1/*
2 * Copyright (c) 2012-2013,2015,2018 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder.  You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2002-2005 The Regents of The University of Michigan
15 * All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions are
19 * met: redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer;
21 * redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution;
24 * neither the name of the copyright holders nor the names of its
25 * contributors may be used to endorse or promote products derived from
26 * this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 *
40 * Authors: Steve Reinhardt
41 */
42
43#ifndef __CPU_SIMPLE_TIMING_HH__
44#define __CPU_SIMPLE_TIMING_HH__
45
46#include "cpu/simple/base.hh"
47#include "cpu/simple/exec_context.hh"
48#include "cpu/translation.hh"
49#include "params/TimingSimpleCPU.hh"
50
51class TimingSimpleCPU : public BaseSimpleCPU
52{
53  public:
54
55    TimingSimpleCPU(TimingSimpleCPUParams * params);
56    virtual ~TimingSimpleCPU();
57
58    void init() override;
59
60  private:
61
62    /*
63     * If an access needs to be broken into fragments, currently at most two,
64     * the the following two classes are used as the sender state of the
65     * packets so the CPU can keep track of everything. In the main packet
66     * sender state, there's an array with a spot for each fragment. If a
67     * fragment has already been accepted by the CPU, aka isn't waiting for
68     * a retry, it's pointer is NULL. After each fragment has successfully
69     * been processed, the "outstanding" counter is decremented. Once the
70     * count is zero, the entire larger access is complete.
71     */
72    class SplitMainSenderState : public Packet::SenderState
73    {
74      public:
75        int outstanding;
76        PacketPtr fragments[2];
77
78        int
79        getPendingFragment()
80        {
81            if (fragments[0]) {
82                return 0;
83            } else if (fragments[1]) {
84                return 1;
85            } else {
86                return -1;
87            }
88        }
89    };
90
91    class SplitFragmentSenderState : public Packet::SenderState
92    {
93      public:
94        SplitFragmentSenderState(PacketPtr _bigPkt, int _index) :
95            bigPkt(_bigPkt), index(_index)
96        {}
97        PacketPtr bigPkt;
98        int index;
99
100        void
101        clearFromParent()
102        {
103            SplitMainSenderState * main_send_state =
104                dynamic_cast<SplitMainSenderState *>(bigPkt->senderState);
105            main_send_state->fragments[index] = NULL;
106        }
107    };
108
109    class FetchTranslation : public BaseTLB::Translation
110    {
111      protected:
112        TimingSimpleCPU *cpu;
113
114      public:
115        FetchTranslation(TimingSimpleCPU *_cpu)
116            : cpu(_cpu)
117        {}
118
119        void
120        markDelayed()
121        {
122            assert(cpu->_status == BaseSimpleCPU::Running);
123            cpu->_status = ITBWaitResponse;
124        }
125
126        void
127        finish(const Fault &fault, const RequestPtr &req, ThreadContext *tc,
128               BaseTLB::Mode mode)
129        {
130            cpu->sendFetch(fault, req, tc);
131        }
132    };
133    FetchTranslation fetchTranslation;
134
135    void threadSnoop(PacketPtr pkt, ThreadID sender);
136    void sendData(const RequestPtr &req,
137                  uint8_t *data, uint64_t *res, bool read);
138    void sendSplitData(const RequestPtr &req1, const RequestPtr &req2,
139                       const RequestPtr &req,
140                       uint8_t *data, bool read);
141
142    void translationFault(const Fault &fault);
143
144    PacketPtr buildPacket(const RequestPtr &req, bool read);
145    void buildSplitPacket(PacketPtr &pkt1, PacketPtr &pkt2,
146            const RequestPtr &req1, const RequestPtr &req2,
147            const RequestPtr &req,
148            uint8_t *data, bool read);
149
150    bool handleReadPacket(PacketPtr pkt);
151    // This function always implicitly uses dcache_pkt.
152    bool handleWritePacket();
153
154    /**
155     * A TimingCPUPort overrides the default behaviour of the
156     * recvTiming and recvRetry and implements events for the
157     * scheduling of handling of incoming packets in the following
158     * cycle.
159     */
160    class TimingCPUPort : public MasterPort
161    {
162      public:
163
164        TimingCPUPort(const std::string& _name, TimingSimpleCPU* _cpu)
165            : MasterPort(_name, _cpu), cpu(_cpu),
166              retryRespEvent([this]{ sendRetryResp(); }, name())
167        { }
168
169      protected:
170
171        TimingSimpleCPU* cpu;
172
173        struct TickEvent : public Event
174        {
175            PacketPtr pkt;
176            TimingSimpleCPU *cpu;
177
178            TickEvent(TimingSimpleCPU *_cpu) : pkt(NULL), cpu(_cpu) {}
179            const char *description() const { return "Timing CPU tick"; }
180            void schedule(PacketPtr _pkt, Tick t);
181        };
182
183        EventFunctionWrapper retryRespEvent;
184    };
185
186    class IcachePort : public TimingCPUPort
187    {
188      public:
189
190        IcachePort(TimingSimpleCPU *_cpu)
191            : TimingCPUPort(_cpu->name() + ".icache_port", _cpu),
192              tickEvent(_cpu)
193        { }
194
195      protected:
196
197        virtual bool recvTimingResp(PacketPtr pkt);
198
199        virtual void recvReqRetry();
200
201        struct ITickEvent : public TickEvent
202        {
203
204            ITickEvent(TimingSimpleCPU *_cpu)
205                : TickEvent(_cpu) {}
206            void process();
207            const char *description() const { return "Timing CPU icache tick"; }
208        };
209
210        ITickEvent tickEvent;
211
212    };
213
214    class DcachePort : public TimingCPUPort
215    {
216      public:
217
218        DcachePort(TimingSimpleCPU *_cpu)
219            : TimingCPUPort(_cpu->name() + ".dcache_port", _cpu),
220              tickEvent(_cpu)
221        {
222           cacheBlockMask = ~(cpu->cacheLineSize() - 1);
223        }
224
225        Addr cacheBlockMask;
226      protected:
227
228        /** Snoop a coherence request, we need to check if this causes
229         * a wakeup event on a cpu that is monitoring an address
230         */
231        virtual void recvTimingSnoopReq(PacketPtr pkt);
232        virtual void recvFunctionalSnoop(PacketPtr pkt);
233
234        virtual bool recvTimingResp(PacketPtr pkt);
235
236        virtual void recvReqRetry();
237
238        virtual bool isSnooping() const {
239            return true;
240        }
241
242        struct DTickEvent : public TickEvent
243        {
244            DTickEvent(TimingSimpleCPU *_cpu)
245                : TickEvent(_cpu) {}
246            void process();
247            const char *description() const { return "Timing CPU dcache tick"; }
248        };
249
250        DTickEvent tickEvent;
251
252    };
253
254    void updateCycleCounts();
255
256    IcachePort icachePort;
257    DcachePort dcachePort;
258
259    PacketPtr ifetch_pkt;
260    PacketPtr dcache_pkt;
261
262    Cycles previousCycle;
263
264  protected:
265
266     /** Return a reference to the data port. */
267    Port &getDataPort() override { return dcachePort; }
268
269    /** Return a reference to the instruction port. */
270    Port &getInstPort() override { return icachePort; }
271
272  public:
273
274    DrainState drain() override;
275    void drainResume() override;
276
277    void switchOut() override;
278    void takeOverFrom(BaseCPU *oldCPU) override;
279
280    void verifyMemoryMode() const override;
281
282    void activateContext(ThreadID thread_num) override;
283    void suspendContext(ThreadID thread_num) override;
284
285    Fault initiateMemRead(Addr addr, unsigned size,
286            Request::Flags flags,
287            const std::vector<bool>& byteEnable =std::vector<bool>())
288        override;
289
290    Fault writeMem(uint8_t *data, unsigned size,
291                   Addr addr, Request::Flags flags, uint64_t *res,
292                   const std::vector<bool>& byteEnable = std::vector<bool>())
293        override;
294
295    Fault initiateMemAMO(Addr addr, unsigned size, Request::Flags flags,
296                         AtomicOpFunctorPtr amo_op) override;
297
298    void fetch();
299    void sendFetch(const Fault &fault,
300                   const RequestPtr &req, ThreadContext *tc);
301    void completeIfetch(PacketPtr );
302    void completeDataAccess(PacketPtr pkt);
303    void advanceInst(const Fault &fault);
304
305    /** This function is used by the page table walker to determine if it could
306     * translate the a pending request or if the underlying request has been
307     * squashed. This always returns false for the simple timing CPU as it never
308     * executes any instructions speculatively.
309     * @ return Is the current instruction squashed?
310     */
311    bool isSquashed() const { return false; }
312
313    /**
314     * Print state of address in memory system via PrintReq (for
315     * debugging).
316     */
317    void printAddr(Addr a);
318
319    /**
320     * Finish a DTB translation.
321     * @param state The DTB translation state.
322     */
323    void finishTranslation(WholeTranslationState *state);
324
325  private:
326
327    EventFunctionWrapper fetchEvent;
328
329    struct IprEvent : Event {
330        Packet *pkt;
331        TimingSimpleCPU *cpu;
332        IprEvent(Packet *_pkt, TimingSimpleCPU *_cpu, Tick t);
333        virtual void process();
334        virtual const char *description() const;
335    };
336
337    /**
338     * Check if a system is in a drained state.
339     *
340     * We need to drain if:
341     * <ul>
342     * <li>We are in the middle of a microcode sequence as some CPUs
343     *     (e.g., HW accelerated CPUs) can't be started in the middle
344     *     of a gem5 microcode sequence.
345     *
346     * <li>Stay at PC is true.
347     *
348     * <li>A fetch event is scheduled. Normally this would never be the
349     *     case with microPC() == 0, but right after a context is
350     *     activated it can happen.
351     * </ul>
352     */
353    bool isCpuDrained() const {
354        SimpleExecContext& t_info = *threadInfo[curThread];
355        SimpleThread* thread = t_info.thread;
356
357        return thread->microPC() == 0 && !t_info.stayAtPC &&
358               !fetchEvent.scheduled();
359    }
360
361    /**
362     * Try to complete a drain request.
363     *
364     * @returns true if the CPU is drained, false otherwise.
365     */
366    bool tryCompleteDrain();
367};
368
369#endif // __CPU_SIMPLE_TIMING_HH__
370