iew_impl.hh revision 9944:4ff1c5c6dcbc
1/*
2 * Copyright (c) 2010-2013 ARM Limited
3 * All rights reserved.
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder.  You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2004-2006 The Regents of The University of Michigan
15 * All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions are
19 * met: redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer;
21 * redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution;
24 * neither the name of the copyright holders nor the names of its
25 * contributors may be used to endorse or promote products derived from
26 * this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 *
40 * Authors: Kevin Lim
41 */
42
43#ifndef __CPU_O3_IEW_IMPL_IMPL_HH__
44#define __CPU_O3_IEW_IMPL_IMPL_HH__
45
46// @todo: Fix the instantaneous communication among all the stages within
47// iew.  There's a clear delay between issue and execute, yet backwards
48// communication happens simultaneously.
49
50#include <queue>
51
52#include "arch/utility.hh"
53#include "config/the_isa.hh"
54#include "cpu/checker/cpu.hh"
55#include "cpu/o3/fu_pool.hh"
56#include "cpu/o3/iew.hh"
57#include "cpu/timebuf.hh"
58#include "debug/Activity.hh"
59#include "debug/Drain.hh"
60#include "debug/IEW.hh"
61#include "debug/O3PipeView.hh"
62#include "params/DerivO3CPU.hh"
63
64using namespace std;
65
66template<class Impl>
67DefaultIEW<Impl>::DefaultIEW(O3CPU *_cpu, DerivO3CPUParams *params)
68    : issueToExecQueue(params->backComSize, params->forwardComSize),
69      cpu(_cpu),
70      instQueue(_cpu, this, params),
71      ldstQueue(_cpu, this, params),
72      fuPool(params->fuPool),
73      commitToIEWDelay(params->commitToIEWDelay),
74      renameToIEWDelay(params->renameToIEWDelay),
75      issueToExecuteDelay(params->issueToExecuteDelay),
76      dispatchWidth(params->dispatchWidth),
77      issueWidth(params->issueWidth),
78      wbOutstanding(0),
79      wbWidth(params->wbWidth),
80      numThreads(params->numThreads)
81{
82    _status = Active;
83    exeStatus = Running;
84    wbStatus = Idle;
85
86    // Setup wire to read instructions coming from issue.
87    fromIssue = issueToExecQueue.getWire(-issueToExecuteDelay);
88
89    // Instruction queue needs the queue between issue and execute.
90    instQueue.setIssueToExecuteQueue(&issueToExecQueue);
91
92    for (ThreadID tid = 0; tid < numThreads; tid++) {
93        dispatchStatus[tid] = Running;
94        stalls[tid].commit = false;
95        fetchRedirect[tid] = false;
96    }
97
98    wbMax = wbWidth * params->wbDepth;
99
100    updateLSQNextCycle = false;
101
102    ableToIssue = true;
103
104    skidBufferMax = (3 * (renameToIEWDelay * params->renameWidth)) + issueWidth;
105}
106
107template <class Impl>
108std::string
109DefaultIEW<Impl>::name() const
110{
111    return cpu->name() + ".iew";
112}
113
114template <class Impl>
115void
116DefaultIEW<Impl>::regStats()
117{
118    using namespace Stats;
119
120    instQueue.regStats();
121    ldstQueue.regStats();
122
123    iewIdleCycles
124        .name(name() + ".iewIdleCycles")
125        .desc("Number of cycles IEW is idle");
126
127    iewSquashCycles
128        .name(name() + ".iewSquashCycles")
129        .desc("Number of cycles IEW is squashing");
130
131    iewBlockCycles
132        .name(name() + ".iewBlockCycles")
133        .desc("Number of cycles IEW is blocking");
134
135    iewUnblockCycles
136        .name(name() + ".iewUnblockCycles")
137        .desc("Number of cycles IEW is unblocking");
138
139    iewDispatchedInsts
140        .name(name() + ".iewDispatchedInsts")
141        .desc("Number of instructions dispatched to IQ");
142
143    iewDispSquashedInsts
144        .name(name() + ".iewDispSquashedInsts")
145        .desc("Number of squashed instructions skipped by dispatch");
146
147    iewDispLoadInsts
148        .name(name() + ".iewDispLoadInsts")
149        .desc("Number of dispatched load instructions");
150
151    iewDispStoreInsts
152        .name(name() + ".iewDispStoreInsts")
153        .desc("Number of dispatched store instructions");
154
155    iewDispNonSpecInsts
156        .name(name() + ".iewDispNonSpecInsts")
157        .desc("Number of dispatched non-speculative instructions");
158
159    iewIQFullEvents
160        .name(name() + ".iewIQFullEvents")
161        .desc("Number of times the IQ has become full, causing a stall");
162
163    iewLSQFullEvents
164        .name(name() + ".iewLSQFullEvents")
165        .desc("Number of times the LSQ has become full, causing a stall");
166
167    memOrderViolationEvents
168        .name(name() + ".memOrderViolationEvents")
169        .desc("Number of memory order violations");
170
171    predictedTakenIncorrect
172        .name(name() + ".predictedTakenIncorrect")
173        .desc("Number of branches that were predicted taken incorrectly");
174
175    predictedNotTakenIncorrect
176        .name(name() + ".predictedNotTakenIncorrect")
177        .desc("Number of branches that were predicted not taken incorrectly");
178
179    branchMispredicts
180        .name(name() + ".branchMispredicts")
181        .desc("Number of branch mispredicts detected at execute");
182
183    branchMispredicts = predictedTakenIncorrect + predictedNotTakenIncorrect;
184
185    iewExecutedInsts
186        .name(name() + ".iewExecutedInsts")
187        .desc("Number of executed instructions");
188
189    iewExecLoadInsts
190        .init(cpu->numThreads)
191        .name(name() + ".iewExecLoadInsts")
192        .desc("Number of load instructions executed")
193        .flags(total);
194
195    iewExecSquashedInsts
196        .name(name() + ".iewExecSquashedInsts")
197        .desc("Number of squashed instructions skipped in execute");
198
199    iewExecutedSwp
200        .init(cpu->numThreads)
201        .name(name() + ".exec_swp")
202        .desc("number of swp insts executed")
203        .flags(total);
204
205    iewExecutedNop
206        .init(cpu->numThreads)
207        .name(name() + ".exec_nop")
208        .desc("number of nop insts executed")
209        .flags(total);
210
211    iewExecutedRefs
212        .init(cpu->numThreads)
213        .name(name() + ".exec_refs")
214        .desc("number of memory reference insts executed")
215        .flags(total);
216
217    iewExecutedBranches
218        .init(cpu->numThreads)
219        .name(name() + ".exec_branches")
220        .desc("Number of branches executed")
221        .flags(total);
222
223    iewExecStoreInsts
224        .name(name() + ".exec_stores")
225        .desc("Number of stores executed")
226        .flags(total);
227    iewExecStoreInsts = iewExecutedRefs - iewExecLoadInsts;
228
229    iewExecRate
230        .name(name() + ".exec_rate")
231        .desc("Inst execution rate")
232        .flags(total);
233
234    iewExecRate = iewExecutedInsts / cpu->numCycles;
235
236    iewInstsToCommit
237        .init(cpu->numThreads)
238        .name(name() + ".wb_sent")
239        .desc("cumulative count of insts sent to commit")
240        .flags(total);
241
242    writebackCount
243        .init(cpu->numThreads)
244        .name(name() + ".wb_count")
245        .desc("cumulative count of insts written-back")
246        .flags(total);
247
248    producerInst
249        .init(cpu->numThreads)
250        .name(name() + ".wb_producers")
251        .desc("num instructions producing a value")
252        .flags(total);
253
254    consumerInst
255        .init(cpu->numThreads)
256        .name(name() + ".wb_consumers")
257        .desc("num instructions consuming a value")
258        .flags(total);
259
260    wbPenalized
261        .init(cpu->numThreads)
262        .name(name() + ".wb_penalized")
263        .desc("number of instrctions required to write to 'other' IQ")
264        .flags(total);
265
266    wbPenalizedRate
267        .name(name() + ".wb_penalized_rate")
268        .desc ("fraction of instructions written-back that wrote to 'other' IQ")
269        .flags(total);
270
271    wbPenalizedRate = wbPenalized / writebackCount;
272
273    wbFanout
274        .name(name() + ".wb_fanout")
275        .desc("average fanout of values written-back")
276        .flags(total);
277
278    wbFanout = producerInst / consumerInst;
279
280    wbRate
281        .name(name() + ".wb_rate")
282        .desc("insts written-back per cycle")
283        .flags(total);
284    wbRate = writebackCount / cpu->numCycles;
285}
286
287template<class Impl>
288void
289DefaultIEW<Impl>::startupStage()
290{
291    for (ThreadID tid = 0; tid < numThreads; tid++) {
292        toRename->iewInfo[tid].usedIQ = true;
293        toRename->iewInfo[tid].freeIQEntries =
294            instQueue.numFreeEntries(tid);
295
296        toRename->iewInfo[tid].usedLSQ = true;
297        toRename->iewInfo[tid].freeLSQEntries =
298            ldstQueue.numFreeEntries(tid);
299    }
300
301    // Initialize the checker's dcache port here
302    if (cpu->checker) {
303        cpu->checker->setDcachePort(&cpu->getDataPort());
304    }
305
306    cpu->activateStage(O3CPU::IEWIdx);
307}
308
309template<class Impl>
310void
311DefaultIEW<Impl>::setTimeBuffer(TimeBuffer<TimeStruct> *tb_ptr)
312{
313    timeBuffer = tb_ptr;
314
315    // Setup wire to read information from time buffer, from commit.
316    fromCommit = timeBuffer->getWire(-commitToIEWDelay);
317
318    // Setup wire to write information back to previous stages.
319    toRename = timeBuffer->getWire(0);
320
321    toFetch = timeBuffer->getWire(0);
322
323    // Instruction queue also needs main time buffer.
324    instQueue.setTimeBuffer(tb_ptr);
325}
326
327template<class Impl>
328void
329DefaultIEW<Impl>::setRenameQueue(TimeBuffer<RenameStruct> *rq_ptr)
330{
331    renameQueue = rq_ptr;
332
333    // Setup wire to read information from rename queue.
334    fromRename = renameQueue->getWire(-renameToIEWDelay);
335}
336
337template<class Impl>
338void
339DefaultIEW<Impl>::setIEWQueue(TimeBuffer<IEWStruct> *iq_ptr)
340{
341    iewQueue = iq_ptr;
342
343    // Setup wire to write instructions to commit.
344    toCommit = iewQueue->getWire(0);
345}
346
347template<class Impl>
348void
349DefaultIEW<Impl>::setActiveThreads(list<ThreadID> *at_ptr)
350{
351    activeThreads = at_ptr;
352
353    ldstQueue.setActiveThreads(at_ptr);
354    instQueue.setActiveThreads(at_ptr);
355}
356
357template<class Impl>
358void
359DefaultIEW<Impl>::setScoreboard(Scoreboard *sb_ptr)
360{
361    scoreboard = sb_ptr;
362}
363
364template <class Impl>
365bool
366DefaultIEW<Impl>::isDrained() const
367{
368    bool drained(ldstQueue.isDrained());
369
370    for (ThreadID tid = 0; tid < numThreads; tid++) {
371        if (!insts[tid].empty()) {
372            DPRINTF(Drain, "%i: Insts not empty.\n", tid);
373            drained = false;
374        }
375        if (!skidBuffer[tid].empty()) {
376            DPRINTF(Drain, "%i: Skid buffer not empty.\n", tid);
377            drained = false;
378        }
379    }
380
381    // Also check the FU pool as instructions are "stored" in FU
382    // completion events until they are done and not accounted for
383    // above
384    if (drained && !fuPool->isDrained()) {
385        DPRINTF(Drain, "FU pool still busy.\n");
386        drained = false;
387    }
388
389    return drained;
390}
391
392template <class Impl>
393void
394DefaultIEW<Impl>::drainSanityCheck() const
395{
396    assert(isDrained());
397
398    instQueue.drainSanityCheck();
399    ldstQueue.drainSanityCheck();
400}
401
402template <class Impl>
403void
404DefaultIEW<Impl>::takeOverFrom()
405{
406    // Reset all state.
407    _status = Active;
408    exeStatus = Running;
409    wbStatus = Idle;
410
411    instQueue.takeOverFrom();
412    ldstQueue.takeOverFrom();
413    fuPool->takeOverFrom();
414
415    startupStage();
416    cpu->activityThisCycle();
417
418    for (ThreadID tid = 0; tid < numThreads; tid++) {
419        dispatchStatus[tid] = Running;
420        stalls[tid].commit = false;
421        fetchRedirect[tid] = false;
422    }
423
424    updateLSQNextCycle = false;
425
426    for (int i = 0; i < issueToExecQueue.getSize(); ++i) {
427        issueToExecQueue.advance();
428    }
429}
430
431template<class Impl>
432void
433DefaultIEW<Impl>::squash(ThreadID tid)
434{
435    DPRINTF(IEW, "[tid:%i]: Squashing all instructions.\n", tid);
436
437    // Tell the IQ to start squashing.
438    instQueue.squash(tid);
439
440    // Tell the LDSTQ to start squashing.
441    ldstQueue.squash(fromCommit->commitInfo[tid].doneSeqNum, tid);
442    updatedQueues = true;
443
444    // Clear the skid buffer in case it has any data in it.
445    DPRINTF(IEW, "[tid:%i]: Removing skidbuffer instructions until [sn:%i].\n",
446            tid, fromCommit->commitInfo[tid].doneSeqNum);
447
448    while (!skidBuffer[tid].empty()) {
449        if (skidBuffer[tid].front()->isLoad() ||
450            skidBuffer[tid].front()->isStore() ) {
451            toRename->iewInfo[tid].dispatchedToLSQ++;
452        }
453
454        toRename->iewInfo[tid].dispatched++;
455
456        skidBuffer[tid].pop();
457    }
458
459    emptyRenameInsts(tid);
460}
461
462template<class Impl>
463void
464DefaultIEW<Impl>::squashDueToBranch(DynInstPtr &inst, ThreadID tid)
465{
466    DPRINTF(IEW, "[tid:%i]: Squashing from a specific instruction, PC: %s "
467            "[sn:%i].\n", tid, inst->pcState(), inst->seqNum);
468
469    if (toCommit->squash[tid] == false ||
470            inst->seqNum < toCommit->squashedSeqNum[tid]) {
471        toCommit->squash[tid] = true;
472        toCommit->squashedSeqNum[tid] = inst->seqNum;
473        toCommit->branchTaken[tid] = inst->pcState().branching();
474
475        TheISA::PCState pc = inst->pcState();
476        TheISA::advancePC(pc, inst->staticInst);
477
478        toCommit->pc[tid] = pc;
479        toCommit->mispredictInst[tid] = inst;
480        toCommit->includeSquashInst[tid] = false;
481
482        wroteToTimeBuffer = true;
483    }
484
485}
486
487template<class Impl>
488void
489DefaultIEW<Impl>::squashDueToMemOrder(DynInstPtr &inst, ThreadID tid)
490{
491    DPRINTF(IEW, "[tid:%i]: Memory violation, squashing violator and younger "
492            "insts, PC: %s [sn:%i].\n", tid, inst->pcState(), inst->seqNum);
493    // Need to include inst->seqNum in the following comparison to cover the
494    // corner case when a branch misprediction and a memory violation for the
495    // same instruction (e.g. load PC) are detected in the same cycle.  In this
496    // case the memory violator should take precedence over the branch
497    // misprediction because it requires the violator itself to be included in
498    // the squash.
499    if (toCommit->squash[tid] == false ||
500            inst->seqNum <= toCommit->squashedSeqNum[tid]) {
501        toCommit->squash[tid] = true;
502
503        toCommit->squashedSeqNum[tid] = inst->seqNum;
504        toCommit->pc[tid] = inst->pcState();
505        toCommit->mispredictInst[tid] = NULL;
506
507        // Must include the memory violator in the squash.
508        toCommit->includeSquashInst[tid] = true;
509
510        wroteToTimeBuffer = true;
511    }
512}
513
514template<class Impl>
515void
516DefaultIEW<Impl>::squashDueToMemBlocked(DynInstPtr &inst, ThreadID tid)
517{
518    DPRINTF(IEW, "[tid:%i]: Memory blocked, squashing load and younger insts, "
519            "PC: %s [sn:%i].\n", tid, inst->pcState(), inst->seqNum);
520    if (toCommit->squash[tid] == false ||
521            inst->seqNum < toCommit->squashedSeqNum[tid]) {
522        toCommit->squash[tid] = true;
523
524        toCommit->squashedSeqNum[tid] = inst->seqNum;
525        toCommit->pc[tid] = inst->pcState();
526        toCommit->mispredictInst[tid] = NULL;
527
528        // Must include the broadcasted SN in the squash.
529        toCommit->includeSquashInst[tid] = true;
530
531        ldstQueue.setLoadBlockedHandled(tid);
532
533        wroteToTimeBuffer = true;
534    }
535}
536
537template<class Impl>
538void
539DefaultIEW<Impl>::block(ThreadID tid)
540{
541    DPRINTF(IEW, "[tid:%u]: Blocking.\n", tid);
542
543    if (dispatchStatus[tid] != Blocked &&
544        dispatchStatus[tid] != Unblocking) {
545        toRename->iewBlock[tid] = true;
546        wroteToTimeBuffer = true;
547    }
548
549    // Add the current inputs to the skid buffer so they can be
550    // reprocessed when this stage unblocks.
551    skidInsert(tid);
552
553    dispatchStatus[tid] = Blocked;
554}
555
556template<class Impl>
557void
558DefaultIEW<Impl>::unblock(ThreadID tid)
559{
560    DPRINTF(IEW, "[tid:%i]: Reading instructions out of the skid "
561            "buffer %u.\n",tid, tid);
562
563    // If the skid bufffer is empty, signal back to previous stages to unblock.
564    // Also switch status to running.
565    if (skidBuffer[tid].empty()) {
566        toRename->iewUnblock[tid] = true;
567        wroteToTimeBuffer = true;
568        DPRINTF(IEW, "[tid:%i]: Done unblocking.\n",tid);
569        dispatchStatus[tid] = Running;
570    }
571}
572
573template<class Impl>
574void
575DefaultIEW<Impl>::wakeDependents(DynInstPtr &inst)
576{
577    instQueue.wakeDependents(inst);
578}
579
580template<class Impl>
581void
582DefaultIEW<Impl>::rescheduleMemInst(DynInstPtr &inst)
583{
584    instQueue.rescheduleMemInst(inst);
585}
586
587template<class Impl>
588void
589DefaultIEW<Impl>::replayMemInst(DynInstPtr &inst)
590{
591    instQueue.replayMemInst(inst);
592}
593
594template<class Impl>
595void
596DefaultIEW<Impl>::instToCommit(DynInstPtr &inst)
597{
598    // This function should not be called after writebackInsts in a
599    // single cycle.  That will cause problems with an instruction
600    // being added to the queue to commit without being processed by
601    // writebackInsts prior to being sent to commit.
602
603    // First check the time slot that this instruction will write
604    // to.  If there are free write ports at the time, then go ahead
605    // and write the instruction to that time.  If there are not,
606    // keep looking back to see where's the first time there's a
607    // free slot.
608    while ((*iewQueue)[wbCycle].insts[wbNumInst]) {
609        ++wbNumInst;
610        if (wbNumInst == wbWidth) {
611            ++wbCycle;
612            wbNumInst = 0;
613        }
614
615        assert((wbCycle * wbWidth + wbNumInst) <= wbMax);
616    }
617
618    DPRINTF(IEW, "Current wb cycle: %i, width: %i, numInst: %i\nwbActual:%i\n",
619            wbCycle, wbWidth, wbNumInst, wbCycle * wbWidth + wbNumInst);
620    // Add finished instruction to queue to commit.
621    (*iewQueue)[wbCycle].insts[wbNumInst] = inst;
622    (*iewQueue)[wbCycle].size++;
623}
624
625template <class Impl>
626unsigned
627DefaultIEW<Impl>::validInstsFromRename()
628{
629    unsigned inst_count = 0;
630
631    for (int i=0; i<fromRename->size; i++) {
632        if (!fromRename->insts[i]->isSquashed())
633            inst_count++;
634    }
635
636    return inst_count;
637}
638
639template<class Impl>
640void
641DefaultIEW<Impl>::skidInsert(ThreadID tid)
642{
643    DynInstPtr inst = NULL;
644
645    while (!insts[tid].empty()) {
646        inst = insts[tid].front();
647
648        insts[tid].pop();
649
650        DPRINTF(IEW,"[tid:%i]: Inserting [sn:%lli] PC:%s into "
651                "dispatch skidBuffer %i\n",tid, inst->seqNum,
652                inst->pcState(),tid);
653
654        skidBuffer[tid].push(inst);
655    }
656
657    assert(skidBuffer[tid].size() <= skidBufferMax &&
658           "Skidbuffer Exceeded Max Size");
659}
660
661template<class Impl>
662int
663DefaultIEW<Impl>::skidCount()
664{
665    int max=0;
666
667    list<ThreadID>::iterator threads = activeThreads->begin();
668    list<ThreadID>::iterator end = activeThreads->end();
669
670    while (threads != end) {
671        ThreadID tid = *threads++;
672        unsigned thread_count = skidBuffer[tid].size();
673        if (max < thread_count)
674            max = thread_count;
675    }
676
677    return max;
678}
679
680template<class Impl>
681bool
682DefaultIEW<Impl>::skidsEmpty()
683{
684    list<ThreadID>::iterator threads = activeThreads->begin();
685    list<ThreadID>::iterator end = activeThreads->end();
686
687    while (threads != end) {
688        ThreadID tid = *threads++;
689
690        if (!skidBuffer[tid].empty())
691            return false;
692    }
693
694    return true;
695}
696
697template <class Impl>
698void
699DefaultIEW<Impl>::updateStatus()
700{
701    bool any_unblocking = false;
702
703    list<ThreadID>::iterator threads = activeThreads->begin();
704    list<ThreadID>::iterator end = activeThreads->end();
705
706    while (threads != end) {
707        ThreadID tid = *threads++;
708
709        if (dispatchStatus[tid] == Unblocking) {
710            any_unblocking = true;
711            break;
712        }
713    }
714
715    // If there are no ready instructions waiting to be scheduled by the IQ,
716    // and there's no stores waiting to write back, and dispatch is not
717    // unblocking, then there is no internal activity for the IEW stage.
718    instQueue.intInstQueueReads++;
719    if (_status == Active && !instQueue.hasReadyInsts() &&
720        !ldstQueue.willWB() && !any_unblocking) {
721        DPRINTF(IEW, "IEW switching to idle\n");
722
723        deactivateStage();
724
725        _status = Inactive;
726    } else if (_status == Inactive && (instQueue.hasReadyInsts() ||
727                                       ldstQueue.willWB() ||
728                                       any_unblocking)) {
729        // Otherwise there is internal activity.  Set to active.
730        DPRINTF(IEW, "IEW switching to active\n");
731
732        activateStage();
733
734        _status = Active;
735    }
736}
737
738template <class Impl>
739void
740DefaultIEW<Impl>::resetEntries()
741{
742    instQueue.resetEntries();
743    ldstQueue.resetEntries();
744}
745
746template <class Impl>
747void
748DefaultIEW<Impl>::readStallSignals(ThreadID tid)
749{
750    if (fromCommit->commitBlock[tid]) {
751        stalls[tid].commit = true;
752    }
753
754    if (fromCommit->commitUnblock[tid]) {
755        assert(stalls[tid].commit);
756        stalls[tid].commit = false;
757    }
758}
759
760template <class Impl>
761bool
762DefaultIEW<Impl>::checkStall(ThreadID tid)
763{
764    bool ret_val(false);
765
766    if (stalls[tid].commit) {
767        DPRINTF(IEW,"[tid:%i]: Stall from Commit stage detected.\n",tid);
768        ret_val = true;
769    } else if (instQueue.isFull(tid)) {
770        DPRINTF(IEW,"[tid:%i]: Stall: IQ  is full.\n",tid);
771        ret_val = true;
772    } else if (ldstQueue.isFull(tid)) {
773        DPRINTF(IEW,"[tid:%i]: Stall: LSQ is full\n",tid);
774
775        if (ldstQueue.numLoads(tid) > 0 ) {
776
777            DPRINTF(IEW,"[tid:%i]: LSQ oldest load: [sn:%i] \n",
778                    tid,ldstQueue.getLoadHeadSeqNum(tid));
779        }
780
781        if (ldstQueue.numStores(tid) > 0) {
782
783            DPRINTF(IEW,"[tid:%i]: LSQ oldest store: [sn:%i] \n",
784                    tid,ldstQueue.getStoreHeadSeqNum(tid));
785        }
786
787        ret_val = true;
788    } else if (ldstQueue.isStalled(tid)) {
789        DPRINTF(IEW,"[tid:%i]: Stall: LSQ stall detected.\n",tid);
790        ret_val = true;
791    }
792
793    return ret_val;
794}
795
796template <class Impl>
797void
798DefaultIEW<Impl>::checkSignalsAndUpdate(ThreadID tid)
799{
800    // Check if there's a squash signal, squash if there is
801    // Check stall signals, block if there is.
802    // If status was Blocked
803    //     if so then go to unblocking
804    // If status was Squashing
805    //     check if squashing is not high.  Switch to running this cycle.
806
807    readStallSignals(tid);
808
809    if (fromCommit->commitInfo[tid].squash) {
810        squash(tid);
811
812        if (dispatchStatus[tid] == Blocked ||
813            dispatchStatus[tid] == Unblocking) {
814            toRename->iewUnblock[tid] = true;
815            wroteToTimeBuffer = true;
816        }
817
818        dispatchStatus[tid] = Squashing;
819        fetchRedirect[tid] = false;
820        return;
821    }
822
823    if (fromCommit->commitInfo[tid].robSquashing) {
824        DPRINTF(IEW, "[tid:%i]: ROB is still squashing.\n", tid);
825
826        dispatchStatus[tid] = Squashing;
827        emptyRenameInsts(tid);
828        wroteToTimeBuffer = true;
829        return;
830    }
831
832    if (checkStall(tid)) {
833        block(tid);
834        dispatchStatus[tid] = Blocked;
835        return;
836    }
837
838    if (dispatchStatus[tid] == Blocked) {
839        // Status from previous cycle was blocked, but there are no more stall
840        // conditions.  Switch over to unblocking.
841        DPRINTF(IEW, "[tid:%i]: Done blocking, switching to unblocking.\n",
842                tid);
843
844        dispatchStatus[tid] = Unblocking;
845
846        unblock(tid);
847
848        return;
849    }
850
851    if (dispatchStatus[tid] == Squashing) {
852        // Switch status to running if rename isn't being told to block or
853        // squash this cycle.
854        DPRINTF(IEW, "[tid:%i]: Done squashing, switching to running.\n",
855                tid);
856
857        dispatchStatus[tid] = Running;
858
859        return;
860    }
861}
862
863template <class Impl>
864void
865DefaultIEW<Impl>::sortInsts()
866{
867    int insts_from_rename = fromRename->size;
868#ifdef DEBUG
869    for (ThreadID tid = 0; tid < numThreads; tid++)
870        assert(insts[tid].empty());
871#endif
872    for (int i = 0; i < insts_from_rename; ++i) {
873        insts[fromRename->insts[i]->threadNumber].push(fromRename->insts[i]);
874    }
875}
876
877template <class Impl>
878void
879DefaultIEW<Impl>::emptyRenameInsts(ThreadID tid)
880{
881    DPRINTF(IEW, "[tid:%i]: Removing incoming rename instructions\n", tid);
882
883    while (!insts[tid].empty()) {
884
885        if (insts[tid].front()->isLoad() ||
886            insts[tid].front()->isStore() ) {
887            toRename->iewInfo[tid].dispatchedToLSQ++;
888        }
889
890        toRename->iewInfo[tid].dispatched++;
891
892        insts[tid].pop();
893    }
894}
895
896template <class Impl>
897void
898DefaultIEW<Impl>::wakeCPU()
899{
900    cpu->wakeCPU();
901}
902
903template <class Impl>
904void
905DefaultIEW<Impl>::activityThisCycle()
906{
907    DPRINTF(Activity, "Activity this cycle.\n");
908    cpu->activityThisCycle();
909}
910
911template <class Impl>
912inline void
913DefaultIEW<Impl>::activateStage()
914{
915    DPRINTF(Activity, "Activating stage.\n");
916    cpu->activateStage(O3CPU::IEWIdx);
917}
918
919template <class Impl>
920inline void
921DefaultIEW<Impl>::deactivateStage()
922{
923    DPRINTF(Activity, "Deactivating stage.\n");
924    cpu->deactivateStage(O3CPU::IEWIdx);
925}
926
927template<class Impl>
928void
929DefaultIEW<Impl>::dispatch(ThreadID tid)
930{
931    // If status is Running or idle,
932    //     call dispatchInsts()
933    // If status is Unblocking,
934    //     buffer any instructions coming from rename
935    //     continue trying to empty skid buffer
936    //     check if stall conditions have passed
937
938    if (dispatchStatus[tid] == Blocked) {
939        ++iewBlockCycles;
940
941    } else if (dispatchStatus[tid] == Squashing) {
942        ++iewSquashCycles;
943    }
944
945    // Dispatch should try to dispatch as many instructions as its bandwidth
946    // will allow, as long as it is not currently blocked.
947    if (dispatchStatus[tid] == Running ||
948        dispatchStatus[tid] == Idle) {
949        DPRINTF(IEW, "[tid:%i] Not blocked, so attempting to run "
950                "dispatch.\n", tid);
951
952        dispatchInsts(tid);
953    } else if (dispatchStatus[tid] == Unblocking) {
954        // Make sure that the skid buffer has something in it if the
955        // status is unblocking.
956        assert(!skidsEmpty());
957
958        // If the status was unblocking, then instructions from the skid
959        // buffer were used.  Remove those instructions and handle
960        // the rest of unblocking.
961        dispatchInsts(tid);
962
963        ++iewUnblockCycles;
964
965        if (validInstsFromRename()) {
966            // Add the current inputs to the skid buffer so they can be
967            // reprocessed when this stage unblocks.
968            skidInsert(tid);
969        }
970
971        unblock(tid);
972    }
973}
974
975template <class Impl>
976void
977DefaultIEW<Impl>::dispatchInsts(ThreadID tid)
978{
979    // Obtain instructions from skid buffer if unblocking, or queue from rename
980    // otherwise.
981    std::queue<DynInstPtr> &insts_to_dispatch =
982        dispatchStatus[tid] == Unblocking ?
983        skidBuffer[tid] : insts[tid];
984
985    int insts_to_add = insts_to_dispatch.size();
986
987    DynInstPtr inst;
988    bool add_to_iq = false;
989    int dis_num_inst = 0;
990
991    // Loop through the instructions, putting them in the instruction
992    // queue.
993    for ( ; dis_num_inst < insts_to_add &&
994              dis_num_inst < dispatchWidth;
995          ++dis_num_inst)
996    {
997        inst = insts_to_dispatch.front();
998
999        if (dispatchStatus[tid] == Unblocking) {
1000            DPRINTF(IEW, "[tid:%i]: Issue: Examining instruction from skid "
1001                    "buffer\n", tid);
1002        }
1003
1004        // Make sure there's a valid instruction there.
1005        assert(inst);
1006
1007        DPRINTF(IEW, "[tid:%i]: Issue: Adding PC %s [sn:%lli] [tid:%i] to "
1008                "IQ.\n",
1009                tid, inst->pcState(), inst->seqNum, inst->threadNumber);
1010
1011        // Be sure to mark these instructions as ready so that the
1012        // commit stage can go ahead and execute them, and mark
1013        // them as issued so the IQ doesn't reprocess them.
1014
1015        // Check for squashed instructions.
1016        if (inst->isSquashed()) {
1017            DPRINTF(IEW, "[tid:%i]: Issue: Squashed instruction encountered, "
1018                    "not adding to IQ.\n", tid);
1019
1020            ++iewDispSquashedInsts;
1021
1022            insts_to_dispatch.pop();
1023
1024            //Tell Rename That An Instruction has been processed
1025            if (inst->isLoad() || inst->isStore()) {
1026                toRename->iewInfo[tid].dispatchedToLSQ++;
1027            }
1028            toRename->iewInfo[tid].dispatched++;
1029
1030            continue;
1031        }
1032
1033        // Check for full conditions.
1034        if (instQueue.isFull(tid)) {
1035            DPRINTF(IEW, "[tid:%i]: Issue: IQ has become full.\n", tid);
1036
1037            // Call function to start blocking.
1038            block(tid);
1039
1040            // Set unblock to false. Special case where we are using
1041            // skidbuffer (unblocking) instructions but then we still
1042            // get full in the IQ.
1043            toRename->iewUnblock[tid] = false;
1044
1045            ++iewIQFullEvents;
1046            break;
1047        } else if (ldstQueue.isFull(tid)) {
1048            DPRINTF(IEW, "[tid:%i]: Issue: LSQ has become full.\n",tid);
1049
1050            // Call function to start blocking.
1051            block(tid);
1052
1053            // Set unblock to false. Special case where we are using
1054            // skidbuffer (unblocking) instructions but then we still
1055            // get full in the IQ.
1056            toRename->iewUnblock[tid] = false;
1057
1058            ++iewLSQFullEvents;
1059            break;
1060        }
1061
1062        // Otherwise issue the instruction just fine.
1063        if (inst->isLoad()) {
1064            DPRINTF(IEW, "[tid:%i]: Issue: Memory instruction "
1065                    "encountered, adding to LSQ.\n", tid);
1066
1067            // Reserve a spot in the load store queue for this
1068            // memory access.
1069            ldstQueue.insertLoad(inst);
1070
1071            ++iewDispLoadInsts;
1072
1073            add_to_iq = true;
1074
1075            toRename->iewInfo[tid].dispatchedToLSQ++;
1076        } else if (inst->isStore()) {
1077            DPRINTF(IEW, "[tid:%i]: Issue: Memory instruction "
1078                    "encountered, adding to LSQ.\n", tid);
1079
1080            ldstQueue.insertStore(inst);
1081
1082            ++iewDispStoreInsts;
1083
1084            if (inst->isStoreConditional()) {
1085                // Store conditionals need to be set as "canCommit()"
1086                // so that commit can process them when they reach the
1087                // head of commit.
1088                // @todo: This is somewhat specific to Alpha.
1089                inst->setCanCommit();
1090                instQueue.insertNonSpec(inst);
1091                add_to_iq = false;
1092
1093                ++iewDispNonSpecInsts;
1094            } else {
1095                add_to_iq = true;
1096            }
1097
1098            toRename->iewInfo[tid].dispatchedToLSQ++;
1099        } else if (inst->isMemBarrier() || inst->isWriteBarrier()) {
1100            // Same as non-speculative stores.
1101            inst->setCanCommit();
1102            instQueue.insertBarrier(inst);
1103            add_to_iq = false;
1104        } else if (inst->isNop()) {
1105            DPRINTF(IEW, "[tid:%i]: Issue: Nop instruction encountered, "
1106                    "skipping.\n", tid);
1107
1108            inst->setIssued();
1109            inst->setExecuted();
1110            inst->setCanCommit();
1111
1112            instQueue.recordProducer(inst);
1113
1114            iewExecutedNop[tid]++;
1115
1116            add_to_iq = false;
1117        } else if (inst->isExecuted()) {
1118            assert(0 && "Instruction shouldn't be executed.\n");
1119            DPRINTF(IEW, "Issue: Executed branch encountered, "
1120                    "skipping.\n");
1121
1122            inst->setIssued();
1123            inst->setCanCommit();
1124
1125            instQueue.recordProducer(inst);
1126
1127            add_to_iq = false;
1128        } else {
1129            add_to_iq = true;
1130        }
1131        if (inst->isNonSpeculative()) {
1132            DPRINTF(IEW, "[tid:%i]: Issue: Nonspeculative instruction "
1133                    "encountered, skipping.\n", tid);
1134
1135            // Same as non-speculative stores.
1136            inst->setCanCommit();
1137
1138            // Specifically insert it as nonspeculative.
1139            instQueue.insertNonSpec(inst);
1140
1141            ++iewDispNonSpecInsts;
1142
1143            add_to_iq = false;
1144        }
1145
1146        // If the instruction queue is not full, then add the
1147        // instruction.
1148        if (add_to_iq) {
1149            instQueue.insert(inst);
1150        }
1151
1152        insts_to_dispatch.pop();
1153
1154        toRename->iewInfo[tid].dispatched++;
1155
1156        ++iewDispatchedInsts;
1157
1158#if TRACING_ON
1159        inst->dispatchTick = curTick() - inst->fetchTick;
1160#endif
1161    }
1162
1163    if (!insts_to_dispatch.empty()) {
1164        DPRINTF(IEW,"[tid:%i]: Issue: Bandwidth Full. Blocking.\n", tid);
1165        block(tid);
1166        toRename->iewUnblock[tid] = false;
1167    }
1168
1169    if (dispatchStatus[tid] == Idle && dis_num_inst) {
1170        dispatchStatus[tid] = Running;
1171
1172        updatedQueues = true;
1173    }
1174
1175    dis_num_inst = 0;
1176}
1177
1178template <class Impl>
1179void
1180DefaultIEW<Impl>::printAvailableInsts()
1181{
1182    int inst = 0;
1183
1184    std::cout << "Available Instructions: ";
1185
1186    while (fromIssue->insts[inst]) {
1187
1188        if (inst%3==0) std::cout << "\n\t";
1189
1190        std::cout << "PC: " << fromIssue->insts[inst]->pcState()
1191             << " TN: " << fromIssue->insts[inst]->threadNumber
1192             << " SN: " << fromIssue->insts[inst]->seqNum << " | ";
1193
1194        inst++;
1195
1196    }
1197
1198    std::cout << "\n";
1199}
1200
1201template <class Impl>
1202void
1203DefaultIEW<Impl>::executeInsts()
1204{
1205    wbNumInst = 0;
1206    wbCycle = 0;
1207
1208    list<ThreadID>::iterator threads = activeThreads->begin();
1209    list<ThreadID>::iterator end = activeThreads->end();
1210
1211    while (threads != end) {
1212        ThreadID tid = *threads++;
1213        fetchRedirect[tid] = false;
1214    }
1215
1216    // Uncomment this if you want to see all available instructions.
1217    // @todo This doesn't actually work anymore, we should fix it.
1218//    printAvailableInsts();
1219
1220    // Execute/writeback any instructions that are available.
1221    int insts_to_execute = fromIssue->size;
1222    int inst_num = 0;
1223    for (; inst_num < insts_to_execute;
1224          ++inst_num) {
1225
1226        DPRINTF(IEW, "Execute: Executing instructions from IQ.\n");
1227
1228        DynInstPtr inst = instQueue.getInstToExecute();
1229
1230        DPRINTF(IEW, "Execute: Processing PC %s, [tid:%i] [sn:%i].\n",
1231                inst->pcState(), inst->threadNumber,inst->seqNum);
1232
1233        // Check if the instruction is squashed; if so then skip it
1234        if (inst->isSquashed()) {
1235            DPRINTF(IEW, "Execute: Instruction was squashed. PC: %s, [tid:%i]"
1236                         " [sn:%i]\n", inst->pcState(), inst->threadNumber,
1237                         inst->seqNum);
1238
1239            // Consider this instruction executed so that commit can go
1240            // ahead and retire the instruction.
1241            inst->setExecuted();
1242
1243            // Not sure if I should set this here or just let commit try to
1244            // commit any squashed instructions.  I like the latter a bit more.
1245            inst->setCanCommit();
1246
1247            ++iewExecSquashedInsts;
1248
1249            decrWb(inst->seqNum);
1250            continue;
1251        }
1252
1253        Fault fault = NoFault;
1254
1255        // Execute instruction.
1256        // Note that if the instruction faults, it will be handled
1257        // at the commit stage.
1258        if (inst->isMemRef()) {
1259            DPRINTF(IEW, "Execute: Calculating address for memory "
1260                    "reference.\n");
1261
1262            // Tell the LDSTQ to execute this instruction (if it is a load).
1263            if (inst->isLoad()) {
1264                // Loads will mark themselves as executed, and their writeback
1265                // event adds the instruction to the queue to commit
1266                fault = ldstQueue.executeLoad(inst);
1267
1268                if (inst->isTranslationDelayed() &&
1269                    fault == NoFault) {
1270                    // A hw page table walk is currently going on; the
1271                    // instruction must be deferred.
1272                    DPRINTF(IEW, "Execute: Delayed translation, deferring "
1273                            "load.\n");
1274                    instQueue.deferMemInst(inst);
1275                    continue;
1276                }
1277
1278                if (inst->isDataPrefetch() || inst->isInstPrefetch()) {
1279                    inst->fault = NoFault;
1280                }
1281            } else if (inst->isStore()) {
1282                fault = ldstQueue.executeStore(inst);
1283
1284                if (inst->isTranslationDelayed() &&
1285                    fault == NoFault) {
1286                    // A hw page table walk is currently going on; the
1287                    // instruction must be deferred.
1288                    DPRINTF(IEW, "Execute: Delayed translation, deferring "
1289                            "store.\n");
1290                    instQueue.deferMemInst(inst);
1291                    continue;
1292                }
1293
1294                // If the store had a fault then it may not have a mem req
1295                if (fault != NoFault || inst->readPredicate() == false ||
1296                        !inst->isStoreConditional()) {
1297                    // If the instruction faulted, then we need to send it along
1298                    // to commit without the instruction completing.
1299                    // Send this instruction to commit, also make sure iew stage
1300                    // realizes there is activity.
1301                    inst->setExecuted();
1302                    instToCommit(inst);
1303                    activityThisCycle();
1304                }
1305
1306                // Store conditionals will mark themselves as
1307                // executed, and their writeback event will add the
1308                // instruction to the queue to commit.
1309            } else {
1310                panic("Unexpected memory type!\n");
1311            }
1312
1313        } else {
1314            // If the instruction has already faulted, then skip executing it.
1315            // Such case can happen when it faulted during ITLB translation.
1316            // If we execute the instruction (even if it's a nop) the fault
1317            // will be replaced and we will lose it.
1318            if (inst->getFault() == NoFault) {
1319                inst->execute();
1320                if (inst->readPredicate() == false)
1321                    inst->forwardOldRegs();
1322            }
1323
1324            inst->setExecuted();
1325
1326            instToCommit(inst);
1327        }
1328
1329        updateExeInstStats(inst);
1330
1331        // Check if branch prediction was correct, if not then we need
1332        // to tell commit to squash in flight instructions.  Only
1333        // handle this if there hasn't already been something that
1334        // redirects fetch in this group of instructions.
1335
1336        // This probably needs to prioritize the redirects if a different
1337        // scheduler is used.  Currently the scheduler schedules the oldest
1338        // instruction first, so the branch resolution order will be correct.
1339        ThreadID tid = inst->threadNumber;
1340
1341        if (!fetchRedirect[tid] ||
1342            !toCommit->squash[tid] ||
1343            toCommit->squashedSeqNum[tid] > inst->seqNum) {
1344
1345            // Prevent testing for misprediction on load instructions,
1346            // that have not been executed.
1347            bool loadNotExecuted = !inst->isExecuted() && inst->isLoad();
1348
1349            if (inst->mispredicted() && !loadNotExecuted) {
1350                fetchRedirect[tid] = true;
1351
1352                DPRINTF(IEW, "Execute: Branch mispredict detected.\n");
1353                DPRINTF(IEW, "Predicted target was PC: %s.\n",
1354                        inst->readPredTarg());
1355                DPRINTF(IEW, "Execute: Redirecting fetch to PC: %s.\n",
1356                        inst->pcState());
1357                // If incorrect, then signal the ROB that it must be squashed.
1358                squashDueToBranch(inst, tid);
1359
1360                if (inst->readPredTaken()) {
1361                    predictedTakenIncorrect++;
1362                } else {
1363                    predictedNotTakenIncorrect++;
1364                }
1365            } else if (ldstQueue.violation(tid)) {
1366                assert(inst->isMemRef());
1367                // If there was an ordering violation, then get the
1368                // DynInst that caused the violation.  Note that this
1369                // clears the violation signal.
1370                DynInstPtr violator;
1371                violator = ldstQueue.getMemDepViolator(tid);
1372
1373                DPRINTF(IEW, "LDSTQ detected a violation. Violator PC: %s "
1374                        "[sn:%lli], inst PC: %s [sn:%lli]. Addr is: %#x.\n",
1375                        violator->pcState(), violator->seqNum,
1376                        inst->pcState(), inst->seqNum, inst->physEffAddr);
1377
1378                fetchRedirect[tid] = true;
1379
1380                // Tell the instruction queue that a violation has occured.
1381                instQueue.violation(inst, violator);
1382
1383                // Squash.
1384                squashDueToMemOrder(violator, tid);
1385
1386                ++memOrderViolationEvents;
1387            } else if (ldstQueue.loadBlocked(tid) &&
1388                       !ldstQueue.isLoadBlockedHandled(tid)) {
1389                fetchRedirect[tid] = true;
1390
1391                DPRINTF(IEW, "Load operation couldn't execute because the "
1392                        "memory system is blocked.  PC: %s [sn:%lli]\n",
1393                        inst->pcState(), inst->seqNum);
1394
1395                squashDueToMemBlocked(inst, tid);
1396            }
1397        } else {
1398            // Reset any state associated with redirects that will not
1399            // be used.
1400            if (ldstQueue.violation(tid)) {
1401                assert(inst->isMemRef());
1402
1403                DynInstPtr violator = ldstQueue.getMemDepViolator(tid);
1404
1405                DPRINTF(IEW, "LDSTQ detected a violation.  Violator PC: "
1406                        "%s, inst PC: %s.  Addr is: %#x.\n",
1407                        violator->pcState(), inst->pcState(),
1408                        inst->physEffAddr);
1409                DPRINTF(IEW, "Violation will not be handled because "
1410                        "already squashing\n");
1411
1412                ++memOrderViolationEvents;
1413            }
1414            if (ldstQueue.loadBlocked(tid) &&
1415                !ldstQueue.isLoadBlockedHandled(tid)) {
1416                DPRINTF(IEW, "Load operation couldn't execute because the "
1417                        "memory system is blocked.  PC: %s [sn:%lli]\n",
1418                        inst->pcState(), inst->seqNum);
1419                DPRINTF(IEW, "Blocked load will not be handled because "
1420                        "already squashing\n");
1421
1422                ldstQueue.setLoadBlockedHandled(tid);
1423            }
1424
1425        }
1426    }
1427
1428    // Update and record activity if we processed any instructions.
1429    if (inst_num) {
1430        if (exeStatus == Idle) {
1431            exeStatus = Running;
1432        }
1433
1434        updatedQueues = true;
1435
1436        cpu->activityThisCycle();
1437    }
1438
1439    // Need to reset this in case a writeback event needs to write into the
1440    // iew queue.  That way the writeback event will write into the correct
1441    // spot in the queue.
1442    wbNumInst = 0;
1443
1444}
1445
1446template <class Impl>
1447void
1448DefaultIEW<Impl>::writebackInsts()
1449{
1450    // Loop through the head of the time buffer and wake any
1451    // dependents.  These instructions are about to write back.  Also
1452    // mark scoreboard that this instruction is finally complete.
1453    // Either have IEW have direct access to scoreboard, or have this
1454    // as part of backwards communication.
1455    for (int inst_num = 0; inst_num < wbWidth &&
1456             toCommit->insts[inst_num]; inst_num++) {
1457        DynInstPtr inst = toCommit->insts[inst_num];
1458        ThreadID tid = inst->threadNumber;
1459
1460        DPRINTF(IEW, "Sending instructions to commit, [sn:%lli] PC %s.\n",
1461                inst->seqNum, inst->pcState());
1462
1463        iewInstsToCommit[tid]++;
1464
1465        // Some instructions will be sent to commit without having
1466        // executed because they need commit to handle them.
1467        // E.g. Uncached loads have not actually executed when they
1468        // are first sent to commit.  Instead commit must tell the LSQ
1469        // when it's ready to execute the uncached load.
1470        if (!inst->isSquashed() && inst->isExecuted() && inst->getFault() == NoFault) {
1471            int dependents = instQueue.wakeDependents(inst);
1472
1473            for (int i = 0; i < inst->numDestRegs(); i++) {
1474                //mark as Ready
1475                DPRINTF(IEW,"Setting Destination Register %i\n",
1476                        inst->renamedDestRegIdx(i));
1477                scoreboard->setReg(inst->renamedDestRegIdx(i));
1478            }
1479
1480            if (dependents) {
1481                producerInst[tid]++;
1482                consumerInst[tid]+= dependents;
1483            }
1484            writebackCount[tid]++;
1485        }
1486
1487        decrWb(inst->seqNum);
1488    }
1489}
1490
1491template<class Impl>
1492void
1493DefaultIEW<Impl>::tick()
1494{
1495    wbNumInst = 0;
1496    wbCycle = 0;
1497
1498    wroteToTimeBuffer = false;
1499    updatedQueues = false;
1500
1501    sortInsts();
1502
1503    // Free function units marked as being freed this cycle.
1504    fuPool->processFreeUnits();
1505
1506    list<ThreadID>::iterator threads = activeThreads->begin();
1507    list<ThreadID>::iterator end = activeThreads->end();
1508
1509    // Check stall and squash signals, dispatch any instructions.
1510    while (threads != end) {
1511        ThreadID tid = *threads++;
1512
1513        DPRINTF(IEW,"Issue: Processing [tid:%i]\n",tid);
1514
1515        checkSignalsAndUpdate(tid);
1516        dispatch(tid);
1517    }
1518
1519    if (exeStatus != Squashing) {
1520        executeInsts();
1521
1522        writebackInsts();
1523
1524        // Have the instruction queue try to schedule any ready instructions.
1525        // (In actuality, this scheduling is for instructions that will
1526        // be executed next cycle.)
1527        instQueue.scheduleReadyInsts();
1528
1529        // Also should advance its own time buffers if the stage ran.
1530        // Not the best place for it, but this works (hopefully).
1531        issueToExecQueue.advance();
1532    }
1533
1534    bool broadcast_free_entries = false;
1535
1536    if (updatedQueues || exeStatus == Running || updateLSQNextCycle) {
1537        exeStatus = Idle;
1538        updateLSQNextCycle = false;
1539
1540        broadcast_free_entries = true;
1541    }
1542
1543    // Writeback any stores using any leftover bandwidth.
1544    ldstQueue.writebackStores();
1545
1546    // Check the committed load/store signals to see if there's a load
1547    // or store to commit.  Also check if it's being told to execute a
1548    // nonspeculative instruction.
1549    // This is pretty inefficient...
1550
1551    threads = activeThreads->begin();
1552    while (threads != end) {
1553        ThreadID tid = (*threads++);
1554
1555        DPRINTF(IEW,"Processing [tid:%i]\n",tid);
1556
1557        // Update structures based on instructions committed.
1558        if (fromCommit->commitInfo[tid].doneSeqNum != 0 &&
1559            !fromCommit->commitInfo[tid].squash &&
1560            !fromCommit->commitInfo[tid].robSquashing) {
1561
1562            ldstQueue.commitStores(fromCommit->commitInfo[tid].doneSeqNum,tid);
1563
1564            ldstQueue.commitLoads(fromCommit->commitInfo[tid].doneSeqNum,tid);
1565
1566            updateLSQNextCycle = true;
1567            instQueue.commit(fromCommit->commitInfo[tid].doneSeqNum,tid);
1568        }
1569
1570        if (fromCommit->commitInfo[tid].nonSpecSeqNum != 0) {
1571
1572            //DPRINTF(IEW,"NonspecInst from thread %i",tid);
1573            if (fromCommit->commitInfo[tid].uncached) {
1574                instQueue.replayMemInst(fromCommit->commitInfo[tid].uncachedLoad);
1575                fromCommit->commitInfo[tid].uncachedLoad->setAtCommit();
1576            } else {
1577                instQueue.scheduleNonSpec(
1578                    fromCommit->commitInfo[tid].nonSpecSeqNum);
1579            }
1580        }
1581
1582        if (broadcast_free_entries) {
1583            toFetch->iewInfo[tid].iqCount =
1584                instQueue.getCount(tid);
1585            toFetch->iewInfo[tid].ldstqCount =
1586                ldstQueue.getCount(tid);
1587
1588            toRename->iewInfo[tid].usedIQ = true;
1589            toRename->iewInfo[tid].freeIQEntries =
1590                instQueue.numFreeEntries();
1591            toRename->iewInfo[tid].usedLSQ = true;
1592            toRename->iewInfo[tid].freeLSQEntries =
1593                ldstQueue.numFreeEntries(tid);
1594
1595            wroteToTimeBuffer = true;
1596        }
1597
1598        DPRINTF(IEW, "[tid:%i], Dispatch dispatched %i instructions.\n",
1599                tid, toRename->iewInfo[tid].dispatched);
1600    }
1601
1602    DPRINTF(IEW, "IQ has %i free entries (Can schedule: %i).  "
1603            "LSQ has %i free entries.\n",
1604            instQueue.numFreeEntries(), instQueue.hasReadyInsts(),
1605            ldstQueue.numFreeEntries());
1606
1607    updateStatus();
1608
1609    if (wroteToTimeBuffer) {
1610        DPRINTF(Activity, "Activity this cycle.\n");
1611        cpu->activityThisCycle();
1612    }
1613}
1614
1615template <class Impl>
1616void
1617DefaultIEW<Impl>::updateExeInstStats(DynInstPtr &inst)
1618{
1619    ThreadID tid = inst->threadNumber;
1620
1621    iewExecutedInsts++;
1622
1623#if TRACING_ON
1624    if (DTRACE(O3PipeView)) {
1625        inst->completeTick = curTick() - inst->fetchTick;
1626    }
1627#endif
1628
1629    //
1630    //  Control operations
1631    //
1632    if (inst->isControl())
1633        iewExecutedBranches[tid]++;
1634
1635    //
1636    //  Memory operations
1637    //
1638    if (inst->isMemRef()) {
1639        iewExecutedRefs[tid]++;
1640
1641        if (inst->isLoad()) {
1642            iewExecLoadInsts[tid]++;
1643        }
1644    }
1645}
1646
1647template <class Impl>
1648void
1649DefaultIEW<Impl>::checkMisprediction(DynInstPtr &inst)
1650{
1651    ThreadID tid = inst->threadNumber;
1652
1653    if (!fetchRedirect[tid] ||
1654        !toCommit->squash[tid] ||
1655        toCommit->squashedSeqNum[tid] > inst->seqNum) {
1656
1657        if (inst->mispredicted()) {
1658            fetchRedirect[tid] = true;
1659
1660            DPRINTF(IEW, "Execute: Branch mispredict detected.\n");
1661            DPRINTF(IEW, "Predicted target was PC:%#x, NPC:%#x.\n",
1662                    inst->predInstAddr(), inst->predNextInstAddr());
1663            DPRINTF(IEW, "Execute: Redirecting fetch to PC: %#x,"
1664                    " NPC: %#x.\n", inst->nextInstAddr(),
1665                    inst->nextInstAddr());
1666            // If incorrect, then signal the ROB that it must be squashed.
1667            squashDueToBranch(inst, tid);
1668
1669            if (inst->readPredTaken()) {
1670                predictedTakenIncorrect++;
1671            } else {
1672                predictedNotTakenIncorrect++;
1673            }
1674        }
1675    }
1676}
1677
1678#endif//__CPU_O3_IEW_IMPL_IMPL_HH__
1679