cache.cc revision 11288:57c340f947c7
1/*
2 * Copyright (c) 2010-2015 ARM Limited
3 * All rights reserved.
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder.  You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2002-2005 The Regents of The University of Michigan
15 * Copyright (c) 2010,2015 Advanced Micro Devices, Inc.
16 * All rights reserved.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions are
20 * met: redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer;
22 * redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution;
25 * neither the name of the copyright holders nor the names of its
26 * contributors may be used to endorse or promote products derived from
27 * this software without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40 *
41 * Authors: Erik Hallnor
42 *          Dave Greene
43 *          Nathan Binkert
44 *          Steve Reinhardt
45 *          Ron Dreslinski
46 *          Andreas Sandberg
47 */
48
49/**
50 * @file
51 * Cache definitions.
52 */
53
54#include "mem/cache/cache.hh"
55
56#include "base/misc.hh"
57#include "base/types.hh"
58#include "debug/Cache.hh"
59#include "debug/CachePort.hh"
60#include "debug/CacheTags.hh"
61#include "debug/CacheVerbose.hh"
62#include "mem/cache/blk.hh"
63#include "mem/cache/mshr.hh"
64#include "mem/cache/prefetch/base.hh"
65#include "sim/sim_exit.hh"
66
67Cache::Cache(const CacheParams *p)
68    : BaseCache(p, p->system->cacheLineSize()),
69      tags(p->tags),
70      prefetcher(p->prefetcher),
71      doFastWrites(true),
72      prefetchOnAccess(p->prefetch_on_access),
73      clusivity(p->clusivity),
74      writebackClean(p->writeback_clean),
75      tempBlockWriteback(nullptr),
76      writebackTempBlockAtomicEvent(this, false,
77                                    EventBase::Delayed_Writeback_Pri)
78{
79    tempBlock = new CacheBlk();
80    tempBlock->data = new uint8_t[blkSize];
81
82    cpuSidePort = new CpuSidePort(p->name + ".cpu_side", this,
83                                  "CpuSidePort");
84    memSidePort = new MemSidePort(p->name + ".mem_side", this,
85                                  "MemSidePort");
86
87    tags->setCache(this);
88    if (prefetcher)
89        prefetcher->setCache(this);
90}
91
92Cache::~Cache()
93{
94    delete [] tempBlock->data;
95    delete tempBlock;
96
97    delete cpuSidePort;
98    delete memSidePort;
99}
100
101void
102Cache::regStats()
103{
104    BaseCache::regStats();
105}
106
107void
108Cache::cmpAndSwap(CacheBlk *blk, PacketPtr pkt)
109{
110    assert(pkt->isRequest());
111
112    uint64_t overwrite_val;
113    bool overwrite_mem;
114    uint64_t condition_val64;
115    uint32_t condition_val32;
116
117    int offset = tags->extractBlkOffset(pkt->getAddr());
118    uint8_t *blk_data = blk->data + offset;
119
120    assert(sizeof(uint64_t) >= pkt->getSize());
121
122    overwrite_mem = true;
123    // keep a copy of our possible write value, and copy what is at the
124    // memory address into the packet
125    pkt->writeData((uint8_t *)&overwrite_val);
126    pkt->setData(blk_data);
127
128    if (pkt->req->isCondSwap()) {
129        if (pkt->getSize() == sizeof(uint64_t)) {
130            condition_val64 = pkt->req->getExtraData();
131            overwrite_mem = !std::memcmp(&condition_val64, blk_data,
132                                         sizeof(uint64_t));
133        } else if (pkt->getSize() == sizeof(uint32_t)) {
134            condition_val32 = (uint32_t)pkt->req->getExtraData();
135            overwrite_mem = !std::memcmp(&condition_val32, blk_data,
136                                         sizeof(uint32_t));
137        } else
138            panic("Invalid size for conditional read/write\n");
139    }
140
141    if (overwrite_mem) {
142        std::memcpy(blk_data, &overwrite_val, pkt->getSize());
143        blk->status |= BlkDirty;
144    }
145}
146
147
148void
149Cache::satisfyCpuSideRequest(PacketPtr pkt, CacheBlk *blk,
150                             bool deferred_response, bool pending_downgrade)
151{
152    assert(pkt->isRequest());
153
154    assert(blk && blk->isValid());
155    // Occasionally this is not true... if we are a lower-level cache
156    // satisfying a string of Read and ReadEx requests from
157    // upper-level caches, a Read will mark the block as shared but we
158    // can satisfy a following ReadEx anyway since we can rely on the
159    // Read requester(s) to have buffered the ReadEx snoop and to
160    // invalidate their blocks after receiving them.
161    // assert(!pkt->needsWritable() || blk->isWritable());
162    assert(pkt->getOffset(blkSize) + pkt->getSize() <= blkSize);
163
164    // Check RMW operations first since both isRead() and
165    // isWrite() will be true for them
166    if (pkt->cmd == MemCmd::SwapReq) {
167        cmpAndSwap(blk, pkt);
168    } else if (pkt->isWrite()) {
169        // we have the block in a writable state and can go ahead,
170        // note that the line may be also be considered writable in
171        // downstream caches along the path to memory, but always
172        // Exclusive, and never Modified
173        assert(blk->isWritable());
174        // Write or WriteLine at the first cache with block in writable state
175        if (blk->checkWrite(pkt)) {
176            pkt->writeDataToBlock(blk->data, blkSize);
177        }
178        // Always mark the line as dirty (and thus transition to the
179        // Modified state) even if we are a failed StoreCond so we
180        // supply data to any snoops that have appended themselves to
181        // this cache before knowing the store will fail.
182        blk->status |= BlkDirty;
183        DPRINTF(CacheVerbose, "%s for %s addr %#llx size %d (write)\n",
184                __func__, pkt->cmdString(), pkt->getAddr(), pkt->getSize());
185    } else if (pkt->isRead()) {
186        if (pkt->isLLSC()) {
187            blk->trackLoadLocked(pkt);
188        }
189
190        // all read responses have a data payload
191        assert(pkt->hasRespData());
192        pkt->setDataFromBlock(blk->data, blkSize);
193
194        // determine if this read is from a (coherent) cache, or not
195        // by looking at the command type; we could potentially add a
196        // packet attribute such as 'FromCache' to make this check a
197        // bit cleaner
198        if (pkt->cmd == MemCmd::ReadExReq ||
199            pkt->cmd == MemCmd::ReadSharedReq ||
200            pkt->cmd == MemCmd::ReadCleanReq ||
201            pkt->cmd == MemCmd::SCUpgradeFailReq) {
202            assert(pkt->getSize() == blkSize);
203            // special handling for coherent block requests from
204            // upper-level caches
205            if (pkt->needsWritable()) {
206                // sanity check
207                assert(pkt->cmd == MemCmd::ReadExReq ||
208                       pkt->cmd == MemCmd::SCUpgradeFailReq);
209
210                // if we have a dirty copy, make sure the recipient
211                // keeps it marked dirty (in the modified state)
212                if (blk->isDirty()) {
213                    pkt->setCacheResponding();
214                }
215                // on ReadExReq we give up our copy unconditionally,
216                // even if this cache is mostly inclusive, we may want
217                // to revisit this
218                invalidateBlock(blk);
219            } else if (blk->isWritable() && !pending_downgrade &&
220                       !pkt->hasSharers() &&
221                       pkt->cmd != MemCmd::ReadCleanReq) {
222                // we can give the requester a writable copy on a read
223                // request if:
224                // - we have a writable copy at this level (& below)
225                // - we don't have a pending snoop from below
226                //   signaling another read request
227                // - no other cache above has a copy (otherwise it
228                //   would have set hasSharers flag when
229                //   snooping the packet)
230                // - the read has explicitly asked for a clean
231                //   copy of the line
232                if (blk->isDirty()) {
233                    // special considerations if we're owner:
234                    if (!deferred_response) {
235                        // respond with the line in Modified state
236                        // (cacheResponding set, hasSharers not set)
237                        pkt->setCacheResponding();
238
239                        if (clusivity == Enums::mostly_excl) {
240                            // if this cache is mostly exclusive with
241                            // respect to the cache above, drop the
242                            // block, no need to first unset the dirty
243                            // bit
244                            invalidateBlock(blk);
245                        } else {
246                            // if this cache is mostly inclusive, we
247                            // keep the block in the Exclusive state,
248                            // and pass it upwards as Modified
249                            // (writable and dirty), hence we have
250                            // multiple caches, all on the same path
251                            // towards memory, all considering the
252                            // same block writable, but only one
253                            // considering it Modified
254
255                            // we get away with multiple caches (on
256                            // the same path to memory) considering
257                            // the block writeable as we always enter
258                            // the cache hierarchy through a cache,
259                            // and first snoop upwards in all other
260                            // branches
261                            blk->status &= ~BlkDirty;
262                        }
263                    } else {
264                        // if we're responding after our own miss,
265                        // there's a window where the recipient didn't
266                        // know it was getting ownership and may not
267                        // have responded to snoops correctly, so we
268                        // have to respond with a shared line
269                        pkt->setHasSharers();
270                    }
271                }
272            } else {
273                // otherwise only respond with a shared copy
274                pkt->setHasSharers();
275            }
276        }
277    } else {
278        // Upgrade or Invalidate
279        assert(pkt->isUpgrade() || pkt->isInvalidate());
280
281        // for invalidations we could be looking at the temp block
282        // (for upgrades we always allocate)
283        invalidateBlock(blk);
284        DPRINTF(CacheVerbose, "%s for %s addr %#llx size %d (invalidation)\n",
285                __func__, pkt->cmdString(), pkt->getAddr(), pkt->getSize());
286    }
287}
288
289
290/////////////////////////////////////////////////////
291//
292// MSHR helper functions
293//
294/////////////////////////////////////////////////////
295
296
297void
298Cache::markInService(MSHR *mshr, bool pending_modified_resp)
299{
300    markInServiceInternal(mshr, pending_modified_resp);
301}
302
303/////////////////////////////////////////////////////
304//
305// Access path: requests coming in from the CPU side
306//
307/////////////////////////////////////////////////////
308
309bool
310Cache::access(PacketPtr pkt, CacheBlk *&blk, Cycles &lat,
311              PacketList &writebacks)
312{
313    // sanity check
314    assert(pkt->isRequest());
315
316    chatty_assert(!(isReadOnly && pkt->isWrite()),
317                  "Should never see a write in a read-only cache %s\n",
318                  name());
319
320    DPRINTF(CacheVerbose, "%s for %s addr %#llx size %d\n", __func__,
321            pkt->cmdString(), pkt->getAddr(), pkt->getSize());
322
323    if (pkt->req->isUncacheable()) {
324        DPRINTF(Cache, "%s%s addr %#llx uncacheable\n", pkt->cmdString(),
325                pkt->req->isInstFetch() ? " (ifetch)" : "",
326                pkt->getAddr());
327
328        // flush and invalidate any existing block
329        CacheBlk *old_blk(tags->findBlock(pkt->getAddr(), pkt->isSecure()));
330        if (old_blk && old_blk->isValid()) {
331            if (old_blk->isDirty() || writebackClean)
332                writebacks.push_back(writebackBlk(old_blk));
333            else
334                writebacks.push_back(cleanEvictBlk(old_blk));
335            tags->invalidate(old_blk);
336            old_blk->invalidate();
337        }
338
339        blk = NULL;
340        // lookupLatency is the latency in case the request is uncacheable.
341        lat = lookupLatency;
342        return false;
343    }
344
345    ContextID id = pkt->req->hasContextId() ?
346        pkt->req->contextId() : InvalidContextID;
347    // Here lat is the value passed as parameter to accessBlock() function
348    // that can modify its value.
349    blk = tags->accessBlock(pkt->getAddr(), pkt->isSecure(), lat, id);
350
351    DPRINTF(Cache, "%s%s addr %#llx size %d (%s) %s\n", pkt->cmdString(),
352            pkt->req->isInstFetch() ? " (ifetch)" : "",
353            pkt->getAddr(), pkt->getSize(), pkt->isSecure() ? "s" : "ns",
354            blk ? "hit " + blk->print() : "miss");
355
356
357    if (pkt->isEviction()) {
358        // We check for presence of block in above caches before issuing
359        // Writeback or CleanEvict to write buffer. Therefore the only
360        // possible cases can be of a CleanEvict packet coming from above
361        // encountering a Writeback generated in this cache peer cache and
362        // waiting in the write buffer. Cases of upper level peer caches
363        // generating CleanEvict and Writeback or simply CleanEvict and
364        // CleanEvict almost simultaneously will be caught by snoops sent out
365        // by crossbar.
366        std::vector<MSHR *> outgoing;
367        if (writeBuffer.findMatches(pkt->getAddr(), pkt->isSecure(),
368                                   outgoing)) {
369            assert(outgoing.size() == 1);
370            MSHR *wb_entry = outgoing[0];
371            assert(wb_entry->getNumTargets() == 1);
372            PacketPtr wbPkt = wb_entry->getTarget()->pkt;
373            assert(wbPkt->isWriteback());
374
375            if (pkt->isCleanEviction()) {
376                // The CleanEvict and WritebackClean snoops into other
377                // peer caches of the same level while traversing the
378                // crossbar. If a copy of the block is found, the
379                // packet is deleted in the crossbar. Hence, none of
380                // the other upper level caches connected to this
381                // cache have the block, so we can clear the
382                // BLOCK_CACHED flag in the Writeback if set and
383                // discard the CleanEvict by returning true.
384                wbPkt->clearBlockCached();
385                return true;
386            } else {
387                assert(pkt->cmd == MemCmd::WritebackDirty);
388                // Dirty writeback from above trumps our clean
389                // writeback... discard here
390                // Note: markInService will remove entry from writeback buffer.
391                markInService(wb_entry, false);
392                delete wbPkt;
393            }
394        }
395    }
396
397    // Writeback handling is special case.  We can write the block into
398    // the cache without having a writeable copy (or any copy at all).
399    if (pkt->isWriteback()) {
400        assert(blkSize == pkt->getSize());
401
402        // we could get a clean writeback while we are having
403        // outstanding accesses to a block, do the simple thing for
404        // now and drop the clean writeback so that we do not upset
405        // any ordering/decisions about ownership already taken
406        if (pkt->cmd == MemCmd::WritebackClean &&
407            mshrQueue.findMatch(pkt->getAddr(), pkt->isSecure())) {
408            DPRINTF(Cache, "Clean writeback %#llx to block with MSHR, "
409                    "dropping\n", pkt->getAddr());
410            return true;
411        }
412
413        if (blk == NULL) {
414            // need to do a replacement
415            blk = allocateBlock(pkt->getAddr(), pkt->isSecure(), writebacks);
416            if (blk == NULL) {
417                // no replaceable block available: give up, fwd to next level.
418                incMissCount(pkt);
419                return false;
420            }
421            tags->insertBlock(pkt, blk);
422
423            blk->status = (BlkValid | BlkReadable);
424            if (pkt->isSecure()) {
425                blk->status |= BlkSecure;
426            }
427        }
428        // only mark the block dirty if we got a writeback command,
429        // and leave it as is for a clean writeback
430        if (pkt->cmd == MemCmd::WritebackDirty) {
431            blk->status |= BlkDirty;
432        }
433        // if the packet does not have sharers, it is passing
434        // writable, and we got the writeback in Modified or Exclusive
435        // state, if not we are in the Owned or Shared state
436        if (!pkt->hasSharers()) {
437            blk->status |= BlkWritable;
438        }
439        // nothing else to do; writeback doesn't expect response
440        assert(!pkt->needsResponse());
441        std::memcpy(blk->data, pkt->getConstPtr<uint8_t>(), blkSize);
442        DPRINTF(Cache, "%s new state is %s\n", __func__, blk->print());
443        incHitCount(pkt);
444        return true;
445    } else if (pkt->cmd == MemCmd::CleanEvict) {
446        if (blk != NULL) {
447            // Found the block in the tags, need to stop CleanEvict from
448            // propagating further down the hierarchy. Returning true will
449            // treat the CleanEvict like a satisfied write request and delete
450            // it.
451            return true;
452        }
453        // We didn't find the block here, propagate the CleanEvict further
454        // down the memory hierarchy. Returning false will treat the CleanEvict
455        // like a Writeback which could not find a replaceable block so has to
456        // go to next level.
457        return false;
458    } else if ((blk != NULL) &&
459               (pkt->needsWritable() ? blk->isWritable() : blk->isReadable())) {
460        // OK to satisfy access
461        incHitCount(pkt);
462        satisfyCpuSideRequest(pkt, blk);
463        return true;
464    }
465
466    // Can't satisfy access normally... either no block (blk == NULL)
467    // or have block but need writable
468
469    incMissCount(pkt);
470
471    if (blk == NULL && pkt->isLLSC() && pkt->isWrite()) {
472        // complete miss on store conditional... just give up now
473        pkt->req->setExtraData(0);
474        return true;
475    }
476
477    return false;
478}
479
480void
481Cache::doWritebacks(PacketList& writebacks, Tick forward_time)
482{
483    while (!writebacks.empty()) {
484        PacketPtr wbPkt = writebacks.front();
485        // We use forwardLatency here because we are copying writebacks to
486        // write buffer.  Call isCachedAbove for both Writebacks and
487        // CleanEvicts. If isCachedAbove returns true we set BLOCK_CACHED flag
488        // in Writebacks and discard CleanEvicts.
489        if (isCachedAbove(wbPkt)) {
490            if (wbPkt->cmd == MemCmd::CleanEvict) {
491                // Delete CleanEvict because cached copies exist above. The
492                // packet destructor will delete the request object because
493                // this is a non-snoop request packet which does not require a
494                // response.
495                delete wbPkt;
496            } else if (wbPkt->cmd == MemCmd::WritebackClean) {
497                // clean writeback, do not send since the block is
498                // still cached above
499                assert(writebackClean);
500                delete wbPkt;
501            } else {
502                assert(wbPkt->cmd == MemCmd::WritebackDirty);
503                // Set BLOCK_CACHED flag in Writeback and send below, so that
504                // the Writeback does not reset the bit corresponding to this
505                // address in the snoop filter below.
506                wbPkt->setBlockCached();
507                allocateWriteBuffer(wbPkt, forward_time);
508            }
509        } else {
510            // If the block is not cached above, send packet below. Both
511            // CleanEvict and Writeback with BLOCK_CACHED flag cleared will
512            // reset the bit corresponding to this address in the snoop filter
513            // below.
514            allocateWriteBuffer(wbPkt, forward_time);
515        }
516        writebacks.pop_front();
517    }
518}
519
520void
521Cache::doWritebacksAtomic(PacketList& writebacks)
522{
523    while (!writebacks.empty()) {
524        PacketPtr wbPkt = writebacks.front();
525        // Call isCachedAbove for both Writebacks and CleanEvicts. If
526        // isCachedAbove returns true we set BLOCK_CACHED flag in Writebacks
527        // and discard CleanEvicts.
528        if (isCachedAbove(wbPkt, false)) {
529            if (wbPkt->cmd == MemCmd::WritebackDirty) {
530                // Set BLOCK_CACHED flag in Writeback and send below,
531                // so that the Writeback does not reset the bit
532                // corresponding to this address in the snoop filter
533                // below. We can discard CleanEvicts because cached
534                // copies exist above. Atomic mode isCachedAbove
535                // modifies packet to set BLOCK_CACHED flag
536                memSidePort->sendAtomic(wbPkt);
537            }
538        } else {
539            // If the block is not cached above, send packet below. Both
540            // CleanEvict and Writeback with BLOCK_CACHED flag cleared will
541            // reset the bit corresponding to this address in the snoop filter
542            // below.
543            memSidePort->sendAtomic(wbPkt);
544        }
545        writebacks.pop_front();
546        // In case of CleanEvicts, the packet destructor will delete the
547        // request object because this is a non-snoop request packet which
548        // does not require a response.
549        delete wbPkt;
550    }
551}
552
553
554void
555Cache::recvTimingSnoopResp(PacketPtr pkt)
556{
557    DPRINTF(Cache, "%s for %s addr %#llx size %d\n", __func__,
558            pkt->cmdString(), pkt->getAddr(), pkt->getSize());
559
560    assert(pkt->isResponse());
561    assert(!system->bypassCaches());
562
563    // determine if the response is from a snoop request we created
564    // (in which case it should be in the outstandingSnoop), or if we
565    // merely forwarded someone else's snoop request
566    const bool forwardAsSnoop = outstandingSnoop.find(pkt->req) ==
567        outstandingSnoop.end();
568
569    if (!forwardAsSnoop) {
570        // the packet came from this cache, so sink it here and do not
571        // forward it
572        assert(pkt->cmd == MemCmd::HardPFResp);
573
574        outstandingSnoop.erase(pkt->req);
575
576        DPRINTF(Cache, "Got prefetch response from above for addr "
577                "%#llx (%s)\n", pkt->getAddr(), pkt->isSecure() ? "s" : "ns");
578        recvTimingResp(pkt);
579        return;
580    }
581
582    // forwardLatency is set here because there is a response from an
583    // upper level cache.
584    // To pay the delay that occurs if the packet comes from the bus,
585    // we charge also headerDelay.
586    Tick snoop_resp_time = clockEdge(forwardLatency) + pkt->headerDelay;
587    // Reset the timing of the packet.
588    pkt->headerDelay = pkt->payloadDelay = 0;
589    memSidePort->schedTimingSnoopResp(pkt, snoop_resp_time);
590}
591
592void
593Cache::promoteWholeLineWrites(PacketPtr pkt)
594{
595    // Cache line clearing instructions
596    if (doFastWrites && (pkt->cmd == MemCmd::WriteReq) &&
597        (pkt->getSize() == blkSize) && (pkt->getOffset(blkSize) == 0)) {
598        pkt->cmd = MemCmd::WriteLineReq;
599        DPRINTF(Cache, "packet promoted from Write to WriteLineReq\n");
600    }
601}
602
603bool
604Cache::recvTimingReq(PacketPtr pkt)
605{
606    DPRINTF(CacheTags, "%s tags: %s\n", __func__, tags->print());
607
608    assert(pkt->isRequest());
609
610    // Just forward the packet if caches are disabled.
611    if (system->bypassCaches()) {
612        // @todo This should really enqueue the packet rather
613        bool M5_VAR_USED success = memSidePort->sendTimingReq(pkt);
614        assert(success);
615        return true;
616    }
617
618    promoteWholeLineWrites(pkt);
619
620    if (pkt->cacheResponding()) {
621        // a cache above us (but not where the packet came from) is
622        // responding to the request, in other words it has the line
623        // in Modified or Owned state
624        DPRINTF(Cache, "Cache above responding to %#llx (%s): "
625                "not responding\n",
626                pkt->getAddr(), pkt->isSecure() ? "s" : "ns");
627
628        // if the packet needs the block to be writable, and the cache
629        // that has promised to respond (setting the cache responding
630        // flag) is not providing writable (it is in Owned rather than
631        // the Modified state), we know that there may be other Shared
632        // copies in the system; go out and invalidate them all
633        if (pkt->needsWritable() && !pkt->responderHadWritable()) {
634            // an upstream cache that had the line in Owned state
635            // (dirty, but not writable), is responding and thus
636            // transferring the dirty line from one branch of the
637            // cache hierarchy to another
638
639            // send out an express snoop and invalidate all other
640            // copies (snooping a packet that needs writable is the
641            // same as an invalidation), thus turning the Owned line
642            // into a Modified line, note that we don't invalidate the
643            // block in the current cache or any other cache on the
644            // path to memory
645
646            // create a downstream express snoop with cleared packet
647            // flags, there is no need to allocate any data as the
648            // packet is merely used to co-ordinate state transitions
649            Packet *snoop_pkt = new Packet(pkt, true, false);
650
651            // also reset the bus time that the original packet has
652            // not yet paid for
653            snoop_pkt->headerDelay = snoop_pkt->payloadDelay = 0;
654
655            // make this an instantaneous express snoop, and let the
656            // other caches in the system know that the another cache
657            // is responding, because we have found the authorative
658            // copy (Modified or Owned) that will supply the right
659            // data
660            snoop_pkt->setExpressSnoop();
661            snoop_pkt->setCacheResponding();
662
663            // this express snoop travels towards the memory, and at
664            // every crossbar it is snooped upwards thus reaching
665            // every cache in the system
666            bool M5_VAR_USED success = memSidePort->sendTimingReq(snoop_pkt);
667            // express snoops always succeed
668            assert(success);
669
670            // main memory will delete the snoop packet
671        }
672
673        // queue for deletion, as opposed to immediate deletion, as
674        // the sending cache is still relying on the packet
675        pendingDelete.reset(pkt);
676
677        // no need to take any action in this particular cache as an
678        // upstream cache has already committed to responding, and
679        // either the packet does not need writable (and we can let
680        // the cache that set the cache responding flag pass on the
681        // line without any need for intervention), or if the packet
682        // needs writable it is provided, or we have already sent out
683        // any express snoops in the section above
684        return true;
685    }
686
687    // anything that is merely forwarded pays for the forward latency and
688    // the delay provided by the crossbar
689    Tick forward_time = clockEdge(forwardLatency) + pkt->headerDelay;
690
691    // We use lookupLatency here because it is used to specify the latency
692    // to access.
693    Cycles lat = lookupLatency;
694    CacheBlk *blk = NULL;
695    bool satisfied = false;
696    {
697        PacketList writebacks;
698        // Note that lat is passed by reference here. The function
699        // access() calls accessBlock() which can modify lat value.
700        satisfied = access(pkt, blk, lat, writebacks);
701
702        // copy writebacks to write buffer here to ensure they logically
703        // proceed anything happening below
704        doWritebacks(writebacks, forward_time);
705    }
706
707    // Here we charge the headerDelay that takes into account the latencies
708    // of the bus, if the packet comes from it.
709    // The latency charged it is just lat that is the value of lookupLatency
710    // modified by access() function, or if not just lookupLatency.
711    // In case of a hit we are neglecting response latency.
712    // In case of a miss we are neglecting forward latency.
713    Tick request_time = clockEdge(lat) + pkt->headerDelay;
714    // Here we reset the timing of the packet.
715    pkt->headerDelay = pkt->payloadDelay = 0;
716
717    // track time of availability of next prefetch, if any
718    Tick next_pf_time = MaxTick;
719
720    bool needsResponse = pkt->needsResponse();
721
722    if (satisfied) {
723        // should never be satisfying an uncacheable access as we
724        // flush and invalidate any existing block as part of the
725        // lookup
726        assert(!pkt->req->isUncacheable());
727
728        // hit (for all other request types)
729
730        if (prefetcher && (prefetchOnAccess || (blk && blk->wasPrefetched()))) {
731            if (blk)
732                blk->status &= ~BlkHWPrefetched;
733
734            // Don't notify on SWPrefetch
735            if (!pkt->cmd.isSWPrefetch())
736                next_pf_time = prefetcher->notify(pkt);
737        }
738
739        if (needsResponse) {
740            pkt->makeTimingResponse();
741            // @todo: Make someone pay for this
742            pkt->headerDelay = pkt->payloadDelay = 0;
743
744            // In this case we are considering request_time that takes
745            // into account the delay of the xbar, if any, and just
746            // lat, neglecting responseLatency, modelling hit latency
747            // just as lookupLatency or or the value of lat overriden
748            // by access(), that calls accessBlock() function.
749            cpuSidePort->schedTimingResp(pkt, request_time, true);
750        } else {
751            DPRINTF(Cache, "%s satisfied %s addr %#llx, no response needed\n",
752                    __func__, pkt->cmdString(), pkt->getAddr(),
753                    pkt->getSize());
754
755            // queue the packet for deletion, as the sending cache is
756            // still relying on it; if the block is found in access(),
757            // CleanEvict and Writeback messages will be deleted
758            // here as well
759            pendingDelete.reset(pkt);
760        }
761    } else {
762        // miss
763
764        Addr blk_addr = blockAlign(pkt->getAddr());
765
766        // ignore any existing MSHR if we are dealing with an
767        // uncacheable request
768        MSHR *mshr = pkt->req->isUncacheable() ? nullptr :
769            mshrQueue.findMatch(blk_addr, pkt->isSecure());
770
771        // Software prefetch handling:
772        // To keep the core from waiting on data it won't look at
773        // anyway, send back a response with dummy data. Miss handling
774        // will continue asynchronously. Unfortunately, the core will
775        // insist upon freeing original Packet/Request, so we have to
776        // create a new pair with a different lifecycle. Note that this
777        // processing happens before any MSHR munging on the behalf of
778        // this request because this new Request will be the one stored
779        // into the MSHRs, not the original.
780        if (pkt->cmd.isSWPrefetch()) {
781            assert(needsResponse);
782            assert(pkt->req->hasPaddr());
783            assert(!pkt->req->isUncacheable());
784
785            // There's no reason to add a prefetch as an additional target
786            // to an existing MSHR. If an outstanding request is already
787            // in progress, there is nothing for the prefetch to do.
788            // If this is the case, we don't even create a request at all.
789            PacketPtr pf = nullptr;
790
791            if (!mshr) {
792                // copy the request and create a new SoftPFReq packet
793                RequestPtr req = new Request(pkt->req->getPaddr(),
794                                             pkt->req->getSize(),
795                                             pkt->req->getFlags(),
796                                             pkt->req->masterId());
797                pf = new Packet(req, pkt->cmd);
798                pf->allocate();
799                assert(pf->getAddr() == pkt->getAddr());
800                assert(pf->getSize() == pkt->getSize());
801            }
802
803            pkt->makeTimingResponse();
804
805            // request_time is used here, taking into account lat and the delay
806            // charged if the packet comes from the xbar.
807            cpuSidePort->schedTimingResp(pkt, request_time, true);
808
809            // If an outstanding request is in progress (we found an
810            // MSHR) this is set to null
811            pkt = pf;
812        }
813
814        if (mshr) {
815            /// MSHR hit
816            /// @note writebacks will be checked in getNextMSHR()
817            /// for any conflicting requests to the same block
818
819            //@todo remove hw_pf here
820
821            // Coalesce unless it was a software prefetch (see above).
822            if (pkt) {
823                assert(!pkt->isWriteback());
824                // CleanEvicts corresponding to blocks which have
825                // outstanding requests in MSHRs are simply sunk here
826                if (pkt->cmd == MemCmd::CleanEvict) {
827                    pendingDelete.reset(pkt);
828                } else {
829                    DPRINTF(Cache, "%s coalescing MSHR for %s addr %#llx size %d\n",
830                            __func__, pkt->cmdString(), pkt->getAddr(),
831                            pkt->getSize());
832
833                    assert(pkt->req->masterId() < system->maxMasters());
834                    mshr_hits[pkt->cmdToIndex()][pkt->req->masterId()]++;
835                    // We use forward_time here because it is the same
836                    // considering new targets. We have multiple
837                    // requests for the same address here. It
838                    // specifies the latency to allocate an internal
839                    // buffer and to schedule an event to the queued
840                    // port and also takes into account the additional
841                    // delay of the xbar.
842                    mshr->allocateTarget(pkt, forward_time, order++,
843                                         allocOnFill(pkt->cmd));
844                    if (mshr->getNumTargets() == numTarget) {
845                        noTargetMSHR = mshr;
846                        setBlocked(Blocked_NoTargets);
847                        // need to be careful with this... if this mshr isn't
848                        // ready yet (i.e. time > curTick()), we don't want to
849                        // move it ahead of mshrs that are ready
850                        // mshrQueue.moveToFront(mshr);
851                    }
852                }
853                // We should call the prefetcher reguardless if the request is
854                // satisfied or not, reguardless if the request is in the MSHR or
855                // not.  The request could be a ReadReq hit, but still not
856                // satisfied (potentially because of a prior write to the same
857                // cache line.  So, even when not satisfied, tehre is an MSHR
858                // already allocated for this, we need to let the prefetcher know
859                // about the request
860                if (prefetcher) {
861                    // Don't notify on SWPrefetch
862                    if (!pkt->cmd.isSWPrefetch())
863                        next_pf_time = prefetcher->notify(pkt);
864                }
865            }
866        } else {
867            // no MSHR
868            assert(pkt->req->masterId() < system->maxMasters());
869            if (pkt->req->isUncacheable()) {
870                mshr_uncacheable[pkt->cmdToIndex()][pkt->req->masterId()]++;
871            } else {
872                mshr_misses[pkt->cmdToIndex()][pkt->req->masterId()]++;
873            }
874
875            if (pkt->isEviction() ||
876                (pkt->req->isUncacheable() && pkt->isWrite())) {
877                // We use forward_time here because there is an
878                // uncached memory write, forwarded to WriteBuffer.
879                allocateWriteBuffer(pkt, forward_time);
880            } else {
881                if (blk && blk->isValid()) {
882                    // should have flushed and have no valid block
883                    assert(!pkt->req->isUncacheable());
884
885                    // If we have a write miss to a valid block, we
886                    // need to mark the block non-readable.  Otherwise
887                    // if we allow reads while there's an outstanding
888                    // write miss, the read could return stale data
889                    // out of the cache block... a more aggressive
890                    // system could detect the overlap (if any) and
891                    // forward data out of the MSHRs, but we don't do
892                    // that yet.  Note that we do need to leave the
893                    // block valid so that it stays in the cache, in
894                    // case we get an upgrade response (and hence no
895                    // new data) when the write miss completes.
896                    // As long as CPUs do proper store/load forwarding
897                    // internally, and have a sufficiently weak memory
898                    // model, this is probably unnecessary, but at some
899                    // point it must have seemed like we needed it...
900                    assert(pkt->needsWritable());
901                    assert(!blk->isWritable());
902                    blk->status &= ~BlkReadable;
903                }
904                // Here we are using forward_time, modelling the latency of
905                // a miss (outbound) just as forwardLatency, neglecting the
906                // lookupLatency component.
907                allocateMissBuffer(pkt, forward_time);
908            }
909
910            if (prefetcher) {
911                // Don't notify on SWPrefetch
912                if (!pkt->cmd.isSWPrefetch())
913                    next_pf_time = prefetcher->notify(pkt);
914            }
915        }
916    }
917
918    if (next_pf_time != MaxTick)
919        schedMemSideSendEvent(next_pf_time);
920
921    return true;
922}
923
924
925// See comment in cache.hh.
926PacketPtr
927Cache::getBusPacket(PacketPtr cpu_pkt, CacheBlk *blk,
928                    bool needsWritable) const
929{
930    bool blkValid = blk && blk->isValid();
931
932    if (cpu_pkt->req->isUncacheable()) {
933        // note that at the point we see the uncacheable request we
934        // flush any block, but there could be an outstanding MSHR,
935        // and the cache could have filled again before we actually
936        // send out the forwarded uncacheable request (blk could thus
937        // be non-null)
938        return NULL;
939    }
940
941    if (!blkValid &&
942        (cpu_pkt->isUpgrade() ||
943         cpu_pkt->isEviction())) {
944        // Writebacks that weren't allocated in access() and upgrades
945        // from upper-level caches that missed completely just go
946        // through.
947        return NULL;
948    }
949
950    assert(cpu_pkt->needsResponse());
951
952    MemCmd cmd;
953    // @TODO make useUpgrades a parameter.
954    // Note that ownership protocols require upgrade, otherwise a
955    // write miss on a shared owned block will generate a ReadExcl,
956    // which will clobber the owned copy.
957    const bool useUpgrades = true;
958    if (blkValid && useUpgrades) {
959        // only reason to be here is that blk is read only and we need
960        // it to be writable
961        assert(needsWritable);
962        assert(!blk->isWritable());
963        cmd = cpu_pkt->isLLSC() ? MemCmd::SCUpgradeReq : MemCmd::UpgradeReq;
964    } else if (cpu_pkt->cmd == MemCmd::SCUpgradeFailReq ||
965               cpu_pkt->cmd == MemCmd::StoreCondFailReq) {
966        // Even though this SC will fail, we still need to send out the
967        // request and get the data to supply it to other snoopers in the case
968        // where the determination the StoreCond fails is delayed due to
969        // all caches not being on the same local bus.
970        cmd = MemCmd::SCUpgradeFailReq;
971    } else if (cpu_pkt->cmd == MemCmd::WriteLineReq) {
972        // forward as invalidate to all other caches, this gives us
973        // the line in Exclusive state, and invalidates all other
974        // copies
975        cmd = MemCmd::InvalidateReq;
976    } else {
977        // block is invalid
978        cmd = needsWritable ? MemCmd::ReadExReq :
979            (isReadOnly ? MemCmd::ReadCleanReq : MemCmd::ReadSharedReq);
980    }
981    PacketPtr pkt = new Packet(cpu_pkt->req, cmd, blkSize);
982
983    // if there are upstream caches that have already marked the
984    // packet as having sharers (not passing writable), pass that info
985    // downstream
986    if (cpu_pkt->hasSharers()) {
987        // note that cpu_pkt may have spent a considerable time in the
988        // MSHR queue and that the information could possibly be out
989        // of date, however, there is no harm in conservatively
990        // assuming the block has sharers
991        pkt->setHasSharers();
992        DPRINTF(Cache, "%s passing hasSharers from %s to %s addr %#llx "
993                "size %d\n",
994                __func__, cpu_pkt->cmdString(), pkt->cmdString(),
995                pkt->getAddr(), pkt->getSize());
996    }
997
998    // the packet should be block aligned
999    assert(pkt->getAddr() == blockAlign(pkt->getAddr()));
1000
1001    pkt->allocate();
1002    DPRINTF(Cache, "%s created %s from %s for  addr %#llx size %d\n",
1003            __func__, pkt->cmdString(), cpu_pkt->cmdString(), pkt->getAddr(),
1004            pkt->getSize());
1005    return pkt;
1006}
1007
1008
1009Tick
1010Cache::recvAtomic(PacketPtr pkt)
1011{
1012    // We are in atomic mode so we pay just for lookupLatency here.
1013    Cycles lat = lookupLatency;
1014    // @TODO: make this a parameter
1015    bool last_level_cache = false;
1016
1017    // Forward the request if the system is in cache bypass mode.
1018    if (system->bypassCaches())
1019        return ticksToCycles(memSidePort->sendAtomic(pkt));
1020
1021    promoteWholeLineWrites(pkt);
1022
1023    if (pkt->cacheResponding()) {
1024        // have to invalidate ourselves and any lower caches even if
1025        // upper cache will be responding
1026        if (pkt->isInvalidate()) {
1027            CacheBlk *blk = tags->findBlock(pkt->getAddr(), pkt->isSecure());
1028            if (blk && blk->isValid()) {
1029                tags->invalidate(blk);
1030                blk->invalidate();
1031                DPRINTF(Cache, "Other cache responding to %s on %#llx (%s):"
1032                        " invalidating\n",
1033                        pkt->cmdString(), pkt->getAddr(),
1034                        pkt->isSecure() ? "s" : "ns");
1035            }
1036            if (!last_level_cache) {
1037                DPRINTF(Cache, "Other cache responding to %s on %#llx (%s):"
1038                        " forwarding\n",
1039                        pkt->cmdString(), pkt->getAddr(),
1040                        pkt->isSecure() ? "s" : "ns");
1041                lat += ticksToCycles(memSidePort->sendAtomic(pkt));
1042            }
1043        } else {
1044            DPRINTF(Cache, "Other cache responding to %s on %#llx: "
1045                    "not responding\n",
1046                    pkt->cmdString(), pkt->getAddr());
1047        }
1048
1049        return lat * clockPeriod();
1050    }
1051
1052    // should assert here that there are no outstanding MSHRs or
1053    // writebacks... that would mean that someone used an atomic
1054    // access in timing mode
1055
1056    CacheBlk *blk = NULL;
1057    PacketList writebacks;
1058    bool satisfied = access(pkt, blk, lat, writebacks);
1059
1060    // handle writebacks resulting from the access here to ensure they
1061    // logically proceed anything happening below
1062    doWritebacksAtomic(writebacks);
1063
1064    if (!satisfied) {
1065        // MISS
1066
1067        PacketPtr bus_pkt = getBusPacket(pkt, blk, pkt->needsWritable());
1068
1069        bool is_forward = (bus_pkt == NULL);
1070
1071        if (is_forward) {
1072            // just forwarding the same request to the next level
1073            // no local cache operation involved
1074            bus_pkt = pkt;
1075        }
1076
1077        DPRINTF(Cache, "Sending an atomic %s for %#llx (%s)\n",
1078                bus_pkt->cmdString(), bus_pkt->getAddr(),
1079                bus_pkt->isSecure() ? "s" : "ns");
1080
1081#if TRACING_ON
1082        CacheBlk::State old_state = blk ? blk->status : 0;
1083#endif
1084
1085        lat += ticksToCycles(memSidePort->sendAtomic(bus_pkt));
1086
1087        // We are now dealing with the response handling
1088        DPRINTF(Cache, "Receive response: %s for addr %#llx (%s) in state %i\n",
1089                bus_pkt->cmdString(), bus_pkt->getAddr(),
1090                bus_pkt->isSecure() ? "s" : "ns",
1091                old_state);
1092
1093        // If packet was a forward, the response (if any) is already
1094        // in place in the bus_pkt == pkt structure, so we don't need
1095        // to do anything.  Otherwise, use the separate bus_pkt to
1096        // generate response to pkt and then delete it.
1097        if (!is_forward) {
1098            if (pkt->needsResponse()) {
1099                assert(bus_pkt->isResponse());
1100                if (bus_pkt->isError()) {
1101                    pkt->makeAtomicResponse();
1102                    pkt->copyError(bus_pkt);
1103                } else if (pkt->cmd == MemCmd::InvalidateReq) {
1104                    if (blk) {
1105                        // invalidate response to a cache that received
1106                        // an invalidate request
1107                        satisfyCpuSideRequest(pkt, blk);
1108                    }
1109                } else if (pkt->cmd == MemCmd::WriteLineReq) {
1110                    // note the use of pkt, not bus_pkt here.
1111
1112                    // write-line request to the cache that promoted
1113                    // the write to a whole line
1114                    blk = handleFill(pkt, blk, writebacks,
1115                                     allocOnFill(pkt->cmd));
1116                    satisfyCpuSideRequest(pkt, blk);
1117                } else if (bus_pkt->isRead() ||
1118                           bus_pkt->cmd == MemCmd::UpgradeResp) {
1119                    // we're updating cache state to allow us to
1120                    // satisfy the upstream request from the cache
1121                    blk = handleFill(bus_pkt, blk, writebacks,
1122                                     allocOnFill(pkt->cmd));
1123                    satisfyCpuSideRequest(pkt, blk);
1124                } else {
1125                    // we're satisfying the upstream request without
1126                    // modifying cache state, e.g., a write-through
1127                    pkt->makeAtomicResponse();
1128                }
1129            }
1130            delete bus_pkt;
1131        }
1132    }
1133
1134    // Note that we don't invoke the prefetcher at all in atomic mode.
1135    // It's not clear how to do it properly, particularly for
1136    // prefetchers that aggressively generate prefetch candidates and
1137    // rely on bandwidth contention to throttle them; these will tend
1138    // to pollute the cache in atomic mode since there is no bandwidth
1139    // contention.  If we ever do want to enable prefetching in atomic
1140    // mode, though, this is the place to do it... see timingAccess()
1141    // for an example (though we'd want to issue the prefetch(es)
1142    // immediately rather than calling requestMemSideBus() as we do
1143    // there).
1144
1145    // do any writebacks resulting from the response handling
1146    doWritebacksAtomic(writebacks);
1147
1148    // if we used temp block, check to see if its valid and if so
1149    // clear it out, but only do so after the call to recvAtomic is
1150    // finished so that any downstream observers (such as a snoop
1151    // filter), first see the fill, and only then see the eviction
1152    if (blk == tempBlock && tempBlock->isValid()) {
1153        // the atomic CPU calls recvAtomic for fetch and load/store
1154        // sequentuially, and we may already have a tempBlock
1155        // writeback from the fetch that we have not yet sent
1156        if (tempBlockWriteback) {
1157            // if that is the case, write the prevoius one back, and
1158            // do not schedule any new event
1159            writebackTempBlockAtomic();
1160        } else {
1161            // the writeback/clean eviction happens after the call to
1162            // recvAtomic has finished (but before any successive
1163            // calls), so that the response handling from the fill is
1164            // allowed to happen first
1165            schedule(writebackTempBlockAtomicEvent, curTick());
1166        }
1167
1168        tempBlockWriteback = (blk->isDirty() || writebackClean) ?
1169            writebackBlk(blk) : cleanEvictBlk(blk);
1170        blk->invalidate();
1171    }
1172
1173    if (pkt->needsResponse()) {
1174        pkt->makeAtomicResponse();
1175    }
1176
1177    return lat * clockPeriod();
1178}
1179
1180
1181void
1182Cache::functionalAccess(PacketPtr pkt, bool fromCpuSide)
1183{
1184    if (system->bypassCaches()) {
1185        // Packets from the memory side are snoop request and
1186        // shouldn't happen in bypass mode.
1187        assert(fromCpuSide);
1188
1189        // The cache should be flushed if we are in cache bypass mode,
1190        // so we don't need to check if we need to update anything.
1191        memSidePort->sendFunctional(pkt);
1192        return;
1193    }
1194
1195    Addr blk_addr = blockAlign(pkt->getAddr());
1196    bool is_secure = pkt->isSecure();
1197    CacheBlk *blk = tags->findBlock(pkt->getAddr(), is_secure);
1198    MSHR *mshr = mshrQueue.findMatch(blk_addr, is_secure);
1199
1200    pkt->pushLabel(name());
1201
1202    CacheBlkPrintWrapper cbpw(blk);
1203
1204    // Note that just because an L2/L3 has valid data doesn't mean an
1205    // L1 doesn't have a more up-to-date modified copy that still
1206    // needs to be found.  As a result we always update the request if
1207    // we have it, but only declare it satisfied if we are the owner.
1208
1209    // see if we have data at all (owned or otherwise)
1210    bool have_data = blk && blk->isValid()
1211        && pkt->checkFunctional(&cbpw, blk_addr, is_secure, blkSize,
1212                                blk->data);
1213
1214    // data we have is dirty if marked as such or if we have an
1215    // in-service MSHR that is pending a modified line
1216    bool have_dirty =
1217        have_data && (blk->isDirty() ||
1218                      (mshr && mshr->inService && mshr->isPendingModified()));
1219
1220    bool done = have_dirty
1221        || cpuSidePort->checkFunctional(pkt)
1222        || mshrQueue.checkFunctional(pkt, blk_addr)
1223        || writeBuffer.checkFunctional(pkt, blk_addr)
1224        || memSidePort->checkFunctional(pkt);
1225
1226    DPRINTF(CacheVerbose, "functional %s %#llx (%s) %s%s%s\n",
1227            pkt->cmdString(), pkt->getAddr(), is_secure ? "s" : "ns",
1228            (blk && blk->isValid()) ? "valid " : "",
1229            have_data ? "data " : "", done ? "done " : "");
1230
1231    // We're leaving the cache, so pop cache->name() label
1232    pkt->popLabel();
1233
1234    if (done) {
1235        pkt->makeResponse();
1236    } else {
1237        // if it came as a request from the CPU side then make sure it
1238        // continues towards the memory side
1239        if (fromCpuSide) {
1240            memSidePort->sendFunctional(pkt);
1241        } else if (forwardSnoops && cpuSidePort->isSnooping()) {
1242            // if it came from the memory side, it must be a snoop request
1243            // and we should only forward it if we are forwarding snoops
1244            cpuSidePort->sendFunctionalSnoop(pkt);
1245        }
1246    }
1247}
1248
1249
1250/////////////////////////////////////////////////////
1251//
1252// Response handling: responses from the memory side
1253//
1254/////////////////////////////////////////////////////
1255
1256
1257void
1258Cache::recvTimingResp(PacketPtr pkt)
1259{
1260    assert(pkt->isResponse());
1261
1262    // all header delay should be paid for by the crossbar, unless
1263    // this is a prefetch response from above
1264    panic_if(pkt->headerDelay != 0 && pkt->cmd != MemCmd::HardPFResp,
1265             "%s saw a non-zero packet delay\n", name());
1266
1267    MSHR *mshr = dynamic_cast<MSHR*>(pkt->senderState);
1268    bool is_error = pkt->isError();
1269
1270    assert(mshr);
1271
1272    if (is_error) {
1273        DPRINTF(Cache, "Cache received packet with error for addr %#llx (%s), "
1274                "cmd: %s\n", pkt->getAddr(), pkt->isSecure() ? "s" : "ns",
1275                pkt->cmdString());
1276    }
1277
1278    DPRINTF(Cache, "Handling response %s for addr %#llx size %d (%s)\n",
1279            pkt->cmdString(), pkt->getAddr(), pkt->getSize(),
1280            pkt->isSecure() ? "s" : "ns");
1281
1282    MSHRQueue *mq = mshr->queue;
1283    bool wasFull = mq->isFull();
1284
1285    if (mshr == noTargetMSHR) {
1286        // we always clear at least one target
1287        clearBlocked(Blocked_NoTargets);
1288        noTargetMSHR = NULL;
1289    }
1290
1291    // Initial target is used just for stats
1292    MSHR::Target *initial_tgt = mshr->getTarget();
1293    int stats_cmd_idx = initial_tgt->pkt->cmdToIndex();
1294    Tick miss_latency = curTick() - initial_tgt->recvTime;
1295    PacketList writebacks;
1296    // We need forward_time here because we have a call of
1297    // allocateWriteBuffer() that need this parameter to specify the
1298    // time to request the bus.  In this case we use forward latency
1299    // because there is a writeback.  We pay also here for headerDelay
1300    // that is charged of bus latencies if the packet comes from the
1301    // bus.
1302    Tick forward_time = clockEdge(forwardLatency) + pkt->headerDelay;
1303
1304    if (pkt->req->isUncacheable()) {
1305        assert(pkt->req->masterId() < system->maxMasters());
1306        mshr_uncacheable_lat[stats_cmd_idx][pkt->req->masterId()] +=
1307            miss_latency;
1308    } else {
1309        assert(pkt->req->masterId() < system->maxMasters());
1310        mshr_miss_latency[stats_cmd_idx][pkt->req->masterId()] +=
1311            miss_latency;
1312    }
1313
1314    // upgrade deferred targets if the response has no sharers, and is
1315    // thus passing writable
1316    if (!pkt->hasSharers()) {
1317        mshr->promoteWritable();
1318    }
1319
1320    bool is_fill = !mshr->isForward &&
1321        (pkt->isRead() || pkt->cmd == MemCmd::UpgradeResp);
1322
1323    CacheBlk *blk = tags->findBlock(pkt->getAddr(), pkt->isSecure());
1324
1325    if (is_fill && !is_error) {
1326        DPRINTF(Cache, "Block for addr %#llx being updated in Cache\n",
1327                pkt->getAddr());
1328
1329        blk = handleFill(pkt, blk, writebacks, mshr->allocOnFill);
1330        assert(blk != NULL);
1331    }
1332
1333    // allow invalidation responses originating from write-line
1334    // requests to be discarded
1335    bool is_invalidate = pkt->isInvalidate();
1336
1337    // First offset for critical word first calculations
1338    int initial_offset = initial_tgt->pkt->getOffset(blkSize);
1339
1340    while (mshr->hasTargets()) {
1341        MSHR::Target *target = mshr->getTarget();
1342        Packet *tgt_pkt = target->pkt;
1343
1344        switch (target->source) {
1345          case MSHR::Target::FromCPU:
1346            Tick completion_time;
1347            // Here we charge on completion_time the delay of the xbar if the
1348            // packet comes from it, charged on headerDelay.
1349            completion_time = pkt->headerDelay;
1350
1351            // Software prefetch handling for cache closest to core
1352            if (tgt_pkt->cmd.isSWPrefetch()) {
1353                // a software prefetch would have already been ack'd immediately
1354                // with dummy data so the core would be able to retire it.
1355                // this request completes right here, so we deallocate it.
1356                delete tgt_pkt->req;
1357                delete tgt_pkt;
1358                break; // skip response
1359            }
1360
1361            // unlike the other packet flows, where data is found in other
1362            // caches or memory and brought back, write-line requests always
1363            // have the data right away, so the above check for "is fill?"
1364            // cannot actually be determined until examining the stored MSHR
1365            // state. We "catch up" with that logic here, which is duplicated
1366            // from above.
1367            if (tgt_pkt->cmd == MemCmd::WriteLineReq) {
1368                assert(!is_error);
1369                // we got the block in a writable state, so promote
1370                // any deferred targets if possible
1371                mshr->promoteWritable();
1372                // NB: we use the original packet here and not the response!
1373                blk = handleFill(tgt_pkt, blk, writebacks, mshr->allocOnFill);
1374                assert(blk != NULL);
1375
1376                // treat as a fill, and discard the invalidation
1377                // response
1378                is_fill = true;
1379                is_invalidate = false;
1380            }
1381
1382            if (is_fill) {
1383                satisfyCpuSideRequest(tgt_pkt, blk,
1384                                      true, mshr->hasPostDowngrade());
1385
1386                // How many bytes past the first request is this one
1387                int transfer_offset =
1388                    tgt_pkt->getOffset(blkSize) - initial_offset;
1389                if (transfer_offset < 0) {
1390                    transfer_offset += blkSize;
1391                }
1392
1393                // If not critical word (offset) return payloadDelay.
1394                // responseLatency is the latency of the return path
1395                // from lower level caches/memory to an upper level cache or
1396                // the core.
1397                completion_time += clockEdge(responseLatency) +
1398                    (transfer_offset ? pkt->payloadDelay : 0);
1399
1400                assert(!tgt_pkt->req->isUncacheable());
1401
1402                assert(tgt_pkt->req->masterId() < system->maxMasters());
1403                missLatency[tgt_pkt->cmdToIndex()][tgt_pkt->req->masterId()] +=
1404                    completion_time - target->recvTime;
1405            } else if (pkt->cmd == MemCmd::UpgradeFailResp) {
1406                // failed StoreCond upgrade
1407                assert(tgt_pkt->cmd == MemCmd::StoreCondReq ||
1408                       tgt_pkt->cmd == MemCmd::StoreCondFailReq ||
1409                       tgt_pkt->cmd == MemCmd::SCUpgradeFailReq);
1410                // responseLatency is the latency of the return path
1411                // from lower level caches/memory to an upper level cache or
1412                // the core.
1413                completion_time += clockEdge(responseLatency) +
1414                    pkt->payloadDelay;
1415                tgt_pkt->req->setExtraData(0);
1416            } else {
1417                // not a cache fill, just forwarding response
1418                // responseLatency is the latency of the return path
1419                // from lower level cahces/memory to the core.
1420                completion_time += clockEdge(responseLatency) +
1421                    pkt->payloadDelay;
1422                if (pkt->isRead() && !is_error) {
1423                    // sanity check
1424                    assert(pkt->getAddr() == tgt_pkt->getAddr());
1425                    assert(pkt->getSize() >= tgt_pkt->getSize());
1426
1427                    tgt_pkt->setData(pkt->getConstPtr<uint8_t>());
1428                }
1429            }
1430            tgt_pkt->makeTimingResponse();
1431            // if this packet is an error copy that to the new packet
1432            if (is_error)
1433                tgt_pkt->copyError(pkt);
1434            if (tgt_pkt->cmd == MemCmd::ReadResp &&
1435                (is_invalidate || mshr->hasPostInvalidate())) {
1436                // If intermediate cache got ReadRespWithInvalidate,
1437                // propagate that.  Response should not have
1438                // isInvalidate() set otherwise.
1439                tgt_pkt->cmd = MemCmd::ReadRespWithInvalidate;
1440                DPRINTF(Cache, "%s updated cmd to %s for addr %#llx\n",
1441                        __func__, tgt_pkt->cmdString(), tgt_pkt->getAddr());
1442            }
1443            // Reset the bus additional time as it is now accounted for
1444            tgt_pkt->headerDelay = tgt_pkt->payloadDelay = 0;
1445            cpuSidePort->schedTimingResp(tgt_pkt, completion_time, true);
1446            break;
1447
1448          case MSHR::Target::FromPrefetcher:
1449            assert(tgt_pkt->cmd == MemCmd::HardPFReq);
1450            if (blk)
1451                blk->status |= BlkHWPrefetched;
1452            delete tgt_pkt->req;
1453            delete tgt_pkt;
1454            break;
1455
1456          case MSHR::Target::FromSnoop:
1457            // I don't believe that a snoop can be in an error state
1458            assert(!is_error);
1459            // response to snoop request
1460            DPRINTF(Cache, "processing deferred snoop...\n");
1461            assert(!(is_invalidate && !mshr->hasPostInvalidate()));
1462            handleSnoop(tgt_pkt, blk, true, true, mshr->hasPostInvalidate());
1463            break;
1464
1465          default:
1466            panic("Illegal target->source enum %d\n", target->source);
1467        }
1468
1469        mshr->popTarget();
1470    }
1471
1472    if (blk && blk->isValid()) {
1473        // an invalidate response stemming from a write line request
1474        // should not invalidate the block, so check if the
1475        // invalidation should be discarded
1476        if (is_invalidate || mshr->hasPostInvalidate()) {
1477            invalidateBlock(blk);
1478        } else if (mshr->hasPostDowngrade()) {
1479            blk->status &= ~BlkWritable;
1480        }
1481    }
1482
1483    if (mshr->promoteDeferredTargets()) {
1484        // avoid later read getting stale data while write miss is
1485        // outstanding.. see comment in timingAccess()
1486        if (blk) {
1487            blk->status &= ~BlkReadable;
1488        }
1489        mq = mshr->queue;
1490        mq->markPending(mshr);
1491        schedMemSideSendEvent(clockEdge() + pkt->payloadDelay);
1492    } else {
1493        mq->deallocate(mshr);
1494        if (wasFull && !mq->isFull()) {
1495            clearBlocked((BlockedCause)mq->index);
1496        }
1497
1498        // Request the bus for a prefetch if this deallocation freed enough
1499        // MSHRs for a prefetch to take place
1500        if (prefetcher && mq == &mshrQueue && mshrQueue.canPrefetch()) {
1501            Tick next_pf_time = std::max(prefetcher->nextPrefetchReadyTime(),
1502                                         clockEdge());
1503            if (next_pf_time != MaxTick)
1504                schedMemSideSendEvent(next_pf_time);
1505        }
1506    }
1507    // reset the xbar additional timinig  as it is now accounted for
1508    pkt->headerDelay = pkt->payloadDelay = 0;
1509
1510    // copy writebacks to write buffer
1511    doWritebacks(writebacks, forward_time);
1512
1513    // if we used temp block, check to see if its valid and then clear it out
1514    if (blk == tempBlock && tempBlock->isValid()) {
1515        // We use forwardLatency here because we are copying
1516        // Writebacks/CleanEvicts to write buffer. It specifies the latency to
1517        // allocate an internal buffer and to schedule an event to the
1518        // queued port.
1519        if (blk->isDirty() || writebackClean) {
1520            PacketPtr wbPkt = writebackBlk(blk);
1521            allocateWriteBuffer(wbPkt, forward_time);
1522            // Set BLOCK_CACHED flag if cached above.
1523            if (isCachedAbove(wbPkt))
1524                wbPkt->setBlockCached();
1525        } else {
1526            PacketPtr wcPkt = cleanEvictBlk(blk);
1527            // Check to see if block is cached above. If not allocate
1528            // write buffer
1529            if (isCachedAbove(wcPkt))
1530                delete wcPkt;
1531            else
1532                allocateWriteBuffer(wcPkt, forward_time);
1533        }
1534        blk->invalidate();
1535    }
1536
1537    DPRINTF(CacheVerbose, "Leaving %s with %s for addr %#llx\n", __func__,
1538            pkt->cmdString(), pkt->getAddr());
1539    delete pkt;
1540}
1541
1542PacketPtr
1543Cache::writebackBlk(CacheBlk *blk)
1544{
1545    chatty_assert(!isReadOnly || writebackClean,
1546                  "Writeback from read-only cache");
1547    assert(blk && blk->isValid() && (blk->isDirty() || writebackClean));
1548
1549    writebacks[Request::wbMasterId]++;
1550
1551    Request *req = new Request(tags->regenerateBlkAddr(blk->tag, blk->set),
1552                               blkSize, 0, Request::wbMasterId);
1553    if (blk->isSecure())
1554        req->setFlags(Request::SECURE);
1555
1556    req->taskId(blk->task_id);
1557    blk->task_id= ContextSwitchTaskId::Unknown;
1558    blk->tickInserted = curTick();
1559
1560    PacketPtr pkt =
1561        new Packet(req, blk->isDirty() ?
1562                   MemCmd::WritebackDirty : MemCmd::WritebackClean);
1563
1564    DPRINTF(Cache, "Create Writeback %#llx writable: %d, dirty: %d\n",
1565            pkt->getAddr(), blk->isWritable(), blk->isDirty());
1566
1567    if (blk->isWritable()) {
1568        // not asserting shared means we pass the block in modified
1569        // state, mark our own block non-writeable
1570        blk->status &= ~BlkWritable;
1571    } else {
1572        // we are in the Owned state, tell the receiver
1573        pkt->setHasSharers();
1574    }
1575
1576    // make sure the block is not marked dirty
1577    blk->status &= ~BlkDirty;
1578
1579    pkt->allocate();
1580    std::memcpy(pkt->getPtr<uint8_t>(), blk->data, blkSize);
1581
1582    return pkt;
1583}
1584
1585PacketPtr
1586Cache::cleanEvictBlk(CacheBlk *blk)
1587{
1588    assert(!writebackClean);
1589    assert(blk && blk->isValid() && !blk->isDirty());
1590    // Creating a zero sized write, a message to the snoop filter
1591    Request *req =
1592        new Request(tags->regenerateBlkAddr(blk->tag, blk->set), blkSize, 0,
1593                    Request::wbMasterId);
1594    if (blk->isSecure())
1595        req->setFlags(Request::SECURE);
1596
1597    req->taskId(blk->task_id);
1598    blk->task_id = ContextSwitchTaskId::Unknown;
1599    blk->tickInserted = curTick();
1600
1601    PacketPtr pkt = new Packet(req, MemCmd::CleanEvict);
1602    pkt->allocate();
1603    DPRINTF(Cache, "%s%s %x Create CleanEvict\n", pkt->cmdString(),
1604            pkt->req->isInstFetch() ? " (ifetch)" : "",
1605            pkt->getAddr());
1606
1607    return pkt;
1608}
1609
1610void
1611Cache::memWriteback()
1612{
1613    CacheBlkVisitorWrapper visitor(*this, &Cache::writebackVisitor);
1614    tags->forEachBlk(visitor);
1615}
1616
1617void
1618Cache::memInvalidate()
1619{
1620    CacheBlkVisitorWrapper visitor(*this, &Cache::invalidateVisitor);
1621    tags->forEachBlk(visitor);
1622}
1623
1624bool
1625Cache::isDirty() const
1626{
1627    CacheBlkIsDirtyVisitor visitor;
1628    tags->forEachBlk(visitor);
1629
1630    return visitor.isDirty();
1631}
1632
1633bool
1634Cache::writebackVisitor(CacheBlk &blk)
1635{
1636    if (blk.isDirty()) {
1637        assert(blk.isValid());
1638
1639        Request request(tags->regenerateBlkAddr(blk.tag, blk.set),
1640                        blkSize, 0, Request::funcMasterId);
1641        request.taskId(blk.task_id);
1642
1643        Packet packet(&request, MemCmd::WriteReq);
1644        packet.dataStatic(blk.data);
1645
1646        memSidePort->sendFunctional(&packet);
1647
1648        blk.status &= ~BlkDirty;
1649    }
1650
1651    return true;
1652}
1653
1654bool
1655Cache::invalidateVisitor(CacheBlk &blk)
1656{
1657
1658    if (blk.isDirty())
1659        warn_once("Invalidating dirty cache lines. Expect things to break.\n");
1660
1661    if (blk.isValid()) {
1662        assert(!blk.isDirty());
1663        tags->invalidate(&blk);
1664        blk.invalidate();
1665    }
1666
1667    return true;
1668}
1669
1670CacheBlk*
1671Cache::allocateBlock(Addr addr, bool is_secure, PacketList &writebacks)
1672{
1673    CacheBlk *blk = tags->findVictim(addr);
1674
1675    // It is valid to return NULL if there is no victim
1676    if (!blk)
1677        return nullptr;
1678
1679    if (blk->isValid()) {
1680        Addr repl_addr = tags->regenerateBlkAddr(blk->tag, blk->set);
1681        MSHR *repl_mshr = mshrQueue.findMatch(repl_addr, blk->isSecure());
1682        if (repl_mshr) {
1683            // must be an outstanding upgrade request
1684            // on a block we're about to replace...
1685            assert(!blk->isWritable() || blk->isDirty());
1686            assert(repl_mshr->needsWritable());
1687            // too hard to replace block with transient state
1688            // allocation failed, block not inserted
1689            return NULL;
1690        } else {
1691            DPRINTF(Cache, "replacement: replacing %#llx (%s) with %#llx (%s): %s\n",
1692                    repl_addr, blk->isSecure() ? "s" : "ns",
1693                    addr, is_secure ? "s" : "ns",
1694                    blk->isDirty() ? "writeback" : "clean");
1695
1696            // Will send up Writeback/CleanEvict snoops via isCachedAbove
1697            // when pushing this writeback list into the write buffer.
1698            if (blk->isDirty() || writebackClean) {
1699                // Save writeback packet for handling by caller
1700                writebacks.push_back(writebackBlk(blk));
1701            } else {
1702                writebacks.push_back(cleanEvictBlk(blk));
1703            }
1704        }
1705    }
1706
1707    return blk;
1708}
1709
1710void
1711Cache::invalidateBlock(CacheBlk *blk)
1712{
1713    if (blk != tempBlock)
1714        tags->invalidate(blk);
1715    blk->invalidate();
1716}
1717
1718// Note that the reason we return a list of writebacks rather than
1719// inserting them directly in the write buffer is that this function
1720// is called by both atomic and timing-mode accesses, and in atomic
1721// mode we don't mess with the write buffer (we just perform the
1722// writebacks atomically once the original request is complete).
1723CacheBlk*
1724Cache::handleFill(PacketPtr pkt, CacheBlk *blk, PacketList &writebacks,
1725                  bool allocate)
1726{
1727    assert(pkt->isResponse() || pkt->cmd == MemCmd::WriteLineReq);
1728    Addr addr = pkt->getAddr();
1729    bool is_secure = pkt->isSecure();
1730#if TRACING_ON
1731    CacheBlk::State old_state = blk ? blk->status : 0;
1732#endif
1733
1734    // When handling a fill, discard any CleanEvicts for the
1735    // same address in write buffer.
1736    Addr M5_VAR_USED blk_addr = blockAlign(pkt->getAddr());
1737    std::vector<MSHR *> M5_VAR_USED wbs;
1738    assert (!writeBuffer.findMatches(blk_addr, is_secure, wbs));
1739
1740    if (blk == NULL) {
1741        // better have read new data...
1742        assert(pkt->hasData());
1743
1744        // only read responses and write-line requests have data;
1745        // note that we don't write the data here for write-line - that
1746        // happens in the subsequent satisfyCpuSideRequest.
1747        assert(pkt->isRead() || pkt->cmd == MemCmd::WriteLineReq);
1748
1749        // need to do a replacement if allocating, otherwise we stick
1750        // with the temporary storage
1751        blk = allocate ? allocateBlock(addr, is_secure, writebacks) : NULL;
1752
1753        if (blk == NULL) {
1754            // No replaceable block or a mostly exclusive
1755            // cache... just use temporary storage to complete the
1756            // current request and then get rid of it
1757            assert(!tempBlock->isValid());
1758            blk = tempBlock;
1759            tempBlock->set = tags->extractSet(addr);
1760            tempBlock->tag = tags->extractTag(addr);
1761            // @todo: set security state as well...
1762            DPRINTF(Cache, "using temp block for %#llx (%s)\n", addr,
1763                    is_secure ? "s" : "ns");
1764        } else {
1765            tags->insertBlock(pkt, blk);
1766        }
1767
1768        // we should never be overwriting a valid block
1769        assert(!blk->isValid());
1770    } else {
1771        // existing block... probably an upgrade
1772        assert(blk->tag == tags->extractTag(addr));
1773        // either we're getting new data or the block should already be valid
1774        assert(pkt->hasData() || blk->isValid());
1775        // don't clear block status... if block is already dirty we
1776        // don't want to lose that
1777    }
1778
1779    if (is_secure)
1780        blk->status |= BlkSecure;
1781    blk->status |= BlkValid | BlkReadable;
1782
1783    // sanity check for whole-line writes, which should always be
1784    // marked as writable as part of the fill, and then later marked
1785    // dirty as part of satisfyCpuSideRequest
1786    if (pkt->cmd == MemCmd::WriteLineReq) {
1787        assert(!pkt->hasSharers());
1788        // at the moment other caches do not respond to the
1789        // invalidation requests corresponding to a whole-line write
1790        assert(!pkt->cacheResponding());
1791    }
1792
1793    // here we deal with setting the appropriate state of the line,
1794    // and we start by looking at the hasSharers flag, and ignore the
1795    // cacheResponding flag (normally signalling dirty data) if the
1796    // packet has sharers, thus the line is never allocated as Owned
1797    // (dirty but not writable), and always ends up being either
1798    // Shared, Exclusive or Modified, see Packet::setCacheResponding
1799    // for more details
1800    if (!pkt->hasSharers()) {
1801        // we could get a writable line from memory (rather than a
1802        // cache) even in a read-only cache, note that we set this bit
1803        // even for a read-only cache, possibly revisit this decision
1804        blk->status |= BlkWritable;
1805
1806        // check if we got this via cache-to-cache transfer (i.e., from a
1807        // cache that had the block in Modified or Owned state)
1808        if (pkt->cacheResponding()) {
1809            // we got the block in Modified state, and invalidated the
1810            // owners copy
1811            blk->status |= BlkDirty;
1812
1813            chatty_assert(!isReadOnly, "Should never see dirty snoop response "
1814                          "in read-only cache %s\n", name());
1815        }
1816    }
1817
1818    DPRINTF(Cache, "Block addr %#llx (%s) moving from state %x to %s\n",
1819            addr, is_secure ? "s" : "ns", old_state, blk->print());
1820
1821    // if we got new data, copy it in (checking for a read response
1822    // and a response that has data is the same in the end)
1823    if (pkt->isRead()) {
1824        // sanity checks
1825        assert(pkt->hasData());
1826        assert(pkt->getSize() == blkSize);
1827
1828        std::memcpy(blk->data, pkt->getConstPtr<uint8_t>(), blkSize);
1829    }
1830    // We pay for fillLatency here.
1831    blk->whenReady = clockEdge() + fillLatency * clockPeriod() +
1832        pkt->payloadDelay;
1833
1834    return blk;
1835}
1836
1837
1838/////////////////////////////////////////////////////
1839//
1840// Snoop path: requests coming in from the memory side
1841//
1842/////////////////////////////////////////////////////
1843
1844void
1845Cache::doTimingSupplyResponse(PacketPtr req_pkt, const uint8_t *blk_data,
1846                              bool already_copied, bool pending_inval)
1847{
1848    // sanity check
1849    assert(req_pkt->isRequest());
1850    assert(req_pkt->needsResponse());
1851
1852    DPRINTF(Cache, "%s for %s addr %#llx size %d\n", __func__,
1853            req_pkt->cmdString(), req_pkt->getAddr(), req_pkt->getSize());
1854    // timing-mode snoop responses require a new packet, unless we
1855    // already made a copy...
1856    PacketPtr pkt = req_pkt;
1857    if (!already_copied)
1858        // do not clear flags, and allocate space for data if the
1859        // packet needs it (the only packets that carry data are read
1860        // responses)
1861        pkt = new Packet(req_pkt, false, req_pkt->isRead());
1862
1863    assert(req_pkt->req->isUncacheable() || req_pkt->isInvalidate() ||
1864           pkt->hasSharers());
1865    pkt->makeTimingResponse();
1866    if (pkt->isRead()) {
1867        pkt->setDataFromBlock(blk_data, blkSize);
1868    }
1869    if (pkt->cmd == MemCmd::ReadResp && pending_inval) {
1870        // Assume we defer a response to a read from a far-away cache
1871        // A, then later defer a ReadExcl from a cache B on the same
1872        // bus as us. We'll assert cacheResponding in both cases, but
1873        // in the latter case cacheResponding will keep the
1874        // invalidation from reaching cache A. This special response
1875        // tells cache A that it gets the block to satisfy its read,
1876        // but must immediately invalidate it.
1877        pkt->cmd = MemCmd::ReadRespWithInvalidate;
1878    }
1879    // Here we consider forward_time, paying for just forward latency and
1880    // also charging the delay provided by the xbar.
1881    // forward_time is used as send_time in next allocateWriteBuffer().
1882    Tick forward_time = clockEdge(forwardLatency) + pkt->headerDelay;
1883    // Here we reset the timing of the packet.
1884    pkt->headerDelay = pkt->payloadDelay = 0;
1885    DPRINTF(CacheVerbose,
1886            "%s created response: %s addr %#llx size %d tick: %lu\n",
1887            __func__, pkt->cmdString(), pkt->getAddr(), pkt->getSize(),
1888            forward_time);
1889    memSidePort->schedTimingSnoopResp(pkt, forward_time, true);
1890}
1891
1892uint32_t
1893Cache::handleSnoop(PacketPtr pkt, CacheBlk *blk, bool is_timing,
1894                   bool is_deferred, bool pending_inval)
1895{
1896    DPRINTF(CacheVerbose, "%s for %s addr %#llx size %d\n", __func__,
1897            pkt->cmdString(), pkt->getAddr(), pkt->getSize());
1898    // deferred snoops can only happen in timing mode
1899    assert(!(is_deferred && !is_timing));
1900    // pending_inval only makes sense on deferred snoops
1901    assert(!(pending_inval && !is_deferred));
1902    assert(pkt->isRequest());
1903
1904    // the packet may get modified if we or a forwarded snooper
1905    // responds in atomic mode, so remember a few things about the
1906    // original packet up front
1907    bool invalidate = pkt->isInvalidate();
1908    bool M5_VAR_USED needs_writable = pkt->needsWritable();
1909
1910    // at the moment we could get an uncacheable write which does not
1911    // have the invalidate flag, and we need a suitable way of dealing
1912    // with this case
1913    panic_if(invalidate && pkt->req->isUncacheable(),
1914             "%s got an invalidating uncacheable snoop request %s to %#llx",
1915             name(), pkt->cmdString(), pkt->getAddr());
1916
1917    uint32_t snoop_delay = 0;
1918
1919    if (forwardSnoops) {
1920        // first propagate snoop upward to see if anyone above us wants to
1921        // handle it.  save & restore packet src since it will get
1922        // rewritten to be relative to cpu-side bus (if any)
1923        bool alreadyResponded = pkt->cacheResponding();
1924        if (is_timing) {
1925            // copy the packet so that we can clear any flags before
1926            // forwarding it upwards, we also allocate data (passing
1927            // the pointer along in case of static data), in case
1928            // there is a snoop hit in upper levels
1929            Packet snoopPkt(pkt, true, true);
1930            snoopPkt.setExpressSnoop();
1931            // the snoop packet does not need to wait any additional
1932            // time
1933            snoopPkt.headerDelay = snoopPkt.payloadDelay = 0;
1934            cpuSidePort->sendTimingSnoopReq(&snoopPkt);
1935
1936            // add the header delay (including crossbar and snoop
1937            // delays) of the upward snoop to the snoop delay for this
1938            // cache
1939            snoop_delay += snoopPkt.headerDelay;
1940
1941            if (snoopPkt.cacheResponding()) {
1942                // cache-to-cache response from some upper cache
1943                assert(!alreadyResponded);
1944                pkt->setCacheResponding();
1945            }
1946            // upstream cache has the block, or has an outstanding
1947            // MSHR, pass the flag on
1948            if (snoopPkt.hasSharers()) {
1949                pkt->setHasSharers();
1950            }
1951            // If this request is a prefetch or clean evict and an upper level
1952            // signals block present, make sure to propagate the block
1953            // presence to the requester.
1954            if (snoopPkt.isBlockCached()) {
1955                pkt->setBlockCached();
1956            }
1957        } else {
1958            cpuSidePort->sendAtomicSnoop(pkt);
1959            if (!alreadyResponded && pkt->cacheResponding()) {
1960                // cache-to-cache response from some upper cache:
1961                // forward response to original requester
1962                assert(pkt->isResponse());
1963            }
1964        }
1965    }
1966
1967    if (!blk || !blk->isValid()) {
1968        DPRINTF(CacheVerbose, "%s snoop miss for %s addr %#llx size %d\n",
1969                __func__, pkt->cmdString(), pkt->getAddr(), pkt->getSize());
1970        return snoop_delay;
1971    } else {
1972        DPRINTF(Cache, "%s snoop hit for %s addr %#llx size %d, "
1973                "old state is %s\n", __func__, pkt->cmdString(),
1974                pkt->getAddr(), pkt->getSize(), blk->print());
1975    }
1976
1977    chatty_assert(!(isReadOnly && blk->isDirty()),
1978                  "Should never have a dirty block in a read-only cache %s\n",
1979                  name());
1980
1981    // We may end up modifying both the block state and the packet (if
1982    // we respond in atomic mode), so just figure out what to do now
1983    // and then do it later. If we find dirty data while snooping for
1984    // an invalidate, we don't need to send a response. The
1985    // invalidation itself is taken care of below.
1986    bool respond = blk->isDirty() && pkt->needsResponse() &&
1987        pkt->cmd != MemCmd::InvalidateReq;
1988    bool have_writable = blk->isWritable();
1989
1990    // Invalidate any prefetch's from below that would strip write permissions
1991    // MemCmd::HardPFReq is only observed by upstream caches.  After missing
1992    // above and in it's own cache, a new MemCmd::ReadReq is created that
1993    // downstream caches observe.
1994    if (pkt->mustCheckAbove()) {
1995        DPRINTF(Cache, "Found addr %#llx in upper level cache for snoop %s from"
1996                " lower cache\n", pkt->getAddr(), pkt->cmdString());
1997        pkt->setBlockCached();
1998        return snoop_delay;
1999    }
2000
2001    if (pkt->isRead() && !invalidate) {
2002        // reading without requiring the line in a writable state
2003        assert(!needs_writable);
2004        pkt->setHasSharers();
2005
2006        // if the requesting packet is uncacheable, retain the line in
2007        // the current state, otherwhise unset the writable flag,
2008        // which means we go from Modified to Owned (and will respond
2009        // below), remain in Owned (and will respond below), from
2010        // Exclusive to Shared, or remain in Shared
2011        if (!pkt->req->isUncacheable())
2012            blk->status &= ~BlkWritable;
2013    }
2014
2015    if (respond) {
2016        // prevent anyone else from responding, cache as well as
2017        // memory, and also prevent any memory from even seeing the
2018        // request
2019        pkt->setCacheResponding();
2020        if (have_writable) {
2021            // inform the cache hierarchy that this cache had the line
2022            // in the Modified state so that we avoid unnecessary
2023            // invalidations (see Packet::setResponderHadWritable)
2024            pkt->setResponderHadWritable();
2025
2026            // in the case of an uncacheable request there is no point
2027            // in setting the responderHadWritable flag, but since the
2028            // recipient does not care there is no harm in doing so
2029        } else {
2030            // if the packet has needsWritable set we invalidate our
2031            // copy below and all other copies will be invalidates
2032            // through express snoops, and if needsWritable is not set
2033            // we already called setHasSharers above
2034        }
2035
2036        // if we are returning a writable and dirty (Modified) line,
2037        // we should be invalidating the line
2038        panic_if(!invalidate && !pkt->hasSharers(),
2039                 "%s is passing a Modified line through %s to %#llx, "
2040                 "but keeping the block",
2041                 name(), pkt->cmdString(), pkt->getAddr());
2042
2043        if (is_timing) {
2044            doTimingSupplyResponse(pkt, blk->data, is_deferred, pending_inval);
2045        } else {
2046            pkt->makeAtomicResponse();
2047            // packets such as upgrades do not actually have any data
2048            // payload
2049            if (pkt->hasData())
2050                pkt->setDataFromBlock(blk->data, blkSize);
2051        }
2052    }
2053
2054    if (!respond && is_timing && is_deferred) {
2055        // if it's a deferred timing snoop to which we are not
2056        // responding, then we've made a copy of both the request and
2057        // the packet, delete them here
2058        assert(pkt->needsResponse());
2059        delete pkt->req;
2060        delete pkt;
2061    }
2062
2063    // Do this last in case it deallocates block data or something
2064    // like that
2065    if (invalidate) {
2066        invalidateBlock(blk);
2067    }
2068
2069    DPRINTF(Cache, "new state is %s\n", blk->print());
2070
2071    return snoop_delay;
2072}
2073
2074
2075void
2076Cache::recvTimingSnoopReq(PacketPtr pkt)
2077{
2078    DPRINTF(CacheVerbose, "%s for %s addr %#llx size %d\n", __func__,
2079            pkt->cmdString(), pkt->getAddr(), pkt->getSize());
2080
2081    // Snoops shouldn't happen when bypassing caches
2082    assert(!system->bypassCaches());
2083
2084    // no need to snoop requests that are not in range
2085    if (!inRange(pkt->getAddr())) {
2086        return;
2087    }
2088
2089    bool is_secure = pkt->isSecure();
2090    CacheBlk *blk = tags->findBlock(pkt->getAddr(), is_secure);
2091
2092    Addr blk_addr = blockAlign(pkt->getAddr());
2093    MSHR *mshr = mshrQueue.findMatch(blk_addr, is_secure);
2094
2095    // Update the latency cost of the snoop so that the crossbar can
2096    // account for it. Do not overwrite what other neighbouring caches
2097    // have already done, rather take the maximum. The update is
2098    // tentative, for cases where we return before an upward snoop
2099    // happens below.
2100    pkt->snoopDelay = std::max<uint32_t>(pkt->snoopDelay,
2101                                         lookupLatency * clockPeriod());
2102
2103    // Inform request(Prefetch, CleanEvict or Writeback) from below of
2104    // MSHR hit, set setBlockCached.
2105    if (mshr && pkt->mustCheckAbove()) {
2106        DPRINTF(Cache, "Setting block cached for %s from"
2107                "lower cache on mshr hit %#x\n",
2108                pkt->cmdString(), pkt->getAddr());
2109        pkt->setBlockCached();
2110        return;
2111    }
2112
2113    // Let the MSHR itself track the snoop and decide whether we want
2114    // to go ahead and do the regular cache snoop
2115    if (mshr && mshr->handleSnoop(pkt, order++)) {
2116        DPRINTF(Cache, "Deferring snoop on in-service MSHR to blk %#llx (%s)."
2117                "mshrs: %s\n", blk_addr, is_secure ? "s" : "ns",
2118                mshr->print());
2119
2120        if (mshr->getNumTargets() > numTarget)
2121            warn("allocating bonus target for snoop"); //handle later
2122        return;
2123    }
2124
2125    //We also need to check the writeback buffers and handle those
2126    std::vector<MSHR *> writebacks;
2127    if (writeBuffer.findMatches(blk_addr, is_secure, writebacks)) {
2128        DPRINTF(Cache, "Snoop hit in writeback to addr %#llx (%s)\n",
2129                pkt->getAddr(), is_secure ? "s" : "ns");
2130
2131        // Look through writebacks for any cachable writes.
2132        // We should only ever find a single match
2133        assert(writebacks.size() == 1);
2134        MSHR *wb_entry = writebacks[0];
2135        // Expect to see only Writebacks and/or CleanEvicts here, both of
2136        // which should not be generated for uncacheable data.
2137        assert(!wb_entry->isUncacheable());
2138        // There should only be a single request responsible for generating
2139        // Writebacks/CleanEvicts.
2140        assert(wb_entry->getNumTargets() == 1);
2141        PacketPtr wb_pkt = wb_entry->getTarget()->pkt;
2142        assert(wb_pkt->isEviction());
2143
2144        if (pkt->isEviction()) {
2145            // if the block is found in the write queue, set the BLOCK_CACHED
2146            // flag for Writeback/CleanEvict snoop. On return the snoop will
2147            // propagate the BLOCK_CACHED flag in Writeback packets and prevent
2148            // any CleanEvicts from travelling down the memory hierarchy.
2149            pkt->setBlockCached();
2150            DPRINTF(Cache, "Squashing %s from lower cache on writequeue hit"
2151                    " %#x\n", pkt->cmdString(), pkt->getAddr());
2152            return;
2153        }
2154
2155        if (wb_pkt->cmd == MemCmd::WritebackDirty) {
2156            // we have dirty data, and so will proceed to respond
2157            pkt->setCacheResponding();
2158            if (!pkt->needsWritable()) {
2159                // the packet should end up in the Shared state (non
2160                // writable) on the completion of the fill
2161                pkt->setHasSharers();
2162                // similarly, the writeback is no longer passing
2163                // writeable (the receiving cache should consider the
2164                // block Owned rather than Modified)
2165                wb_pkt->setHasSharers();
2166            } else {
2167                // we need to invalidate our copy. we do that
2168                // below.
2169                assert(pkt->isInvalidate());
2170            }
2171            doTimingSupplyResponse(pkt, wb_pkt->getConstPtr<uint8_t>(),
2172                                   false, false);
2173        } else {
2174            // on hitting a clean writeback we play it safe and do not
2175            // provide a response, the block may be dirty somewhere
2176            // else
2177            assert(wb_pkt->isCleanEviction());
2178            // The cache technically holds the block until the
2179            // corresponding message reaches the crossbar
2180            // below. Therefore when a snoop encounters a CleanEvict
2181            // or WritebackClean message we must call
2182            // setHasSharers (just like when it encounters a
2183            // Writeback) to avoid the snoop filter prematurely
2184            // clearing the holder bit in the crossbar below
2185            if (!pkt->needsWritable()) {
2186                pkt->setHasSharers();
2187                // the writeback is no longer passing writeable (the
2188                // receiving cache should consider the block Owned
2189                // rather than Modified)
2190                wb_pkt->setHasSharers();
2191            } else {
2192                assert(pkt->isInvalidate());
2193            }
2194        }
2195
2196        if (pkt->isInvalidate()) {
2197            // Invalidation trumps our writeback... discard here
2198            // Note: markInService will remove entry from writeback buffer.
2199            markInService(wb_entry, false);
2200            delete wb_pkt;
2201        }
2202    }
2203
2204    // If this was a shared writeback, there may still be
2205    // other shared copies above that require invalidation.
2206    // We could be more selective and return here if the
2207    // request is non-exclusive or if the writeback is
2208    // exclusive.
2209    uint32_t snoop_delay = handleSnoop(pkt, blk, true, false, false);
2210
2211    // Override what we did when we first saw the snoop, as we now
2212    // also have the cost of the upwards snoops to account for
2213    pkt->snoopDelay = std::max<uint32_t>(pkt->snoopDelay, snoop_delay +
2214                                         lookupLatency * clockPeriod());
2215}
2216
2217bool
2218Cache::CpuSidePort::recvTimingSnoopResp(PacketPtr pkt)
2219{
2220    // Express snoop responses from master to slave, e.g., from L1 to L2
2221    cache->recvTimingSnoopResp(pkt);
2222    return true;
2223}
2224
2225Tick
2226Cache::recvAtomicSnoop(PacketPtr pkt)
2227{
2228    // Snoops shouldn't happen when bypassing caches
2229    assert(!system->bypassCaches());
2230
2231    // no need to snoop requests that are not in range.
2232    if (!inRange(pkt->getAddr())) {
2233        return 0;
2234    }
2235
2236    CacheBlk *blk = tags->findBlock(pkt->getAddr(), pkt->isSecure());
2237    uint32_t snoop_delay = handleSnoop(pkt, blk, false, false, false);
2238    return snoop_delay + lookupLatency * clockPeriod();
2239}
2240
2241
2242MSHR *
2243Cache::getNextMSHR()
2244{
2245    // Check both MSHR queue and write buffer for potential requests,
2246    // note that null does not mean there is no request, it could
2247    // simply be that it is not ready
2248    MSHR *miss_mshr  = mshrQueue.getNextMSHR();
2249    MSHR *write_mshr = writeBuffer.getNextMSHR();
2250
2251    // If we got a write buffer request ready, first priority is a
2252    // full write buffer, otherwhise we favour the miss requests
2253    if (write_mshr &&
2254        ((writeBuffer.isFull() && writeBuffer.inServiceEntries == 0) ||
2255         !miss_mshr)) {
2256        // need to search MSHR queue for conflicting earlier miss.
2257        MSHR *conflict_mshr =
2258            mshrQueue.findPending(write_mshr->blkAddr,
2259                                  write_mshr->isSecure);
2260
2261        if (conflict_mshr && conflict_mshr->order < write_mshr->order) {
2262            // Service misses in order until conflict is cleared.
2263            return conflict_mshr;
2264
2265            // @todo Note that we ignore the ready time of the conflict here
2266        }
2267
2268        // No conflicts; issue write
2269        return write_mshr;
2270    } else if (miss_mshr) {
2271        // need to check for conflicting earlier writeback
2272        MSHR *conflict_mshr =
2273            writeBuffer.findPending(miss_mshr->blkAddr,
2274                                    miss_mshr->isSecure);
2275        if (conflict_mshr) {
2276            // not sure why we don't check order here... it was in the
2277            // original code but commented out.
2278
2279            // The only way this happens is if we are
2280            // doing a write and we didn't have permissions
2281            // then subsequently saw a writeback (owned got evicted)
2282            // We need to make sure to perform the writeback first
2283            // To preserve the dirty data, then we can issue the write
2284
2285            // should we return write_mshr here instead?  I.e. do we
2286            // have to flush writes in order?  I don't think so... not
2287            // for Alpha anyway.  Maybe for x86?
2288            return conflict_mshr;
2289
2290            // @todo Note that we ignore the ready time of the conflict here
2291        }
2292
2293        // No conflicts; issue read
2294        return miss_mshr;
2295    }
2296
2297    // fall through... no pending requests.  Try a prefetch.
2298    assert(!miss_mshr && !write_mshr);
2299    if (prefetcher && mshrQueue.canPrefetch()) {
2300        // If we have a miss queue slot, we can try a prefetch
2301        PacketPtr pkt = prefetcher->getPacket();
2302        if (pkt) {
2303            Addr pf_addr = blockAlign(pkt->getAddr());
2304            if (!tags->findBlock(pf_addr, pkt->isSecure()) &&
2305                !mshrQueue.findMatch(pf_addr, pkt->isSecure()) &&
2306                !writeBuffer.findMatch(pf_addr, pkt->isSecure())) {
2307                // Update statistic on number of prefetches issued
2308                // (hwpf_mshr_misses)
2309                assert(pkt->req->masterId() < system->maxMasters());
2310                mshr_misses[pkt->cmdToIndex()][pkt->req->masterId()]++;
2311
2312                // allocate an MSHR and return it, note
2313                // that we send the packet straight away, so do not
2314                // schedule the send
2315                return allocateMissBuffer(pkt, curTick(), false);
2316            } else {
2317                // free the request and packet
2318                delete pkt->req;
2319                delete pkt;
2320            }
2321        }
2322    }
2323
2324    return NULL;
2325}
2326
2327bool
2328Cache::isCachedAbove(PacketPtr pkt, bool is_timing) const
2329{
2330    if (!forwardSnoops)
2331        return false;
2332    // Mirroring the flow of HardPFReqs, the cache sends CleanEvict and
2333    // Writeback snoops into upper level caches to check for copies of the
2334    // same block. Using the BLOCK_CACHED flag with the Writeback/CleanEvict
2335    // packet, the cache can inform the crossbar below of presence or absence
2336    // of the block.
2337    if (is_timing) {
2338        Packet snoop_pkt(pkt, true, false);
2339        snoop_pkt.setExpressSnoop();
2340        // Assert that packet is either Writeback or CleanEvict and not a
2341        // prefetch request because prefetch requests need an MSHR and may
2342        // generate a snoop response.
2343        assert(pkt->isEviction());
2344        snoop_pkt.senderState = NULL;
2345        cpuSidePort->sendTimingSnoopReq(&snoop_pkt);
2346        // Writeback/CleanEvict snoops do not generate a snoop response.
2347        assert(!(snoop_pkt.cacheResponding()));
2348        return snoop_pkt.isBlockCached();
2349    } else {
2350        cpuSidePort->sendAtomicSnoop(pkt);
2351        return pkt->isBlockCached();
2352    }
2353}
2354
2355PacketPtr
2356Cache::getTimingPacket()
2357{
2358    MSHR *mshr = getNextMSHR();
2359
2360    if (mshr == NULL) {
2361        return NULL;
2362    }
2363
2364    // use request from 1st target
2365    PacketPtr tgt_pkt = mshr->getTarget()->pkt;
2366    PacketPtr pkt = NULL;
2367
2368    DPRINTF(CachePort, "%s %s for addr %#llx size %d\n", __func__,
2369            tgt_pkt->cmdString(), tgt_pkt->getAddr(), tgt_pkt->getSize());
2370
2371    CacheBlk *blk = tags->findBlock(mshr->blkAddr, mshr->isSecure);
2372
2373    if (tgt_pkt->cmd == MemCmd::HardPFReq && forwardSnoops) {
2374        // We need to check the caches above us to verify that
2375        // they don't have a copy of this block in the dirty state
2376        // at the moment. Without this check we could get a stale
2377        // copy from memory that might get used in place of the
2378        // dirty one.
2379        Packet snoop_pkt(tgt_pkt, true, false);
2380        snoop_pkt.setExpressSnoop();
2381        // We are sending this packet upwards, but if it hits we will
2382        // get a snoop response that we end up treating just like a
2383        // normal response, hence it needs the MSHR as its sender
2384        // state
2385        snoop_pkt.senderState = mshr;
2386        cpuSidePort->sendTimingSnoopReq(&snoop_pkt);
2387
2388        // Check to see if the prefetch was squashed by an upper cache (to
2389        // prevent us from grabbing the line) or if a Check to see if a
2390        // writeback arrived between the time the prefetch was placed in
2391        // the MSHRs and when it was selected to be sent or if the
2392        // prefetch was squashed by an upper cache.
2393
2394        // It is important to check cacheResponding before
2395        // prefetchSquashed. If another cache has committed to
2396        // responding, it will be sending a dirty response which will
2397        // arrive at the MSHR allocated for this request. Checking the
2398        // prefetchSquash first may result in the MSHR being
2399        // prematurely deallocated.
2400        if (snoop_pkt.cacheResponding()) {
2401            auto M5_VAR_USED r = outstandingSnoop.insert(snoop_pkt.req);
2402            assert(r.second);
2403
2404            // if we are getting a snoop response with no sharers it
2405            // will be allocated as Modified
2406            bool pending_modified_resp = !snoop_pkt.hasSharers();
2407            markInService(mshr, pending_modified_resp);
2408
2409            DPRINTF(Cache, "Upward snoop of prefetch for addr"
2410                    " %#x (%s) hit\n",
2411                    tgt_pkt->getAddr(), tgt_pkt->isSecure()? "s": "ns");
2412            return NULL;
2413        }
2414
2415        if (snoop_pkt.isBlockCached() || blk != NULL) {
2416            DPRINTF(Cache, "Block present, prefetch squashed by cache.  "
2417                    "Deallocating mshr target %#x.\n",
2418                    mshr->blkAddr);
2419            // Deallocate the mshr target
2420            if (mshr->queue->forceDeallocateTarget(mshr)) {
2421                // Clear block if this deallocation resulted freed an
2422                // mshr when all had previously been utilized
2423                clearBlocked((BlockedCause)(mshr->queue->index));
2424            }
2425            return NULL;
2426        }
2427    }
2428
2429    if (mshr->isForwardNoResponse()) {
2430        // no response expected, just forward packet as it is
2431        assert(tags->findBlock(mshr->blkAddr, mshr->isSecure) == NULL);
2432        pkt = tgt_pkt;
2433    } else {
2434        pkt = getBusPacket(tgt_pkt, blk, mshr->needsWritable());
2435
2436        mshr->isForward = (pkt == NULL);
2437
2438        if (mshr->isForward) {
2439            // not a cache block request, but a response is expected
2440            // make copy of current packet to forward, keep current
2441            // copy for response handling
2442            pkt = new Packet(tgt_pkt, false, true);
2443            if (pkt->isWrite()) {
2444                pkt->setData(tgt_pkt->getConstPtr<uint8_t>());
2445            }
2446        }
2447    }
2448
2449    assert(pkt != NULL);
2450    // play it safe and append (rather than set) the sender state, as
2451    // forwarded packets may already have existing state
2452    pkt->pushSenderState(mshr);
2453    return pkt;
2454}
2455
2456
2457Tick
2458Cache::nextMSHRReadyTime() const
2459{
2460    Tick nextReady = std::min(mshrQueue.nextMSHRReadyTime(),
2461                              writeBuffer.nextMSHRReadyTime());
2462
2463    // Don't signal prefetch ready time if no MSHRs available
2464    // Will signal once enoguh MSHRs are deallocated
2465    if (prefetcher && mshrQueue.canPrefetch()) {
2466        nextReady = std::min(nextReady,
2467                             prefetcher->nextPrefetchReadyTime());
2468    }
2469
2470    return nextReady;
2471}
2472
2473void
2474Cache::serialize(CheckpointOut &cp) const
2475{
2476    bool dirty(isDirty());
2477
2478    if (dirty) {
2479        warn("*** The cache still contains dirty data. ***\n");
2480        warn("    Make sure to drain the system using the correct flags.\n");
2481        warn("    This checkpoint will not restore correctly and dirty data in "
2482             "the cache will be lost!\n");
2483    }
2484
2485    // Since we don't checkpoint the data in the cache, any dirty data
2486    // will be lost when restoring from a checkpoint of a system that
2487    // wasn't drained properly. Flag the checkpoint as invalid if the
2488    // cache contains dirty data.
2489    bool bad_checkpoint(dirty);
2490    SERIALIZE_SCALAR(bad_checkpoint);
2491}
2492
2493void
2494Cache::unserialize(CheckpointIn &cp)
2495{
2496    bool bad_checkpoint;
2497    UNSERIALIZE_SCALAR(bad_checkpoint);
2498    if (bad_checkpoint) {
2499        fatal("Restoring from checkpoints with dirty caches is not supported "
2500              "in the classic memory system. Please remove any caches or "
2501              " drain them properly before taking checkpoints.\n");
2502    }
2503}
2504
2505///////////////
2506//
2507// CpuSidePort
2508//
2509///////////////
2510
2511AddrRangeList
2512Cache::CpuSidePort::getAddrRanges() const
2513{
2514    return cache->getAddrRanges();
2515}
2516
2517bool
2518Cache::CpuSidePort::recvTimingReq(PacketPtr pkt)
2519{
2520    assert(!cache->system->bypassCaches());
2521
2522    bool success = false;
2523
2524    // always let packets through if an upstream cache has committed
2525    // to responding, even if blocked (we should technically look at
2526    // the isExpressSnoop flag, but it is set by the cache itself, and
2527    // consequently we have to rely on the cacheResponding flag)
2528    if (pkt->cacheResponding()) {
2529        // do not change the current retry state
2530        bool M5_VAR_USED bypass_success = cache->recvTimingReq(pkt);
2531        assert(bypass_success);
2532        return true;
2533    } else if (blocked || mustSendRetry) {
2534        // either already committed to send a retry, or blocked
2535        success = false;
2536    } else {
2537        // pass it on to the cache, and let the cache decide if we
2538        // have to retry or not
2539        success = cache->recvTimingReq(pkt);
2540    }
2541
2542    // remember if we have to retry
2543    mustSendRetry = !success;
2544    return success;
2545}
2546
2547Tick
2548Cache::CpuSidePort::recvAtomic(PacketPtr pkt)
2549{
2550    return cache->recvAtomic(pkt);
2551}
2552
2553void
2554Cache::CpuSidePort::recvFunctional(PacketPtr pkt)
2555{
2556    // functional request
2557    cache->functionalAccess(pkt, true);
2558}
2559
2560Cache::
2561CpuSidePort::CpuSidePort(const std::string &_name, Cache *_cache,
2562                         const std::string &_label)
2563    : BaseCache::CacheSlavePort(_name, _cache, _label), cache(_cache)
2564{
2565}
2566
2567Cache*
2568CacheParams::create()
2569{
2570    assert(tags);
2571
2572    return new Cache(this);
2573}
2574///////////////
2575//
2576// MemSidePort
2577//
2578///////////////
2579
2580bool
2581Cache::MemSidePort::recvTimingResp(PacketPtr pkt)
2582{
2583    cache->recvTimingResp(pkt);
2584    return true;
2585}
2586
2587// Express snooping requests to memside port
2588void
2589Cache::MemSidePort::recvTimingSnoopReq(PacketPtr pkt)
2590{
2591    // handle snooping requests
2592    cache->recvTimingSnoopReq(pkt);
2593}
2594
2595Tick
2596Cache::MemSidePort::recvAtomicSnoop(PacketPtr pkt)
2597{
2598    return cache->recvAtomicSnoop(pkt);
2599}
2600
2601void
2602Cache::MemSidePort::recvFunctionalSnoop(PacketPtr pkt)
2603{
2604    // functional snoop (note that in contrast to atomic we don't have
2605    // a specific functionalSnoop method, as they have the same
2606    // behaviour regardless)
2607    cache->functionalAccess(pkt, false);
2608}
2609
2610void
2611Cache::CacheReqPacketQueue::sendDeferredPacket()
2612{
2613    // sanity check
2614    assert(!waitingOnRetry);
2615
2616    // there should never be any deferred request packets in the
2617    // queue, instead we resly on the cache to provide the packets
2618    // from the MSHR queue or write queue
2619    assert(deferredPacketReadyTime() == MaxTick);
2620
2621    // check for request packets (requests & writebacks)
2622    PacketPtr pkt = cache.getTimingPacket();
2623    if (pkt == NULL) {
2624        // can happen if e.g. we attempt a writeback and fail, but
2625        // before the retry, the writeback is eliminated because
2626        // we snoop another cache's ReadEx.
2627    } else {
2628        MSHR *mshr = dynamic_cast<MSHR*>(pkt->senderState);
2629        // in most cases getTimingPacket allocates a new packet, and
2630        // we must delete it unless it is successfully sent
2631        bool delete_pkt = !mshr->isForwardNoResponse();
2632
2633        // let our snoop responses go first if there are responses to
2634        // the same addresses we are about to writeback, note that
2635        // this creates a dependency between requests and snoop
2636        // responses, but that should not be a problem since there is
2637        // a chain already and the key is that the snoop responses can
2638        // sink unconditionally
2639        if (snoopRespQueue.hasAddr(pkt->getAddr())) {
2640            DPRINTF(CachePort, "Waiting for snoop response to be sent\n");
2641            Tick when = snoopRespQueue.deferredPacketReadyTime();
2642            schedSendEvent(when);
2643
2644            if (delete_pkt)
2645                delete pkt;
2646
2647            return;
2648        }
2649
2650
2651        waitingOnRetry = !masterPort.sendTimingReq(pkt);
2652
2653        if (waitingOnRetry) {
2654            DPRINTF(CachePort, "now waiting on a retry\n");
2655            if (delete_pkt) {
2656                // we are awaiting a retry, but we
2657                // delete the packet and will be creating a new packet
2658                // when we get the opportunity
2659                delete pkt;
2660            }
2661            // note that we have now masked any requestBus and
2662            // schedSendEvent (we will wait for a retry before
2663            // doing anything), and this is so even if we do not
2664            // care about this packet and might override it before
2665            // it gets retried
2666        } else {
2667            // As part of the call to sendTimingReq the packet is
2668            // forwarded to all neighbouring caches (and any caches
2669            // above them) as a snoop. Thus at this point we know if
2670            // any of the neighbouring caches are responding, and if
2671            // so, we know it is dirty, and we can determine if it is
2672            // being passed as Modified, making our MSHR the ordering
2673            // point
2674            bool pending_modified_resp = !pkt->hasSharers() &&
2675                pkt->cacheResponding();
2676
2677            cache.markInService(mshr, pending_modified_resp);
2678        }
2679    }
2680
2681    // if we succeeded and are not waiting for a retry, schedule the
2682    // next send considering when the next MSHR is ready, note that
2683    // snoop responses have their own packet queue and thus schedule
2684    // their own events
2685    if (!waitingOnRetry) {
2686        schedSendEvent(cache.nextMSHRReadyTime());
2687    }
2688}
2689
2690Cache::
2691MemSidePort::MemSidePort(const std::string &_name, Cache *_cache,
2692                         const std::string &_label)
2693    : BaseCache::CacheMasterPort(_name, _cache, _reqQueue, _snoopRespQueue),
2694      _reqQueue(*_cache, *this, _snoopRespQueue, _label),
2695      _snoopRespQueue(*_cache, *this, _label), cache(_cache)
2696{
2697}
2698