1859    // (dirty but not writable), and always ends up being either
1860    // Shared, Exclusive or Modified, see Packet::setCacheResponding
1861    // for more details
1862    if (!pkt->hasSharers()) {
1863        // we could get a writable line from memory (rather than a
1864        // cache) even in a read-only cache, note that we set this bit
1865        // even for a read-only cache, possibly revisit this decision
1866        blk->status |= BlkWritable;
1867
1868        // check if we got this via cache-to-cache transfer (i.e., from a
1869        // cache that had the block in Modified or Owned state)
1870        if (pkt->cacheResponding()) {
1871            // we got the block in Modified state, and invalidated the
1872            // owners copy
1873            blk->status |= BlkDirty;
1874
1875            chatty_assert(!isReadOnly, "Should never see dirty snoop response "
1876                          "in read-only cache %s\n", name());
1877        }
1878    }
1879
1880    DPRINTF(Cache, "Block addr %#llx (%s) moving from state %x to %s\n",
1881            addr, is_secure ? "s" : "ns", old_state, blk->print());
1882
1883    // if we got new data, copy it in (checking for a read response
1884    // and a response that has data is the same in the end)
1885    if (pkt->isRead()) {
1886        // sanity checks
1887        assert(pkt->hasData());
1888        assert(pkt->getSize() == blkSize);
1889
1890        std::memcpy(blk->data, pkt->getConstPtr<uint8_t>(), blkSize);
1891    }
1892    // We pay for fillLatency here.
1893    blk->whenReady = clockEdge() + fillLatency * clockPeriod() +
1894        pkt->payloadDelay;
1895
1896    return blk;
1897}
1898
1899
1900/////////////////////////////////////////////////////
1901//
1902// Snoop path: requests coming in from the memory side
1903//
1904/////////////////////////////////////////////////////
1905
1906void
1907Cache::doTimingSupplyResponse(PacketPtr req_pkt, const uint8_t *blk_data,
1908                              bool already_copied, bool pending_inval)
1909{
1910    // sanity check
1911    assert(req_pkt->isRequest());
1912    assert(req_pkt->needsResponse());
1913
1914    DPRINTF(Cache, "%s: for %s\n", __func__, req_pkt->print());
1915    // timing-mode snoop responses require a new packet, unless we
1916    // already made a copy...
1917    PacketPtr pkt = req_pkt;
1918    if (!already_copied)
1919        // do not clear flags, and allocate space for data if the
1920        // packet needs it (the only packets that carry data are read
1921        // responses)
1922        pkt = new Packet(req_pkt, false, req_pkt->isRead());
1923
1924    assert(req_pkt->req->isUncacheable() || req_pkt->isInvalidate() ||
1925           pkt->hasSharers());
1926    pkt->makeTimingResponse();
1927    if (pkt->isRead()) {
1928        pkt->setDataFromBlock(blk_data, blkSize);
1929    }
1930    if (pkt->cmd == MemCmd::ReadResp && pending_inval) {
1931        // Assume we defer a response to a read from a far-away cache
1932        // A, then later defer a ReadExcl from a cache B on the same
1933        // bus as us. We'll assert cacheResponding in both cases, but
1934        // in the latter case cacheResponding will keep the
1935        // invalidation from reaching cache A. This special response
1936        // tells cache A that it gets the block to satisfy its read,
1937        // but must immediately invalidate it.
1938        pkt->cmd = MemCmd::ReadRespWithInvalidate;
1939    }
1940    // Here we consider forward_time, paying for just forward latency and
1941    // also charging the delay provided by the xbar.
1942    // forward_time is used as send_time in next allocateWriteBuffer().
1943    Tick forward_time = clockEdge(forwardLatency) + pkt->headerDelay;
1944    // Here we reset the timing of the packet.
1945    pkt->headerDelay = pkt->payloadDelay = 0;
1946    DPRINTF(CacheVerbose, "%s: created response: %s tick: %lu\n", __func__,
1947            pkt->print(), forward_time);
1948    memSidePort->schedTimingSnoopResp(pkt, forward_time, true);
1949}
1950
1951uint32_t
1952Cache::handleSnoop(PacketPtr pkt, CacheBlk *blk, bool is_timing,
1953                   bool is_deferred, bool pending_inval)
1954{
1955    DPRINTF(CacheVerbose, "%s: for %s\n", __func__, pkt->print());
1956    // deferred snoops can only happen in timing mode
1957    assert(!(is_deferred && !is_timing));
1958    // pending_inval only makes sense on deferred snoops
1959    assert(!(pending_inval && !is_deferred));
1960    assert(pkt->isRequest());
1961
1962    // the packet may get modified if we or a forwarded snooper
1963    // responds in atomic mode, so remember a few things about the
1964    // original packet up front
1965    bool invalidate = pkt->isInvalidate();
1966    bool M5_VAR_USED needs_writable = pkt->needsWritable();
1967
1968    // at the moment we could get an uncacheable write which does not
1969    // have the invalidate flag, and we need a suitable way of dealing
1970    // with this case
1971    panic_if(invalidate && pkt->req->isUncacheable(),
1972             "%s got an invalidating uncacheable snoop request %s",
1973             name(), pkt->print());
1974
1975    uint32_t snoop_delay = 0;
1976
1977    if (forwardSnoops) {
1978        // first propagate snoop upward to see if anyone above us wants to
1979        // handle it.  save & restore packet src since it will get
1980        // rewritten to be relative to cpu-side bus (if any)
1981        bool alreadyResponded = pkt->cacheResponding();
1982        if (is_timing) {
1983            // copy the packet so that we can clear any flags before
1984            // forwarding it upwards, we also allocate data (passing
1985            // the pointer along in case of static data), in case
1986            // there is a snoop hit in upper levels
1987            Packet snoopPkt(pkt, true, true);
1988            snoopPkt.setExpressSnoop();
1989            // the snoop packet does not need to wait any additional
1990            // time
1991            snoopPkt.headerDelay = snoopPkt.payloadDelay = 0;
1992            cpuSidePort->sendTimingSnoopReq(&snoopPkt);
1993
1994            // add the header delay (including crossbar and snoop
1995            // delays) of the upward snoop to the snoop delay for this
1996            // cache
1997            snoop_delay += snoopPkt.headerDelay;
1998
1999            if (snoopPkt.cacheResponding()) {
2000                // cache-to-cache response from some upper cache
2001                assert(!alreadyResponded);
2002                pkt->setCacheResponding();
2003            }
2004            // upstream cache has the block, or has an outstanding
2005            // MSHR, pass the flag on
2006            if (snoopPkt.hasSharers()) {
2007                pkt->setHasSharers();
2008            }
2009            // If this request is a prefetch or clean evict and an upper level
2010            // signals block present, make sure to propagate the block
2011            // presence to the requester.
2012            if (snoopPkt.isBlockCached()) {
2013                pkt->setBlockCached();
2014            }
2015        } else {
2016            cpuSidePort->sendAtomicSnoop(pkt);
2017            if (!alreadyResponded && pkt->cacheResponding()) {
2018                // cache-to-cache response from some upper cache:
2019                // forward response to original requester
2020                assert(pkt->isResponse());
2021            }
2022        }
2023    }
2024
2025    if (!blk || !blk->isValid()) {
2026        DPRINTF(CacheVerbose, "%s: snoop miss for %s\n", __func__,
2027                pkt->print());
2028        if (is_deferred) {
2029            // we no longer have the block, and will not respond, but a
2030            // packet was allocated in MSHR::handleSnoop and we have
2031            // to delete it
2032            assert(pkt->needsResponse());
2033
2034            // we have passed the block to a cache upstream, that
2035            // cache should be responding
2036            assert(pkt->cacheResponding());
2037
2038            delete pkt;
2039        }
2040        return snoop_delay;
2041    } else {
2042        DPRINTF(Cache, "%s: snoop hit for %s, old state is %s\n", __func__,
2043                pkt->print(), blk->print());
2044    }
2045
2046    chatty_assert(!(isReadOnly && blk->isDirty()),
2047                  "Should never have a dirty block in a read-only cache %s\n",
2048                  name());
2049
2050    // We may end up modifying both the block state and the packet (if
2051    // we respond in atomic mode), so just figure out what to do now
2052    // and then do it later. We respond to all snoops that need
2053    // responses provided we have the block in dirty state. The
2054    // invalidation itself is taken care of below.
2055    bool respond = blk->isDirty() && pkt->needsResponse();
2056    bool have_writable = blk->isWritable();
2057
2058    // Invalidate any prefetch's from below that would strip write permissions
2059    // MemCmd::HardPFReq is only observed by upstream caches.  After missing
2060    // above and in it's own cache, a new MemCmd::ReadReq is created that
2061    // downstream caches observe.
2062    if (pkt->mustCheckAbove()) {
2063        DPRINTF(Cache, "Found addr %#llx in upper level cache for snoop %s "
2064                "from lower cache\n", pkt->getAddr(), pkt->print());
2065        pkt->setBlockCached();
2066        return snoop_delay;
2067    }
2068
2069    if (pkt->isRead() && !invalidate) {
2070        // reading without requiring the line in a writable state
2071        assert(!needs_writable);
2072        pkt->setHasSharers();
2073
2074        // if the requesting packet is uncacheable, retain the line in
2075        // the current state, otherwhise unset the writable flag,
2076        // which means we go from Modified to Owned (and will respond
2077        // below), remain in Owned (and will respond below), from
2078        // Exclusive to Shared, or remain in Shared
2079        if (!pkt->req->isUncacheable())
2080            blk->status &= ~BlkWritable;
2081    }
2082
2083    if (respond) {
2084        // prevent anyone else from responding, cache as well as
2085        // memory, and also prevent any memory from even seeing the
2086        // request
2087        pkt->setCacheResponding();
2088        if (have_writable) {
2089            // inform the cache hierarchy that this cache had the line
2090            // in the Modified state so that we avoid unnecessary
2091            // invalidations (see Packet::setResponderHadWritable)
2092            pkt->setResponderHadWritable();
2093
2094            // in the case of an uncacheable request there is no point
2095            // in setting the responderHadWritable flag, but since the
2096            // recipient does not care there is no harm in doing so
2097        } else {
2098            // if the packet has needsWritable set we invalidate our
2099            // copy below and all other copies will be invalidates
2100            // through express snoops, and if needsWritable is not set
2101            // we already called setHasSharers above
2102        }
2103
2104        // if we are returning a writable and dirty (Modified) line,
2105        // we should be invalidating the line
2106        panic_if(!invalidate && !pkt->hasSharers(),
2107                 "%s is passing a Modified line through %s, "
2108                 "but keeping the block", name(), pkt->print());
2109
2110        if (is_timing) {
2111            doTimingSupplyResponse(pkt, blk->data, is_deferred, pending_inval);
2112        } else {
2113            pkt->makeAtomicResponse();
2114            // packets such as upgrades do not actually have any data
2115            // payload
2116            if (pkt->hasData())
2117                pkt->setDataFromBlock(blk->data, blkSize);
2118        }
2119    }
2120
2121    if (!respond && is_deferred) {
2122        assert(pkt->needsResponse());
2123
2124        // if we copied the deferred packet with the intention to
2125        // respond, but are not responding, then a cache above us must
2126        // be, and we can use this as the indication of whether this
2127        // is a packet where we created a copy of the request or not
2128        if (!pkt->cacheResponding()) {
2129            delete pkt->req;
2130        }
2131
2132        delete pkt;
2133    }
2134
2135    // Do this last in case it deallocates block data or something
2136    // like that
2137    if (invalidate) {
2138        invalidateBlock(blk);
2139    }
2140
2141    DPRINTF(Cache, "new state is %s\n", blk->print());
2142
2143    return snoop_delay;
2144}
2145
2146
2147void
2148Cache::recvTimingSnoopReq(PacketPtr pkt)
2149{
2150    DPRINTF(CacheVerbose, "%s: for %s\n", __func__, pkt->print());
2151
2152    // Snoops shouldn't happen when bypassing caches
2153    assert(!system->bypassCaches());
2154
2155    // no need to snoop requests that are not in range
2156    if (!inRange(pkt->getAddr())) {
2157        return;
2158    }
2159
2160    bool is_secure = pkt->isSecure();
2161    CacheBlk *blk = tags->findBlock(pkt->getAddr(), is_secure);
2162
2163    Addr blk_addr = pkt->getBlockAddr(blkSize);
2164    MSHR *mshr = mshrQueue.findMatch(blk_addr, is_secure);
2165
2166    // Update the latency cost of the snoop so that the crossbar can
2167    // account for it. Do not overwrite what other neighbouring caches
2168    // have already done, rather take the maximum. The update is
2169    // tentative, for cases where we return before an upward snoop
2170    // happens below.
2171    pkt->snoopDelay = std::max<uint32_t>(pkt->snoopDelay,
2172                                         lookupLatency * clockPeriod());
2173
2174    // Inform request(Prefetch, CleanEvict or Writeback) from below of
2175    // MSHR hit, set setBlockCached.
2176    if (mshr && pkt->mustCheckAbove()) {
2177        DPRINTF(Cache, "Setting block cached for %s from lower cache on "
2178                "mshr hit\n", pkt->print());
2179        pkt->setBlockCached();
2180        return;
2181    }
2182
2183    // Let the MSHR itself track the snoop and decide whether we want
2184    // to go ahead and do the regular cache snoop
2185    if (mshr && mshr->handleSnoop(pkt, order++)) {
2186        DPRINTF(Cache, "Deferring snoop on in-service MSHR to blk %#llx (%s)."
2187                "mshrs: %s\n", blk_addr, is_secure ? "s" : "ns",
2188                mshr->print());
2189
2190        if (mshr->getNumTargets() > numTarget)
2191            warn("allocating bonus target for snoop"); //handle later
2192        return;
2193    }
2194
2195    //We also need to check the writeback buffers and handle those
2196    WriteQueueEntry *wb_entry = writeBuffer.findMatch(blk_addr, is_secure);
2197    if (wb_entry) {
2198        DPRINTF(Cache, "Snoop hit in writeback to addr %#llx (%s)\n",
2199                pkt->getAddr(), is_secure ? "s" : "ns");
2200        // Expect to see only Writebacks and/or CleanEvicts here, both of
2201        // which should not be generated for uncacheable data.
2202        assert(!wb_entry->isUncacheable());
2203        // There should only be a single request responsible for generating
2204        // Writebacks/CleanEvicts.
2205        assert(wb_entry->getNumTargets() == 1);
2206        PacketPtr wb_pkt = wb_entry->getTarget()->pkt;
2207        assert(wb_pkt->isEviction() || wb_pkt->cmd == MemCmd::WriteClean);
2208
2209        if (pkt->isEviction()) {
2210            // if the block is found in the write queue, set the BLOCK_CACHED
2211            // flag for Writeback/CleanEvict snoop. On return the snoop will
2212            // propagate the BLOCK_CACHED flag in Writeback packets and prevent
2213            // any CleanEvicts from travelling down the memory hierarchy.
2214            pkt->setBlockCached();
2215            DPRINTF(Cache, "%s: Squashing %s from lower cache on writequeue "
2216                    "hit\n", __func__, pkt->print());
2217            return;
2218        }
2219
2220        // conceptually writebacks are no different to other blocks in
2221        // this cache, so the behaviour is modelled after handleSnoop,
2222        // the difference being that instead of querying the block
2223        // state to determine if it is dirty and writable, we use the
2224        // command and fields of the writeback packet
2225        bool respond = wb_pkt->cmd == MemCmd::WritebackDirty &&
2226            pkt->needsResponse();
2227        bool have_writable = !wb_pkt->hasSharers();
2228        bool invalidate = pkt->isInvalidate();
2229
2230        if (!pkt->req->isUncacheable() && pkt->isRead() && !invalidate) {
2231            assert(!pkt->needsWritable());
2232            pkt->setHasSharers();
2233            wb_pkt->setHasSharers();
2234        }
2235
2236        if (respond) {
2237            pkt->setCacheResponding();
2238
2239            if (have_writable) {
2240                pkt->setResponderHadWritable();
2241            }
2242
2243            doTimingSupplyResponse(pkt, wb_pkt->getConstPtr<uint8_t>(),
2244                                   false, false);
2245        }
2246
2247        if (invalidate) {
2248            // Invalidation trumps our writeback... discard here
2249            // Note: markInService will remove entry from writeback buffer.
2250            markInService(wb_entry);
2251            delete wb_pkt;
2252        }
2253    }
2254
2255    // If this was a shared writeback, there may still be
2256    // other shared copies above that require invalidation.
2257    // We could be more selective and return here if the
2258    // request is non-exclusive or if the writeback is
2259    // exclusive.
2260    uint32_t snoop_delay = handleSnoop(pkt, blk, true, false, false);
2261
2262    // Override what we did when we first saw the snoop, as we now
2263    // also have the cost of the upwards snoops to account for
2264    pkt->snoopDelay = std::max<uint32_t>(pkt->snoopDelay, snoop_delay +
2265                                         lookupLatency * clockPeriod());
2266}
2267
2268bool
2269Cache::CpuSidePort::recvTimingSnoopResp(PacketPtr pkt)
2270{
2271    // Express snoop responses from master to slave, e.g., from L1 to L2
2272    cache->recvTimingSnoopResp(pkt);
2273    return true;
2274}
2275
2276Tick
2277Cache::recvAtomicSnoop(PacketPtr pkt)
2278{
2279    // Snoops shouldn't happen when bypassing caches
2280    assert(!system->bypassCaches());
2281
2282    // no need to snoop requests that are not in range.
2283    if (!inRange(pkt->getAddr())) {
2284        return 0;
2285    }
2286
2287    CacheBlk *blk = tags->findBlock(pkt->getAddr(), pkt->isSecure());
2288    uint32_t snoop_delay = handleSnoop(pkt, blk, false, false, false);
2289    return snoop_delay + lookupLatency * clockPeriod();
2290}
2291
2292
2293QueueEntry*
2294Cache::getNextQueueEntry()
2295{
2296    // Check both MSHR queue and write buffer for potential requests,
2297    // note that null does not mean there is no request, it could
2298    // simply be that it is not ready
2299    MSHR *miss_mshr  = mshrQueue.getNext();
2300    WriteQueueEntry *wq_entry = writeBuffer.getNext();
2301
2302    // If we got a write buffer request ready, first priority is a
2303    // full write buffer, otherwise we favour the miss requests
2304    if (wq_entry && (writeBuffer.isFull() || !miss_mshr)) {
2305        // need to search MSHR queue for conflicting earlier miss.
2306        MSHR *conflict_mshr =
2307            mshrQueue.findPending(wq_entry->blkAddr,
2308                                  wq_entry->isSecure);
2309
2310        if (conflict_mshr && conflict_mshr->order < wq_entry->order) {
2311            // Service misses in order until conflict is cleared.
2312            return conflict_mshr;
2313
2314            // @todo Note that we ignore the ready time of the conflict here
2315        }
2316
2317        // No conflicts; issue write
2318        return wq_entry;
2319    } else if (miss_mshr) {
2320        // need to check for conflicting earlier writeback
2321        WriteQueueEntry *conflict_mshr =
2322            writeBuffer.findPending(miss_mshr->blkAddr,
2323                                    miss_mshr->isSecure);
2324        if (conflict_mshr) {
2325            // not sure why we don't check order here... it was in the
2326            // original code but commented out.
2327
2328            // The only way this happens is if we are
2329            // doing a write and we didn't have permissions
2330            // then subsequently saw a writeback (owned got evicted)
2331            // We need to make sure to perform the writeback first
2332            // To preserve the dirty data, then we can issue the write
2333
2334            // should we return wq_entry here instead?  I.e. do we
2335            // have to flush writes in order?  I don't think so... not
2336            // for Alpha anyway.  Maybe for x86?
2337            return conflict_mshr;
2338
2339            // @todo Note that we ignore the ready time of the conflict here
2340        }
2341
2342        // No conflicts; issue read
2343        return miss_mshr;
2344    }
2345
2346    // fall through... no pending requests.  Try a prefetch.
2347    assert(!miss_mshr && !wq_entry);
2348    if (prefetcher && mshrQueue.canPrefetch()) {
2349        // If we have a miss queue slot, we can try a prefetch
2350        PacketPtr pkt = prefetcher->getPacket();
2351        if (pkt) {
2352            Addr pf_addr = pkt->getBlockAddr(blkSize);
2353            if (!tags->findBlock(pf_addr, pkt->isSecure()) &&
2354                !mshrQueue.findMatch(pf_addr, pkt->isSecure()) &&
2355                !writeBuffer.findMatch(pf_addr, pkt->isSecure())) {
2356                // Update statistic on number of prefetches issued
2357                // (hwpf_mshr_misses)
2358                assert(pkt->req->masterId() < system->maxMasters());
2359                mshr_misses[pkt->cmdToIndex()][pkt->req->masterId()]++;
2360
2361                // allocate an MSHR and return it, note
2362                // that we send the packet straight away, so do not
2363                // schedule the send
2364                return allocateMissBuffer(pkt, curTick(), false);
2365            } else {
2366                // free the request and packet
2367                delete pkt->req;
2368                delete pkt;
2369            }
2370        }
2371    }
2372
2373    return nullptr;
2374}
2375
2376bool
2377Cache::isCachedAbove(PacketPtr pkt, bool is_timing) const
2378{
2379    if (!forwardSnoops)
2380        return false;
2381    // Mirroring the flow of HardPFReqs, the cache sends CleanEvict and
2382    // Writeback snoops into upper level caches to check for copies of the
2383    // same block. Using the BLOCK_CACHED flag with the Writeback/CleanEvict
2384    // packet, the cache can inform the crossbar below of presence or absence
2385    // of the block.
2386    if (is_timing) {
2387        Packet snoop_pkt(pkt, true, false);
2388        snoop_pkt.setExpressSnoop();
2389        // Assert that packet is either Writeback or CleanEvict and not a
2390        // prefetch request because prefetch requests need an MSHR and may
2391        // generate a snoop response.
2392        assert(pkt->isEviction() || pkt->cmd == MemCmd::WriteClean);
2393        snoop_pkt.senderState = nullptr;
2394        cpuSidePort->sendTimingSnoopReq(&snoop_pkt);
2395        // Writeback/CleanEvict snoops do not generate a snoop response.
2396        assert(!(snoop_pkt.cacheResponding()));
2397        return snoop_pkt.isBlockCached();
2398    } else {
2399        cpuSidePort->sendAtomicSnoop(pkt);
2400        return pkt->isBlockCached();
2401    }
2402}
2403
2404Tick
2405Cache::nextQueueReadyTime() const
2406{
2407    Tick nextReady = std::min(mshrQueue.nextReadyTime(),
2408                              writeBuffer.nextReadyTime());
2409
2410    // Don't signal prefetch ready time if no MSHRs available
2411    // Will signal once enoguh MSHRs are deallocated
2412    if (prefetcher && mshrQueue.canPrefetch()) {
2413        nextReady = std::min(nextReady,
2414                             prefetcher->nextPrefetchReadyTime());
2415    }
2416
2417    return nextReady;
2418}
2419
2420bool
2421Cache::sendMSHRQueuePacket(MSHR* mshr)
2422{
2423    assert(mshr);
2424
2425    // use request from 1st target
2426    PacketPtr tgt_pkt = mshr->getTarget()->pkt;
2427
2428    DPRINTF(Cache, "%s: MSHR %s\n", __func__, tgt_pkt->print());
2429
2430    CacheBlk *blk = tags->findBlock(mshr->blkAddr, mshr->isSecure);
2431
2432    if (tgt_pkt->cmd == MemCmd::HardPFReq && forwardSnoops) {
2433        // we should never have hardware prefetches to allocated
2434        // blocks
2435        assert(blk == nullptr);
2436
2437        // We need to check the caches above us to verify that
2438        // they don't have a copy of this block in the dirty state
2439        // at the moment. Without this check we could get a stale
2440        // copy from memory that might get used in place of the
2441        // dirty one.
2442        Packet snoop_pkt(tgt_pkt, true, false);
2443        snoop_pkt.setExpressSnoop();
2444        // We are sending this packet upwards, but if it hits we will
2445        // get a snoop response that we end up treating just like a
2446        // normal response, hence it needs the MSHR as its sender
2447        // state
2448        snoop_pkt.senderState = mshr;
2449        cpuSidePort->sendTimingSnoopReq(&snoop_pkt);
2450
2451        // Check to see if the prefetch was squashed by an upper cache (to
2452        // prevent us from grabbing the line) or if a Check to see if a
2453        // writeback arrived between the time the prefetch was placed in
2454        // the MSHRs and when it was selected to be sent or if the
2455        // prefetch was squashed by an upper cache.
2456
2457        // It is important to check cacheResponding before
2458        // prefetchSquashed. If another cache has committed to
2459        // responding, it will be sending a dirty response which will
2460        // arrive at the MSHR allocated for this request. Checking the
2461        // prefetchSquash first may result in the MSHR being
2462        // prematurely deallocated.
2463        if (snoop_pkt.cacheResponding()) {
2464            auto M5_VAR_USED r = outstandingSnoop.insert(snoop_pkt.req);
2465            assert(r.second);
2466
2467            // if we are getting a snoop response with no sharers it
2468            // will be allocated as Modified
2469            bool pending_modified_resp = !snoop_pkt.hasSharers();
2470            markInService(mshr, pending_modified_resp);
2471
2472            DPRINTF(Cache, "Upward snoop of prefetch for addr"
2473                    " %#x (%s) hit\n",
2474                    tgt_pkt->getAddr(), tgt_pkt->isSecure()? "s": "ns");
2475            return false;
2476        }
2477
2478        if (snoop_pkt.isBlockCached()) {
2479            DPRINTF(Cache, "Block present, prefetch squashed by cache.  "
2480                    "Deallocating mshr target %#x.\n",
2481                    mshr->blkAddr);
2482
2483            // Deallocate the mshr target
2484            if (mshrQueue.forceDeallocateTarget(mshr)) {
2485                // Clear block if this deallocation resulted freed an
2486                // mshr when all had previously been utilized
2487                clearBlocked(Blocked_NoMSHRs);
2488            }
2489
2490            // given that no response is expected, delete Request and Packet
2491            delete tgt_pkt->req;
2492            delete tgt_pkt;
2493
2494            return false;
2495        }
2496    }
2497
2498    // either a prefetch that is not present upstream, or a normal
2499    // MSHR request, proceed to get the packet to send downstream
2500    PacketPtr pkt = createMissPacket(tgt_pkt, blk, mshr->needsWritable());
2501
2502    mshr->isForward = (pkt == nullptr);
2503
2504    if (mshr->isForward) {
2505        // not a cache block request, but a response is expected
2506        // make copy of current packet to forward, keep current
2507        // copy for response handling
2508        pkt = new Packet(tgt_pkt, false, true);
2509        assert(!pkt->isWrite());
2510    }
2511
2512    // play it safe and append (rather than set) the sender state,
2513    // as forwarded packets may already have existing state
2514    pkt->pushSenderState(mshr);
2515
2516    if (!memSidePort->sendTimingReq(pkt)) {
2517        // we are awaiting a retry, but we
2518        // delete the packet and will be creating a new packet
2519        // when we get the opportunity
2520        delete pkt;
2521
2522        // note that we have now masked any requestBus and
2523        // schedSendEvent (we will wait for a retry before
2524        // doing anything), and this is so even if we do not
2525        // care about this packet and might override it before
2526        // it gets retried
2527        return true;
2528    } else {
2529        // As part of the call to sendTimingReq the packet is
2530        // forwarded to all neighbouring caches (and any caches
2531        // above them) as a snoop. Thus at this point we know if
2532        // any of the neighbouring caches are responding, and if
2533        // so, we know it is dirty, and we can determine if it is
2534        // being passed as Modified, making our MSHR the ordering
2535        // point
2536        bool pending_modified_resp = !pkt->hasSharers() &&
2537            pkt->cacheResponding();
2538        markInService(mshr, pending_modified_resp);
2539        return false;
2540    }
2541}
2542
2543bool
2544Cache::sendWriteQueuePacket(WriteQueueEntry* wq_entry)
2545{
2546    assert(wq_entry);
2547
2548    // always a single target for write queue entries
2549    PacketPtr tgt_pkt = wq_entry->getTarget()->pkt;
2550
2551    DPRINTF(Cache, "%s: write %s\n", __func__, tgt_pkt->print());
2552
2553    // forward as is, both for evictions and uncacheable writes
2554    if (!memSidePort->sendTimingReq(tgt_pkt)) {
2555        // note that we have now masked any requestBus and
2556        // schedSendEvent (we will wait for a retry before
2557        // doing anything), and this is so even if we do not
2558        // care about this packet and might override it before
2559        // it gets retried
2560        return true;
2561    } else {
2562        markInService(wq_entry);
2563        return false;
2564    }
2565}
2566
2567void
2568Cache::serialize(CheckpointOut &cp) const
2569{
2570    bool dirty(isDirty());
2571
2572    if (dirty) {
2573        warn("*** The cache still contains dirty data. ***\n");
2574        warn("    Make sure to drain the system using the correct flags.\n");
2575        warn("    This checkpoint will not restore correctly and dirty data "
2576             "    in the cache will be lost!\n");
2577    }
2578
2579    // Since we don't checkpoint the data in the cache, any dirty data
2580    // will be lost when restoring from a checkpoint of a system that
2581    // wasn't drained properly. Flag the checkpoint as invalid if the
2582    // cache contains dirty data.
2583    bool bad_checkpoint(dirty);
2584    SERIALIZE_SCALAR(bad_checkpoint);
2585}
2586
2587void
2588Cache::unserialize(CheckpointIn &cp)
2589{
2590    bool bad_checkpoint;
2591    UNSERIALIZE_SCALAR(bad_checkpoint);
2592    if (bad_checkpoint) {
2593        fatal("Restoring from checkpoints with dirty caches is not supported "
2594              "in the classic memory system. Please remove any caches or "
2595              " drain them properly before taking checkpoints.\n");
2596    }
2597}
2598
2599///////////////
2600//
2601// CpuSidePort
2602//
2603///////////////
2604
2605AddrRangeList
2606Cache::CpuSidePort::getAddrRanges() const
2607{
2608    return cache->getAddrRanges();
2609}
2610
2611bool
2612Cache::CpuSidePort::tryTiming(PacketPtr pkt)
2613{
2614    assert(!cache->system->bypassCaches());
2615
2616    // always let express snoop packets through if even if blocked
2617    if (pkt->isExpressSnoop()) {
2618        return true;
2619    } else if (isBlocked() || mustSendRetry) {
2620        // either already committed to send a retry, or blocked
2621        mustSendRetry = true;
2622        return false;
2623    }
2624    mustSendRetry = false;
2625    return true;
2626}
2627
2628bool
2629Cache::CpuSidePort::recvTimingReq(PacketPtr pkt)
2630{
2631    assert(!cache->system->bypassCaches());
2632
2633    // always let express snoop packets through if even if blocked
2634    if (pkt->isExpressSnoop()) {
2635        bool M5_VAR_USED bypass_success = cache->recvTimingReq(pkt);
2636        assert(bypass_success);
2637        return true;
2638    }
2639
2640    return tryTiming(pkt) && cache->recvTimingReq(pkt);
2641}
2642
2643Tick
2644Cache::CpuSidePort::recvAtomic(PacketPtr pkt)
2645{
2646    return cache->recvAtomic(pkt);
2647}
2648
2649void
2650Cache::CpuSidePort::recvFunctional(PacketPtr pkt)
2651{
2652    // functional request
2653    cache->functionalAccess(pkt, true);
2654}
2655
2656Cache::
2657CpuSidePort::CpuSidePort(const std::string &_name, Cache *_cache,
2658                         const std::string &_label)
2659    : BaseCache::CacheSlavePort(_name, _cache, _label), cache(_cache)
2660{
2661}
2662
2663Cache*
2664CacheParams::create()
2665{
2666    assert(tags);
2667
2668    return new Cache(this);
2669}
2670///////////////
2671//
2672// MemSidePort
2673//
2674///////////////
2675
2676bool
2677Cache::MemSidePort::recvTimingResp(PacketPtr pkt)
2678{
2679    cache->recvTimingResp(pkt);
2680    return true;
2681}
2682
2683// Express snooping requests to memside port
2684void
2685Cache::MemSidePort::recvTimingSnoopReq(PacketPtr pkt)
2686{
2687    // handle snooping requests
2688    cache->recvTimingSnoopReq(pkt);
2689}
2690
2691Tick
2692Cache::MemSidePort::recvAtomicSnoop(PacketPtr pkt)
2693{
2694    return cache->recvAtomicSnoop(pkt);
2695}
2696
2697void
2698Cache::MemSidePort::recvFunctionalSnoop(PacketPtr pkt)
2699{
2700    // functional snoop (note that in contrast to atomic we don't have
2701    // a specific functionalSnoop method, as they have the same
2702    // behaviour regardless)
2703    cache->functionalAccess(pkt, false);
2704}
2705
2706void
2707Cache::CacheReqPacketQueue::sendDeferredPacket()
2708{
2709    // sanity check
2710    assert(!waitingOnRetry);
2711
2712    // there should never be any deferred request packets in the
2713    // queue, instead we resly on the cache to provide the packets
2714    // from the MSHR queue or write queue
2715    assert(deferredPacketReadyTime() == MaxTick);
2716
2717    // check for request packets (requests & writebacks)
2718    QueueEntry* entry = cache.getNextQueueEntry();
2719
2720    if (!entry) {
2721        // can happen if e.g. we attempt a writeback and fail, but
2722        // before the retry, the writeback is eliminated because
2723        // we snoop another cache's ReadEx.
2724    } else {
2725        // let our snoop responses go first if there are responses to
2726        // the same addresses
2727        if (checkConflictingSnoop(entry->blkAddr)) {
2728            return;
2729        }
2730        waitingOnRetry = entry->sendPacket(cache);
2731    }
2732
2733    // if we succeeded and are not waiting for a retry, schedule the
2734    // next send considering when the next queue is ready, note that
2735    // snoop responses have their own packet queue and thus schedule
2736    // their own events
2737    if (!waitingOnRetry) {
2738        schedSendEvent(cache.nextQueueReadyTime());
2739    }
2740}
2741
2742Cache::
2743MemSidePort::MemSidePort(const std::string &_name, Cache *_cache,
2744                         const std::string &_label)
2745    : BaseCache::CacheMasterPort(_name, _cache, _reqQueue, _snoopRespQueue),
2746      _reqQueue(*_cache, *this, _snoopRespQueue, _label),
2747      _snoopRespQueue(*_cache, *this, _label), cache(_cache)
2748{
2749}
2750