cache.cc revision 11190
1/*
2 * Copyright (c) 2010-2015 ARM Limited
3 * All rights reserved.
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder.  You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2002-2005 The Regents of The University of Michigan
15 * Copyright (c) 2010,2015 Advanced Micro Devices, Inc.
16 * All rights reserved.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions are
20 * met: redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer;
22 * redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution;
25 * neither the name of the copyright holders nor the names of its
26 * contributors may be used to endorse or promote products derived from
27 * this software without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40 *
41 * Authors: Erik Hallnor
42 *          Dave Greene
43 *          Nathan Binkert
44 *          Steve Reinhardt
45 *          Ron Dreslinski
46 *          Andreas Sandberg
47 */
48
49/**
50 * @file
51 * Cache definitions.
52 */
53
54#include "mem/cache/cache.hh"
55
56#include "base/misc.hh"
57#include "base/types.hh"
58#include "debug/Cache.hh"
59#include "debug/CachePort.hh"
60#include "debug/CacheTags.hh"
61#include "mem/cache/blk.hh"
62#include "mem/cache/mshr.hh"
63#include "mem/cache/prefetch/base.hh"
64#include "sim/sim_exit.hh"
65
66Cache::Cache(const CacheParams *p)
67    : BaseCache(p, p->system->cacheLineSize()),
68      tags(p->tags),
69      prefetcher(p->prefetcher),
70      doFastWrites(true),
71      prefetchOnAccess(p->prefetch_on_access)
72{
73    tempBlock = new CacheBlk();
74    tempBlock->data = new uint8_t[blkSize];
75
76    cpuSidePort = new CpuSidePort(p->name + ".cpu_side", this,
77                                  "CpuSidePort");
78    memSidePort = new MemSidePort(p->name + ".mem_side", this,
79                                  "MemSidePort");
80
81    tags->setCache(this);
82    if (prefetcher)
83        prefetcher->setCache(this);
84}
85
86Cache::~Cache()
87{
88    delete [] tempBlock->data;
89    delete tempBlock;
90
91    delete cpuSidePort;
92    delete memSidePort;
93}
94
95void
96Cache::regStats()
97{
98    BaseCache::regStats();
99}
100
101void
102Cache::cmpAndSwap(CacheBlk *blk, PacketPtr pkt)
103{
104    assert(pkt->isRequest());
105
106    uint64_t overwrite_val;
107    bool overwrite_mem;
108    uint64_t condition_val64;
109    uint32_t condition_val32;
110
111    int offset = tags->extractBlkOffset(pkt->getAddr());
112    uint8_t *blk_data = blk->data + offset;
113
114    assert(sizeof(uint64_t) >= pkt->getSize());
115
116    overwrite_mem = true;
117    // keep a copy of our possible write value, and copy what is at the
118    // memory address into the packet
119    pkt->writeData((uint8_t *)&overwrite_val);
120    pkt->setData(blk_data);
121
122    if (pkt->req->isCondSwap()) {
123        if (pkt->getSize() == sizeof(uint64_t)) {
124            condition_val64 = pkt->req->getExtraData();
125            overwrite_mem = !std::memcmp(&condition_val64, blk_data,
126                                         sizeof(uint64_t));
127        } else if (pkt->getSize() == sizeof(uint32_t)) {
128            condition_val32 = (uint32_t)pkt->req->getExtraData();
129            overwrite_mem = !std::memcmp(&condition_val32, blk_data,
130                                         sizeof(uint32_t));
131        } else
132            panic("Invalid size for conditional read/write\n");
133    }
134
135    if (overwrite_mem) {
136        std::memcpy(blk_data, &overwrite_val, pkt->getSize());
137        blk->status |= BlkDirty;
138    }
139}
140
141
142void
143Cache::satisfyCpuSideRequest(PacketPtr pkt, CacheBlk *blk,
144                             bool deferred_response, bool pending_downgrade)
145{
146    assert(pkt->isRequest());
147
148    assert(blk && blk->isValid());
149    // Occasionally this is not true... if we are a lower-level cache
150    // satisfying a string of Read and ReadEx requests from
151    // upper-level caches, a Read will mark the block as shared but we
152    // can satisfy a following ReadEx anyway since we can rely on the
153    // Read requester(s) to have buffered the ReadEx snoop and to
154    // invalidate their blocks after receiving them.
155    // assert(!pkt->needsExclusive() || blk->isWritable());
156    assert(pkt->getOffset(blkSize) + pkt->getSize() <= blkSize);
157
158    // Check RMW operations first since both isRead() and
159    // isWrite() will be true for them
160    if (pkt->cmd == MemCmd::SwapReq) {
161        cmpAndSwap(blk, pkt);
162    } else if (pkt->isWrite()) {
163        assert(blk->isWritable());
164        // Write or WriteLine at the first cache with block in Exclusive
165        if (blk->checkWrite(pkt)) {
166            pkt->writeDataToBlock(blk->data, blkSize);
167        }
168        // Always mark the line as dirty even if we are a failed
169        // StoreCond so we supply data to any snoops that have
170        // appended themselves to this cache before knowing the store
171        // will fail.
172        blk->status |= BlkDirty;
173        DPRINTF(Cache, "%s for %s addr %#llx size %d (write)\n", __func__,
174                pkt->cmdString(), pkt->getAddr(), pkt->getSize());
175    } else if (pkt->isRead()) {
176        if (pkt->isLLSC()) {
177            blk->trackLoadLocked(pkt);
178        }
179        pkt->setDataFromBlock(blk->data, blkSize);
180        // determine if this read is from a (coherent) cache, or not
181        // by looking at the command type; we could potentially add a
182        // packet attribute such as 'FromCache' to make this check a
183        // bit cleaner
184        if (pkt->cmd == MemCmd::ReadExReq ||
185            pkt->cmd == MemCmd::ReadSharedReq ||
186            pkt->cmd == MemCmd::ReadCleanReq ||
187            pkt->cmd == MemCmd::SCUpgradeFailReq) {
188            assert(pkt->getSize() == blkSize);
189            // special handling for coherent block requests from
190            // upper-level caches
191            if (pkt->needsExclusive()) {
192                // sanity check
193                assert(pkt->cmd == MemCmd::ReadExReq ||
194                       pkt->cmd == MemCmd::SCUpgradeFailReq);
195
196                // if we have a dirty copy, make sure the recipient
197                // keeps it marked dirty
198                if (blk->isDirty()) {
199                    pkt->assertMemInhibit();
200                }
201                // on ReadExReq we give up our copy unconditionally
202                if (blk != tempBlock)
203                    tags->invalidate(blk);
204                blk->invalidate();
205            } else if (blk->isWritable() && !pending_downgrade &&
206                       !pkt->sharedAsserted() &&
207                       pkt->cmd != MemCmd::ReadCleanReq) {
208                // we can give the requester an exclusive copy (by not
209                // asserting shared line) on a read request if:
210                // - we have an exclusive copy at this level (& below)
211                // - we don't have a pending snoop from below
212                //   signaling another read request
213                // - no other cache above has a copy (otherwise it
214                //   would have asseretd shared line on request)
215                // - we are not satisfying an instruction fetch (this
216                //   prevents dirty data in the i-cache)
217
218                if (blk->isDirty()) {
219                    // special considerations if we're owner:
220                    if (!deferred_response) {
221                        // if we are responding immediately and can
222                        // signal that we're transferring ownership
223                        // along with exclusivity, do so
224                        pkt->assertMemInhibit();
225                        blk->status &= ~BlkDirty;
226                    } else {
227                        // if we're responding after our own miss,
228                        // there's a window where the recipient didn't
229                        // know it was getting ownership and may not
230                        // have responded to snoops correctly, so we
231                        // can't pass off ownership *or* exclusivity
232                        pkt->assertShared();
233                    }
234                }
235            } else {
236                // otherwise only respond with a shared copy
237                pkt->assertShared();
238            }
239        }
240    } else {
241        // Upgrade or Invalidate, since we have it Exclusively (E or
242        // M), we ack then invalidate.
243        assert(pkt->isUpgrade() || pkt->isInvalidate());
244        assert(blk != tempBlock);
245        tags->invalidate(blk);
246        blk->invalidate();
247        DPRINTF(Cache, "%s for %s addr %#llx size %d (invalidation)\n",
248                __func__, pkt->cmdString(), pkt->getAddr(), pkt->getSize());
249    }
250}
251
252
253/////////////////////////////////////////////////////
254//
255// MSHR helper functions
256//
257/////////////////////////////////////////////////////
258
259
260void
261Cache::markInService(MSHR *mshr, bool pending_dirty_resp)
262{
263    markInServiceInternal(mshr, pending_dirty_resp);
264}
265
266/////////////////////////////////////////////////////
267//
268// Access path: requests coming in from the CPU side
269//
270/////////////////////////////////////////////////////
271
272bool
273Cache::access(PacketPtr pkt, CacheBlk *&blk, Cycles &lat,
274              PacketList &writebacks)
275{
276    // sanity check
277    assert(pkt->isRequest());
278
279    chatty_assert(!(isReadOnly && pkt->isWrite()),
280                  "Should never see a write in a read-only cache %s\n",
281                  name());
282
283    DPRINTF(Cache, "%s for %s addr %#llx size %d\n", __func__,
284            pkt->cmdString(), pkt->getAddr(), pkt->getSize());
285
286    if (pkt->req->isUncacheable()) {
287        DPRINTF(Cache, "%s%s addr %#llx uncacheable\n", pkt->cmdString(),
288                pkt->req->isInstFetch() ? " (ifetch)" : "",
289                pkt->getAddr());
290
291        // flush and invalidate any existing block
292        CacheBlk *old_blk(tags->findBlock(pkt->getAddr(), pkt->isSecure()));
293        if (old_blk && old_blk->isValid()) {
294            if (old_blk->isDirty())
295                writebacks.push_back(writebackBlk(old_blk));
296            else
297                writebacks.push_back(cleanEvictBlk(old_blk));
298            tags->invalidate(old_blk);
299            old_blk->invalidate();
300        }
301
302        blk = NULL;
303        // lookupLatency is the latency in case the request is uncacheable.
304        lat = lookupLatency;
305        return false;
306    }
307
308    ContextID id = pkt->req->hasContextId() ?
309        pkt->req->contextId() : InvalidContextID;
310    // Here lat is the value passed as parameter to accessBlock() function
311    // that can modify its value.
312    blk = tags->accessBlock(pkt->getAddr(), pkt->isSecure(), lat, id);
313
314    DPRINTF(Cache, "%s%s addr %#llx size %d (%s) %s\n", pkt->cmdString(),
315            pkt->req->isInstFetch() ? " (ifetch)" : "",
316            pkt->getAddr(), pkt->getSize(), pkt->isSecure() ? "s" : "ns",
317            blk ? "hit " + blk->print() : "miss");
318
319
320    if (pkt->evictingBlock()) {
321        // We check for presence of block in above caches before issuing
322        // Writeback or CleanEvict to write buffer. Therefore the only
323        // possible cases can be of a CleanEvict packet coming from above
324        // encountering a Writeback generated in this cache peer cache and
325        // waiting in the write buffer. Cases of upper level peer caches
326        // generating CleanEvict and Writeback or simply CleanEvict and
327        // CleanEvict almost simultaneously will be caught by snoops sent out
328        // by crossbar.
329        std::vector<MSHR *> outgoing;
330        if (writeBuffer.findMatches(pkt->getAddr(), pkt->isSecure(),
331                                   outgoing)) {
332            assert(outgoing.size() == 1);
333            PacketPtr wbPkt = outgoing[0]->getTarget()->pkt;
334            assert(pkt->cmd == MemCmd::CleanEvict &&
335                   wbPkt->cmd == MemCmd::Writeback);
336            // As the CleanEvict is coming from above, it would have snooped
337            // into other peer caches of the same level while traversing the
338            // crossbar. If a copy of the block had been found, the CleanEvict
339            // would have been deleted in the crossbar. Now that the
340            // CleanEvict is here we can be sure none of the other upper level
341            // caches connected to this cache have the block, so we can clear
342            // the BLOCK_CACHED flag in the Writeback if set and discard the
343            // CleanEvict by returning true.
344            wbPkt->clearBlockCached();
345            return true;
346        }
347    }
348
349    // Writeback handling is special case.  We can write the block into
350    // the cache without having a writeable copy (or any copy at all).
351    if (pkt->cmd == MemCmd::Writeback) {
352        assert(blkSize == pkt->getSize());
353        if (blk == NULL) {
354            // need to do a replacement
355            blk = allocateBlock(pkt->getAddr(), pkt->isSecure(), writebacks);
356            if (blk == NULL) {
357                // no replaceable block available: give up, fwd to next level.
358                incMissCount(pkt);
359                return false;
360            }
361            tags->insertBlock(pkt, blk);
362
363            blk->status = (BlkValid | BlkReadable);
364            if (pkt->isSecure()) {
365                blk->status |= BlkSecure;
366            }
367        }
368        blk->status |= BlkDirty;
369        // if shared is not asserted we got the writeback in modified
370        // state, if it is asserted we are in the owned state
371        if (!pkt->sharedAsserted()) {
372            blk->status |= BlkWritable;
373        }
374        // nothing else to do; writeback doesn't expect response
375        assert(!pkt->needsResponse());
376        std::memcpy(blk->data, pkt->getConstPtr<uint8_t>(), blkSize);
377        DPRINTF(Cache, "%s new state is %s\n", __func__, blk->print());
378        incHitCount(pkt);
379        return true;
380    } else if (pkt->cmd == MemCmd::CleanEvict) {
381        if (blk != NULL) {
382            // Found the block in the tags, need to stop CleanEvict from
383            // propagating further down the hierarchy. Returning true will
384            // treat the CleanEvict like a satisfied write request and delete
385            // it.
386            return true;
387        }
388        // We didn't find the block here, propagate the CleanEvict further
389        // down the memory hierarchy. Returning false will treat the CleanEvict
390        // like a Writeback which could not find a replaceable block so has to
391        // go to next level.
392        return false;
393    } else if ((blk != NULL) &&
394               (pkt->needsExclusive() ? blk->isWritable()
395                                      : blk->isReadable())) {
396        // OK to satisfy access
397        incHitCount(pkt);
398        satisfyCpuSideRequest(pkt, blk);
399        return true;
400    }
401
402    // Can't satisfy access normally... either no block (blk == NULL)
403    // or have block but need exclusive & only have shared.
404
405    incMissCount(pkt);
406
407    if (blk == NULL && pkt->isLLSC() && pkt->isWrite()) {
408        // complete miss on store conditional... just give up now
409        pkt->req->setExtraData(0);
410        return true;
411    }
412
413    return false;
414}
415
416
417class ForwardResponseRecord : public Packet::SenderState
418{
419  public:
420
421    ForwardResponseRecord() {}
422};
423
424void
425Cache::doWritebacks(PacketList& writebacks, Tick forward_time)
426{
427    while (!writebacks.empty()) {
428        PacketPtr wbPkt = writebacks.front();
429        // We use forwardLatency here because we are copying writebacks to
430        // write buffer.  Call isCachedAbove for both Writebacks and
431        // CleanEvicts. If isCachedAbove returns true we set BLOCK_CACHED flag
432        // in Writebacks and discard CleanEvicts.
433        if (isCachedAbove(wbPkt)) {
434            if (wbPkt->cmd == MemCmd::CleanEvict) {
435                // Delete CleanEvict because cached copies exist above. The
436                // packet destructor will delete the request object because
437                // this is a non-snoop request packet which does not require a
438                // response.
439                delete wbPkt;
440            } else {
441                // Set BLOCK_CACHED flag in Writeback and send below, so that
442                // the Writeback does not reset the bit corresponding to this
443                // address in the snoop filter below.
444                wbPkt->setBlockCached();
445                allocateWriteBuffer(wbPkt, forward_time);
446            }
447        } else {
448            // If the block is not cached above, send packet below. Both
449            // CleanEvict and Writeback with BLOCK_CACHED flag cleared will
450            // reset the bit corresponding to this address in the snoop filter
451            // below.
452            allocateWriteBuffer(wbPkt, forward_time);
453        }
454        writebacks.pop_front();
455    }
456}
457
458void
459Cache::doWritebacksAtomic(PacketList& writebacks)
460{
461    while (!writebacks.empty()) {
462        PacketPtr wbPkt = writebacks.front();
463        // Call isCachedAbove for both Writebacks and CleanEvicts. If
464        // isCachedAbove returns true we set BLOCK_CACHED flag in Writebacks
465        // and discard CleanEvicts.
466        if (isCachedAbove(wbPkt, false)) {
467            if (wbPkt->cmd == MemCmd::Writeback) {
468                // Set BLOCK_CACHED flag in Writeback and send below,
469                // so that the Writeback does not reset the bit
470                // corresponding to this address in the snoop filter
471                // below. We can discard CleanEvicts because cached
472                // copies exist above. Atomic mode isCachedAbove
473                // modifies packet to set BLOCK_CACHED flag
474                memSidePort->sendAtomic(wbPkt);
475            }
476        } else {
477            // If the block is not cached above, send packet below. Both
478            // CleanEvict and Writeback with BLOCK_CACHED flag cleared will
479            // reset the bit corresponding to this address in the snoop filter
480            // below.
481            memSidePort->sendAtomic(wbPkt);
482        }
483        writebacks.pop_front();
484        // In case of CleanEvicts, the packet destructor will delete the
485        // request object because this is a non-snoop request packet which
486        // does not require a response.
487        delete wbPkt;
488    }
489}
490
491
492void
493Cache::recvTimingSnoopResp(PacketPtr pkt)
494{
495    DPRINTF(Cache, "%s for %s addr %#llx size %d\n", __func__,
496            pkt->cmdString(), pkt->getAddr(), pkt->getSize());
497
498    assert(pkt->isResponse());
499
500    // must be cache-to-cache response from upper to lower level
501    ForwardResponseRecord *rec =
502        dynamic_cast<ForwardResponseRecord *>(pkt->senderState);
503    assert(!system->bypassCaches());
504
505    if (rec == NULL) {
506        // @todo What guarantee do we have that this HardPFResp is
507        // actually for this cache, and not a cache closer to the
508        // memory?
509        assert(pkt->cmd == MemCmd::HardPFResp);
510        // Check if it's a prefetch response and handle it. We shouldn't
511        // get any other kinds of responses without FRRs.
512        DPRINTF(Cache, "Got prefetch response from above for addr %#llx (%s)\n",
513                pkt->getAddr(), pkt->isSecure() ? "s" : "ns");
514        recvTimingResp(pkt);
515        return;
516    }
517
518    pkt->popSenderState();
519    delete rec;
520    // forwardLatency is set here because there is a response from an
521    // upper level cache.
522    // To pay the delay that occurs if the packet comes from the bus,
523    // we charge also headerDelay.
524    Tick snoop_resp_time = clockEdge(forwardLatency) + pkt->headerDelay;
525    // Reset the timing of the packet.
526    pkt->headerDelay = pkt->payloadDelay = 0;
527    memSidePort->schedTimingSnoopResp(pkt, snoop_resp_time);
528}
529
530void
531Cache::promoteWholeLineWrites(PacketPtr pkt)
532{
533    // Cache line clearing instructions
534    if (doFastWrites && (pkt->cmd == MemCmd::WriteReq) &&
535        (pkt->getSize() == blkSize) && (pkt->getOffset(blkSize) == 0)) {
536        pkt->cmd = MemCmd::WriteLineReq;
537        DPRINTF(Cache, "packet promoted from Write to WriteLineReq\n");
538    }
539}
540
541bool
542Cache::recvTimingReq(PacketPtr pkt)
543{
544    DPRINTF(CacheTags, "%s tags: %s\n", __func__, tags->print());
545
546    assert(pkt->isRequest());
547
548    // Just forward the packet if caches are disabled.
549    if (system->bypassCaches()) {
550        // @todo This should really enqueue the packet rather
551        bool M5_VAR_USED success = memSidePort->sendTimingReq(pkt);
552        assert(success);
553        return true;
554    }
555
556    promoteWholeLineWrites(pkt);
557
558    if (pkt->memInhibitAsserted()) {
559        // a cache above us (but not where the packet came from) is
560        // responding to the request
561        DPRINTF(Cache, "mem inhibited on addr %#llx (%s): not responding\n",
562                pkt->getAddr(), pkt->isSecure() ? "s" : "ns");
563
564        // if the packet needs exclusive, and the cache that has
565        // promised to respond (setting the inhibit flag) is not
566        // providing exclusive (it is in O vs M state), we know that
567        // there may be other shared copies in the system; go out and
568        // invalidate them all
569        if (pkt->needsExclusive() && !pkt->isSupplyExclusive()) {
570            // create a downstream express snoop with cleared packet
571            // flags, there is no need to allocate any data as the
572            // packet is merely used to co-ordinate state transitions
573            Packet *snoop_pkt = new Packet(pkt, true, false);
574
575            // also reset the bus time that the original packet has
576            // not yet paid for
577            snoop_pkt->headerDelay = snoop_pkt->payloadDelay = 0;
578
579            // make this an instantaneous express snoop, and let the
580            // other caches in the system know that the packet is
581            // inhibited, because we have found the authorative copy
582            // (O) that will supply the right data
583            snoop_pkt->setExpressSnoop();
584            snoop_pkt->assertMemInhibit();
585
586            // this express snoop travels towards the memory, and at
587            // every crossbar it is snooped upwards thus reaching
588            // every cache in the system
589            bool M5_VAR_USED success = memSidePort->sendTimingReq(snoop_pkt);
590            // express snoops always succeed
591            assert(success);
592
593            // main memory will delete the packet
594        }
595
596        // queue for deletion, as the sending cache is still relying
597        // on the packet
598        pendingDelete.reset(pkt);
599
600        // no need to take any action in this particular cache as the
601        // caches along the path to memory are allowed to keep lines
602        // in a shared state, and a cache above us already committed
603        // to responding
604        return true;
605    }
606
607    // anything that is merely forwarded pays for the forward latency and
608    // the delay provided by the crossbar
609    Tick forward_time = clockEdge(forwardLatency) + pkt->headerDelay;
610
611    // We use lookupLatency here because it is used to specify the latency
612    // to access.
613    Cycles lat = lookupLatency;
614    CacheBlk *blk = NULL;
615    bool satisfied = false;
616    {
617        PacketList writebacks;
618        // Note that lat is passed by reference here. The function
619        // access() calls accessBlock() which can modify lat value.
620        satisfied = access(pkt, blk, lat, writebacks);
621
622        // copy writebacks to write buffer here to ensure they logically
623        // proceed anything happening below
624        doWritebacks(writebacks, forward_time);
625    }
626
627    // Here we charge the headerDelay that takes into account the latencies
628    // of the bus, if the packet comes from it.
629    // The latency charged it is just lat that is the value of lookupLatency
630    // modified by access() function, or if not just lookupLatency.
631    // In case of a hit we are neglecting response latency.
632    // In case of a miss we are neglecting forward latency.
633    Tick request_time = clockEdge(lat) + pkt->headerDelay;
634    // Here we reset the timing of the packet.
635    pkt->headerDelay = pkt->payloadDelay = 0;
636
637    // track time of availability of next prefetch, if any
638    Tick next_pf_time = MaxTick;
639
640    bool needsResponse = pkt->needsResponse();
641
642    if (satisfied) {
643        // should never be satisfying an uncacheable access as we
644        // flush and invalidate any existing block as part of the
645        // lookup
646        assert(!pkt->req->isUncacheable());
647
648        // hit (for all other request types)
649
650        if (prefetcher && (prefetchOnAccess || (blk && blk->wasPrefetched()))) {
651            if (blk)
652                blk->status &= ~BlkHWPrefetched;
653
654            // Don't notify on SWPrefetch
655            if (!pkt->cmd.isSWPrefetch())
656                next_pf_time = prefetcher->notify(pkt);
657        }
658
659        if (needsResponse) {
660            pkt->makeTimingResponse();
661            // @todo: Make someone pay for this
662            pkt->headerDelay = pkt->payloadDelay = 0;
663
664            // In this case we are considering request_time that takes
665            // into account the delay of the xbar, if any, and just
666            // lat, neglecting responseLatency, modelling hit latency
667            // just as lookupLatency or or the value of lat overriden
668            // by access(), that calls accessBlock() function.
669            cpuSidePort->schedTimingResp(pkt, request_time);
670        } else {
671            // queue the packet for deletion, as the sending cache is
672            // still relying on it; if the block is found in access(),
673            // CleanEvict and Writeback messages will be deleted
674            // here as well
675            pendingDelete.reset(pkt);
676        }
677    } else {
678        // miss
679
680        Addr blk_addr = blockAlign(pkt->getAddr());
681
682        // ignore any existing MSHR if we are dealing with an
683        // uncacheable request
684        MSHR *mshr = pkt->req->isUncacheable() ? nullptr :
685            mshrQueue.findMatch(blk_addr, pkt->isSecure());
686
687        // Software prefetch handling:
688        // To keep the core from waiting on data it won't look at
689        // anyway, send back a response with dummy data. Miss handling
690        // will continue asynchronously. Unfortunately, the core will
691        // insist upon freeing original Packet/Request, so we have to
692        // create a new pair with a different lifecycle. Note that this
693        // processing happens before any MSHR munging on the behalf of
694        // this request because this new Request will be the one stored
695        // into the MSHRs, not the original.
696        if (pkt->cmd.isSWPrefetch()) {
697            assert(needsResponse);
698            assert(pkt->req->hasPaddr());
699            assert(!pkt->req->isUncacheable());
700
701            // There's no reason to add a prefetch as an additional target
702            // to an existing MSHR. If an outstanding request is already
703            // in progress, there is nothing for the prefetch to do.
704            // If this is the case, we don't even create a request at all.
705            PacketPtr pf = nullptr;
706
707            if (!mshr) {
708                // copy the request and create a new SoftPFReq packet
709                RequestPtr req = new Request(pkt->req->getPaddr(),
710                                             pkt->req->getSize(),
711                                             pkt->req->getFlags(),
712                                             pkt->req->masterId());
713                pf = new Packet(req, pkt->cmd);
714                pf->allocate();
715                assert(pf->getAddr() == pkt->getAddr());
716                assert(pf->getSize() == pkt->getSize());
717            }
718
719            pkt->makeTimingResponse();
720            // for debugging, set all the bits in the response data
721            // (also keeps valgrind from complaining when debugging settings
722            //  print out instruction results)
723            std::memset(pkt->getPtr<uint8_t>(), 0xFF, pkt->getSize());
724            // request_time is used here, taking into account lat and the delay
725            // charged if the packet comes from the xbar.
726            cpuSidePort->schedTimingResp(pkt, request_time);
727
728            // If an outstanding request is in progress (we found an
729            // MSHR) this is set to null
730            pkt = pf;
731        }
732
733        if (mshr) {
734            /// MSHR hit
735            /// @note writebacks will be checked in getNextMSHR()
736            /// for any conflicting requests to the same block
737
738            //@todo remove hw_pf here
739
740            // Coalesce unless it was a software prefetch (see above).
741            if (pkt) {
742                assert(pkt->cmd != MemCmd::Writeback);
743                // CleanEvicts corresponding to blocks which have outstanding
744                // requests in MSHRs can be deleted here.
745                if (pkt->cmd == MemCmd::CleanEvict) {
746                    pendingDelete.reset(pkt);
747                } else {
748                    DPRINTF(Cache, "%s coalescing MSHR for %s addr %#llx size %d\n",
749                            __func__, pkt->cmdString(), pkt->getAddr(),
750                            pkt->getSize());
751
752                    assert(pkt->req->masterId() < system->maxMasters());
753                    mshr_hits[pkt->cmdToIndex()][pkt->req->masterId()]++;
754                    if (mshr->threadNum != 0/*pkt->req->threadId()*/) {
755                        mshr->threadNum = -1;
756                    }
757                    // We use forward_time here because it is the same
758                    // considering new targets. We have multiple
759                    // requests for the same address here. It
760                    // specifies the latency to allocate an internal
761                    // buffer and to schedule an event to the queued
762                    // port and also takes into account the additional
763                    // delay of the xbar.
764                    mshr->allocateTarget(pkt, forward_time, order++);
765                    if (mshr->getNumTargets() == numTarget) {
766                        noTargetMSHR = mshr;
767                        setBlocked(Blocked_NoTargets);
768                        // need to be careful with this... if this mshr isn't
769                        // ready yet (i.e. time > curTick()), we don't want to
770                        // move it ahead of mshrs that are ready
771                        // mshrQueue.moveToFront(mshr);
772                    }
773                }
774                // We should call the prefetcher reguardless if the request is
775                // satisfied or not, reguardless if the request is in the MSHR or
776                // not.  The request could be a ReadReq hit, but still not
777                // satisfied (potentially because of a prior write to the same
778                // cache line.  So, even when not satisfied, tehre is an MSHR
779                // already allocated for this, we need to let the prefetcher know
780                // about the request
781                if (prefetcher) {
782                    // Don't notify on SWPrefetch
783                    if (!pkt->cmd.isSWPrefetch())
784                        next_pf_time = prefetcher->notify(pkt);
785                }
786            }
787        } else {
788            // no MSHR
789            assert(pkt->req->masterId() < system->maxMasters());
790            if (pkt->req->isUncacheable()) {
791                mshr_uncacheable[pkt->cmdToIndex()][pkt->req->masterId()]++;
792            } else {
793                mshr_misses[pkt->cmdToIndex()][pkt->req->masterId()]++;
794            }
795
796            if (pkt->evictingBlock() ||
797                (pkt->req->isUncacheable() && pkt->isWrite())) {
798                // We use forward_time here because there is an
799                // uncached memory write, forwarded to WriteBuffer.
800                allocateWriteBuffer(pkt, forward_time);
801            } else {
802                if (blk && blk->isValid()) {
803                    // should have flushed and have no valid block
804                    assert(!pkt->req->isUncacheable());
805
806                    // If we have a write miss to a valid block, we
807                    // need to mark the block non-readable.  Otherwise
808                    // if we allow reads while there's an outstanding
809                    // write miss, the read could return stale data
810                    // out of the cache block... a more aggressive
811                    // system could detect the overlap (if any) and
812                    // forward data out of the MSHRs, but we don't do
813                    // that yet.  Note that we do need to leave the
814                    // block valid so that it stays in the cache, in
815                    // case we get an upgrade response (and hence no
816                    // new data) when the write miss completes.
817                    // As long as CPUs do proper store/load forwarding
818                    // internally, and have a sufficiently weak memory
819                    // model, this is probably unnecessary, but at some
820                    // point it must have seemed like we needed it...
821                    assert(pkt->needsExclusive());
822                    assert(!blk->isWritable());
823                    blk->status &= ~BlkReadable;
824                }
825                // Here we are using forward_time, modelling the latency of
826                // a miss (outbound) just as forwardLatency, neglecting the
827                // lookupLatency component.
828                allocateMissBuffer(pkt, forward_time);
829            }
830
831            if (prefetcher) {
832                // Don't notify on SWPrefetch
833                if (!pkt->cmd.isSWPrefetch())
834                    next_pf_time = prefetcher->notify(pkt);
835            }
836        }
837    }
838
839    if (next_pf_time != MaxTick)
840        schedMemSideSendEvent(next_pf_time);
841
842    return true;
843}
844
845
846// See comment in cache.hh.
847PacketPtr
848Cache::getBusPacket(PacketPtr cpu_pkt, CacheBlk *blk,
849                    bool needsExclusive) const
850{
851    bool blkValid = blk && blk->isValid();
852
853    if (cpu_pkt->req->isUncacheable()) {
854        // note that at the point we see the uncacheable request we
855        // flush any block, but there could be an outstanding MSHR,
856        // and the cache could have filled again before we actually
857        // send out the forwarded uncacheable request (blk could thus
858        // be non-null)
859        return NULL;
860    }
861
862    if (!blkValid &&
863        (cpu_pkt->isUpgrade() ||
864         cpu_pkt->evictingBlock())) {
865        // Writebacks that weren't allocated in access() and upgrades
866        // from upper-level caches that missed completely just go
867        // through.
868        return NULL;
869    }
870
871    assert(cpu_pkt->needsResponse());
872
873    MemCmd cmd;
874    // @TODO make useUpgrades a parameter.
875    // Note that ownership protocols require upgrade, otherwise a
876    // write miss on a shared owned block will generate a ReadExcl,
877    // which will clobber the owned copy.
878    const bool useUpgrades = true;
879    if (blkValid && useUpgrades) {
880        // only reason to be here is that blk is shared
881        // (read-only) and we need exclusive
882        assert(needsExclusive);
883        assert(!blk->isWritable());
884        cmd = cpu_pkt->isLLSC() ? MemCmd::SCUpgradeReq : MemCmd::UpgradeReq;
885    } else if (cpu_pkt->cmd == MemCmd::SCUpgradeFailReq ||
886               cpu_pkt->cmd == MemCmd::StoreCondFailReq) {
887        // Even though this SC will fail, we still need to send out the
888        // request and get the data to supply it to other snoopers in the case
889        // where the determination the StoreCond fails is delayed due to
890        // all caches not being on the same local bus.
891        cmd = MemCmd::SCUpgradeFailReq;
892    } else if (cpu_pkt->cmd == MemCmd::WriteLineReq) {
893        // forward as invalidate to all other caches, this gives us
894        // the line in exclusive state, and invalidates all other
895        // copies
896        cmd = MemCmd::InvalidateReq;
897    } else {
898        // block is invalid
899        cmd = needsExclusive ? MemCmd::ReadExReq :
900            (isReadOnly ? MemCmd::ReadCleanReq : MemCmd::ReadSharedReq);
901    }
902    PacketPtr pkt = new Packet(cpu_pkt->req, cmd, blkSize);
903
904    // if there are sharers in the upper levels, pass that info downstream
905    if (cpu_pkt->sharedAsserted()) {
906        // note that cpu_pkt may have spent a considerable time in the
907        // MSHR queue and that the information could possibly be out
908        // of date, however, there is no harm in conservatively
909        // assuming the block is shared
910        pkt->assertShared();
911        DPRINTF(Cache, "%s passing shared from %s to %s addr %#llx size %d\n",
912                __func__, cpu_pkt->cmdString(), pkt->cmdString(),
913                pkt->getAddr(), pkt->getSize());
914    }
915
916    // the packet should be block aligned
917    assert(pkt->getAddr() == blockAlign(pkt->getAddr()));
918
919    pkt->allocate();
920    DPRINTF(Cache, "%s created %s from %s for  addr %#llx size %d\n",
921            __func__, pkt->cmdString(), cpu_pkt->cmdString(), pkt->getAddr(),
922            pkt->getSize());
923    return pkt;
924}
925
926
927Tick
928Cache::recvAtomic(PacketPtr pkt)
929{
930    // We are in atomic mode so we pay just for lookupLatency here.
931    Cycles lat = lookupLatency;
932    // @TODO: make this a parameter
933    bool last_level_cache = false;
934
935    // Forward the request if the system is in cache bypass mode.
936    if (system->bypassCaches())
937        return ticksToCycles(memSidePort->sendAtomic(pkt));
938
939    promoteWholeLineWrites(pkt);
940
941    if (pkt->memInhibitAsserted()) {
942        // have to invalidate ourselves and any lower caches even if
943        // upper cache will be responding
944        if (pkt->isInvalidate()) {
945            CacheBlk *blk = tags->findBlock(pkt->getAddr(), pkt->isSecure());
946            if (blk && blk->isValid()) {
947                tags->invalidate(blk);
948                blk->invalidate();
949                DPRINTF(Cache, "rcvd mem-inhibited %s on %#llx (%s):"
950                        " invalidating\n",
951                        pkt->cmdString(), pkt->getAddr(),
952                        pkt->isSecure() ? "s" : "ns");
953            }
954            if (!last_level_cache) {
955                DPRINTF(Cache, "forwarding mem-inhibited %s on %#llx (%s)\n",
956                        pkt->cmdString(), pkt->getAddr(),
957                        pkt->isSecure() ? "s" : "ns");
958                lat += ticksToCycles(memSidePort->sendAtomic(pkt));
959            }
960        } else {
961            DPRINTF(Cache, "rcvd mem-inhibited %s on %#llx: not responding\n",
962                    pkt->cmdString(), pkt->getAddr());
963        }
964
965        return lat * clockPeriod();
966    }
967
968    // should assert here that there are no outstanding MSHRs or
969    // writebacks... that would mean that someone used an atomic
970    // access in timing mode
971
972    CacheBlk *blk = NULL;
973    PacketList writebacks;
974    bool satisfied = access(pkt, blk, lat, writebacks);
975
976    // handle writebacks resulting from the access here to ensure they
977    // logically proceed anything happening below
978    doWritebacksAtomic(writebacks);
979
980    if (!satisfied) {
981        // MISS
982
983        PacketPtr bus_pkt = getBusPacket(pkt, blk, pkt->needsExclusive());
984
985        bool is_forward = (bus_pkt == NULL);
986
987        if (is_forward) {
988            // just forwarding the same request to the next level
989            // no local cache operation involved
990            bus_pkt = pkt;
991        }
992
993        DPRINTF(Cache, "Sending an atomic %s for %#llx (%s)\n",
994                bus_pkt->cmdString(), bus_pkt->getAddr(),
995                bus_pkt->isSecure() ? "s" : "ns");
996
997#if TRACING_ON
998        CacheBlk::State old_state = blk ? blk->status : 0;
999#endif
1000
1001        lat += ticksToCycles(memSidePort->sendAtomic(bus_pkt));
1002
1003        // We are now dealing with the response handling
1004        DPRINTF(Cache, "Receive response: %s for addr %#llx (%s) in state %i\n",
1005                bus_pkt->cmdString(), bus_pkt->getAddr(),
1006                bus_pkt->isSecure() ? "s" : "ns",
1007                old_state);
1008
1009        // If packet was a forward, the response (if any) is already
1010        // in place in the bus_pkt == pkt structure, so we don't need
1011        // to do anything.  Otherwise, use the separate bus_pkt to
1012        // generate response to pkt and then delete it.
1013        if (!is_forward) {
1014            if (pkt->needsResponse()) {
1015                assert(bus_pkt->isResponse());
1016                if (bus_pkt->isError()) {
1017                    pkt->makeAtomicResponse();
1018                    pkt->copyError(bus_pkt);
1019                } else if (pkt->cmd == MemCmd::InvalidateReq) {
1020                    if (blk) {
1021                        // invalidate response to a cache that received
1022                        // an invalidate request
1023                        satisfyCpuSideRequest(pkt, blk);
1024                    }
1025                } else if (pkt->cmd == MemCmd::WriteLineReq) {
1026                    // note the use of pkt, not bus_pkt here.
1027
1028                    // write-line request to the cache that promoted
1029                    // the write to a whole line
1030                    blk = handleFill(pkt, blk, writebacks);
1031                    satisfyCpuSideRequest(pkt, blk);
1032                } else if (bus_pkt->isRead() ||
1033                           bus_pkt->cmd == MemCmd::UpgradeResp) {
1034                    // we're updating cache state to allow us to
1035                    // satisfy the upstream request from the cache
1036                    blk = handleFill(bus_pkt, blk, writebacks);
1037                    satisfyCpuSideRequest(pkt, blk);
1038                } else {
1039                    // we're satisfying the upstream request without
1040                    // modifying cache state, e.g., a write-through
1041                    pkt->makeAtomicResponse();
1042                }
1043            }
1044            delete bus_pkt;
1045        }
1046    }
1047
1048    // Note that we don't invoke the prefetcher at all in atomic mode.
1049    // It's not clear how to do it properly, particularly for
1050    // prefetchers that aggressively generate prefetch candidates and
1051    // rely on bandwidth contention to throttle them; these will tend
1052    // to pollute the cache in atomic mode since there is no bandwidth
1053    // contention.  If we ever do want to enable prefetching in atomic
1054    // mode, though, this is the place to do it... see timingAccess()
1055    // for an example (though we'd want to issue the prefetch(es)
1056    // immediately rather than calling requestMemSideBus() as we do
1057    // there).
1058
1059    // Handle writebacks (from the response handling) if needed
1060    doWritebacksAtomic(writebacks);
1061
1062    if (pkt->needsResponse()) {
1063        pkt->makeAtomicResponse();
1064    }
1065
1066    return lat * clockPeriod();
1067}
1068
1069
1070void
1071Cache::functionalAccess(PacketPtr pkt, bool fromCpuSide)
1072{
1073    if (system->bypassCaches()) {
1074        // Packets from the memory side are snoop request and
1075        // shouldn't happen in bypass mode.
1076        assert(fromCpuSide);
1077
1078        // The cache should be flushed if we are in cache bypass mode,
1079        // so we don't need to check if we need to update anything.
1080        memSidePort->sendFunctional(pkt);
1081        return;
1082    }
1083
1084    Addr blk_addr = blockAlign(pkt->getAddr());
1085    bool is_secure = pkt->isSecure();
1086    CacheBlk *blk = tags->findBlock(pkt->getAddr(), is_secure);
1087    MSHR *mshr = mshrQueue.findMatch(blk_addr, is_secure);
1088
1089    pkt->pushLabel(name());
1090
1091    CacheBlkPrintWrapper cbpw(blk);
1092
1093    // Note that just because an L2/L3 has valid data doesn't mean an
1094    // L1 doesn't have a more up-to-date modified copy that still
1095    // needs to be found.  As a result we always update the request if
1096    // we have it, but only declare it satisfied if we are the owner.
1097
1098    // see if we have data at all (owned or otherwise)
1099    bool have_data = blk && blk->isValid()
1100        && pkt->checkFunctional(&cbpw, blk_addr, is_secure, blkSize,
1101                                blk->data);
1102
1103    // data we have is dirty if marked as such or if valid & ownership
1104    // pending due to outstanding UpgradeReq
1105    bool have_dirty =
1106        have_data && (blk->isDirty() ||
1107                      (mshr && mshr->inService && mshr->isPendingDirty()));
1108
1109    bool done = have_dirty
1110        || cpuSidePort->checkFunctional(pkt)
1111        || mshrQueue.checkFunctional(pkt, blk_addr)
1112        || writeBuffer.checkFunctional(pkt, blk_addr)
1113        || memSidePort->checkFunctional(pkt);
1114
1115    DPRINTF(Cache, "functional %s %#llx (%s) %s%s%s\n",
1116            pkt->cmdString(), pkt->getAddr(), is_secure ? "s" : "ns",
1117            (blk && blk->isValid()) ? "valid " : "",
1118            have_data ? "data " : "", done ? "done " : "");
1119
1120    // We're leaving the cache, so pop cache->name() label
1121    pkt->popLabel();
1122
1123    if (done) {
1124        pkt->makeResponse();
1125    } else {
1126        // if it came as a request from the CPU side then make sure it
1127        // continues towards the memory side
1128        if (fromCpuSide) {
1129            memSidePort->sendFunctional(pkt);
1130        } else if (forwardSnoops && cpuSidePort->isSnooping()) {
1131            // if it came from the memory side, it must be a snoop request
1132            // and we should only forward it if we are forwarding snoops
1133            cpuSidePort->sendFunctionalSnoop(pkt);
1134        }
1135    }
1136}
1137
1138
1139/////////////////////////////////////////////////////
1140//
1141// Response handling: responses from the memory side
1142//
1143/////////////////////////////////////////////////////
1144
1145
1146void
1147Cache::recvTimingResp(PacketPtr pkt)
1148{
1149    assert(pkt->isResponse());
1150
1151    // all header delay should be paid for by the crossbar, unless
1152    // this is a prefetch response from above
1153    panic_if(pkt->headerDelay != 0 && pkt->cmd != MemCmd::HardPFResp,
1154             "%s saw a non-zero packet delay\n", name());
1155
1156    MSHR *mshr = dynamic_cast<MSHR*>(pkt->senderState);
1157    bool is_error = pkt->isError();
1158
1159    assert(mshr);
1160
1161    if (is_error) {
1162        DPRINTF(Cache, "Cache received packet with error for addr %#llx (%s), "
1163                "cmd: %s\n", pkt->getAddr(), pkt->isSecure() ? "s" : "ns",
1164                pkt->cmdString());
1165    }
1166
1167    DPRINTF(Cache, "Handling response %s for addr %#llx size %d (%s)\n",
1168            pkt->cmdString(), pkt->getAddr(), pkt->getSize(),
1169            pkt->isSecure() ? "s" : "ns");
1170
1171    MSHRQueue *mq = mshr->queue;
1172    bool wasFull = mq->isFull();
1173
1174    if (mshr == noTargetMSHR) {
1175        // we always clear at least one target
1176        clearBlocked(Blocked_NoTargets);
1177        noTargetMSHR = NULL;
1178    }
1179
1180    // Initial target is used just for stats
1181    MSHR::Target *initial_tgt = mshr->getTarget();
1182    int stats_cmd_idx = initial_tgt->pkt->cmdToIndex();
1183    Tick miss_latency = curTick() - initial_tgt->recvTime;
1184    PacketList writebacks;
1185    // We need forward_time here because we have a call of
1186    // allocateWriteBuffer() that need this parameter to specify the
1187    // time to request the bus.  In this case we use forward latency
1188    // because there is a writeback.  We pay also here for headerDelay
1189    // that is charged of bus latencies if the packet comes from the
1190    // bus.
1191    Tick forward_time = clockEdge(forwardLatency) + pkt->headerDelay;
1192
1193    if (pkt->req->isUncacheable()) {
1194        assert(pkt->req->masterId() < system->maxMasters());
1195        mshr_uncacheable_lat[stats_cmd_idx][pkt->req->masterId()] +=
1196            miss_latency;
1197    } else {
1198        assert(pkt->req->masterId() < system->maxMasters());
1199        mshr_miss_latency[stats_cmd_idx][pkt->req->masterId()] +=
1200            miss_latency;
1201    }
1202
1203    // upgrade deferred targets if we got exclusive
1204    if (!pkt->sharedAsserted()) {
1205        mshr->promoteExclusive();
1206    }
1207
1208    bool is_fill = !mshr->isForward &&
1209        (pkt->isRead() || pkt->cmd == MemCmd::UpgradeResp);
1210
1211    CacheBlk *blk = tags->findBlock(pkt->getAddr(), pkt->isSecure());
1212
1213    if (is_fill && !is_error) {
1214        DPRINTF(Cache, "Block for addr %#llx being updated in Cache\n",
1215                pkt->getAddr());
1216
1217        blk = handleFill(pkt, blk, writebacks);
1218        assert(blk != NULL);
1219    }
1220
1221    // allow invalidation responses originating from write-line
1222    // requests to be discarded
1223    bool is_invalidate = pkt->isInvalidate();
1224
1225    // First offset for critical word first calculations
1226    int initial_offset = initial_tgt->pkt->getOffset(blkSize);
1227
1228    while (mshr->hasTargets()) {
1229        MSHR::Target *target = mshr->getTarget();
1230        Packet *tgt_pkt = target->pkt;
1231
1232        switch (target->source) {
1233          case MSHR::Target::FromCPU:
1234            Tick completion_time;
1235            // Here we charge on completion_time the delay of the xbar if the
1236            // packet comes from it, charged on headerDelay.
1237            completion_time = pkt->headerDelay;
1238
1239            // Software prefetch handling for cache closest to core
1240            if (tgt_pkt->cmd.isSWPrefetch()) {
1241                // a software prefetch would have already been ack'd immediately
1242                // with dummy data so the core would be able to retire it.
1243                // this request completes right here, so we deallocate it.
1244                delete tgt_pkt->req;
1245                delete tgt_pkt;
1246                break; // skip response
1247            }
1248
1249            // unlike the other packet flows, where data is found in other
1250            // caches or memory and brought back, write-line requests always
1251            // have the data right away, so the above check for "is fill?"
1252            // cannot actually be determined until examining the stored MSHR
1253            // state. We "catch up" with that logic here, which is duplicated
1254            // from above.
1255            if (tgt_pkt->cmd == MemCmd::WriteLineReq) {
1256                assert(!is_error);
1257                // we got the block in exclusive state, so promote any
1258                // deferred targets if possible
1259                mshr->promoteExclusive();
1260                // NB: we use the original packet here and not the response!
1261                blk = handleFill(tgt_pkt, blk, writebacks);
1262                assert(blk != NULL);
1263
1264                // treat as a fill, and discard the invalidation
1265                // response
1266                is_fill = true;
1267                is_invalidate = false;
1268            }
1269
1270            if (is_fill) {
1271                satisfyCpuSideRequest(tgt_pkt, blk,
1272                                      true, mshr->hasPostDowngrade());
1273
1274                // How many bytes past the first request is this one
1275                int transfer_offset =
1276                    tgt_pkt->getOffset(blkSize) - initial_offset;
1277                if (transfer_offset < 0) {
1278                    transfer_offset += blkSize;
1279                }
1280
1281                // If not critical word (offset) return payloadDelay.
1282                // responseLatency is the latency of the return path
1283                // from lower level caches/memory to an upper level cache or
1284                // the core.
1285                completion_time += clockEdge(responseLatency) +
1286                    (transfer_offset ? pkt->payloadDelay : 0);
1287
1288                assert(!tgt_pkt->req->isUncacheable());
1289
1290                assert(tgt_pkt->req->masterId() < system->maxMasters());
1291                missLatency[tgt_pkt->cmdToIndex()][tgt_pkt->req->masterId()] +=
1292                    completion_time - target->recvTime;
1293            } else if (pkt->cmd == MemCmd::UpgradeFailResp) {
1294                // failed StoreCond upgrade
1295                assert(tgt_pkt->cmd == MemCmd::StoreCondReq ||
1296                       tgt_pkt->cmd == MemCmd::StoreCondFailReq ||
1297                       tgt_pkt->cmd == MemCmd::SCUpgradeFailReq);
1298                // responseLatency is the latency of the return path
1299                // from lower level caches/memory to an upper level cache or
1300                // the core.
1301                completion_time += clockEdge(responseLatency) +
1302                    pkt->payloadDelay;
1303                tgt_pkt->req->setExtraData(0);
1304            } else {
1305                // not a cache fill, just forwarding response
1306                // responseLatency is the latency of the return path
1307                // from lower level cahces/memory to the core.
1308                completion_time += clockEdge(responseLatency) +
1309                    pkt->payloadDelay;
1310                if (pkt->isRead() && !is_error) {
1311                    // sanity check
1312                    assert(pkt->getAddr() == tgt_pkt->getAddr());
1313                    assert(pkt->getSize() >= tgt_pkt->getSize());
1314
1315                    tgt_pkt->setData(pkt->getConstPtr<uint8_t>());
1316                }
1317            }
1318            tgt_pkt->makeTimingResponse();
1319            // if this packet is an error copy that to the new packet
1320            if (is_error)
1321                tgt_pkt->copyError(pkt);
1322            if (tgt_pkt->cmd == MemCmd::ReadResp &&
1323                (is_invalidate || mshr->hasPostInvalidate())) {
1324                // If intermediate cache got ReadRespWithInvalidate,
1325                // propagate that.  Response should not have
1326                // isInvalidate() set otherwise.
1327                tgt_pkt->cmd = MemCmd::ReadRespWithInvalidate;
1328                DPRINTF(Cache, "%s updated cmd to %s for addr %#llx\n",
1329                        __func__, tgt_pkt->cmdString(), tgt_pkt->getAddr());
1330            }
1331            // Reset the bus additional time as it is now accounted for
1332            tgt_pkt->headerDelay = tgt_pkt->payloadDelay = 0;
1333            cpuSidePort->schedTimingResp(tgt_pkt, completion_time);
1334            break;
1335
1336          case MSHR::Target::FromPrefetcher:
1337            assert(tgt_pkt->cmd == MemCmd::HardPFReq);
1338            if (blk)
1339                blk->status |= BlkHWPrefetched;
1340            delete tgt_pkt->req;
1341            delete tgt_pkt;
1342            break;
1343
1344          case MSHR::Target::FromSnoop:
1345            // I don't believe that a snoop can be in an error state
1346            assert(!is_error);
1347            // response to snoop request
1348            DPRINTF(Cache, "processing deferred snoop...\n");
1349            assert(!(is_invalidate && !mshr->hasPostInvalidate()));
1350            handleSnoop(tgt_pkt, blk, true, true, mshr->hasPostInvalidate());
1351            break;
1352
1353          default:
1354            panic("Illegal target->source enum %d\n", target->source);
1355        }
1356
1357        mshr->popTarget();
1358    }
1359
1360    if (blk && blk->isValid()) {
1361        // an invalidate response stemming from a write line request
1362        // should not invalidate the block, so check if the
1363        // invalidation should be discarded
1364        if (is_invalidate || mshr->hasPostInvalidate()) {
1365            assert(blk != tempBlock);
1366            tags->invalidate(blk);
1367            blk->invalidate();
1368        } else if (mshr->hasPostDowngrade()) {
1369            blk->status &= ~BlkWritable;
1370        }
1371    }
1372
1373    if (mshr->promoteDeferredTargets()) {
1374        // avoid later read getting stale data while write miss is
1375        // outstanding.. see comment in timingAccess()
1376        if (blk) {
1377            blk->status &= ~BlkReadable;
1378        }
1379        mq = mshr->queue;
1380        mq->markPending(mshr);
1381        schedMemSideSendEvent(clockEdge() + pkt->payloadDelay);
1382    } else {
1383        mq->deallocate(mshr);
1384        if (wasFull && !mq->isFull()) {
1385            clearBlocked((BlockedCause)mq->index);
1386        }
1387
1388        // Request the bus for a prefetch if this deallocation freed enough
1389        // MSHRs for a prefetch to take place
1390        if (prefetcher && mq == &mshrQueue && mshrQueue.canPrefetch()) {
1391            Tick next_pf_time = std::max(prefetcher->nextPrefetchReadyTime(),
1392                                         clockEdge());
1393            if (next_pf_time != MaxTick)
1394                schedMemSideSendEvent(next_pf_time);
1395        }
1396    }
1397    // reset the xbar additional timinig  as it is now accounted for
1398    pkt->headerDelay = pkt->payloadDelay = 0;
1399
1400    // copy writebacks to write buffer
1401    doWritebacks(writebacks, forward_time);
1402
1403    // if we used temp block, check to see if its valid and then clear it out
1404    if (blk == tempBlock && tempBlock->isValid()) {
1405        // We use forwardLatency here because we are copying
1406        // Writebacks/CleanEvicts to write buffer. It specifies the latency to
1407        // allocate an internal buffer and to schedule an event to the
1408        // queued port.
1409        if (blk->isDirty()) {
1410            PacketPtr wbPkt = writebackBlk(blk);
1411            allocateWriteBuffer(wbPkt, forward_time);
1412            // Set BLOCK_CACHED flag if cached above.
1413            if (isCachedAbove(wbPkt))
1414                wbPkt->setBlockCached();
1415        } else {
1416            PacketPtr wcPkt = cleanEvictBlk(blk);
1417            // Check to see if block is cached above. If not allocate
1418            // write buffer
1419            if (isCachedAbove(wcPkt))
1420                delete wcPkt;
1421            else
1422                allocateWriteBuffer(wcPkt, forward_time);
1423        }
1424        blk->invalidate();
1425    }
1426
1427    DPRINTF(Cache, "Leaving %s with %s for addr %#llx\n", __func__,
1428            pkt->cmdString(), pkt->getAddr());
1429    delete pkt;
1430}
1431
1432PacketPtr
1433Cache::writebackBlk(CacheBlk *blk)
1434{
1435    chatty_assert(!isReadOnly, "Writeback from read-only cache");
1436    assert(blk && blk->isValid() && blk->isDirty());
1437
1438    writebacks[Request::wbMasterId]++;
1439
1440    Request *writebackReq =
1441        new Request(tags->regenerateBlkAddr(blk->tag, blk->set), blkSize, 0,
1442                Request::wbMasterId);
1443    if (blk->isSecure())
1444        writebackReq->setFlags(Request::SECURE);
1445
1446    writebackReq->taskId(blk->task_id);
1447    blk->task_id= ContextSwitchTaskId::Unknown;
1448    blk->tickInserted = curTick();
1449
1450    PacketPtr writeback = new Packet(writebackReq, MemCmd::Writeback);
1451    if (blk->isWritable()) {
1452        // not asserting shared means we pass the block in modified
1453        // state, mark our own block non-writeable
1454        blk->status &= ~BlkWritable;
1455    } else {
1456        // we are in the owned state, tell the receiver
1457        writeback->assertShared();
1458    }
1459
1460    writeback->allocate();
1461    std::memcpy(writeback->getPtr<uint8_t>(), blk->data, blkSize);
1462
1463    blk->status &= ~BlkDirty;
1464    return writeback;
1465}
1466
1467PacketPtr
1468Cache::cleanEvictBlk(CacheBlk *blk)
1469{
1470    assert(blk && blk->isValid() && !blk->isDirty());
1471    // Creating a zero sized write, a message to the snoop filter
1472    Request *req =
1473        new Request(tags->regenerateBlkAddr(blk->tag, blk->set), blkSize, 0,
1474                    Request::wbMasterId);
1475    if (blk->isSecure())
1476        req->setFlags(Request::SECURE);
1477
1478    req->taskId(blk->task_id);
1479    blk->task_id = ContextSwitchTaskId::Unknown;
1480    blk->tickInserted = curTick();
1481
1482    PacketPtr pkt = new Packet(req, MemCmd::CleanEvict);
1483    pkt->allocate();
1484    DPRINTF(Cache, "%s%s %x Create CleanEvict\n", pkt->cmdString(),
1485            pkt->req->isInstFetch() ? " (ifetch)" : "",
1486            pkt->getAddr());
1487
1488    return pkt;
1489}
1490
1491void
1492Cache::memWriteback()
1493{
1494    CacheBlkVisitorWrapper visitor(*this, &Cache::writebackVisitor);
1495    tags->forEachBlk(visitor);
1496}
1497
1498void
1499Cache::memInvalidate()
1500{
1501    CacheBlkVisitorWrapper visitor(*this, &Cache::invalidateVisitor);
1502    tags->forEachBlk(visitor);
1503}
1504
1505bool
1506Cache::isDirty() const
1507{
1508    CacheBlkIsDirtyVisitor visitor;
1509    tags->forEachBlk(visitor);
1510
1511    return visitor.isDirty();
1512}
1513
1514bool
1515Cache::writebackVisitor(CacheBlk &blk)
1516{
1517    if (blk.isDirty()) {
1518        assert(blk.isValid());
1519
1520        Request request(tags->regenerateBlkAddr(blk.tag, blk.set),
1521                        blkSize, 0, Request::funcMasterId);
1522        request.taskId(blk.task_id);
1523
1524        Packet packet(&request, MemCmd::WriteReq);
1525        packet.dataStatic(blk.data);
1526
1527        memSidePort->sendFunctional(&packet);
1528
1529        blk.status &= ~BlkDirty;
1530    }
1531
1532    return true;
1533}
1534
1535bool
1536Cache::invalidateVisitor(CacheBlk &blk)
1537{
1538
1539    if (blk.isDirty())
1540        warn_once("Invalidating dirty cache lines. Expect things to break.\n");
1541
1542    if (blk.isValid()) {
1543        assert(!blk.isDirty());
1544        tags->invalidate(&blk);
1545        blk.invalidate();
1546    }
1547
1548    return true;
1549}
1550
1551CacheBlk*
1552Cache::allocateBlock(Addr addr, bool is_secure, PacketList &writebacks)
1553{
1554    CacheBlk *blk = tags->findVictim(addr);
1555
1556    // It is valid to return NULL if there is no victim
1557    if (!blk)
1558        return nullptr;
1559
1560    if (blk->isValid()) {
1561        Addr repl_addr = tags->regenerateBlkAddr(blk->tag, blk->set);
1562        MSHR *repl_mshr = mshrQueue.findMatch(repl_addr, blk->isSecure());
1563        if (repl_mshr) {
1564            // must be an outstanding upgrade request
1565            // on a block we're about to replace...
1566            assert(!blk->isWritable() || blk->isDirty());
1567            assert(repl_mshr->needsExclusive());
1568            // too hard to replace block with transient state
1569            // allocation failed, block not inserted
1570            return NULL;
1571        } else {
1572            DPRINTF(Cache, "replacement: replacing %#llx (%s) with %#llx (%s): %s\n",
1573                    repl_addr, blk->isSecure() ? "s" : "ns",
1574                    addr, is_secure ? "s" : "ns",
1575                    blk->isDirty() ? "writeback" : "clean");
1576
1577            // Will send up Writeback/CleanEvict snoops via isCachedAbove
1578            // when pushing this writeback list into the write buffer.
1579            if (blk->isDirty()) {
1580                // Save writeback packet for handling by caller
1581                writebacks.push_back(writebackBlk(blk));
1582            } else {
1583                writebacks.push_back(cleanEvictBlk(blk));
1584            }
1585        }
1586    }
1587
1588    return blk;
1589}
1590
1591
1592// Note that the reason we return a list of writebacks rather than
1593// inserting them directly in the write buffer is that this function
1594// is called by both atomic and timing-mode accesses, and in atomic
1595// mode we don't mess with the write buffer (we just perform the
1596// writebacks atomically once the original request is complete).
1597CacheBlk*
1598Cache::handleFill(PacketPtr pkt, CacheBlk *blk, PacketList &writebacks)
1599{
1600    assert(pkt->isResponse() || pkt->cmd == MemCmd::WriteLineReq);
1601    Addr addr = pkt->getAddr();
1602    bool is_secure = pkt->isSecure();
1603#if TRACING_ON
1604    CacheBlk::State old_state = blk ? blk->status : 0;
1605#endif
1606
1607    // When handling a fill, discard any CleanEvicts for the
1608    // same address in write buffer.
1609    Addr M5_VAR_USED blk_addr = blockAlign(pkt->getAddr());
1610    std::vector<MSHR *> M5_VAR_USED wbs;
1611    assert (!writeBuffer.findMatches(blk_addr, is_secure, wbs));
1612
1613    if (blk == NULL) {
1614        // better have read new data...
1615        assert(pkt->hasData());
1616
1617        // only read responses and write-line requests have data;
1618        // note that we don't write the data here for write-line - that
1619        // happens in the subsequent satisfyCpuSideRequest.
1620        assert(pkt->isRead() || pkt->cmd == MemCmd::WriteLineReq);
1621
1622        // need to do a replacement
1623        blk = allocateBlock(addr, is_secure, writebacks);
1624        if (blk == NULL) {
1625            // No replaceable block... just use temporary storage to
1626            // complete the current request and then get rid of it
1627            assert(!tempBlock->isValid());
1628            blk = tempBlock;
1629            tempBlock->set = tags->extractSet(addr);
1630            tempBlock->tag = tags->extractTag(addr);
1631            // @todo: set security state as well...
1632            DPRINTF(Cache, "using temp block for %#llx (%s)\n", addr,
1633                    is_secure ? "s" : "ns");
1634        } else {
1635            tags->insertBlock(pkt, blk);
1636        }
1637
1638        // we should never be overwriting a valid block
1639        assert(!blk->isValid());
1640    } else {
1641        // existing block... probably an upgrade
1642        assert(blk->tag == tags->extractTag(addr));
1643        // either we're getting new data or the block should already be valid
1644        assert(pkt->hasData() || blk->isValid());
1645        // don't clear block status... if block is already dirty we
1646        // don't want to lose that
1647    }
1648
1649    if (is_secure)
1650        blk->status |= BlkSecure;
1651    blk->status |= BlkValid | BlkReadable;
1652
1653    // sanity check for whole-line writes, which should always be
1654    // marked as writable as part of the fill, and then later marked
1655    // dirty as part of satisfyCpuSideRequest
1656    if (pkt->cmd == MemCmd::WriteLineReq) {
1657        assert(!pkt->sharedAsserted());
1658        // at the moment other caches do not respond to the
1659        // invalidation requests corresponding to a whole-line write
1660        assert(!pkt->memInhibitAsserted());
1661    }
1662
1663    if (!pkt->sharedAsserted()) {
1664        // we could get non-shared responses from memory (rather than
1665        // a cache) even in a read-only cache, note that we set this
1666        // bit even for a read-only cache as we use it to represent
1667        // the exclusive state
1668        blk->status |= BlkWritable;
1669
1670        // If we got this via cache-to-cache transfer (i.e., from a
1671        // cache that was an owner) and took away that owner's copy,
1672        // then we need to write it back.  Normally this happens
1673        // anyway as a side effect of getting a copy to write it, but
1674        // there are cases (such as failed store conditionals or
1675        // compare-and-swaps) where we'll demand an exclusive copy but
1676        // end up not writing it.
1677        if (pkt->memInhibitAsserted()) {
1678            blk->status |= BlkDirty;
1679
1680            chatty_assert(!isReadOnly, "Should never see dirty snoop response "
1681                          "in read-only cache %s\n", name());
1682        }
1683    }
1684
1685    DPRINTF(Cache, "Block addr %#llx (%s) moving from state %x to %s\n",
1686            addr, is_secure ? "s" : "ns", old_state, blk->print());
1687
1688    // if we got new data, copy it in (checking for a read response
1689    // and a response that has data is the same in the end)
1690    if (pkt->isRead()) {
1691        // sanity checks
1692        assert(pkt->hasData());
1693        assert(pkt->getSize() == blkSize);
1694
1695        std::memcpy(blk->data, pkt->getConstPtr<uint8_t>(), blkSize);
1696    }
1697    // We pay for fillLatency here.
1698    blk->whenReady = clockEdge() + fillLatency * clockPeriod() +
1699        pkt->payloadDelay;
1700
1701    return blk;
1702}
1703
1704
1705/////////////////////////////////////////////////////
1706//
1707// Snoop path: requests coming in from the memory side
1708//
1709/////////////////////////////////////////////////////
1710
1711void
1712Cache::doTimingSupplyResponse(PacketPtr req_pkt, const uint8_t *blk_data,
1713                              bool already_copied, bool pending_inval)
1714{
1715    // sanity check
1716    assert(req_pkt->isRequest());
1717    assert(req_pkt->needsResponse());
1718
1719    DPRINTF(Cache, "%s for %s addr %#llx size %d\n", __func__,
1720            req_pkt->cmdString(), req_pkt->getAddr(), req_pkt->getSize());
1721    // timing-mode snoop responses require a new packet, unless we
1722    // already made a copy...
1723    PacketPtr pkt = req_pkt;
1724    if (!already_copied)
1725        // do not clear flags, and allocate space for data if the
1726        // packet needs it (the only packets that carry data are read
1727        // responses)
1728        pkt = new Packet(req_pkt, false, req_pkt->isRead());
1729
1730    assert(req_pkt->req->isUncacheable() || req_pkt->isInvalidate() ||
1731           pkt->sharedAsserted());
1732    pkt->makeTimingResponse();
1733    if (pkt->isRead()) {
1734        pkt->setDataFromBlock(blk_data, blkSize);
1735    }
1736    if (pkt->cmd == MemCmd::ReadResp && pending_inval) {
1737        // Assume we defer a response to a read from a far-away cache
1738        // A, then later defer a ReadExcl from a cache B on the same
1739        // bus as us.  We'll assert MemInhibit in both cases, but in
1740        // the latter case MemInhibit will keep the invalidation from
1741        // reaching cache A.  This special response tells cache A that
1742        // it gets the block to satisfy its read, but must immediately
1743        // invalidate it.
1744        pkt->cmd = MemCmd::ReadRespWithInvalidate;
1745    }
1746    // Here we consider forward_time, paying for just forward latency and
1747    // also charging the delay provided by the xbar.
1748    // forward_time is used as send_time in next allocateWriteBuffer().
1749    Tick forward_time = clockEdge(forwardLatency) + pkt->headerDelay;
1750    // Here we reset the timing of the packet.
1751    pkt->headerDelay = pkt->payloadDelay = 0;
1752    DPRINTF(Cache, "%s created response: %s addr %#llx size %d tick: %lu\n",
1753            __func__, pkt->cmdString(), pkt->getAddr(), pkt->getSize(),
1754            forward_time);
1755    memSidePort->schedTimingSnoopResp(pkt, forward_time, true);
1756}
1757
1758uint32_t
1759Cache::handleSnoop(PacketPtr pkt, CacheBlk *blk, bool is_timing,
1760                   bool is_deferred, bool pending_inval)
1761{
1762    DPRINTF(Cache, "%s for %s addr %#llx size %d\n", __func__,
1763            pkt->cmdString(), pkt->getAddr(), pkt->getSize());
1764    // deferred snoops can only happen in timing mode
1765    assert(!(is_deferred && !is_timing));
1766    // pending_inval only makes sense on deferred snoops
1767    assert(!(pending_inval && !is_deferred));
1768    assert(pkt->isRequest());
1769
1770    // the packet may get modified if we or a forwarded snooper
1771    // responds in atomic mode, so remember a few things about the
1772    // original packet up front
1773    bool invalidate = pkt->isInvalidate();
1774    bool M5_VAR_USED needs_exclusive = pkt->needsExclusive();
1775
1776    uint32_t snoop_delay = 0;
1777
1778    if (forwardSnoops) {
1779        // first propagate snoop upward to see if anyone above us wants to
1780        // handle it.  save & restore packet src since it will get
1781        // rewritten to be relative to cpu-side bus (if any)
1782        bool alreadyResponded = pkt->memInhibitAsserted();
1783        if (is_timing) {
1784            // copy the packet so that we can clear any flags before
1785            // forwarding it upwards, we also allocate data (passing
1786            // the pointer along in case of static data), in case
1787            // there is a snoop hit in upper levels
1788            Packet snoopPkt(pkt, true, true);
1789            snoopPkt.setExpressSnoop();
1790            snoopPkt.pushSenderState(new ForwardResponseRecord());
1791            // the snoop packet does not need to wait any additional
1792            // time
1793            snoopPkt.headerDelay = snoopPkt.payloadDelay = 0;
1794            cpuSidePort->sendTimingSnoopReq(&snoopPkt);
1795
1796            // add the header delay (including crossbar and snoop
1797            // delays) of the upward snoop to the snoop delay for this
1798            // cache
1799            snoop_delay += snoopPkt.headerDelay;
1800
1801            if (snoopPkt.memInhibitAsserted()) {
1802                // cache-to-cache response from some upper cache
1803                assert(!alreadyResponded);
1804                pkt->assertMemInhibit();
1805            } else {
1806                // no cache (or anyone else for that matter) will
1807                // respond, so delete the ForwardResponseRecord here
1808                delete snoopPkt.popSenderState();
1809            }
1810            if (snoopPkt.sharedAsserted()) {
1811                pkt->assertShared();
1812            }
1813            // If this request is a prefetch or clean evict and an upper level
1814            // signals block present, make sure to propagate the block
1815            // presence to the requester.
1816            if (snoopPkt.isBlockCached()) {
1817                pkt->setBlockCached();
1818            }
1819        } else {
1820            cpuSidePort->sendAtomicSnoop(pkt);
1821            if (!alreadyResponded && pkt->memInhibitAsserted()) {
1822                // cache-to-cache response from some upper cache:
1823                // forward response to original requester
1824                assert(pkt->isResponse());
1825            }
1826        }
1827    }
1828
1829    if (!blk || !blk->isValid()) {
1830        DPRINTF(Cache, "%s snoop miss for %s addr %#llx size %d\n",
1831                __func__, pkt->cmdString(), pkt->getAddr(), pkt->getSize());
1832        return snoop_delay;
1833    } else {
1834       DPRINTF(Cache, "%s snoop hit for %s for addr %#llx size %d, "
1835               "old state is %s\n", __func__, pkt->cmdString(),
1836               pkt->getAddr(), pkt->getSize(), blk->print());
1837    }
1838
1839    chatty_assert(!(isReadOnly && blk->isDirty()),
1840                  "Should never have a dirty block in a read-only cache %s\n",
1841                  name());
1842
1843    // We may end up modifying both the block state and the packet (if
1844    // we respond in atomic mode), so just figure out what to do now
1845    // and then do it later. If we find dirty data while snooping for
1846    // an invalidate, we don't need to send a response. The
1847    // invalidation itself is taken care of below.
1848    bool respond = blk->isDirty() && pkt->needsResponse() &&
1849        pkt->cmd != MemCmd::InvalidateReq;
1850    bool have_exclusive = blk->isWritable();
1851
1852    // Invalidate any prefetch's from below that would strip write permissions
1853    // MemCmd::HardPFReq is only observed by upstream caches.  After missing
1854    // above and in it's own cache, a new MemCmd::ReadReq is created that
1855    // downstream caches observe.
1856    if (pkt->mustCheckAbove()) {
1857        DPRINTF(Cache, "Found addr %#llx in upper level cache for snoop %s from"
1858                " lower cache\n", pkt->getAddr(), pkt->cmdString());
1859        pkt->setBlockCached();
1860        return snoop_delay;
1861    }
1862
1863    if (!pkt->req->isUncacheable() && pkt->isRead() && !invalidate) {
1864        // reading non-exclusive shared data, note that we retain
1865        // the block in owned state if it is dirty, with the response
1866        // taken care of below, and otherwhise simply downgrade to
1867        // shared
1868        assert(!needs_exclusive);
1869        pkt->assertShared();
1870        blk->status &= ~BlkWritable;
1871    }
1872
1873    if (respond) {
1874        // prevent anyone else from responding, cache as well as
1875        // memory, and also prevent any memory from even seeing the
1876        // request (with current inhibited semantics), note that this
1877        // applies both to reads and writes and that for writes it
1878        // works thanks to the fact that we still have dirty data and
1879        // will write it back at a later point
1880        pkt->assertMemInhibit();
1881        if (have_exclusive) {
1882            // in the case of an uncacheable request there is no point
1883            // in setting the exclusive flag, but since the recipient
1884            // does not care there is no harm in doing so, in any case
1885            // it is just a hint
1886            pkt->setSupplyExclusive();
1887        }
1888        if (is_timing) {
1889            doTimingSupplyResponse(pkt, blk->data, is_deferred, pending_inval);
1890        } else {
1891            pkt->makeAtomicResponse();
1892            pkt->setDataFromBlock(blk->data, blkSize);
1893        }
1894    }
1895
1896    if (!respond && is_timing && is_deferred) {
1897        // if it's a deferred timing snoop then we've made a copy of
1898        // both the request and the packet, and so if we're not using
1899        // those copies to respond and delete them here
1900        DPRINTF(Cache, "Deleting pkt %p and request %p for cmd %s addr: %p\n",
1901                pkt, pkt->req, pkt->cmdString(), pkt->getAddr());
1902
1903        // the packets needs a response (just not from us), so we also
1904        // need to delete the request and not rely on the packet
1905        // destructor
1906        assert(pkt->needsResponse());
1907        delete pkt->req;
1908        delete pkt;
1909    }
1910
1911    // Do this last in case it deallocates block data or something
1912    // like that
1913    if (invalidate) {
1914        if (blk != tempBlock)
1915            tags->invalidate(blk);
1916        blk->invalidate();
1917    }
1918
1919    DPRINTF(Cache, "new state is %s\n", blk->print());
1920
1921    return snoop_delay;
1922}
1923
1924
1925void
1926Cache::recvTimingSnoopReq(PacketPtr pkt)
1927{
1928    DPRINTF(Cache, "%s for %s addr %#llx size %d\n", __func__,
1929            pkt->cmdString(), pkt->getAddr(), pkt->getSize());
1930
1931    // Snoops shouldn't happen when bypassing caches
1932    assert(!system->bypassCaches());
1933
1934    // no need to snoop requests that are not in range
1935    if (!inRange(pkt->getAddr())) {
1936        return;
1937    }
1938
1939    bool is_secure = pkt->isSecure();
1940    CacheBlk *blk = tags->findBlock(pkt->getAddr(), is_secure);
1941
1942    Addr blk_addr = blockAlign(pkt->getAddr());
1943    MSHR *mshr = mshrQueue.findMatch(blk_addr, is_secure);
1944
1945    // Update the latency cost of the snoop so that the crossbar can
1946    // account for it. Do not overwrite what other neighbouring caches
1947    // have already done, rather take the maximum. The update is
1948    // tentative, for cases where we return before an upward snoop
1949    // happens below.
1950    pkt->snoopDelay = std::max<uint32_t>(pkt->snoopDelay,
1951                                         lookupLatency * clockPeriod());
1952
1953    // Inform request(Prefetch, CleanEvict or Writeback) from below of
1954    // MSHR hit, set setBlockCached.
1955    if (mshr && pkt->mustCheckAbove()) {
1956        DPRINTF(Cache, "Setting block cached for %s from"
1957                "lower cache on mshr hit %#x\n",
1958                pkt->cmdString(), pkt->getAddr());
1959        pkt->setBlockCached();
1960        return;
1961    }
1962
1963    // Let the MSHR itself track the snoop and decide whether we want
1964    // to go ahead and do the regular cache snoop
1965    if (mshr && mshr->handleSnoop(pkt, order++)) {
1966        DPRINTF(Cache, "Deferring snoop on in-service MSHR to blk %#llx (%s)."
1967                "mshrs: %s\n", blk_addr, is_secure ? "s" : "ns",
1968                mshr->print());
1969
1970        if (mshr->getNumTargets() > numTarget)
1971            warn("allocating bonus target for snoop"); //handle later
1972        return;
1973    }
1974
1975    //We also need to check the writeback buffers and handle those
1976    std::vector<MSHR *> writebacks;
1977    if (writeBuffer.findMatches(blk_addr, is_secure, writebacks)) {
1978        DPRINTF(Cache, "Snoop hit in writeback to addr %#llx (%s)\n",
1979                pkt->getAddr(), is_secure ? "s" : "ns");
1980
1981        // Look through writebacks for any cachable writes.
1982        // We should only ever find a single match
1983        assert(writebacks.size() == 1);
1984        MSHR *wb_entry = writebacks[0];
1985        // Expect to see only Writebacks and/or CleanEvicts here, both of
1986        // which should not be generated for uncacheable data.
1987        assert(!wb_entry->isUncacheable());
1988        // There should only be a single request responsible for generating
1989        // Writebacks/CleanEvicts.
1990        assert(wb_entry->getNumTargets() == 1);
1991        PacketPtr wb_pkt = wb_entry->getTarget()->pkt;
1992        assert(wb_pkt->evictingBlock());
1993
1994        if (pkt->evictingBlock()) {
1995            // if the block is found in the write queue, set the BLOCK_CACHED
1996            // flag for Writeback/CleanEvict snoop. On return the snoop will
1997            // propagate the BLOCK_CACHED flag in Writeback packets and prevent
1998            // any CleanEvicts from travelling down the memory hierarchy.
1999            pkt->setBlockCached();
2000            DPRINTF(Cache, "Squashing %s from lower cache on writequeue hit"
2001                    " %#x\n", pkt->cmdString(), pkt->getAddr());
2002            return;
2003        }
2004
2005        if (wb_pkt->cmd == MemCmd::Writeback) {
2006            assert(!pkt->memInhibitAsserted());
2007            pkt->assertMemInhibit();
2008            if (!pkt->needsExclusive()) {
2009                pkt->assertShared();
2010                // the writeback is no longer passing exclusivity (the
2011                // receiving cache should consider the block owned
2012                // rather than modified)
2013                wb_pkt->assertShared();
2014            } else {
2015                // if we're not asserting the shared line, we need to
2016                // invalidate our copy.  we'll do that below as long as
2017                // the packet's invalidate flag is set...
2018                assert(pkt->isInvalidate());
2019            }
2020            doTimingSupplyResponse(pkt, wb_pkt->getConstPtr<uint8_t>(),
2021                                   false, false);
2022        } else {
2023            assert(wb_pkt->cmd == MemCmd::CleanEvict);
2024            // The cache technically holds the block until the
2025            // corresponding CleanEvict message reaches the crossbar
2026            // below. Therefore when a snoop encounters a CleanEvict
2027            // message we must set assertShared (just like when it
2028            // encounters a Writeback) to avoid the snoop filter
2029            // prematurely clearing the holder bit in the crossbar
2030            // below
2031            if (!pkt->needsExclusive())
2032                pkt->assertShared();
2033            else
2034                assert(pkt->isInvalidate());
2035        }
2036
2037        if (pkt->isInvalidate()) {
2038            // Invalidation trumps our writeback... discard here
2039            // Note: markInService will remove entry from writeback buffer.
2040            markInService(wb_entry, false);
2041            delete wb_pkt;
2042        }
2043    }
2044
2045    // If this was a shared writeback, there may still be
2046    // other shared copies above that require invalidation.
2047    // We could be more selective and return here if the
2048    // request is non-exclusive or if the writeback is
2049    // exclusive.
2050    uint32_t snoop_delay = handleSnoop(pkt, blk, true, false, false);
2051
2052    // Override what we did when we first saw the snoop, as we now
2053    // also have the cost of the upwards snoops to account for
2054    pkt->snoopDelay = std::max<uint32_t>(pkt->snoopDelay, snoop_delay +
2055                                         lookupLatency * clockPeriod());
2056}
2057
2058bool
2059Cache::CpuSidePort::recvTimingSnoopResp(PacketPtr pkt)
2060{
2061    // Express snoop responses from master to slave, e.g., from L1 to L2
2062    cache->recvTimingSnoopResp(pkt);
2063    return true;
2064}
2065
2066Tick
2067Cache::recvAtomicSnoop(PacketPtr pkt)
2068{
2069    // Snoops shouldn't happen when bypassing caches
2070    assert(!system->bypassCaches());
2071
2072    // no need to snoop requests that are not in range.
2073    if (!inRange(pkt->getAddr())) {
2074        return 0;
2075    }
2076
2077    CacheBlk *blk = tags->findBlock(pkt->getAddr(), pkt->isSecure());
2078    uint32_t snoop_delay = handleSnoop(pkt, blk, false, false, false);
2079    return snoop_delay + lookupLatency * clockPeriod();
2080}
2081
2082
2083MSHR *
2084Cache::getNextMSHR()
2085{
2086    // Check both MSHR queue and write buffer for potential requests,
2087    // note that null does not mean there is no request, it could
2088    // simply be that it is not ready
2089    MSHR *miss_mshr  = mshrQueue.getNextMSHR();
2090    MSHR *write_mshr = writeBuffer.getNextMSHR();
2091
2092    // If we got a write buffer request ready, first priority is a
2093    // full write buffer, otherwhise we favour the miss requests
2094    if (write_mshr &&
2095        ((writeBuffer.isFull() && writeBuffer.inServiceEntries == 0) ||
2096         !miss_mshr)) {
2097        // need to search MSHR queue for conflicting earlier miss.
2098        MSHR *conflict_mshr =
2099            mshrQueue.findPending(write_mshr->blkAddr,
2100                                  write_mshr->isSecure);
2101
2102        if (conflict_mshr && conflict_mshr->order < write_mshr->order) {
2103            // Service misses in order until conflict is cleared.
2104            return conflict_mshr;
2105
2106            // @todo Note that we ignore the ready time of the conflict here
2107        }
2108
2109        // No conflicts; issue write
2110        return write_mshr;
2111    } else if (miss_mshr) {
2112        // need to check for conflicting earlier writeback
2113        MSHR *conflict_mshr =
2114            writeBuffer.findPending(miss_mshr->blkAddr,
2115                                    miss_mshr->isSecure);
2116        if (conflict_mshr) {
2117            // not sure why we don't check order here... it was in the
2118            // original code but commented out.
2119
2120            // The only way this happens is if we are
2121            // doing a write and we didn't have permissions
2122            // then subsequently saw a writeback (owned got evicted)
2123            // We need to make sure to perform the writeback first
2124            // To preserve the dirty data, then we can issue the write
2125
2126            // should we return write_mshr here instead?  I.e. do we
2127            // have to flush writes in order?  I don't think so... not
2128            // for Alpha anyway.  Maybe for x86?
2129            return conflict_mshr;
2130
2131            // @todo Note that we ignore the ready time of the conflict here
2132        }
2133
2134        // No conflicts; issue read
2135        return miss_mshr;
2136    }
2137
2138    // fall through... no pending requests.  Try a prefetch.
2139    assert(!miss_mshr && !write_mshr);
2140    if (prefetcher && mshrQueue.canPrefetch()) {
2141        // If we have a miss queue slot, we can try a prefetch
2142        PacketPtr pkt = prefetcher->getPacket();
2143        if (pkt) {
2144            Addr pf_addr = blockAlign(pkt->getAddr());
2145            if (!tags->findBlock(pf_addr, pkt->isSecure()) &&
2146                !mshrQueue.findMatch(pf_addr, pkt->isSecure()) &&
2147                !writeBuffer.findMatch(pf_addr, pkt->isSecure())) {
2148                // Update statistic on number of prefetches issued
2149                // (hwpf_mshr_misses)
2150                assert(pkt->req->masterId() < system->maxMasters());
2151                mshr_misses[pkt->cmdToIndex()][pkt->req->masterId()]++;
2152
2153                // allocate an MSHR and return it, note
2154                // that we send the packet straight away, so do not
2155                // schedule the send
2156                return allocateMissBuffer(pkt, curTick(), false);
2157            } else {
2158                // free the request and packet
2159                delete pkt->req;
2160                delete pkt;
2161            }
2162        }
2163    }
2164
2165    return NULL;
2166}
2167
2168bool
2169Cache::isCachedAbove(PacketPtr pkt, bool is_timing) const
2170{
2171    if (!forwardSnoops)
2172        return false;
2173    // Mirroring the flow of HardPFReqs, the cache sends CleanEvict and
2174    // Writeback snoops into upper level caches to check for copies of the
2175    // same block. Using the BLOCK_CACHED flag with the Writeback/CleanEvict
2176    // packet, the cache can inform the crossbar below of presence or absence
2177    // of the block.
2178    if (is_timing) {
2179        Packet snoop_pkt(pkt, true, false);
2180        snoop_pkt.setExpressSnoop();
2181        // Assert that packet is either Writeback or CleanEvict and not a
2182        // prefetch request because prefetch requests need an MSHR and may
2183        // generate a snoop response.
2184        assert(pkt->evictingBlock());
2185        snoop_pkt.senderState = NULL;
2186        cpuSidePort->sendTimingSnoopReq(&snoop_pkt);
2187        // Writeback/CleanEvict snoops do not generate a snoop response.
2188        assert(!(snoop_pkt.memInhibitAsserted()));
2189        return snoop_pkt.isBlockCached();
2190    } else {
2191        cpuSidePort->sendAtomicSnoop(pkt);
2192        return pkt->isBlockCached();
2193    }
2194}
2195
2196PacketPtr
2197Cache::getTimingPacket()
2198{
2199    MSHR *mshr = getNextMSHR();
2200
2201    if (mshr == NULL) {
2202        return NULL;
2203    }
2204
2205    // use request from 1st target
2206    PacketPtr tgt_pkt = mshr->getTarget()->pkt;
2207    PacketPtr pkt = NULL;
2208
2209    DPRINTF(CachePort, "%s %s for addr %#llx size %d\n", __func__,
2210            tgt_pkt->cmdString(), tgt_pkt->getAddr(), tgt_pkt->getSize());
2211
2212    CacheBlk *blk = tags->findBlock(mshr->blkAddr, mshr->isSecure);
2213
2214    if (tgt_pkt->cmd == MemCmd::HardPFReq && forwardSnoops) {
2215        // We need to check the caches above us to verify that
2216        // they don't have a copy of this block in the dirty state
2217        // at the moment. Without this check we could get a stale
2218        // copy from memory that might get used in place of the
2219        // dirty one.
2220        Packet snoop_pkt(tgt_pkt, true, false);
2221        snoop_pkt.setExpressSnoop();
2222        snoop_pkt.senderState = mshr;
2223        cpuSidePort->sendTimingSnoopReq(&snoop_pkt);
2224
2225        // Check to see if the prefetch was squashed by an upper cache (to
2226        // prevent us from grabbing the line) or if a Check to see if a
2227        // writeback arrived between the time the prefetch was placed in
2228        // the MSHRs and when it was selected to be sent or if the
2229        // prefetch was squashed by an upper cache.
2230
2231        // It is important to check memInhibitAsserted before
2232        // prefetchSquashed. If another cache has asserted MEM_INGIBIT, it
2233        // will be sending a response which will arrive at the MSHR
2234        // allocated ofr this request. Checking the prefetchSquash first
2235        // may result in the MSHR being prematurely deallocated.
2236
2237        if (snoop_pkt.memInhibitAsserted()) {
2238            // If we are getting a non-shared response it is dirty
2239            bool pending_dirty_resp = !snoop_pkt.sharedAsserted();
2240            markInService(mshr, pending_dirty_resp);
2241            DPRINTF(Cache, "Upward snoop of prefetch for addr"
2242                    " %#x (%s) hit\n",
2243                    tgt_pkt->getAddr(), tgt_pkt->isSecure()? "s": "ns");
2244            return NULL;
2245        }
2246
2247        if (snoop_pkt.isBlockCached() || blk != NULL) {
2248            DPRINTF(Cache, "Block present, prefetch squashed by cache.  "
2249                    "Deallocating mshr target %#x.\n",
2250                    mshr->blkAddr);
2251
2252            // Deallocate the mshr target
2253            if (tgt_pkt->cmd != MemCmd::Writeback) {
2254                if (mshr->queue->forceDeallocateTarget(mshr)) {
2255                    // Clear block if this deallocation resulted freed an
2256                    // mshr when all had previously been utilized
2257                    clearBlocked((BlockedCause)(mshr->queue->index));
2258                }
2259                return NULL;
2260            } else {
2261                // If this is a Writeback, and the snoops indicate that the blk
2262                // is cached above, set the BLOCK_CACHED flag in the Writeback
2263                // packet, so that it does not reset the bits corresponding to
2264                // this block in the snoop filter below.
2265                tgt_pkt->setBlockCached();
2266            }
2267        }
2268    }
2269
2270    if (mshr->isForwardNoResponse()) {
2271        // no response expected, just forward packet as it is
2272        assert(tags->findBlock(mshr->blkAddr, mshr->isSecure) == NULL);
2273        pkt = tgt_pkt;
2274    } else {
2275        pkt = getBusPacket(tgt_pkt, blk, mshr->needsExclusive());
2276
2277        mshr->isForward = (pkt == NULL);
2278
2279        if (mshr->isForward) {
2280            // not a cache block request, but a response is expected
2281            // make copy of current packet to forward, keep current
2282            // copy for response handling
2283            pkt = new Packet(tgt_pkt, false, true);
2284            if (pkt->isWrite()) {
2285                pkt->setData(tgt_pkt->getConstPtr<uint8_t>());
2286            }
2287        }
2288    }
2289
2290    assert(pkt != NULL);
2291    pkt->senderState = mshr;
2292    return pkt;
2293}
2294
2295
2296Tick
2297Cache::nextMSHRReadyTime() const
2298{
2299    Tick nextReady = std::min(mshrQueue.nextMSHRReadyTime(),
2300                              writeBuffer.nextMSHRReadyTime());
2301
2302    // Don't signal prefetch ready time if no MSHRs available
2303    // Will signal once enoguh MSHRs are deallocated
2304    if (prefetcher && mshrQueue.canPrefetch()) {
2305        nextReady = std::min(nextReady,
2306                             prefetcher->nextPrefetchReadyTime());
2307    }
2308
2309    return nextReady;
2310}
2311
2312void
2313Cache::serialize(CheckpointOut &cp) const
2314{
2315    bool dirty(isDirty());
2316
2317    if (dirty) {
2318        warn("*** The cache still contains dirty data. ***\n");
2319        warn("    Make sure to drain the system using the correct flags.\n");
2320        warn("    This checkpoint will not restore correctly and dirty data in "
2321             "the cache will be lost!\n");
2322    }
2323
2324    // Since we don't checkpoint the data in the cache, any dirty data
2325    // will be lost when restoring from a checkpoint of a system that
2326    // wasn't drained properly. Flag the checkpoint as invalid if the
2327    // cache contains dirty data.
2328    bool bad_checkpoint(dirty);
2329    SERIALIZE_SCALAR(bad_checkpoint);
2330}
2331
2332void
2333Cache::unserialize(CheckpointIn &cp)
2334{
2335    bool bad_checkpoint;
2336    UNSERIALIZE_SCALAR(bad_checkpoint);
2337    if (bad_checkpoint) {
2338        fatal("Restoring from checkpoints with dirty caches is not supported "
2339              "in the classic memory system. Please remove any caches or "
2340              " drain them properly before taking checkpoints.\n");
2341    }
2342}
2343
2344///////////////
2345//
2346// CpuSidePort
2347//
2348///////////////
2349
2350AddrRangeList
2351Cache::CpuSidePort::getAddrRanges() const
2352{
2353    return cache->getAddrRanges();
2354}
2355
2356bool
2357Cache::CpuSidePort::recvTimingReq(PacketPtr pkt)
2358{
2359    assert(!cache->system->bypassCaches());
2360
2361    bool success = false;
2362
2363    // always let inhibited requests through, even if blocked,
2364    // ultimately we should check if this is an express snoop, but at
2365    // the moment that flag is only set in the cache itself
2366    if (pkt->memInhibitAsserted()) {
2367        // do not change the current retry state
2368        bool M5_VAR_USED bypass_success = cache->recvTimingReq(pkt);
2369        assert(bypass_success);
2370        return true;
2371    } else if (blocked || mustSendRetry) {
2372        // either already committed to send a retry, or blocked
2373        success = false;
2374    } else {
2375        // pass it on to the cache, and let the cache decide if we
2376        // have to retry or not
2377        success = cache->recvTimingReq(pkt);
2378    }
2379
2380    // remember if we have to retry
2381    mustSendRetry = !success;
2382    return success;
2383}
2384
2385Tick
2386Cache::CpuSidePort::recvAtomic(PacketPtr pkt)
2387{
2388    return cache->recvAtomic(pkt);
2389}
2390
2391void
2392Cache::CpuSidePort::recvFunctional(PacketPtr pkt)
2393{
2394    // functional request
2395    cache->functionalAccess(pkt, true);
2396}
2397
2398Cache::
2399CpuSidePort::CpuSidePort(const std::string &_name, Cache *_cache,
2400                         const std::string &_label)
2401    : BaseCache::CacheSlavePort(_name, _cache, _label), cache(_cache)
2402{
2403}
2404
2405Cache*
2406CacheParams::create()
2407{
2408    assert(tags);
2409
2410    return new Cache(this);
2411}
2412///////////////
2413//
2414// MemSidePort
2415//
2416///////////////
2417
2418bool
2419Cache::MemSidePort::recvTimingResp(PacketPtr pkt)
2420{
2421    cache->recvTimingResp(pkt);
2422    return true;
2423}
2424
2425// Express snooping requests to memside port
2426void
2427Cache::MemSidePort::recvTimingSnoopReq(PacketPtr pkt)
2428{
2429    // handle snooping requests
2430    cache->recvTimingSnoopReq(pkt);
2431}
2432
2433Tick
2434Cache::MemSidePort::recvAtomicSnoop(PacketPtr pkt)
2435{
2436    return cache->recvAtomicSnoop(pkt);
2437}
2438
2439void
2440Cache::MemSidePort::recvFunctionalSnoop(PacketPtr pkt)
2441{
2442    // functional snoop (note that in contrast to atomic we don't have
2443    // a specific functionalSnoop method, as they have the same
2444    // behaviour regardless)
2445    cache->functionalAccess(pkt, false);
2446}
2447
2448void
2449Cache::CacheReqPacketQueue::sendDeferredPacket()
2450{
2451    // sanity check
2452    assert(!waitingOnRetry);
2453
2454    // there should never be any deferred request packets in the
2455    // queue, instead we resly on the cache to provide the packets
2456    // from the MSHR queue or write queue
2457    assert(deferredPacketReadyTime() == MaxTick);
2458
2459    // check for request packets (requests & writebacks)
2460    PacketPtr pkt = cache.getTimingPacket();
2461    if (pkt == NULL) {
2462        // can happen if e.g. we attempt a writeback and fail, but
2463        // before the retry, the writeback is eliminated because
2464        // we snoop another cache's ReadEx.
2465    } else {
2466        MSHR *mshr = dynamic_cast<MSHR*>(pkt->senderState);
2467        // in most cases getTimingPacket allocates a new packet, and
2468        // we must delete it unless it is successfully sent
2469        bool delete_pkt = !mshr->isForwardNoResponse();
2470
2471        // let our snoop responses go first if there are responses to
2472        // the same addresses we are about to writeback, note that
2473        // this creates a dependency between requests and snoop
2474        // responses, but that should not be a problem since there is
2475        // a chain already and the key is that the snoop responses can
2476        // sink unconditionally
2477        if (snoopRespQueue.hasAddr(pkt->getAddr())) {
2478            DPRINTF(CachePort, "Waiting for snoop response to be sent\n");
2479            Tick when = snoopRespQueue.deferredPacketReadyTime();
2480            schedSendEvent(when);
2481
2482            if (delete_pkt)
2483                delete pkt;
2484
2485            return;
2486        }
2487
2488
2489        waitingOnRetry = !masterPort.sendTimingReq(pkt);
2490
2491        if (waitingOnRetry) {
2492            DPRINTF(CachePort, "now waiting on a retry\n");
2493            if (delete_pkt) {
2494                // we are awaiting a retry, but we
2495                // delete the packet and will be creating a new packet
2496                // when we get the opportunity
2497                delete pkt;
2498            }
2499            // note that we have now masked any requestBus and
2500            // schedSendEvent (we will wait for a retry before
2501            // doing anything), and this is so even if we do not
2502            // care about this packet and might override it before
2503            // it gets retried
2504        } else {
2505            // As part of the call to sendTimingReq the packet is
2506            // forwarded to all neighbouring caches (and any
2507            // caches above them) as a snoop. The packet is also
2508            // sent to any potential cache below as the
2509            // interconnect is not allowed to buffer the
2510            // packet. Thus at this point we know if any of the
2511            // neighbouring, or the downstream cache is
2512            // responding, and if so, if it is with a dirty line
2513            // or not.
2514            bool pending_dirty_resp = !pkt->sharedAsserted() &&
2515                pkt->memInhibitAsserted();
2516
2517            cache.markInService(mshr, pending_dirty_resp);
2518        }
2519    }
2520
2521    // if we succeeded and are not waiting for a retry, schedule the
2522    // next send considering when the next MSHR is ready, note that
2523    // snoop responses have their own packet queue and thus schedule
2524    // their own events
2525    if (!waitingOnRetry) {
2526        schedSendEvent(cache.nextMSHRReadyTime());
2527    }
2528}
2529
2530Cache::
2531MemSidePort::MemSidePort(const std::string &_name, Cache *_cache,
2532                         const std::string &_label)
2533    : BaseCache::CacheMasterPort(_name, _cache, _reqQueue, _snoopRespQueue),
2534      _reqQueue(*_cache, *this, _snoopRespQueue, _label),
2535      _snoopRespQueue(*_cache, *this, _label), cache(_cache)
2536{
2537}
2538