cache.cc revision 11285:25715951a4b8
1/*
2 * Copyright (c) 2010-2015 ARM Limited
3 * All rights reserved.
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder.  You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2002-2005 The Regents of The University of Michigan
15 * Copyright (c) 2010,2015 Advanced Micro Devices, Inc.
16 * All rights reserved.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions are
20 * met: redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer;
22 * redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution;
25 * neither the name of the copyright holders nor the names of its
26 * contributors may be used to endorse or promote products derived from
27 * this software without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40 *
41 * Authors: Erik Hallnor
42 *          Dave Greene
43 *          Nathan Binkert
44 *          Steve Reinhardt
45 *          Ron Dreslinski
46 *          Andreas Sandberg
47 */
48
49/**
50 * @file
51 * Cache definitions.
52 */
53
54#include "mem/cache/cache.hh"
55
56#include "base/misc.hh"
57#include "base/types.hh"
58#include "debug/Cache.hh"
59#include "debug/CachePort.hh"
60#include "debug/CacheTags.hh"
61#include "mem/cache/blk.hh"
62#include "mem/cache/mshr.hh"
63#include "mem/cache/prefetch/base.hh"
64#include "sim/sim_exit.hh"
65
66Cache::Cache(const CacheParams *p)
67    : BaseCache(p, p->system->cacheLineSize()),
68      tags(p->tags),
69      prefetcher(p->prefetcher),
70      doFastWrites(true),
71      prefetchOnAccess(p->prefetch_on_access),
72      clusivity(p->clusivity),
73      writebackClean(p->writeback_clean),
74      tempBlockWriteback(nullptr),
75      writebackTempBlockAtomicEvent(this, false,
76                                    EventBase::Delayed_Writeback_Pri)
77{
78    tempBlock = new CacheBlk();
79    tempBlock->data = new uint8_t[blkSize];
80
81    cpuSidePort = new CpuSidePort(p->name + ".cpu_side", this,
82                                  "CpuSidePort");
83    memSidePort = new MemSidePort(p->name + ".mem_side", this,
84                                  "MemSidePort");
85
86    tags->setCache(this);
87    if (prefetcher)
88        prefetcher->setCache(this);
89}
90
91Cache::~Cache()
92{
93    delete [] tempBlock->data;
94    delete tempBlock;
95
96    delete cpuSidePort;
97    delete memSidePort;
98}
99
100void
101Cache::regStats()
102{
103    BaseCache::regStats();
104}
105
106void
107Cache::cmpAndSwap(CacheBlk *blk, PacketPtr pkt)
108{
109    assert(pkt->isRequest());
110
111    uint64_t overwrite_val;
112    bool overwrite_mem;
113    uint64_t condition_val64;
114    uint32_t condition_val32;
115
116    int offset = tags->extractBlkOffset(pkt->getAddr());
117    uint8_t *blk_data = blk->data + offset;
118
119    assert(sizeof(uint64_t) >= pkt->getSize());
120
121    overwrite_mem = true;
122    // keep a copy of our possible write value, and copy what is at the
123    // memory address into the packet
124    pkt->writeData((uint8_t *)&overwrite_val);
125    pkt->setData(blk_data);
126
127    if (pkt->req->isCondSwap()) {
128        if (pkt->getSize() == sizeof(uint64_t)) {
129            condition_val64 = pkt->req->getExtraData();
130            overwrite_mem = !std::memcmp(&condition_val64, blk_data,
131                                         sizeof(uint64_t));
132        } else if (pkt->getSize() == sizeof(uint32_t)) {
133            condition_val32 = (uint32_t)pkt->req->getExtraData();
134            overwrite_mem = !std::memcmp(&condition_val32, blk_data,
135                                         sizeof(uint32_t));
136        } else
137            panic("Invalid size for conditional read/write\n");
138    }
139
140    if (overwrite_mem) {
141        std::memcpy(blk_data, &overwrite_val, pkt->getSize());
142        blk->status |= BlkDirty;
143    }
144}
145
146
147void
148Cache::satisfyCpuSideRequest(PacketPtr pkt, CacheBlk *blk,
149                             bool deferred_response, bool pending_downgrade)
150{
151    assert(pkt->isRequest());
152
153    assert(blk && blk->isValid());
154    // Occasionally this is not true... if we are a lower-level cache
155    // satisfying a string of Read and ReadEx requests from
156    // upper-level caches, a Read will mark the block as shared but we
157    // can satisfy a following ReadEx anyway since we can rely on the
158    // Read requester(s) to have buffered the ReadEx snoop and to
159    // invalidate their blocks after receiving them.
160    // assert(!pkt->needsWritable() || blk->isWritable());
161    assert(pkt->getOffset(blkSize) + pkt->getSize() <= blkSize);
162
163    // Check RMW operations first since both isRead() and
164    // isWrite() will be true for them
165    if (pkt->cmd == MemCmd::SwapReq) {
166        cmpAndSwap(blk, pkt);
167    } else if (pkt->isWrite()) {
168        // we have the block in a writable state and can go ahead,
169        // note that the line may be also be considered writable in
170        // downstream caches along the path to memory, but always
171        // Exclusive, and never Modified
172        assert(blk->isWritable());
173        // Write or WriteLine at the first cache with block in writable state
174        if (blk->checkWrite(pkt)) {
175            pkt->writeDataToBlock(blk->data, blkSize);
176        }
177        // Always mark the line as dirty (and thus transition to the
178        // Modified state) even if we are a failed StoreCond so we
179        // supply data to any snoops that have appended themselves to
180        // this cache before knowing the store will fail.
181        blk->status |= BlkDirty;
182        DPRINTF(Cache, "%s for %s addr %#llx size %d (write)\n", __func__,
183                pkt->cmdString(), pkt->getAddr(), pkt->getSize());
184    } else if (pkt->isRead()) {
185        if (pkt->isLLSC()) {
186            blk->trackLoadLocked(pkt);
187        }
188        pkt->setDataFromBlock(blk->data, blkSize);
189        // determine if this read is from a (coherent) cache, or not
190        // by looking at the command type; we could potentially add a
191        // packet attribute such as 'FromCache' to make this check a
192        // bit cleaner
193        if (pkt->cmd == MemCmd::ReadExReq ||
194            pkt->cmd == MemCmd::ReadSharedReq ||
195            pkt->cmd == MemCmd::ReadCleanReq ||
196            pkt->cmd == MemCmd::SCUpgradeFailReq) {
197            assert(pkt->getSize() == blkSize);
198            // special handling for coherent block requests from
199            // upper-level caches
200            if (pkt->needsWritable()) {
201                // sanity check
202                assert(pkt->cmd == MemCmd::ReadExReq ||
203                       pkt->cmd == MemCmd::SCUpgradeFailReq);
204
205                // if we have a dirty copy, make sure the recipient
206                // keeps it marked dirty (in the modified state)
207                if (blk->isDirty()) {
208                    pkt->setCacheResponding();
209                }
210                // on ReadExReq we give up our copy unconditionally,
211                // even if this cache is mostly inclusive, we may want
212                // to revisit this
213                invalidateBlock(blk);
214            } else if (blk->isWritable() && !pending_downgrade &&
215                       !pkt->hasSharers() &&
216                       pkt->cmd != MemCmd::ReadCleanReq) {
217                // we can give the requester a writable copy on a read
218                // request if:
219                // - we have a writable copy at this level (& below)
220                // - we don't have a pending snoop from below
221                //   signaling another read request
222                // - no other cache above has a copy (otherwise it
223                //   would have set hasSharers flag when
224                //   snooping the packet)
225                // - the read has explicitly asked for a clean
226                //   copy of the line
227                if (blk->isDirty()) {
228                    // special considerations if we're owner:
229                    if (!deferred_response) {
230                        // respond with the line in Modified state
231                        // (cacheResponding set, hasSharers not set)
232                        pkt->setCacheResponding();
233
234                        if (clusivity == Enums::mostly_excl) {
235                            // if this cache is mostly exclusive with
236                            // respect to the cache above, drop the
237                            // block, no need to first unset the dirty
238                            // bit
239                            invalidateBlock(blk);
240                        } else {
241                            // if this cache is mostly inclusive, we
242                            // keep the block in the Exclusive state,
243                            // and pass it upwards as Modified
244                            // (writable and dirty), hence we have
245                            // multiple caches, all on the same path
246                            // towards memory, all considering the
247                            // same block writable, but only one
248                            // considering it Modified
249
250                            // we get away with multiple caches (on
251                            // the same path to memory) considering
252                            // the block writeable as we always enter
253                            // the cache hierarchy through a cache,
254                            // and first snoop upwards in all other
255                            // branches
256                            blk->status &= ~BlkDirty;
257                        }
258                    } else {
259                        // if we're responding after our own miss,
260                        // there's a window where the recipient didn't
261                        // know it was getting ownership and may not
262                        // have responded to snoops correctly, so we
263                        // have to respond with a shared line
264                        pkt->setHasSharers();
265                    }
266                }
267            } else {
268                // otherwise only respond with a shared copy
269                pkt->setHasSharers();
270            }
271        }
272    } else {
273        // Upgrade or Invalidate
274        assert(pkt->isUpgrade() || pkt->isInvalidate());
275
276        // for invalidations we could be looking at the temp block
277        // (for upgrades we always allocate)
278        invalidateBlock(blk);
279        DPRINTF(Cache, "%s for %s addr %#llx size %d (invalidation)\n",
280                __func__, pkt->cmdString(), pkt->getAddr(), pkt->getSize());
281    }
282}
283
284
285/////////////////////////////////////////////////////
286//
287// MSHR helper functions
288//
289/////////////////////////////////////////////////////
290
291
292void
293Cache::markInService(MSHR *mshr, bool pending_modified_resp)
294{
295    markInServiceInternal(mshr, pending_modified_resp);
296}
297
298/////////////////////////////////////////////////////
299//
300// Access path: requests coming in from the CPU side
301//
302/////////////////////////////////////////////////////
303
304bool
305Cache::access(PacketPtr pkt, CacheBlk *&blk, Cycles &lat,
306              PacketList &writebacks)
307{
308    // sanity check
309    assert(pkt->isRequest());
310
311    chatty_assert(!(isReadOnly && pkt->isWrite()),
312                  "Should never see a write in a read-only cache %s\n",
313                  name());
314
315    DPRINTF(Cache, "%s for %s addr %#llx size %d\n", __func__,
316            pkt->cmdString(), pkt->getAddr(), pkt->getSize());
317
318    if (pkt->req->isUncacheable()) {
319        DPRINTF(Cache, "%s%s addr %#llx uncacheable\n", pkt->cmdString(),
320                pkt->req->isInstFetch() ? " (ifetch)" : "",
321                pkt->getAddr());
322
323        // flush and invalidate any existing block
324        CacheBlk *old_blk(tags->findBlock(pkt->getAddr(), pkt->isSecure()));
325        if (old_blk && old_blk->isValid()) {
326            if (old_blk->isDirty() || writebackClean)
327                writebacks.push_back(writebackBlk(old_blk));
328            else
329                writebacks.push_back(cleanEvictBlk(old_blk));
330            tags->invalidate(old_blk);
331            old_blk->invalidate();
332        }
333
334        blk = NULL;
335        // lookupLatency is the latency in case the request is uncacheable.
336        lat = lookupLatency;
337        return false;
338    }
339
340    ContextID id = pkt->req->hasContextId() ?
341        pkt->req->contextId() : InvalidContextID;
342    // Here lat is the value passed as parameter to accessBlock() function
343    // that can modify its value.
344    blk = tags->accessBlock(pkt->getAddr(), pkt->isSecure(), lat, id);
345
346    DPRINTF(Cache, "%s%s addr %#llx size %d (%s) %s\n", pkt->cmdString(),
347            pkt->req->isInstFetch() ? " (ifetch)" : "",
348            pkt->getAddr(), pkt->getSize(), pkt->isSecure() ? "s" : "ns",
349            blk ? "hit " + blk->print() : "miss");
350
351
352    if (pkt->isEviction()) {
353        // We check for presence of block in above caches before issuing
354        // Writeback or CleanEvict to write buffer. Therefore the only
355        // possible cases can be of a CleanEvict packet coming from above
356        // encountering a Writeback generated in this cache peer cache and
357        // waiting in the write buffer. Cases of upper level peer caches
358        // generating CleanEvict and Writeback or simply CleanEvict and
359        // CleanEvict almost simultaneously will be caught by snoops sent out
360        // by crossbar.
361        std::vector<MSHR *> outgoing;
362        if (writeBuffer.findMatches(pkt->getAddr(), pkt->isSecure(),
363                                   outgoing)) {
364            assert(outgoing.size() == 1);
365            MSHR *wb_entry = outgoing[0];
366            assert(wb_entry->getNumTargets() == 1);
367            PacketPtr wbPkt = wb_entry->getTarget()->pkt;
368            assert(wbPkt->isWriteback());
369
370            if (pkt->isCleanEviction()) {
371                // The CleanEvict and WritebackClean snoops into other
372                // peer caches of the same level while traversing the
373                // crossbar. If a copy of the block is found, the
374                // packet is deleted in the crossbar. Hence, none of
375                // the other upper level caches connected to this
376                // cache have the block, so we can clear the
377                // BLOCK_CACHED flag in the Writeback if set and
378                // discard the CleanEvict by returning true.
379                wbPkt->clearBlockCached();
380                return true;
381            } else {
382                assert(pkt->cmd == MemCmd::WritebackDirty);
383                // Dirty writeback from above trumps our clean
384                // writeback... discard here
385                // Note: markInService will remove entry from writeback buffer.
386                markInService(wb_entry, false);
387                delete wbPkt;
388            }
389        }
390    }
391
392    // Writeback handling is special case.  We can write the block into
393    // the cache without having a writeable copy (or any copy at all).
394    if (pkt->isWriteback()) {
395        assert(blkSize == pkt->getSize());
396
397        // we could get a clean writeback while we are having
398        // outstanding accesses to a block, do the simple thing for
399        // now and drop the clean writeback so that we do not upset
400        // any ordering/decisions about ownership already taken
401        if (pkt->cmd == MemCmd::WritebackClean &&
402            mshrQueue.findMatch(pkt->getAddr(), pkt->isSecure())) {
403            DPRINTF(Cache, "Clean writeback %#llx to block with MSHR, "
404                    "dropping\n", pkt->getAddr());
405            return true;
406        }
407
408        if (blk == NULL) {
409            // need to do a replacement
410            blk = allocateBlock(pkt->getAddr(), pkt->isSecure(), writebacks);
411            if (blk == NULL) {
412                // no replaceable block available: give up, fwd to next level.
413                incMissCount(pkt);
414                return false;
415            }
416            tags->insertBlock(pkt, blk);
417
418            blk->status = (BlkValid | BlkReadable);
419            if (pkt->isSecure()) {
420                blk->status |= BlkSecure;
421            }
422        }
423        // only mark the block dirty if we got a writeback command,
424        // and leave it as is for a clean writeback
425        if (pkt->cmd == MemCmd::WritebackDirty) {
426            blk->status |= BlkDirty;
427        }
428        // if the packet does not have sharers, it is passing
429        // writable, and we got the writeback in Modified or Exclusive
430        // state, if not we are in the Owned or Shared state
431        if (!pkt->hasSharers()) {
432            blk->status |= BlkWritable;
433        }
434        // nothing else to do; writeback doesn't expect response
435        assert(!pkt->needsResponse());
436        std::memcpy(blk->data, pkt->getConstPtr<uint8_t>(), blkSize);
437        DPRINTF(Cache, "%s new state is %s\n", __func__, blk->print());
438        incHitCount(pkt);
439        return true;
440    } else if (pkt->cmd == MemCmd::CleanEvict) {
441        if (blk != NULL) {
442            // Found the block in the tags, need to stop CleanEvict from
443            // propagating further down the hierarchy. Returning true will
444            // treat the CleanEvict like a satisfied write request and delete
445            // it.
446            return true;
447        }
448        // We didn't find the block here, propagate the CleanEvict further
449        // down the memory hierarchy. Returning false will treat the CleanEvict
450        // like a Writeback which could not find a replaceable block so has to
451        // go to next level.
452        return false;
453    } else if ((blk != NULL) &&
454               (pkt->needsWritable() ? blk->isWritable() : blk->isReadable())) {
455        // OK to satisfy access
456        incHitCount(pkt);
457        satisfyCpuSideRequest(pkt, blk);
458        return true;
459    }
460
461    // Can't satisfy access normally... either no block (blk == NULL)
462    // or have block but need writable
463
464    incMissCount(pkt);
465
466    if (blk == NULL && pkt->isLLSC() && pkt->isWrite()) {
467        // complete miss on store conditional... just give up now
468        pkt->req->setExtraData(0);
469        return true;
470    }
471
472    return false;
473}
474
475void
476Cache::doWritebacks(PacketList& writebacks, Tick forward_time)
477{
478    while (!writebacks.empty()) {
479        PacketPtr wbPkt = writebacks.front();
480        // We use forwardLatency here because we are copying writebacks to
481        // write buffer.  Call isCachedAbove for both Writebacks and
482        // CleanEvicts. If isCachedAbove returns true we set BLOCK_CACHED flag
483        // in Writebacks and discard CleanEvicts.
484        if (isCachedAbove(wbPkt)) {
485            if (wbPkt->cmd == MemCmd::CleanEvict) {
486                // Delete CleanEvict because cached copies exist above. The
487                // packet destructor will delete the request object because
488                // this is a non-snoop request packet which does not require a
489                // response.
490                delete wbPkt;
491            } else if (wbPkt->cmd == MemCmd::WritebackClean) {
492                // clean writeback, do not send since the block is
493                // still cached above
494                assert(writebackClean);
495                delete wbPkt;
496            } else {
497                assert(wbPkt->cmd == MemCmd::WritebackDirty);
498                // Set BLOCK_CACHED flag in Writeback and send below, so that
499                // the Writeback does not reset the bit corresponding to this
500                // address in the snoop filter below.
501                wbPkt->setBlockCached();
502                allocateWriteBuffer(wbPkt, forward_time);
503            }
504        } else {
505            // If the block is not cached above, send packet below. Both
506            // CleanEvict and Writeback with BLOCK_CACHED flag cleared will
507            // reset the bit corresponding to this address in the snoop filter
508            // below.
509            allocateWriteBuffer(wbPkt, forward_time);
510        }
511        writebacks.pop_front();
512    }
513}
514
515void
516Cache::doWritebacksAtomic(PacketList& writebacks)
517{
518    while (!writebacks.empty()) {
519        PacketPtr wbPkt = writebacks.front();
520        // Call isCachedAbove for both Writebacks and CleanEvicts. If
521        // isCachedAbove returns true we set BLOCK_CACHED flag in Writebacks
522        // and discard CleanEvicts.
523        if (isCachedAbove(wbPkt, false)) {
524            if (wbPkt->cmd == MemCmd::WritebackDirty) {
525                // Set BLOCK_CACHED flag in Writeback and send below,
526                // so that the Writeback does not reset the bit
527                // corresponding to this address in the snoop filter
528                // below. We can discard CleanEvicts because cached
529                // copies exist above. Atomic mode isCachedAbove
530                // modifies packet to set BLOCK_CACHED flag
531                memSidePort->sendAtomic(wbPkt);
532            }
533        } else {
534            // If the block is not cached above, send packet below. Both
535            // CleanEvict and Writeback with BLOCK_CACHED flag cleared will
536            // reset the bit corresponding to this address in the snoop filter
537            // below.
538            memSidePort->sendAtomic(wbPkt);
539        }
540        writebacks.pop_front();
541        // In case of CleanEvicts, the packet destructor will delete the
542        // request object because this is a non-snoop request packet which
543        // does not require a response.
544        delete wbPkt;
545    }
546}
547
548
549void
550Cache::recvTimingSnoopResp(PacketPtr pkt)
551{
552    DPRINTF(Cache, "%s for %s addr %#llx size %d\n", __func__,
553            pkt->cmdString(), pkt->getAddr(), pkt->getSize());
554
555    assert(pkt->isResponse());
556    assert(!system->bypassCaches());
557
558    // determine if the response is from a snoop request we created
559    // (in which case it should be in the outstandingSnoop), or if we
560    // merely forwarded someone else's snoop request
561    const bool forwardAsSnoop = outstandingSnoop.find(pkt->req) ==
562        outstandingSnoop.end();
563
564    if (!forwardAsSnoop) {
565        // the packet came from this cache, so sink it here and do not
566        // forward it
567        assert(pkt->cmd == MemCmd::HardPFResp);
568
569        outstandingSnoop.erase(pkt->req);
570
571        DPRINTF(Cache, "Got prefetch response from above for addr "
572                "%#llx (%s)\n", pkt->getAddr(), pkt->isSecure() ? "s" : "ns");
573        recvTimingResp(pkt);
574        return;
575    }
576
577    // forwardLatency is set here because there is a response from an
578    // upper level cache.
579    // To pay the delay that occurs if the packet comes from the bus,
580    // we charge also headerDelay.
581    Tick snoop_resp_time = clockEdge(forwardLatency) + pkt->headerDelay;
582    // Reset the timing of the packet.
583    pkt->headerDelay = pkt->payloadDelay = 0;
584    memSidePort->schedTimingSnoopResp(pkt, snoop_resp_time);
585}
586
587void
588Cache::promoteWholeLineWrites(PacketPtr pkt)
589{
590    // Cache line clearing instructions
591    if (doFastWrites && (pkt->cmd == MemCmd::WriteReq) &&
592        (pkt->getSize() == blkSize) && (pkt->getOffset(blkSize) == 0)) {
593        pkt->cmd = MemCmd::WriteLineReq;
594        DPRINTF(Cache, "packet promoted from Write to WriteLineReq\n");
595    }
596}
597
598bool
599Cache::recvTimingReq(PacketPtr pkt)
600{
601    DPRINTF(CacheTags, "%s tags: %s\n", __func__, tags->print());
602
603    assert(pkt->isRequest());
604
605    // Just forward the packet if caches are disabled.
606    if (system->bypassCaches()) {
607        // @todo This should really enqueue the packet rather
608        bool M5_VAR_USED success = memSidePort->sendTimingReq(pkt);
609        assert(success);
610        return true;
611    }
612
613    promoteWholeLineWrites(pkt);
614
615    if (pkt->cacheResponding()) {
616        // a cache above us (but not where the packet came from) is
617        // responding to the request, in other words it has the line
618        // in Modified or Owned state
619        DPRINTF(Cache, "Cache above responding to %#llx (%s): "
620                "not responding\n",
621                pkt->getAddr(), pkt->isSecure() ? "s" : "ns");
622
623        // if the packet needs the block to be writable, and the cache
624        // that has promised to respond (setting the cache responding
625        // flag) is not providing writable (it is in Owned rather than
626        // the Modified state), we know that there may be other Shared
627        // copies in the system; go out and invalidate them all
628        if (pkt->needsWritable() && !pkt->responderHadWritable()) {
629            // an upstream cache that had the line in Owned state
630            // (dirty, but not writable), is responding and thus
631            // transferring the dirty line from one branch of the
632            // cache hierarchy to another
633
634            // send out an express snoop and invalidate all other
635            // copies (snooping a packet that needs writable is the
636            // same as an invalidation), thus turning the Owned line
637            // into a Modified line, note that we don't invalidate the
638            // block in the current cache or any other cache on the
639            // path to memory
640
641            // create a downstream express snoop with cleared packet
642            // flags, there is no need to allocate any data as the
643            // packet is merely used to co-ordinate state transitions
644            Packet *snoop_pkt = new Packet(pkt, true, false);
645
646            // also reset the bus time that the original packet has
647            // not yet paid for
648            snoop_pkt->headerDelay = snoop_pkt->payloadDelay = 0;
649
650            // make this an instantaneous express snoop, and let the
651            // other caches in the system know that the another cache
652            // is responding, because we have found the authorative
653            // copy (Modified or Owned) that will supply the right
654            // data
655            snoop_pkt->setExpressSnoop();
656            snoop_pkt->setCacheResponding();
657
658            // this express snoop travels towards the memory, and at
659            // every crossbar it is snooped upwards thus reaching
660            // every cache in the system
661            bool M5_VAR_USED success = memSidePort->sendTimingReq(snoop_pkt);
662            // express snoops always succeed
663            assert(success);
664
665            // main memory will delete the snoop packet
666        }
667
668        // queue for deletion, as opposed to immediate deletion, as
669        // the sending cache is still relying on the packet
670        pendingDelete.reset(pkt);
671
672        // no need to take any action in this particular cache as an
673        // upstream cache has already committed to responding, and
674        // either the packet does not need writable (and we can let
675        // the cache that set the cache responding flag pass on the
676        // line without any need for intervention), or if the packet
677        // needs writable it is provided, or we have already sent out
678        // any express snoops in the section above
679        return true;
680    }
681
682    // anything that is merely forwarded pays for the forward latency and
683    // the delay provided by the crossbar
684    Tick forward_time = clockEdge(forwardLatency) + pkt->headerDelay;
685
686    // We use lookupLatency here because it is used to specify the latency
687    // to access.
688    Cycles lat = lookupLatency;
689    CacheBlk *blk = NULL;
690    bool satisfied = false;
691    {
692        PacketList writebacks;
693        // Note that lat is passed by reference here. The function
694        // access() calls accessBlock() which can modify lat value.
695        satisfied = access(pkt, blk, lat, writebacks);
696
697        // copy writebacks to write buffer here to ensure they logically
698        // proceed anything happening below
699        doWritebacks(writebacks, forward_time);
700    }
701
702    // Here we charge the headerDelay that takes into account the latencies
703    // of the bus, if the packet comes from it.
704    // The latency charged it is just lat that is the value of lookupLatency
705    // modified by access() function, or if not just lookupLatency.
706    // In case of a hit we are neglecting response latency.
707    // In case of a miss we are neglecting forward latency.
708    Tick request_time = clockEdge(lat) + pkt->headerDelay;
709    // Here we reset the timing of the packet.
710    pkt->headerDelay = pkt->payloadDelay = 0;
711
712    // track time of availability of next prefetch, if any
713    Tick next_pf_time = MaxTick;
714
715    bool needsResponse = pkt->needsResponse();
716
717    if (satisfied) {
718        // should never be satisfying an uncacheable access as we
719        // flush and invalidate any existing block as part of the
720        // lookup
721        assert(!pkt->req->isUncacheable());
722
723        // hit (for all other request types)
724
725        if (prefetcher && (prefetchOnAccess || (blk && blk->wasPrefetched()))) {
726            if (blk)
727                blk->status &= ~BlkHWPrefetched;
728
729            // Don't notify on SWPrefetch
730            if (!pkt->cmd.isSWPrefetch())
731                next_pf_time = prefetcher->notify(pkt);
732        }
733
734        if (needsResponse) {
735            pkt->makeTimingResponse();
736            // @todo: Make someone pay for this
737            pkt->headerDelay = pkt->payloadDelay = 0;
738
739            // In this case we are considering request_time that takes
740            // into account the delay of the xbar, if any, and just
741            // lat, neglecting responseLatency, modelling hit latency
742            // just as lookupLatency or or the value of lat overriden
743            // by access(), that calls accessBlock() function.
744            cpuSidePort->schedTimingResp(pkt, request_time, true);
745        } else {
746            DPRINTF(Cache, "%s satisfied %s addr %#llx, no response needed\n",
747                    __func__, pkt->cmdString(), pkt->getAddr(),
748                    pkt->getSize());
749
750            // queue the packet for deletion, as the sending cache is
751            // still relying on it; if the block is found in access(),
752            // CleanEvict and Writeback messages will be deleted
753            // here as well
754            pendingDelete.reset(pkt);
755        }
756    } else {
757        // miss
758
759        Addr blk_addr = blockAlign(pkt->getAddr());
760
761        // ignore any existing MSHR if we are dealing with an
762        // uncacheable request
763        MSHR *mshr = pkt->req->isUncacheable() ? nullptr :
764            mshrQueue.findMatch(blk_addr, pkt->isSecure());
765
766        // Software prefetch handling:
767        // To keep the core from waiting on data it won't look at
768        // anyway, send back a response with dummy data. Miss handling
769        // will continue asynchronously. Unfortunately, the core will
770        // insist upon freeing original Packet/Request, so we have to
771        // create a new pair with a different lifecycle. Note that this
772        // processing happens before any MSHR munging on the behalf of
773        // this request because this new Request will be the one stored
774        // into the MSHRs, not the original.
775        if (pkt->cmd.isSWPrefetch()) {
776            assert(needsResponse);
777            assert(pkt->req->hasPaddr());
778            assert(!pkt->req->isUncacheable());
779
780            // There's no reason to add a prefetch as an additional target
781            // to an existing MSHR. If an outstanding request is already
782            // in progress, there is nothing for the prefetch to do.
783            // If this is the case, we don't even create a request at all.
784            PacketPtr pf = nullptr;
785
786            if (!mshr) {
787                // copy the request and create a new SoftPFReq packet
788                RequestPtr req = new Request(pkt->req->getPaddr(),
789                                             pkt->req->getSize(),
790                                             pkt->req->getFlags(),
791                                             pkt->req->masterId());
792                pf = new Packet(req, pkt->cmd);
793                pf->allocate();
794                assert(pf->getAddr() == pkt->getAddr());
795                assert(pf->getSize() == pkt->getSize());
796            }
797
798            pkt->makeTimingResponse();
799            // for debugging, set all the bits in the response data
800            // (also keeps valgrind from complaining when debugging settings
801            //  print out instruction results)
802            std::memset(pkt->getPtr<uint8_t>(), 0xFF, pkt->getSize());
803            // request_time is used here, taking into account lat and the delay
804            // charged if the packet comes from the xbar.
805            cpuSidePort->schedTimingResp(pkt, request_time, true);
806
807            // If an outstanding request is in progress (we found an
808            // MSHR) this is set to null
809            pkt = pf;
810        }
811
812        if (mshr) {
813            /// MSHR hit
814            /// @note writebacks will be checked in getNextMSHR()
815            /// for any conflicting requests to the same block
816
817            //@todo remove hw_pf here
818
819            // Coalesce unless it was a software prefetch (see above).
820            if (pkt) {
821                assert(!pkt->isWriteback());
822                // CleanEvicts corresponding to blocks which have
823                // outstanding requests in MSHRs are simply sunk here
824                if (pkt->cmd == MemCmd::CleanEvict) {
825                    pendingDelete.reset(pkt);
826                } else {
827                    DPRINTF(Cache, "%s coalescing MSHR for %s addr %#llx size %d\n",
828                            __func__, pkt->cmdString(), pkt->getAddr(),
829                            pkt->getSize());
830
831                    assert(pkt->req->masterId() < system->maxMasters());
832                    mshr_hits[pkt->cmdToIndex()][pkt->req->masterId()]++;
833                    // We use forward_time here because it is the same
834                    // considering new targets. We have multiple
835                    // requests for the same address here. It
836                    // specifies the latency to allocate an internal
837                    // buffer and to schedule an event to the queued
838                    // port and also takes into account the additional
839                    // delay of the xbar.
840                    mshr->allocateTarget(pkt, forward_time, order++,
841                                         allocOnFill(pkt->cmd));
842                    if (mshr->getNumTargets() == numTarget) {
843                        noTargetMSHR = mshr;
844                        setBlocked(Blocked_NoTargets);
845                        // need to be careful with this... if this mshr isn't
846                        // ready yet (i.e. time > curTick()), we don't want to
847                        // move it ahead of mshrs that are ready
848                        // mshrQueue.moveToFront(mshr);
849                    }
850                }
851                // We should call the prefetcher reguardless if the request is
852                // satisfied or not, reguardless if the request is in the MSHR or
853                // not.  The request could be a ReadReq hit, but still not
854                // satisfied (potentially because of a prior write to the same
855                // cache line.  So, even when not satisfied, tehre is an MSHR
856                // already allocated for this, we need to let the prefetcher know
857                // about the request
858                if (prefetcher) {
859                    // Don't notify on SWPrefetch
860                    if (!pkt->cmd.isSWPrefetch())
861                        next_pf_time = prefetcher->notify(pkt);
862                }
863            }
864        } else {
865            // no MSHR
866            assert(pkt->req->masterId() < system->maxMasters());
867            if (pkt->req->isUncacheable()) {
868                mshr_uncacheable[pkt->cmdToIndex()][pkt->req->masterId()]++;
869            } else {
870                mshr_misses[pkt->cmdToIndex()][pkt->req->masterId()]++;
871            }
872
873            if (pkt->isEviction() ||
874                (pkt->req->isUncacheable() && pkt->isWrite())) {
875                // We use forward_time here because there is an
876                // uncached memory write, forwarded to WriteBuffer.
877                allocateWriteBuffer(pkt, forward_time);
878            } else {
879                if (blk && blk->isValid()) {
880                    // should have flushed and have no valid block
881                    assert(!pkt->req->isUncacheable());
882
883                    // If we have a write miss to a valid block, we
884                    // need to mark the block non-readable.  Otherwise
885                    // if we allow reads while there's an outstanding
886                    // write miss, the read could return stale data
887                    // out of the cache block... a more aggressive
888                    // system could detect the overlap (if any) and
889                    // forward data out of the MSHRs, but we don't do
890                    // that yet.  Note that we do need to leave the
891                    // block valid so that it stays in the cache, in
892                    // case we get an upgrade response (and hence no
893                    // new data) when the write miss completes.
894                    // As long as CPUs do proper store/load forwarding
895                    // internally, and have a sufficiently weak memory
896                    // model, this is probably unnecessary, but at some
897                    // point it must have seemed like we needed it...
898                    assert(pkt->needsWritable());
899                    assert(!blk->isWritable());
900                    blk->status &= ~BlkReadable;
901                }
902                // Here we are using forward_time, modelling the latency of
903                // a miss (outbound) just as forwardLatency, neglecting the
904                // lookupLatency component.
905                allocateMissBuffer(pkt, forward_time);
906            }
907
908            if (prefetcher) {
909                // Don't notify on SWPrefetch
910                if (!pkt->cmd.isSWPrefetch())
911                    next_pf_time = prefetcher->notify(pkt);
912            }
913        }
914    }
915
916    if (next_pf_time != MaxTick)
917        schedMemSideSendEvent(next_pf_time);
918
919    return true;
920}
921
922
923// See comment in cache.hh.
924PacketPtr
925Cache::getBusPacket(PacketPtr cpu_pkt, CacheBlk *blk,
926                    bool needsWritable) const
927{
928    bool blkValid = blk && blk->isValid();
929
930    if (cpu_pkt->req->isUncacheable()) {
931        // note that at the point we see the uncacheable request we
932        // flush any block, but there could be an outstanding MSHR,
933        // and the cache could have filled again before we actually
934        // send out the forwarded uncacheable request (blk could thus
935        // be non-null)
936        return NULL;
937    }
938
939    if (!blkValid &&
940        (cpu_pkt->isUpgrade() ||
941         cpu_pkt->isEviction())) {
942        // Writebacks that weren't allocated in access() and upgrades
943        // from upper-level caches that missed completely just go
944        // through.
945        return NULL;
946    }
947
948    assert(cpu_pkt->needsResponse());
949
950    MemCmd cmd;
951    // @TODO make useUpgrades a parameter.
952    // Note that ownership protocols require upgrade, otherwise a
953    // write miss on a shared owned block will generate a ReadExcl,
954    // which will clobber the owned copy.
955    const bool useUpgrades = true;
956    if (blkValid && useUpgrades) {
957        // only reason to be here is that blk is read only and we need
958        // it to be writable
959        assert(needsWritable);
960        assert(!blk->isWritable());
961        cmd = cpu_pkt->isLLSC() ? MemCmd::SCUpgradeReq : MemCmd::UpgradeReq;
962    } else if (cpu_pkt->cmd == MemCmd::SCUpgradeFailReq ||
963               cpu_pkt->cmd == MemCmd::StoreCondFailReq) {
964        // Even though this SC will fail, we still need to send out the
965        // request and get the data to supply it to other snoopers in the case
966        // where the determination the StoreCond fails is delayed due to
967        // all caches not being on the same local bus.
968        cmd = MemCmd::SCUpgradeFailReq;
969    } else if (cpu_pkt->cmd == MemCmd::WriteLineReq) {
970        // forward as invalidate to all other caches, this gives us
971        // the line in Exclusive state, and invalidates all other
972        // copies
973        cmd = MemCmd::InvalidateReq;
974    } else {
975        // block is invalid
976        cmd = needsWritable ? MemCmd::ReadExReq :
977            (isReadOnly ? MemCmd::ReadCleanReq : MemCmd::ReadSharedReq);
978    }
979    PacketPtr pkt = new Packet(cpu_pkt->req, cmd, blkSize);
980
981    // if there are upstream caches that have already marked the
982    // packet as having sharers (not passing writable), pass that info
983    // downstream
984    if (cpu_pkt->hasSharers()) {
985        // note that cpu_pkt may have spent a considerable time in the
986        // MSHR queue and that the information could possibly be out
987        // of date, however, there is no harm in conservatively
988        // assuming the block has sharers
989        pkt->setHasSharers();
990        DPRINTF(Cache, "%s passing hasSharers from %s to %s addr %#llx "
991                "size %d\n",
992                __func__, cpu_pkt->cmdString(), pkt->cmdString(),
993                pkt->getAddr(), pkt->getSize());
994    }
995
996    // the packet should be block aligned
997    assert(pkt->getAddr() == blockAlign(pkt->getAddr()));
998
999    pkt->allocate();
1000    DPRINTF(Cache, "%s created %s from %s for  addr %#llx size %d\n",
1001            __func__, pkt->cmdString(), cpu_pkt->cmdString(), pkt->getAddr(),
1002            pkt->getSize());
1003    return pkt;
1004}
1005
1006
1007Tick
1008Cache::recvAtomic(PacketPtr pkt)
1009{
1010    // We are in atomic mode so we pay just for lookupLatency here.
1011    Cycles lat = lookupLatency;
1012    // @TODO: make this a parameter
1013    bool last_level_cache = false;
1014
1015    // Forward the request if the system is in cache bypass mode.
1016    if (system->bypassCaches())
1017        return ticksToCycles(memSidePort->sendAtomic(pkt));
1018
1019    promoteWholeLineWrites(pkt);
1020
1021    if (pkt->cacheResponding()) {
1022        // have to invalidate ourselves and any lower caches even if
1023        // upper cache will be responding
1024        if (pkt->isInvalidate()) {
1025            CacheBlk *blk = tags->findBlock(pkt->getAddr(), pkt->isSecure());
1026            if (blk && blk->isValid()) {
1027                tags->invalidate(blk);
1028                blk->invalidate();
1029                DPRINTF(Cache, "Other cache responding to %s on %#llx (%s):"
1030                        " invalidating\n",
1031                        pkt->cmdString(), pkt->getAddr(),
1032                        pkt->isSecure() ? "s" : "ns");
1033            }
1034            if (!last_level_cache) {
1035                DPRINTF(Cache, "Other cache responding to %s on %#llx (%s):"
1036                        " forwarding\n",
1037                        pkt->cmdString(), pkt->getAddr(),
1038                        pkt->isSecure() ? "s" : "ns");
1039                lat += ticksToCycles(memSidePort->sendAtomic(pkt));
1040            }
1041        } else {
1042            DPRINTF(Cache, "Other cache responding to %s on %#llx: "
1043                    "not responding\n",
1044                    pkt->cmdString(), pkt->getAddr());
1045        }
1046
1047        return lat * clockPeriod();
1048    }
1049
1050    // should assert here that there are no outstanding MSHRs or
1051    // writebacks... that would mean that someone used an atomic
1052    // access in timing mode
1053
1054    CacheBlk *blk = NULL;
1055    PacketList writebacks;
1056    bool satisfied = access(pkt, blk, lat, writebacks);
1057
1058    // handle writebacks resulting from the access here to ensure they
1059    // logically proceed anything happening below
1060    doWritebacksAtomic(writebacks);
1061
1062    if (!satisfied) {
1063        // MISS
1064
1065        PacketPtr bus_pkt = getBusPacket(pkt, blk, pkt->needsWritable());
1066
1067        bool is_forward = (bus_pkt == NULL);
1068
1069        if (is_forward) {
1070            // just forwarding the same request to the next level
1071            // no local cache operation involved
1072            bus_pkt = pkt;
1073        }
1074
1075        DPRINTF(Cache, "Sending an atomic %s for %#llx (%s)\n",
1076                bus_pkt->cmdString(), bus_pkt->getAddr(),
1077                bus_pkt->isSecure() ? "s" : "ns");
1078
1079#if TRACING_ON
1080        CacheBlk::State old_state = blk ? blk->status : 0;
1081#endif
1082
1083        lat += ticksToCycles(memSidePort->sendAtomic(bus_pkt));
1084
1085        // We are now dealing with the response handling
1086        DPRINTF(Cache, "Receive response: %s for addr %#llx (%s) in state %i\n",
1087                bus_pkt->cmdString(), bus_pkt->getAddr(),
1088                bus_pkt->isSecure() ? "s" : "ns",
1089                old_state);
1090
1091        // If packet was a forward, the response (if any) is already
1092        // in place in the bus_pkt == pkt structure, so we don't need
1093        // to do anything.  Otherwise, use the separate bus_pkt to
1094        // generate response to pkt and then delete it.
1095        if (!is_forward) {
1096            if (pkt->needsResponse()) {
1097                assert(bus_pkt->isResponse());
1098                if (bus_pkt->isError()) {
1099                    pkt->makeAtomicResponse();
1100                    pkt->copyError(bus_pkt);
1101                } else if (pkt->cmd == MemCmd::InvalidateReq) {
1102                    if (blk) {
1103                        // invalidate response to a cache that received
1104                        // an invalidate request
1105                        satisfyCpuSideRequest(pkt, blk);
1106                    }
1107                } else if (pkt->cmd == MemCmd::WriteLineReq) {
1108                    // note the use of pkt, not bus_pkt here.
1109
1110                    // write-line request to the cache that promoted
1111                    // the write to a whole line
1112                    blk = handleFill(pkt, blk, writebacks,
1113                                     allocOnFill(pkt->cmd));
1114                    satisfyCpuSideRequest(pkt, blk);
1115                } else if (bus_pkt->isRead() ||
1116                           bus_pkt->cmd == MemCmd::UpgradeResp) {
1117                    // we're updating cache state to allow us to
1118                    // satisfy the upstream request from the cache
1119                    blk = handleFill(bus_pkt, blk, writebacks,
1120                                     allocOnFill(pkt->cmd));
1121                    satisfyCpuSideRequest(pkt, blk);
1122                } else {
1123                    // we're satisfying the upstream request without
1124                    // modifying cache state, e.g., a write-through
1125                    pkt->makeAtomicResponse();
1126                }
1127            }
1128            delete bus_pkt;
1129        }
1130    }
1131
1132    // Note that we don't invoke the prefetcher at all in atomic mode.
1133    // It's not clear how to do it properly, particularly for
1134    // prefetchers that aggressively generate prefetch candidates and
1135    // rely on bandwidth contention to throttle them; these will tend
1136    // to pollute the cache in atomic mode since there is no bandwidth
1137    // contention.  If we ever do want to enable prefetching in atomic
1138    // mode, though, this is the place to do it... see timingAccess()
1139    // for an example (though we'd want to issue the prefetch(es)
1140    // immediately rather than calling requestMemSideBus() as we do
1141    // there).
1142
1143    // do any writebacks resulting from the response handling
1144    doWritebacksAtomic(writebacks);
1145
1146    // if we used temp block, check to see if its valid and if so
1147    // clear it out, but only do so after the call to recvAtomic is
1148    // finished so that any downstream observers (such as a snoop
1149    // filter), first see the fill, and only then see the eviction
1150    if (blk == tempBlock && tempBlock->isValid()) {
1151        // the atomic CPU calls recvAtomic for fetch and load/store
1152        // sequentuially, and we may already have a tempBlock
1153        // writeback from the fetch that we have not yet sent
1154        if (tempBlockWriteback) {
1155            // if that is the case, write the prevoius one back, and
1156            // do not schedule any new event
1157            writebackTempBlockAtomic();
1158        } else {
1159            // the writeback/clean eviction happens after the call to
1160            // recvAtomic has finished (but before any successive
1161            // calls), so that the response handling from the fill is
1162            // allowed to happen first
1163            schedule(writebackTempBlockAtomicEvent, curTick());
1164        }
1165
1166        tempBlockWriteback = (blk->isDirty() || writebackClean) ?
1167            writebackBlk(blk) : cleanEvictBlk(blk);
1168        blk->invalidate();
1169    }
1170
1171    if (pkt->needsResponse()) {
1172        pkt->makeAtomicResponse();
1173    }
1174
1175    return lat * clockPeriod();
1176}
1177
1178
1179void
1180Cache::functionalAccess(PacketPtr pkt, bool fromCpuSide)
1181{
1182    if (system->bypassCaches()) {
1183        // Packets from the memory side are snoop request and
1184        // shouldn't happen in bypass mode.
1185        assert(fromCpuSide);
1186
1187        // The cache should be flushed if we are in cache bypass mode,
1188        // so we don't need to check if we need to update anything.
1189        memSidePort->sendFunctional(pkt);
1190        return;
1191    }
1192
1193    Addr blk_addr = blockAlign(pkt->getAddr());
1194    bool is_secure = pkt->isSecure();
1195    CacheBlk *blk = tags->findBlock(pkt->getAddr(), is_secure);
1196    MSHR *mshr = mshrQueue.findMatch(blk_addr, is_secure);
1197
1198    pkt->pushLabel(name());
1199
1200    CacheBlkPrintWrapper cbpw(blk);
1201
1202    // Note that just because an L2/L3 has valid data doesn't mean an
1203    // L1 doesn't have a more up-to-date modified copy that still
1204    // needs to be found.  As a result we always update the request if
1205    // we have it, but only declare it satisfied if we are the owner.
1206
1207    // see if we have data at all (owned or otherwise)
1208    bool have_data = blk && blk->isValid()
1209        && pkt->checkFunctional(&cbpw, blk_addr, is_secure, blkSize,
1210                                blk->data);
1211
1212    // data we have is dirty if marked as such or if we have an
1213    // in-service MSHR that is pending a modified line
1214    bool have_dirty =
1215        have_data && (blk->isDirty() ||
1216                      (mshr && mshr->inService && mshr->isPendingModified()));
1217
1218    bool done = have_dirty
1219        || cpuSidePort->checkFunctional(pkt)
1220        || mshrQueue.checkFunctional(pkt, blk_addr)
1221        || writeBuffer.checkFunctional(pkt, blk_addr)
1222        || memSidePort->checkFunctional(pkt);
1223
1224    DPRINTF(Cache, "functional %s %#llx (%s) %s%s%s\n",
1225            pkt->cmdString(), pkt->getAddr(), is_secure ? "s" : "ns",
1226            (blk && blk->isValid()) ? "valid " : "",
1227            have_data ? "data " : "", done ? "done " : "");
1228
1229    // We're leaving the cache, so pop cache->name() label
1230    pkt->popLabel();
1231
1232    if (done) {
1233        pkt->makeResponse();
1234    } else {
1235        // if it came as a request from the CPU side then make sure it
1236        // continues towards the memory side
1237        if (fromCpuSide) {
1238            memSidePort->sendFunctional(pkt);
1239        } else if (forwardSnoops && cpuSidePort->isSnooping()) {
1240            // if it came from the memory side, it must be a snoop request
1241            // and we should only forward it if we are forwarding snoops
1242            cpuSidePort->sendFunctionalSnoop(pkt);
1243        }
1244    }
1245}
1246
1247
1248/////////////////////////////////////////////////////
1249//
1250// Response handling: responses from the memory side
1251//
1252/////////////////////////////////////////////////////
1253
1254
1255void
1256Cache::recvTimingResp(PacketPtr pkt)
1257{
1258    assert(pkt->isResponse());
1259
1260    // all header delay should be paid for by the crossbar, unless
1261    // this is a prefetch response from above
1262    panic_if(pkt->headerDelay != 0 && pkt->cmd != MemCmd::HardPFResp,
1263             "%s saw a non-zero packet delay\n", name());
1264
1265    MSHR *mshr = dynamic_cast<MSHR*>(pkt->senderState);
1266    bool is_error = pkt->isError();
1267
1268    assert(mshr);
1269
1270    if (is_error) {
1271        DPRINTF(Cache, "Cache received packet with error for addr %#llx (%s), "
1272                "cmd: %s\n", pkt->getAddr(), pkt->isSecure() ? "s" : "ns",
1273                pkt->cmdString());
1274    }
1275
1276    DPRINTF(Cache, "Handling response %s for addr %#llx size %d (%s)\n",
1277            pkt->cmdString(), pkt->getAddr(), pkt->getSize(),
1278            pkt->isSecure() ? "s" : "ns");
1279
1280    MSHRQueue *mq = mshr->queue;
1281    bool wasFull = mq->isFull();
1282
1283    if (mshr == noTargetMSHR) {
1284        // we always clear at least one target
1285        clearBlocked(Blocked_NoTargets);
1286        noTargetMSHR = NULL;
1287    }
1288
1289    // Initial target is used just for stats
1290    MSHR::Target *initial_tgt = mshr->getTarget();
1291    int stats_cmd_idx = initial_tgt->pkt->cmdToIndex();
1292    Tick miss_latency = curTick() - initial_tgt->recvTime;
1293    PacketList writebacks;
1294    // We need forward_time here because we have a call of
1295    // allocateWriteBuffer() that need this parameter to specify the
1296    // time to request the bus.  In this case we use forward latency
1297    // because there is a writeback.  We pay also here for headerDelay
1298    // that is charged of bus latencies if the packet comes from the
1299    // bus.
1300    Tick forward_time = clockEdge(forwardLatency) + pkt->headerDelay;
1301
1302    if (pkt->req->isUncacheable()) {
1303        assert(pkt->req->masterId() < system->maxMasters());
1304        mshr_uncacheable_lat[stats_cmd_idx][pkt->req->masterId()] +=
1305            miss_latency;
1306    } else {
1307        assert(pkt->req->masterId() < system->maxMasters());
1308        mshr_miss_latency[stats_cmd_idx][pkt->req->masterId()] +=
1309            miss_latency;
1310    }
1311
1312    // upgrade deferred targets if the response has no sharers, and is
1313    // thus passing writable
1314    if (!pkt->hasSharers()) {
1315        mshr->promoteWritable();
1316    }
1317
1318    bool is_fill = !mshr->isForward &&
1319        (pkt->isRead() || pkt->cmd == MemCmd::UpgradeResp);
1320
1321    CacheBlk *blk = tags->findBlock(pkt->getAddr(), pkt->isSecure());
1322
1323    if (is_fill && !is_error) {
1324        DPRINTF(Cache, "Block for addr %#llx being updated in Cache\n",
1325                pkt->getAddr());
1326
1327        blk = handleFill(pkt, blk, writebacks, mshr->allocOnFill);
1328        assert(blk != NULL);
1329    }
1330
1331    // allow invalidation responses originating from write-line
1332    // requests to be discarded
1333    bool is_invalidate = pkt->isInvalidate();
1334
1335    // First offset for critical word first calculations
1336    int initial_offset = initial_tgt->pkt->getOffset(blkSize);
1337
1338    while (mshr->hasTargets()) {
1339        MSHR::Target *target = mshr->getTarget();
1340        Packet *tgt_pkt = target->pkt;
1341
1342        switch (target->source) {
1343          case MSHR::Target::FromCPU:
1344            Tick completion_time;
1345            // Here we charge on completion_time the delay of the xbar if the
1346            // packet comes from it, charged on headerDelay.
1347            completion_time = pkt->headerDelay;
1348
1349            // Software prefetch handling for cache closest to core
1350            if (tgt_pkt->cmd.isSWPrefetch()) {
1351                // a software prefetch would have already been ack'd immediately
1352                // with dummy data so the core would be able to retire it.
1353                // this request completes right here, so we deallocate it.
1354                delete tgt_pkt->req;
1355                delete tgt_pkt;
1356                break; // skip response
1357            }
1358
1359            // unlike the other packet flows, where data is found in other
1360            // caches or memory and brought back, write-line requests always
1361            // have the data right away, so the above check for "is fill?"
1362            // cannot actually be determined until examining the stored MSHR
1363            // state. We "catch up" with that logic here, which is duplicated
1364            // from above.
1365            if (tgt_pkt->cmd == MemCmd::WriteLineReq) {
1366                assert(!is_error);
1367                // we got the block in a writable state, so promote
1368                // any deferred targets if possible
1369                mshr->promoteWritable();
1370                // NB: we use the original packet here and not the response!
1371                blk = handleFill(tgt_pkt, blk, writebacks, mshr->allocOnFill);
1372                assert(blk != NULL);
1373
1374                // treat as a fill, and discard the invalidation
1375                // response
1376                is_fill = true;
1377                is_invalidate = false;
1378            }
1379
1380            if (is_fill) {
1381                satisfyCpuSideRequest(tgt_pkt, blk,
1382                                      true, mshr->hasPostDowngrade());
1383
1384                // How many bytes past the first request is this one
1385                int transfer_offset =
1386                    tgt_pkt->getOffset(blkSize) - initial_offset;
1387                if (transfer_offset < 0) {
1388                    transfer_offset += blkSize;
1389                }
1390
1391                // If not critical word (offset) return payloadDelay.
1392                // responseLatency is the latency of the return path
1393                // from lower level caches/memory to an upper level cache or
1394                // the core.
1395                completion_time += clockEdge(responseLatency) +
1396                    (transfer_offset ? pkt->payloadDelay : 0);
1397
1398                assert(!tgt_pkt->req->isUncacheable());
1399
1400                assert(tgt_pkt->req->masterId() < system->maxMasters());
1401                missLatency[tgt_pkt->cmdToIndex()][tgt_pkt->req->masterId()] +=
1402                    completion_time - target->recvTime;
1403            } else if (pkt->cmd == MemCmd::UpgradeFailResp) {
1404                // failed StoreCond upgrade
1405                assert(tgt_pkt->cmd == MemCmd::StoreCondReq ||
1406                       tgt_pkt->cmd == MemCmd::StoreCondFailReq ||
1407                       tgt_pkt->cmd == MemCmd::SCUpgradeFailReq);
1408                // responseLatency is the latency of the return path
1409                // from lower level caches/memory to an upper level cache or
1410                // the core.
1411                completion_time += clockEdge(responseLatency) +
1412                    pkt->payloadDelay;
1413                tgt_pkt->req->setExtraData(0);
1414            } else {
1415                // not a cache fill, just forwarding response
1416                // responseLatency is the latency of the return path
1417                // from lower level cahces/memory to the core.
1418                completion_time += clockEdge(responseLatency) +
1419                    pkt->payloadDelay;
1420                if (pkt->isRead() && !is_error) {
1421                    // sanity check
1422                    assert(pkt->getAddr() == tgt_pkt->getAddr());
1423                    assert(pkt->getSize() >= tgt_pkt->getSize());
1424
1425                    tgt_pkt->setData(pkt->getConstPtr<uint8_t>());
1426                }
1427            }
1428            tgt_pkt->makeTimingResponse();
1429            // if this packet is an error copy that to the new packet
1430            if (is_error)
1431                tgt_pkt->copyError(pkt);
1432            if (tgt_pkt->cmd == MemCmd::ReadResp &&
1433                (is_invalidate || mshr->hasPostInvalidate())) {
1434                // If intermediate cache got ReadRespWithInvalidate,
1435                // propagate that.  Response should not have
1436                // isInvalidate() set otherwise.
1437                tgt_pkt->cmd = MemCmd::ReadRespWithInvalidate;
1438                DPRINTF(Cache, "%s updated cmd to %s for addr %#llx\n",
1439                        __func__, tgt_pkt->cmdString(), tgt_pkt->getAddr());
1440            }
1441            // Reset the bus additional time as it is now accounted for
1442            tgt_pkt->headerDelay = tgt_pkt->payloadDelay = 0;
1443            cpuSidePort->schedTimingResp(tgt_pkt, completion_time, true);
1444            break;
1445
1446          case MSHR::Target::FromPrefetcher:
1447            assert(tgt_pkt->cmd == MemCmd::HardPFReq);
1448            if (blk)
1449                blk->status |= BlkHWPrefetched;
1450            delete tgt_pkt->req;
1451            delete tgt_pkt;
1452            break;
1453
1454          case MSHR::Target::FromSnoop:
1455            // I don't believe that a snoop can be in an error state
1456            assert(!is_error);
1457            // response to snoop request
1458            DPRINTF(Cache, "processing deferred snoop...\n");
1459            assert(!(is_invalidate && !mshr->hasPostInvalidate()));
1460            handleSnoop(tgt_pkt, blk, true, true, mshr->hasPostInvalidate());
1461            break;
1462
1463          default:
1464            panic("Illegal target->source enum %d\n", target->source);
1465        }
1466
1467        mshr->popTarget();
1468    }
1469
1470    if (blk && blk->isValid()) {
1471        // an invalidate response stemming from a write line request
1472        // should not invalidate the block, so check if the
1473        // invalidation should be discarded
1474        if (is_invalidate || mshr->hasPostInvalidate()) {
1475            invalidateBlock(blk);
1476        } else if (mshr->hasPostDowngrade()) {
1477            blk->status &= ~BlkWritable;
1478        }
1479    }
1480
1481    if (mshr->promoteDeferredTargets()) {
1482        // avoid later read getting stale data while write miss is
1483        // outstanding.. see comment in timingAccess()
1484        if (blk) {
1485            blk->status &= ~BlkReadable;
1486        }
1487        mq = mshr->queue;
1488        mq->markPending(mshr);
1489        schedMemSideSendEvent(clockEdge() + pkt->payloadDelay);
1490    } else {
1491        mq->deallocate(mshr);
1492        if (wasFull && !mq->isFull()) {
1493            clearBlocked((BlockedCause)mq->index);
1494        }
1495
1496        // Request the bus for a prefetch if this deallocation freed enough
1497        // MSHRs for a prefetch to take place
1498        if (prefetcher && mq == &mshrQueue && mshrQueue.canPrefetch()) {
1499            Tick next_pf_time = std::max(prefetcher->nextPrefetchReadyTime(),
1500                                         clockEdge());
1501            if (next_pf_time != MaxTick)
1502                schedMemSideSendEvent(next_pf_time);
1503        }
1504    }
1505    // reset the xbar additional timinig  as it is now accounted for
1506    pkt->headerDelay = pkt->payloadDelay = 0;
1507
1508    // copy writebacks to write buffer
1509    doWritebacks(writebacks, forward_time);
1510
1511    // if we used temp block, check to see if its valid and then clear it out
1512    if (blk == tempBlock && tempBlock->isValid()) {
1513        // We use forwardLatency here because we are copying
1514        // Writebacks/CleanEvicts to write buffer. It specifies the latency to
1515        // allocate an internal buffer and to schedule an event to the
1516        // queued port.
1517        if (blk->isDirty() || writebackClean) {
1518            PacketPtr wbPkt = writebackBlk(blk);
1519            allocateWriteBuffer(wbPkt, forward_time);
1520            // Set BLOCK_CACHED flag if cached above.
1521            if (isCachedAbove(wbPkt))
1522                wbPkt->setBlockCached();
1523        } else {
1524            PacketPtr wcPkt = cleanEvictBlk(blk);
1525            // Check to see if block is cached above. If not allocate
1526            // write buffer
1527            if (isCachedAbove(wcPkt))
1528                delete wcPkt;
1529            else
1530                allocateWriteBuffer(wcPkt, forward_time);
1531        }
1532        blk->invalidate();
1533    }
1534
1535    DPRINTF(Cache, "Leaving %s with %s for addr %#llx\n", __func__,
1536            pkt->cmdString(), pkt->getAddr());
1537    delete pkt;
1538}
1539
1540PacketPtr
1541Cache::writebackBlk(CacheBlk *blk)
1542{
1543    chatty_assert(!isReadOnly || writebackClean,
1544                  "Writeback from read-only cache");
1545    assert(blk && blk->isValid() && (blk->isDirty() || writebackClean));
1546
1547    writebacks[Request::wbMasterId]++;
1548
1549    Request *req = new Request(tags->regenerateBlkAddr(blk->tag, blk->set),
1550                               blkSize, 0, Request::wbMasterId);
1551    if (blk->isSecure())
1552        req->setFlags(Request::SECURE);
1553
1554    req->taskId(blk->task_id);
1555    blk->task_id= ContextSwitchTaskId::Unknown;
1556    blk->tickInserted = curTick();
1557
1558    PacketPtr pkt =
1559        new Packet(req, blk->isDirty() ?
1560                   MemCmd::WritebackDirty : MemCmd::WritebackClean);
1561
1562    DPRINTF(Cache, "Create Writeback %#llx writable: %d, dirty: %d\n",
1563            pkt->getAddr(), blk->isWritable(), blk->isDirty());
1564
1565    if (blk->isWritable()) {
1566        // not asserting shared means we pass the block in modified
1567        // state, mark our own block non-writeable
1568        blk->status &= ~BlkWritable;
1569    } else {
1570        // we are in the Owned state, tell the receiver
1571        pkt->setHasSharers();
1572    }
1573
1574    // make sure the block is not marked dirty
1575    blk->status &= ~BlkDirty;
1576
1577    pkt->allocate();
1578    std::memcpy(pkt->getPtr<uint8_t>(), blk->data, blkSize);
1579
1580    return pkt;
1581}
1582
1583PacketPtr
1584Cache::cleanEvictBlk(CacheBlk *blk)
1585{
1586    assert(!writebackClean);
1587    assert(blk && blk->isValid() && !blk->isDirty());
1588    // Creating a zero sized write, a message to the snoop filter
1589    Request *req =
1590        new Request(tags->regenerateBlkAddr(blk->tag, blk->set), blkSize, 0,
1591                    Request::wbMasterId);
1592    if (blk->isSecure())
1593        req->setFlags(Request::SECURE);
1594
1595    req->taskId(blk->task_id);
1596    blk->task_id = ContextSwitchTaskId::Unknown;
1597    blk->tickInserted = curTick();
1598
1599    PacketPtr pkt = new Packet(req, MemCmd::CleanEvict);
1600    pkt->allocate();
1601    DPRINTF(Cache, "%s%s %x Create CleanEvict\n", pkt->cmdString(),
1602            pkt->req->isInstFetch() ? " (ifetch)" : "",
1603            pkt->getAddr());
1604
1605    return pkt;
1606}
1607
1608void
1609Cache::memWriteback()
1610{
1611    CacheBlkVisitorWrapper visitor(*this, &Cache::writebackVisitor);
1612    tags->forEachBlk(visitor);
1613}
1614
1615void
1616Cache::memInvalidate()
1617{
1618    CacheBlkVisitorWrapper visitor(*this, &Cache::invalidateVisitor);
1619    tags->forEachBlk(visitor);
1620}
1621
1622bool
1623Cache::isDirty() const
1624{
1625    CacheBlkIsDirtyVisitor visitor;
1626    tags->forEachBlk(visitor);
1627
1628    return visitor.isDirty();
1629}
1630
1631bool
1632Cache::writebackVisitor(CacheBlk &blk)
1633{
1634    if (blk.isDirty()) {
1635        assert(blk.isValid());
1636
1637        Request request(tags->regenerateBlkAddr(blk.tag, blk.set),
1638                        blkSize, 0, Request::funcMasterId);
1639        request.taskId(blk.task_id);
1640
1641        Packet packet(&request, MemCmd::WriteReq);
1642        packet.dataStatic(blk.data);
1643
1644        memSidePort->sendFunctional(&packet);
1645
1646        blk.status &= ~BlkDirty;
1647    }
1648
1649    return true;
1650}
1651
1652bool
1653Cache::invalidateVisitor(CacheBlk &blk)
1654{
1655
1656    if (blk.isDirty())
1657        warn_once("Invalidating dirty cache lines. Expect things to break.\n");
1658
1659    if (blk.isValid()) {
1660        assert(!blk.isDirty());
1661        tags->invalidate(&blk);
1662        blk.invalidate();
1663    }
1664
1665    return true;
1666}
1667
1668CacheBlk*
1669Cache::allocateBlock(Addr addr, bool is_secure, PacketList &writebacks)
1670{
1671    CacheBlk *blk = tags->findVictim(addr);
1672
1673    // It is valid to return NULL if there is no victim
1674    if (!blk)
1675        return nullptr;
1676
1677    if (blk->isValid()) {
1678        Addr repl_addr = tags->regenerateBlkAddr(blk->tag, blk->set);
1679        MSHR *repl_mshr = mshrQueue.findMatch(repl_addr, blk->isSecure());
1680        if (repl_mshr) {
1681            // must be an outstanding upgrade request
1682            // on a block we're about to replace...
1683            assert(!blk->isWritable() || blk->isDirty());
1684            assert(repl_mshr->needsWritable());
1685            // too hard to replace block with transient state
1686            // allocation failed, block not inserted
1687            return NULL;
1688        } else {
1689            DPRINTF(Cache, "replacement: replacing %#llx (%s) with %#llx (%s): %s\n",
1690                    repl_addr, blk->isSecure() ? "s" : "ns",
1691                    addr, is_secure ? "s" : "ns",
1692                    blk->isDirty() ? "writeback" : "clean");
1693
1694            // Will send up Writeback/CleanEvict snoops via isCachedAbove
1695            // when pushing this writeback list into the write buffer.
1696            if (blk->isDirty() || writebackClean) {
1697                // Save writeback packet for handling by caller
1698                writebacks.push_back(writebackBlk(blk));
1699            } else {
1700                writebacks.push_back(cleanEvictBlk(blk));
1701            }
1702        }
1703    }
1704
1705    return blk;
1706}
1707
1708void
1709Cache::invalidateBlock(CacheBlk *blk)
1710{
1711    if (blk != tempBlock)
1712        tags->invalidate(blk);
1713    blk->invalidate();
1714}
1715
1716// Note that the reason we return a list of writebacks rather than
1717// inserting them directly in the write buffer is that this function
1718// is called by both atomic and timing-mode accesses, and in atomic
1719// mode we don't mess with the write buffer (we just perform the
1720// writebacks atomically once the original request is complete).
1721CacheBlk*
1722Cache::handleFill(PacketPtr pkt, CacheBlk *blk, PacketList &writebacks,
1723                  bool allocate)
1724{
1725    assert(pkt->isResponse() || pkt->cmd == MemCmd::WriteLineReq);
1726    Addr addr = pkt->getAddr();
1727    bool is_secure = pkt->isSecure();
1728#if TRACING_ON
1729    CacheBlk::State old_state = blk ? blk->status : 0;
1730#endif
1731
1732    // When handling a fill, discard any CleanEvicts for the
1733    // same address in write buffer.
1734    Addr M5_VAR_USED blk_addr = blockAlign(pkt->getAddr());
1735    std::vector<MSHR *> M5_VAR_USED wbs;
1736    assert (!writeBuffer.findMatches(blk_addr, is_secure, wbs));
1737
1738    if (blk == NULL) {
1739        // better have read new data...
1740        assert(pkt->hasData());
1741
1742        // only read responses and write-line requests have data;
1743        // note that we don't write the data here for write-line - that
1744        // happens in the subsequent satisfyCpuSideRequest.
1745        assert(pkt->isRead() || pkt->cmd == MemCmd::WriteLineReq);
1746
1747        // need to do a replacement if allocating, otherwise we stick
1748        // with the temporary storage
1749        blk = allocate ? allocateBlock(addr, is_secure, writebacks) : NULL;
1750
1751        if (blk == NULL) {
1752            // No replaceable block or a mostly exclusive
1753            // cache... just use temporary storage to complete the
1754            // current request and then get rid of it
1755            assert(!tempBlock->isValid());
1756            blk = tempBlock;
1757            tempBlock->set = tags->extractSet(addr);
1758            tempBlock->tag = tags->extractTag(addr);
1759            // @todo: set security state as well...
1760            DPRINTF(Cache, "using temp block for %#llx (%s)\n", addr,
1761                    is_secure ? "s" : "ns");
1762        } else {
1763            tags->insertBlock(pkt, blk);
1764        }
1765
1766        // we should never be overwriting a valid block
1767        assert(!blk->isValid());
1768    } else {
1769        // existing block... probably an upgrade
1770        assert(blk->tag == tags->extractTag(addr));
1771        // either we're getting new data or the block should already be valid
1772        assert(pkt->hasData() || blk->isValid());
1773        // don't clear block status... if block is already dirty we
1774        // don't want to lose that
1775    }
1776
1777    if (is_secure)
1778        blk->status |= BlkSecure;
1779    blk->status |= BlkValid | BlkReadable;
1780
1781    // sanity check for whole-line writes, which should always be
1782    // marked as writable as part of the fill, and then later marked
1783    // dirty as part of satisfyCpuSideRequest
1784    if (pkt->cmd == MemCmd::WriteLineReq) {
1785        assert(!pkt->hasSharers());
1786        // at the moment other caches do not respond to the
1787        // invalidation requests corresponding to a whole-line write
1788        assert(!pkt->cacheResponding());
1789    }
1790
1791    // here we deal with setting the appropriate state of the line,
1792    // and we start by looking at the hasSharers flag, and ignore the
1793    // cacheResponding flag (normally signalling dirty data) if the
1794    // packet has sharers, thus the line is never allocated as Owned
1795    // (dirty but not writable), and always ends up being either
1796    // Shared, Exclusive or Modified, see Packet::setCacheResponding
1797    // for more details
1798    if (!pkt->hasSharers()) {
1799        // we could get a writable line from memory (rather than a
1800        // cache) even in a read-only cache, note that we set this bit
1801        // even for a read-only cache, possibly revisit this decision
1802        blk->status |= BlkWritable;
1803
1804        // check if we got this via cache-to-cache transfer (i.e., from a
1805        // cache that had the block in Modified or Owned state)
1806        if (pkt->cacheResponding()) {
1807            // we got the block in Modified state, and invalidated the
1808            // owners copy
1809            blk->status |= BlkDirty;
1810
1811            chatty_assert(!isReadOnly, "Should never see dirty snoop response "
1812                          "in read-only cache %s\n", name());
1813        }
1814    }
1815
1816    DPRINTF(Cache, "Block addr %#llx (%s) moving from state %x to %s\n",
1817            addr, is_secure ? "s" : "ns", old_state, blk->print());
1818
1819    // if we got new data, copy it in (checking for a read response
1820    // and a response that has data is the same in the end)
1821    if (pkt->isRead()) {
1822        // sanity checks
1823        assert(pkt->hasData());
1824        assert(pkt->getSize() == blkSize);
1825
1826        std::memcpy(blk->data, pkt->getConstPtr<uint8_t>(), blkSize);
1827    }
1828    // We pay for fillLatency here.
1829    blk->whenReady = clockEdge() + fillLatency * clockPeriod() +
1830        pkt->payloadDelay;
1831
1832    return blk;
1833}
1834
1835
1836/////////////////////////////////////////////////////
1837//
1838// Snoop path: requests coming in from the memory side
1839//
1840/////////////////////////////////////////////////////
1841
1842void
1843Cache::doTimingSupplyResponse(PacketPtr req_pkt, const uint8_t *blk_data,
1844                              bool already_copied, bool pending_inval)
1845{
1846    // sanity check
1847    assert(req_pkt->isRequest());
1848    assert(req_pkt->needsResponse());
1849
1850    DPRINTF(Cache, "%s for %s addr %#llx size %d\n", __func__,
1851            req_pkt->cmdString(), req_pkt->getAddr(), req_pkt->getSize());
1852    // timing-mode snoop responses require a new packet, unless we
1853    // already made a copy...
1854    PacketPtr pkt = req_pkt;
1855    if (!already_copied)
1856        // do not clear flags, and allocate space for data if the
1857        // packet needs it (the only packets that carry data are read
1858        // responses)
1859        pkt = new Packet(req_pkt, false, req_pkt->isRead());
1860
1861    assert(req_pkt->req->isUncacheable() || req_pkt->isInvalidate() ||
1862           pkt->hasSharers());
1863    pkt->makeTimingResponse();
1864    if (pkt->isRead()) {
1865        pkt->setDataFromBlock(blk_data, blkSize);
1866    }
1867    if (pkt->cmd == MemCmd::ReadResp && pending_inval) {
1868        // Assume we defer a response to a read from a far-away cache
1869        // A, then later defer a ReadExcl from a cache B on the same
1870        // bus as us. We'll assert cacheResponding in both cases, but
1871        // in the latter case cacheResponding will keep the
1872        // invalidation from reaching cache A. This special response
1873        // tells cache A that it gets the block to satisfy its read,
1874        // but must immediately invalidate it.
1875        pkt->cmd = MemCmd::ReadRespWithInvalidate;
1876    }
1877    // Here we consider forward_time, paying for just forward latency and
1878    // also charging the delay provided by the xbar.
1879    // forward_time is used as send_time in next allocateWriteBuffer().
1880    Tick forward_time = clockEdge(forwardLatency) + pkt->headerDelay;
1881    // Here we reset the timing of the packet.
1882    pkt->headerDelay = pkt->payloadDelay = 0;
1883    DPRINTF(Cache, "%s created response: %s addr %#llx size %d tick: %lu\n",
1884            __func__, pkt->cmdString(), pkt->getAddr(), pkt->getSize(),
1885            forward_time);
1886    memSidePort->schedTimingSnoopResp(pkt, forward_time, true);
1887}
1888
1889uint32_t
1890Cache::handleSnoop(PacketPtr pkt, CacheBlk *blk, bool is_timing,
1891                   bool is_deferred, bool pending_inval)
1892{
1893    DPRINTF(Cache, "%s for %s addr %#llx size %d\n", __func__,
1894            pkt->cmdString(), pkt->getAddr(), pkt->getSize());
1895    // deferred snoops can only happen in timing mode
1896    assert(!(is_deferred && !is_timing));
1897    // pending_inval only makes sense on deferred snoops
1898    assert(!(pending_inval && !is_deferred));
1899    assert(pkt->isRequest());
1900
1901    // the packet may get modified if we or a forwarded snooper
1902    // responds in atomic mode, so remember a few things about the
1903    // original packet up front
1904    bool invalidate = pkt->isInvalidate();
1905    bool M5_VAR_USED needs_writable = pkt->needsWritable();
1906
1907    // at the moment we could get an uncacheable write which does not
1908    // have the invalidate flag, and we need a suitable way of dealing
1909    // with this case
1910    panic_if(invalidate && pkt->req->isUncacheable(),
1911             "%s got an invalidating uncacheable snoop request %s to %#llx",
1912             name(), pkt->cmdString(), pkt->getAddr());
1913
1914    uint32_t snoop_delay = 0;
1915
1916    if (forwardSnoops) {
1917        // first propagate snoop upward to see if anyone above us wants to
1918        // handle it.  save & restore packet src since it will get
1919        // rewritten to be relative to cpu-side bus (if any)
1920        bool alreadyResponded = pkt->cacheResponding();
1921        if (is_timing) {
1922            // copy the packet so that we can clear any flags before
1923            // forwarding it upwards, we also allocate data (passing
1924            // the pointer along in case of static data), in case
1925            // there is a snoop hit in upper levels
1926            Packet snoopPkt(pkt, true, true);
1927            snoopPkt.setExpressSnoop();
1928            // the snoop packet does not need to wait any additional
1929            // time
1930            snoopPkt.headerDelay = snoopPkt.payloadDelay = 0;
1931            cpuSidePort->sendTimingSnoopReq(&snoopPkt);
1932
1933            // add the header delay (including crossbar and snoop
1934            // delays) of the upward snoop to the snoop delay for this
1935            // cache
1936            snoop_delay += snoopPkt.headerDelay;
1937
1938            if (snoopPkt.cacheResponding()) {
1939                // cache-to-cache response from some upper cache
1940                assert(!alreadyResponded);
1941                pkt->setCacheResponding();
1942            }
1943            // upstream cache has the block, or has an outstanding
1944            // MSHR, pass the flag on
1945            if (snoopPkt.hasSharers()) {
1946                pkt->setHasSharers();
1947            }
1948            // If this request is a prefetch or clean evict and an upper level
1949            // signals block present, make sure to propagate the block
1950            // presence to the requester.
1951            if (snoopPkt.isBlockCached()) {
1952                pkt->setBlockCached();
1953            }
1954        } else {
1955            cpuSidePort->sendAtomicSnoop(pkt);
1956            if (!alreadyResponded && pkt->cacheResponding()) {
1957                // cache-to-cache response from some upper cache:
1958                // forward response to original requester
1959                assert(pkt->isResponse());
1960            }
1961        }
1962    }
1963
1964    if (!blk || !blk->isValid()) {
1965        DPRINTF(Cache, "%s snoop miss for %s addr %#llx size %d\n",
1966                __func__, pkt->cmdString(), pkt->getAddr(), pkt->getSize());
1967        return snoop_delay;
1968    } else {
1969       DPRINTF(Cache, "%s snoop hit for %s for addr %#llx size %d, "
1970               "old state is %s\n", __func__, pkt->cmdString(),
1971               pkt->getAddr(), pkt->getSize(), blk->print());
1972    }
1973
1974    chatty_assert(!(isReadOnly && blk->isDirty()),
1975                  "Should never have a dirty block in a read-only cache %s\n",
1976                  name());
1977
1978    // We may end up modifying both the block state and the packet (if
1979    // we respond in atomic mode), so just figure out what to do now
1980    // and then do it later. If we find dirty data while snooping for
1981    // an invalidate, we don't need to send a response. The
1982    // invalidation itself is taken care of below.
1983    bool respond = blk->isDirty() && pkt->needsResponse() &&
1984        pkt->cmd != MemCmd::InvalidateReq;
1985    bool have_writable = blk->isWritable();
1986
1987    // Invalidate any prefetch's from below that would strip write permissions
1988    // MemCmd::HardPFReq is only observed by upstream caches.  After missing
1989    // above and in it's own cache, a new MemCmd::ReadReq is created that
1990    // downstream caches observe.
1991    if (pkt->mustCheckAbove()) {
1992        DPRINTF(Cache, "Found addr %#llx in upper level cache for snoop %s from"
1993                " lower cache\n", pkt->getAddr(), pkt->cmdString());
1994        pkt->setBlockCached();
1995        return snoop_delay;
1996    }
1997
1998    if (pkt->isRead() && !invalidate) {
1999        // reading without requiring the line in a writable state
2000        assert(!needs_writable);
2001        pkt->setHasSharers();
2002
2003        // if the requesting packet is uncacheable, retain the line in
2004        // the current state, otherwhise unset the writable flag,
2005        // which means we go from Modified to Owned (and will respond
2006        // below), remain in Owned (and will respond below), from
2007        // Exclusive to Shared, or remain in Shared
2008        if (!pkt->req->isUncacheable())
2009            blk->status &= ~BlkWritable;
2010    }
2011
2012    if (respond) {
2013        // prevent anyone else from responding, cache as well as
2014        // memory, and also prevent any memory from even seeing the
2015        // request
2016        pkt->setCacheResponding();
2017        if (have_writable) {
2018            // inform the cache hierarchy that this cache had the line
2019            // in the Modified state so that we avoid unnecessary
2020            // invalidations (see Packet::setResponderHadWritable)
2021            pkt->setResponderHadWritable();
2022
2023            // in the case of an uncacheable request there is no point
2024            // in setting the responderHadWritable flag, but since the
2025            // recipient does not care there is no harm in doing so
2026        } else {
2027            // if the packet has needsWritable set we invalidate our
2028            // copy below and all other copies will be invalidates
2029            // through express snoops, and if needsWritable is not set
2030            // we already called setHasSharers above
2031        }
2032
2033        // if we are returning a writable and dirty (Modified) line,
2034        // we should be invalidating the line
2035        panic_if(!invalidate && !pkt->hasSharers(),
2036                 "%s is passing a Modified line through %s to %#llx, "
2037                 "but keeping the block",
2038                 name(), pkt->cmdString(), pkt->getAddr());
2039
2040        if (is_timing) {
2041            doTimingSupplyResponse(pkt, blk->data, is_deferred, pending_inval);
2042        } else {
2043            pkt->makeAtomicResponse();
2044            pkt->setDataFromBlock(blk->data, blkSize);
2045        }
2046    }
2047
2048    if (!respond && is_timing && is_deferred) {
2049        // if it's a deferred timing snoop to which we are not
2050        // responding, then we've made a copy of both the request and
2051        // the packet, delete them here
2052        assert(pkt->needsResponse());
2053        delete pkt->req;
2054        delete pkt;
2055    }
2056
2057    // Do this last in case it deallocates block data or something
2058    // like that
2059    if (invalidate) {
2060        invalidateBlock(blk);
2061    }
2062
2063    DPRINTF(Cache, "new state is %s\n", blk->print());
2064
2065    return snoop_delay;
2066}
2067
2068
2069void
2070Cache::recvTimingSnoopReq(PacketPtr pkt)
2071{
2072    DPRINTF(Cache, "%s for %s addr %#llx size %d\n", __func__,
2073            pkt->cmdString(), pkt->getAddr(), pkt->getSize());
2074
2075    // Snoops shouldn't happen when bypassing caches
2076    assert(!system->bypassCaches());
2077
2078    // no need to snoop requests that are not in range
2079    if (!inRange(pkt->getAddr())) {
2080        return;
2081    }
2082
2083    bool is_secure = pkt->isSecure();
2084    CacheBlk *blk = tags->findBlock(pkt->getAddr(), is_secure);
2085
2086    Addr blk_addr = blockAlign(pkt->getAddr());
2087    MSHR *mshr = mshrQueue.findMatch(blk_addr, is_secure);
2088
2089    // Update the latency cost of the snoop so that the crossbar can
2090    // account for it. Do not overwrite what other neighbouring caches
2091    // have already done, rather take the maximum. The update is
2092    // tentative, for cases where we return before an upward snoop
2093    // happens below.
2094    pkt->snoopDelay = std::max<uint32_t>(pkt->snoopDelay,
2095                                         lookupLatency * clockPeriod());
2096
2097    // Inform request(Prefetch, CleanEvict or Writeback) from below of
2098    // MSHR hit, set setBlockCached.
2099    if (mshr && pkt->mustCheckAbove()) {
2100        DPRINTF(Cache, "Setting block cached for %s from"
2101                "lower cache on mshr hit %#x\n",
2102                pkt->cmdString(), pkt->getAddr());
2103        pkt->setBlockCached();
2104        return;
2105    }
2106
2107    // Let the MSHR itself track the snoop and decide whether we want
2108    // to go ahead and do the regular cache snoop
2109    if (mshr && mshr->handleSnoop(pkt, order++)) {
2110        DPRINTF(Cache, "Deferring snoop on in-service MSHR to blk %#llx (%s)."
2111                "mshrs: %s\n", blk_addr, is_secure ? "s" : "ns",
2112                mshr->print());
2113
2114        if (mshr->getNumTargets() > numTarget)
2115            warn("allocating bonus target for snoop"); //handle later
2116        return;
2117    }
2118
2119    //We also need to check the writeback buffers and handle those
2120    std::vector<MSHR *> writebacks;
2121    if (writeBuffer.findMatches(blk_addr, is_secure, writebacks)) {
2122        DPRINTF(Cache, "Snoop hit in writeback to addr %#llx (%s)\n",
2123                pkt->getAddr(), is_secure ? "s" : "ns");
2124
2125        // Look through writebacks for any cachable writes.
2126        // We should only ever find a single match
2127        assert(writebacks.size() == 1);
2128        MSHR *wb_entry = writebacks[0];
2129        // Expect to see only Writebacks and/or CleanEvicts here, both of
2130        // which should not be generated for uncacheable data.
2131        assert(!wb_entry->isUncacheable());
2132        // There should only be a single request responsible for generating
2133        // Writebacks/CleanEvicts.
2134        assert(wb_entry->getNumTargets() == 1);
2135        PacketPtr wb_pkt = wb_entry->getTarget()->pkt;
2136        assert(wb_pkt->isEviction());
2137
2138        if (pkt->isEviction()) {
2139            // if the block is found in the write queue, set the BLOCK_CACHED
2140            // flag for Writeback/CleanEvict snoop. On return the snoop will
2141            // propagate the BLOCK_CACHED flag in Writeback packets and prevent
2142            // any CleanEvicts from travelling down the memory hierarchy.
2143            pkt->setBlockCached();
2144            DPRINTF(Cache, "Squashing %s from lower cache on writequeue hit"
2145                    " %#x\n", pkt->cmdString(), pkt->getAddr());
2146            return;
2147        }
2148
2149        if (wb_pkt->cmd == MemCmd::WritebackDirty) {
2150            // we have dirty data, and so will proceed to respond
2151            pkt->setCacheResponding();
2152            if (!pkt->needsWritable()) {
2153                // the packet should end up in the Shared state (non
2154                // writable) on the completion of the fill
2155                pkt->setHasSharers();
2156                // similarly, the writeback is no longer passing
2157                // writeable (the receiving cache should consider the
2158                // block Owned rather than Modified)
2159                wb_pkt->setHasSharers();
2160            } else {
2161                // we need to invalidate our copy. we do that
2162                // below.
2163                assert(pkt->isInvalidate());
2164            }
2165            doTimingSupplyResponse(pkt, wb_pkt->getConstPtr<uint8_t>(),
2166                                   false, false);
2167        } else {
2168            // on hitting a clean writeback we play it safe and do not
2169            // provide a response, the block may be dirty somewhere
2170            // else
2171            assert(wb_pkt->isCleanEviction());
2172            // The cache technically holds the block until the
2173            // corresponding message reaches the crossbar
2174            // below. Therefore when a snoop encounters a CleanEvict
2175            // or WritebackClean message we must call
2176            // setHasSharers (just like when it encounters a
2177            // Writeback) to avoid the snoop filter prematurely
2178            // clearing the holder bit in the crossbar below
2179            if (!pkt->needsWritable()) {
2180                pkt->setHasSharers();
2181                // the writeback is no longer passing writeable (the
2182                // receiving cache should consider the block Owned
2183                // rather than Modified)
2184                wb_pkt->setHasSharers();
2185            } else {
2186                assert(pkt->isInvalidate());
2187            }
2188        }
2189
2190        if (pkt->isInvalidate()) {
2191            // Invalidation trumps our writeback... discard here
2192            // Note: markInService will remove entry from writeback buffer.
2193            markInService(wb_entry, false);
2194            delete wb_pkt;
2195        }
2196    }
2197
2198    // If this was a shared writeback, there may still be
2199    // other shared copies above that require invalidation.
2200    // We could be more selective and return here if the
2201    // request is non-exclusive or if the writeback is
2202    // exclusive.
2203    uint32_t snoop_delay = handleSnoop(pkt, blk, true, false, false);
2204
2205    // Override what we did when we first saw the snoop, as we now
2206    // also have the cost of the upwards snoops to account for
2207    pkt->snoopDelay = std::max<uint32_t>(pkt->snoopDelay, snoop_delay +
2208                                         lookupLatency * clockPeriod());
2209}
2210
2211bool
2212Cache::CpuSidePort::recvTimingSnoopResp(PacketPtr pkt)
2213{
2214    // Express snoop responses from master to slave, e.g., from L1 to L2
2215    cache->recvTimingSnoopResp(pkt);
2216    return true;
2217}
2218
2219Tick
2220Cache::recvAtomicSnoop(PacketPtr pkt)
2221{
2222    // Snoops shouldn't happen when bypassing caches
2223    assert(!system->bypassCaches());
2224
2225    // no need to snoop requests that are not in range.
2226    if (!inRange(pkt->getAddr())) {
2227        return 0;
2228    }
2229
2230    CacheBlk *blk = tags->findBlock(pkt->getAddr(), pkt->isSecure());
2231    uint32_t snoop_delay = handleSnoop(pkt, blk, false, false, false);
2232    return snoop_delay + lookupLatency * clockPeriod();
2233}
2234
2235
2236MSHR *
2237Cache::getNextMSHR()
2238{
2239    // Check both MSHR queue and write buffer for potential requests,
2240    // note that null does not mean there is no request, it could
2241    // simply be that it is not ready
2242    MSHR *miss_mshr  = mshrQueue.getNextMSHR();
2243    MSHR *write_mshr = writeBuffer.getNextMSHR();
2244
2245    // If we got a write buffer request ready, first priority is a
2246    // full write buffer, otherwhise we favour the miss requests
2247    if (write_mshr &&
2248        ((writeBuffer.isFull() && writeBuffer.inServiceEntries == 0) ||
2249         !miss_mshr)) {
2250        // need to search MSHR queue for conflicting earlier miss.
2251        MSHR *conflict_mshr =
2252            mshrQueue.findPending(write_mshr->blkAddr,
2253                                  write_mshr->isSecure);
2254
2255        if (conflict_mshr && conflict_mshr->order < write_mshr->order) {
2256            // Service misses in order until conflict is cleared.
2257            return conflict_mshr;
2258
2259            // @todo Note that we ignore the ready time of the conflict here
2260        }
2261
2262        // No conflicts; issue write
2263        return write_mshr;
2264    } else if (miss_mshr) {
2265        // need to check for conflicting earlier writeback
2266        MSHR *conflict_mshr =
2267            writeBuffer.findPending(miss_mshr->blkAddr,
2268                                    miss_mshr->isSecure);
2269        if (conflict_mshr) {
2270            // not sure why we don't check order here... it was in the
2271            // original code but commented out.
2272
2273            // The only way this happens is if we are
2274            // doing a write and we didn't have permissions
2275            // then subsequently saw a writeback (owned got evicted)
2276            // We need to make sure to perform the writeback first
2277            // To preserve the dirty data, then we can issue the write
2278
2279            // should we return write_mshr here instead?  I.e. do we
2280            // have to flush writes in order?  I don't think so... not
2281            // for Alpha anyway.  Maybe for x86?
2282            return conflict_mshr;
2283
2284            // @todo Note that we ignore the ready time of the conflict here
2285        }
2286
2287        // No conflicts; issue read
2288        return miss_mshr;
2289    }
2290
2291    // fall through... no pending requests.  Try a prefetch.
2292    assert(!miss_mshr && !write_mshr);
2293    if (prefetcher && mshrQueue.canPrefetch()) {
2294        // If we have a miss queue slot, we can try a prefetch
2295        PacketPtr pkt = prefetcher->getPacket();
2296        if (pkt) {
2297            Addr pf_addr = blockAlign(pkt->getAddr());
2298            if (!tags->findBlock(pf_addr, pkt->isSecure()) &&
2299                !mshrQueue.findMatch(pf_addr, pkt->isSecure()) &&
2300                !writeBuffer.findMatch(pf_addr, pkt->isSecure())) {
2301                // Update statistic on number of prefetches issued
2302                // (hwpf_mshr_misses)
2303                assert(pkt->req->masterId() < system->maxMasters());
2304                mshr_misses[pkt->cmdToIndex()][pkt->req->masterId()]++;
2305
2306                // allocate an MSHR and return it, note
2307                // that we send the packet straight away, so do not
2308                // schedule the send
2309                return allocateMissBuffer(pkt, curTick(), false);
2310            } else {
2311                // free the request and packet
2312                delete pkt->req;
2313                delete pkt;
2314            }
2315        }
2316    }
2317
2318    return NULL;
2319}
2320
2321bool
2322Cache::isCachedAbove(PacketPtr pkt, bool is_timing) const
2323{
2324    if (!forwardSnoops)
2325        return false;
2326    // Mirroring the flow of HardPFReqs, the cache sends CleanEvict and
2327    // Writeback snoops into upper level caches to check for copies of the
2328    // same block. Using the BLOCK_CACHED flag with the Writeback/CleanEvict
2329    // packet, the cache can inform the crossbar below of presence or absence
2330    // of the block.
2331    if (is_timing) {
2332        Packet snoop_pkt(pkt, true, false);
2333        snoop_pkt.setExpressSnoop();
2334        // Assert that packet is either Writeback or CleanEvict and not a
2335        // prefetch request because prefetch requests need an MSHR and may
2336        // generate a snoop response.
2337        assert(pkt->isEviction());
2338        snoop_pkt.senderState = NULL;
2339        cpuSidePort->sendTimingSnoopReq(&snoop_pkt);
2340        // Writeback/CleanEvict snoops do not generate a snoop response.
2341        assert(!(snoop_pkt.cacheResponding()));
2342        return snoop_pkt.isBlockCached();
2343    } else {
2344        cpuSidePort->sendAtomicSnoop(pkt);
2345        return pkt->isBlockCached();
2346    }
2347}
2348
2349PacketPtr
2350Cache::getTimingPacket()
2351{
2352    MSHR *mshr = getNextMSHR();
2353
2354    if (mshr == NULL) {
2355        return NULL;
2356    }
2357
2358    // use request from 1st target
2359    PacketPtr tgt_pkt = mshr->getTarget()->pkt;
2360    PacketPtr pkt = NULL;
2361
2362    DPRINTF(CachePort, "%s %s for addr %#llx size %d\n", __func__,
2363            tgt_pkt->cmdString(), tgt_pkt->getAddr(), tgt_pkt->getSize());
2364
2365    CacheBlk *blk = tags->findBlock(mshr->blkAddr, mshr->isSecure);
2366
2367    if (tgt_pkt->cmd == MemCmd::HardPFReq && forwardSnoops) {
2368        // We need to check the caches above us to verify that
2369        // they don't have a copy of this block in the dirty state
2370        // at the moment. Without this check we could get a stale
2371        // copy from memory that might get used in place of the
2372        // dirty one.
2373        Packet snoop_pkt(tgt_pkt, true, false);
2374        snoop_pkt.setExpressSnoop();
2375        // We are sending this packet upwards, but if it hits we will
2376        // get a snoop response that we end up treating just like a
2377        // normal response, hence it needs the MSHR as its sender
2378        // state
2379        snoop_pkt.senderState = mshr;
2380        cpuSidePort->sendTimingSnoopReq(&snoop_pkt);
2381
2382        // Check to see if the prefetch was squashed by an upper cache (to
2383        // prevent us from grabbing the line) or if a Check to see if a
2384        // writeback arrived between the time the prefetch was placed in
2385        // the MSHRs and when it was selected to be sent or if the
2386        // prefetch was squashed by an upper cache.
2387
2388        // It is important to check cacheResponding before
2389        // prefetchSquashed. If another cache has committed to
2390        // responding, it will be sending a dirty response which will
2391        // arrive at the MSHR allocated for this request. Checking the
2392        // prefetchSquash first may result in the MSHR being
2393        // prematurely deallocated.
2394        if (snoop_pkt.cacheResponding()) {
2395            auto M5_VAR_USED r = outstandingSnoop.insert(snoop_pkt.req);
2396            assert(r.second);
2397
2398            // if we are getting a snoop response with no sharers it
2399            // will be allocated as Modified
2400            bool pending_modified_resp = !snoop_pkt.hasSharers();
2401            markInService(mshr, pending_modified_resp);
2402
2403            DPRINTF(Cache, "Upward snoop of prefetch for addr"
2404                    " %#x (%s) hit\n",
2405                    tgt_pkt->getAddr(), tgt_pkt->isSecure()? "s": "ns");
2406            return NULL;
2407        }
2408
2409        if (snoop_pkt.isBlockCached() || blk != NULL) {
2410            DPRINTF(Cache, "Block present, prefetch squashed by cache.  "
2411                    "Deallocating mshr target %#x.\n",
2412                    mshr->blkAddr);
2413            // Deallocate the mshr target
2414            if (mshr->queue->forceDeallocateTarget(mshr)) {
2415                // Clear block if this deallocation resulted freed an
2416                // mshr when all had previously been utilized
2417                clearBlocked((BlockedCause)(mshr->queue->index));
2418            }
2419            return NULL;
2420        }
2421    }
2422
2423    if (mshr->isForwardNoResponse()) {
2424        // no response expected, just forward packet as it is
2425        assert(tags->findBlock(mshr->blkAddr, mshr->isSecure) == NULL);
2426        pkt = tgt_pkt;
2427    } else {
2428        pkt = getBusPacket(tgt_pkt, blk, mshr->needsWritable());
2429
2430        mshr->isForward = (pkt == NULL);
2431
2432        if (mshr->isForward) {
2433            // not a cache block request, but a response is expected
2434            // make copy of current packet to forward, keep current
2435            // copy for response handling
2436            pkt = new Packet(tgt_pkt, false, true);
2437            if (pkt->isWrite()) {
2438                pkt->setData(tgt_pkt->getConstPtr<uint8_t>());
2439            }
2440        }
2441    }
2442
2443    assert(pkt != NULL);
2444    // play it safe and append (rather than set) the sender state, as
2445    // forwarded packets may already have existing state
2446    pkt->pushSenderState(mshr);
2447    return pkt;
2448}
2449
2450
2451Tick
2452Cache::nextMSHRReadyTime() const
2453{
2454    Tick nextReady = std::min(mshrQueue.nextMSHRReadyTime(),
2455                              writeBuffer.nextMSHRReadyTime());
2456
2457    // Don't signal prefetch ready time if no MSHRs available
2458    // Will signal once enoguh MSHRs are deallocated
2459    if (prefetcher && mshrQueue.canPrefetch()) {
2460        nextReady = std::min(nextReady,
2461                             prefetcher->nextPrefetchReadyTime());
2462    }
2463
2464    return nextReady;
2465}
2466
2467void
2468Cache::serialize(CheckpointOut &cp) const
2469{
2470    bool dirty(isDirty());
2471
2472    if (dirty) {
2473        warn("*** The cache still contains dirty data. ***\n");
2474        warn("    Make sure to drain the system using the correct flags.\n");
2475        warn("    This checkpoint will not restore correctly and dirty data in "
2476             "the cache will be lost!\n");
2477    }
2478
2479    // Since we don't checkpoint the data in the cache, any dirty data
2480    // will be lost when restoring from a checkpoint of a system that
2481    // wasn't drained properly. Flag the checkpoint as invalid if the
2482    // cache contains dirty data.
2483    bool bad_checkpoint(dirty);
2484    SERIALIZE_SCALAR(bad_checkpoint);
2485}
2486
2487void
2488Cache::unserialize(CheckpointIn &cp)
2489{
2490    bool bad_checkpoint;
2491    UNSERIALIZE_SCALAR(bad_checkpoint);
2492    if (bad_checkpoint) {
2493        fatal("Restoring from checkpoints with dirty caches is not supported "
2494              "in the classic memory system. Please remove any caches or "
2495              " drain them properly before taking checkpoints.\n");
2496    }
2497}
2498
2499///////////////
2500//
2501// CpuSidePort
2502//
2503///////////////
2504
2505AddrRangeList
2506Cache::CpuSidePort::getAddrRanges() const
2507{
2508    return cache->getAddrRanges();
2509}
2510
2511bool
2512Cache::CpuSidePort::recvTimingReq(PacketPtr pkt)
2513{
2514    assert(!cache->system->bypassCaches());
2515
2516    bool success = false;
2517
2518    // always let packets through if an upstream cache has committed
2519    // to responding, even if blocked (we should technically look at
2520    // the isExpressSnoop flag, but it is set by the cache itself, and
2521    // consequently we have to rely on the cacheResponding flag)
2522    if (pkt->cacheResponding()) {
2523        // do not change the current retry state
2524        bool M5_VAR_USED bypass_success = cache->recvTimingReq(pkt);
2525        assert(bypass_success);
2526        return true;
2527    } else if (blocked || mustSendRetry) {
2528        // either already committed to send a retry, or blocked
2529        success = false;
2530    } else {
2531        // pass it on to the cache, and let the cache decide if we
2532        // have to retry or not
2533        success = cache->recvTimingReq(pkt);
2534    }
2535
2536    // remember if we have to retry
2537    mustSendRetry = !success;
2538    return success;
2539}
2540
2541Tick
2542Cache::CpuSidePort::recvAtomic(PacketPtr pkt)
2543{
2544    return cache->recvAtomic(pkt);
2545}
2546
2547void
2548Cache::CpuSidePort::recvFunctional(PacketPtr pkt)
2549{
2550    // functional request
2551    cache->functionalAccess(pkt, true);
2552}
2553
2554Cache::
2555CpuSidePort::CpuSidePort(const std::string &_name, Cache *_cache,
2556                         const std::string &_label)
2557    : BaseCache::CacheSlavePort(_name, _cache, _label), cache(_cache)
2558{
2559}
2560
2561Cache*
2562CacheParams::create()
2563{
2564    assert(tags);
2565
2566    return new Cache(this);
2567}
2568///////////////
2569//
2570// MemSidePort
2571//
2572///////////////
2573
2574bool
2575Cache::MemSidePort::recvTimingResp(PacketPtr pkt)
2576{
2577    cache->recvTimingResp(pkt);
2578    return true;
2579}
2580
2581// Express snooping requests to memside port
2582void
2583Cache::MemSidePort::recvTimingSnoopReq(PacketPtr pkt)
2584{
2585    // handle snooping requests
2586    cache->recvTimingSnoopReq(pkt);
2587}
2588
2589Tick
2590Cache::MemSidePort::recvAtomicSnoop(PacketPtr pkt)
2591{
2592    return cache->recvAtomicSnoop(pkt);
2593}
2594
2595void
2596Cache::MemSidePort::recvFunctionalSnoop(PacketPtr pkt)
2597{
2598    // functional snoop (note that in contrast to atomic we don't have
2599    // a specific functionalSnoop method, as they have the same
2600    // behaviour regardless)
2601    cache->functionalAccess(pkt, false);
2602}
2603
2604void
2605Cache::CacheReqPacketQueue::sendDeferredPacket()
2606{
2607    // sanity check
2608    assert(!waitingOnRetry);
2609
2610    // there should never be any deferred request packets in the
2611    // queue, instead we resly on the cache to provide the packets
2612    // from the MSHR queue or write queue
2613    assert(deferredPacketReadyTime() == MaxTick);
2614
2615    // check for request packets (requests & writebacks)
2616    PacketPtr pkt = cache.getTimingPacket();
2617    if (pkt == NULL) {
2618        // can happen if e.g. we attempt a writeback and fail, but
2619        // before the retry, the writeback is eliminated because
2620        // we snoop another cache's ReadEx.
2621    } else {
2622        MSHR *mshr = dynamic_cast<MSHR*>(pkt->senderState);
2623        // in most cases getTimingPacket allocates a new packet, and
2624        // we must delete it unless it is successfully sent
2625        bool delete_pkt = !mshr->isForwardNoResponse();
2626
2627        // let our snoop responses go first if there are responses to
2628        // the same addresses we are about to writeback, note that
2629        // this creates a dependency between requests and snoop
2630        // responses, but that should not be a problem since there is
2631        // a chain already and the key is that the snoop responses can
2632        // sink unconditionally
2633        if (snoopRespQueue.hasAddr(pkt->getAddr())) {
2634            DPRINTF(CachePort, "Waiting for snoop response to be sent\n");
2635            Tick when = snoopRespQueue.deferredPacketReadyTime();
2636            schedSendEvent(when);
2637
2638            if (delete_pkt)
2639                delete pkt;
2640
2641            return;
2642        }
2643
2644
2645        waitingOnRetry = !masterPort.sendTimingReq(pkt);
2646
2647        if (waitingOnRetry) {
2648            DPRINTF(CachePort, "now waiting on a retry\n");
2649            if (delete_pkt) {
2650                // we are awaiting a retry, but we
2651                // delete the packet and will be creating a new packet
2652                // when we get the opportunity
2653                delete pkt;
2654            }
2655            // note that we have now masked any requestBus and
2656            // schedSendEvent (we will wait for a retry before
2657            // doing anything), and this is so even if we do not
2658            // care about this packet and might override it before
2659            // it gets retried
2660        } else {
2661            // As part of the call to sendTimingReq the packet is
2662            // forwarded to all neighbouring caches (and any caches
2663            // above them) as a snoop. Thus at this point we know if
2664            // any of the neighbouring caches are responding, and if
2665            // so, we know it is dirty, and we can determine if it is
2666            // being passed as Modified, making our MSHR the ordering
2667            // point
2668            bool pending_modified_resp = !pkt->hasSharers() &&
2669                pkt->cacheResponding();
2670
2671            cache.markInService(mshr, pending_modified_resp);
2672        }
2673    }
2674
2675    // if we succeeded and are not waiting for a retry, schedule the
2676    // next send considering when the next MSHR is ready, note that
2677    // snoop responses have their own packet queue and thus schedule
2678    // their own events
2679    if (!waitingOnRetry) {
2680        schedSendEvent(cache.nextMSHRReadyTime());
2681    }
2682}
2683
2684Cache::
2685MemSidePort::MemSidePort(const std::string &_name, Cache *_cache,
2686                         const std::string &_label)
2687    : BaseCache::CacheMasterPort(_name, _cache, _reqQueue, _snoopRespQueue),
2688      _reqQueue(*_cache, *this, _snoopRespQueue, _label),
2689      _snoopRespQueue(*_cache, *this, _label), cache(_cache)
2690{
2691}
2692