iew_impl.hh revision 8240:38befb82b2c9
1/*
2 * Copyright (c) 2010 ARM Limited
3 * All rights reserved.
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder.  You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2004-2006 The Regents of The University of Michigan
15 * All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions are
19 * met: redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer;
21 * redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution;
24 * neither the name of the copyright holders nor the names of its
25 * contributors may be used to endorse or promote products derived from
26 * this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 *
40 * Authors: Kevin Lim
41 */
42
43// @todo: Fix the instantaneous communication among all the stages within
44// iew.  There's a clear delay between issue and execute, yet backwards
45// communication happens simultaneously.
46
47#include <queue>
48
49#include "arch/utility.hh"
50#include "config/the_isa.hh"
51#include "cpu/o3/fu_pool.hh"
52#include "cpu/o3/iew.hh"
53#include "cpu/timebuf.hh"
54#include "debug/Activity.hh"
55#include "debug/Decode.hh"
56#include "debug/IEW.hh"
57#include "params/DerivO3CPU.hh"
58
59using namespace std;
60
61template<class Impl>
62DefaultIEW<Impl>::DefaultIEW(O3CPU *_cpu, DerivO3CPUParams *params)
63    : issueToExecQueue(params->backComSize, params->forwardComSize),
64      cpu(_cpu),
65      instQueue(_cpu, this, params),
66      ldstQueue(_cpu, this, params),
67      fuPool(params->fuPool),
68      commitToIEWDelay(params->commitToIEWDelay),
69      renameToIEWDelay(params->renameToIEWDelay),
70      issueToExecuteDelay(params->issueToExecuteDelay),
71      dispatchWidth(params->dispatchWidth),
72      issueWidth(params->issueWidth),
73      wbOutstanding(0),
74      wbWidth(params->wbWidth),
75      numThreads(params->numThreads),
76      switchedOut(false)
77{
78    _status = Active;
79    exeStatus = Running;
80    wbStatus = Idle;
81
82    // Setup wire to read instructions coming from issue.
83    fromIssue = issueToExecQueue.getWire(-issueToExecuteDelay);
84
85    // Instruction queue needs the queue between issue and execute.
86    instQueue.setIssueToExecuteQueue(&issueToExecQueue);
87
88    for (ThreadID tid = 0; tid < numThreads; tid++) {
89        dispatchStatus[tid] = Running;
90        stalls[tid].commit = false;
91        fetchRedirect[tid] = false;
92    }
93
94    wbMax = wbWidth * params->wbDepth;
95
96    updateLSQNextCycle = false;
97
98    ableToIssue = true;
99
100    skidBufferMax = (3 * (renameToIEWDelay * params->renameWidth)) + issueWidth;
101}
102
103template <class Impl>
104std::string
105DefaultIEW<Impl>::name() const
106{
107    return cpu->name() + ".iew";
108}
109
110template <class Impl>
111void
112DefaultIEW<Impl>::regStats()
113{
114    using namespace Stats;
115
116    instQueue.regStats();
117    ldstQueue.regStats();
118
119    iewIdleCycles
120        .name(name() + ".iewIdleCycles")
121        .desc("Number of cycles IEW is idle");
122
123    iewSquashCycles
124        .name(name() + ".iewSquashCycles")
125        .desc("Number of cycles IEW is squashing");
126
127    iewBlockCycles
128        .name(name() + ".iewBlockCycles")
129        .desc("Number of cycles IEW is blocking");
130
131    iewUnblockCycles
132        .name(name() + ".iewUnblockCycles")
133        .desc("Number of cycles IEW is unblocking");
134
135    iewDispatchedInsts
136        .name(name() + ".iewDispatchedInsts")
137        .desc("Number of instructions dispatched to IQ");
138
139    iewDispSquashedInsts
140        .name(name() + ".iewDispSquashedInsts")
141        .desc("Number of squashed instructions skipped by dispatch");
142
143    iewDispLoadInsts
144        .name(name() + ".iewDispLoadInsts")
145        .desc("Number of dispatched load instructions");
146
147    iewDispStoreInsts
148        .name(name() + ".iewDispStoreInsts")
149        .desc("Number of dispatched store instructions");
150
151    iewDispNonSpecInsts
152        .name(name() + ".iewDispNonSpecInsts")
153        .desc("Number of dispatched non-speculative instructions");
154
155    iewIQFullEvents
156        .name(name() + ".iewIQFullEvents")
157        .desc("Number of times the IQ has become full, causing a stall");
158
159    iewLSQFullEvents
160        .name(name() + ".iewLSQFullEvents")
161        .desc("Number of times the LSQ has become full, causing a stall");
162
163    memOrderViolationEvents
164        .name(name() + ".memOrderViolationEvents")
165        .desc("Number of memory order violations");
166
167    predictedTakenIncorrect
168        .name(name() + ".predictedTakenIncorrect")
169        .desc("Number of branches that were predicted taken incorrectly");
170
171    predictedNotTakenIncorrect
172        .name(name() + ".predictedNotTakenIncorrect")
173        .desc("Number of branches that were predicted not taken incorrectly");
174
175    branchMispredicts
176        .name(name() + ".branchMispredicts")
177        .desc("Number of branch mispredicts detected at execute");
178
179    branchMispredicts = predictedTakenIncorrect + predictedNotTakenIncorrect;
180
181    iewExecutedInsts
182        .name(name() + ".iewExecutedInsts")
183        .desc("Number of executed instructions");
184
185    iewExecLoadInsts
186        .init(cpu->numThreads)
187        .name(name() + ".iewExecLoadInsts")
188        .desc("Number of load instructions executed")
189        .flags(total);
190
191    iewExecSquashedInsts
192        .name(name() + ".iewExecSquashedInsts")
193        .desc("Number of squashed instructions skipped in execute");
194
195    iewExecutedSwp
196        .init(cpu->numThreads)
197        .name(name() + ".exec_swp")
198        .desc("number of swp insts executed")
199        .flags(total);
200
201    iewExecutedNop
202        .init(cpu->numThreads)
203        .name(name() + ".exec_nop")
204        .desc("number of nop insts executed")
205        .flags(total);
206
207    iewExecutedRefs
208        .init(cpu->numThreads)
209        .name(name() + ".exec_refs")
210        .desc("number of memory reference insts executed")
211        .flags(total);
212
213    iewExecutedBranches
214        .init(cpu->numThreads)
215        .name(name() + ".exec_branches")
216        .desc("Number of branches executed")
217        .flags(total);
218
219    iewExecStoreInsts
220        .name(name() + ".exec_stores")
221        .desc("Number of stores executed")
222        .flags(total);
223    iewExecStoreInsts = iewExecutedRefs - iewExecLoadInsts;
224
225    iewExecRate
226        .name(name() + ".exec_rate")
227        .desc("Inst execution rate")
228        .flags(total);
229
230    iewExecRate = iewExecutedInsts / cpu->numCycles;
231
232    iewInstsToCommit
233        .init(cpu->numThreads)
234        .name(name() + ".wb_sent")
235        .desc("cumulative count of insts sent to commit")
236        .flags(total);
237
238    writebackCount
239        .init(cpu->numThreads)
240        .name(name() + ".wb_count")
241        .desc("cumulative count of insts written-back")
242        .flags(total);
243
244    producerInst
245        .init(cpu->numThreads)
246        .name(name() + ".wb_producers")
247        .desc("num instructions producing a value")
248        .flags(total);
249
250    consumerInst
251        .init(cpu->numThreads)
252        .name(name() + ".wb_consumers")
253        .desc("num instructions consuming a value")
254        .flags(total);
255
256    wbPenalized
257        .init(cpu->numThreads)
258        .name(name() + ".wb_penalized")
259        .desc("number of instrctions required to write to 'other' IQ")
260        .flags(total);
261
262    wbPenalizedRate
263        .name(name() + ".wb_penalized_rate")
264        .desc ("fraction of instructions written-back that wrote to 'other' IQ")
265        .flags(total);
266
267    wbPenalizedRate = wbPenalized / writebackCount;
268
269    wbFanout
270        .name(name() + ".wb_fanout")
271        .desc("average fanout of values written-back")
272        .flags(total);
273
274    wbFanout = producerInst / consumerInst;
275
276    wbRate
277        .name(name() + ".wb_rate")
278        .desc("insts written-back per cycle")
279        .flags(total);
280    wbRate = writebackCount / cpu->numCycles;
281}
282
283template<class Impl>
284void
285DefaultIEW<Impl>::initStage()
286{
287    for (ThreadID tid = 0; tid < numThreads; tid++) {
288        toRename->iewInfo[tid].usedIQ = true;
289        toRename->iewInfo[tid].freeIQEntries =
290            instQueue.numFreeEntries(tid);
291
292        toRename->iewInfo[tid].usedLSQ = true;
293        toRename->iewInfo[tid].freeLSQEntries =
294            ldstQueue.numFreeEntries(tid);
295    }
296
297    cpu->activateStage(O3CPU::IEWIdx);
298}
299
300template<class Impl>
301void
302DefaultIEW<Impl>::setTimeBuffer(TimeBuffer<TimeStruct> *tb_ptr)
303{
304    timeBuffer = tb_ptr;
305
306    // Setup wire to read information from time buffer, from commit.
307    fromCommit = timeBuffer->getWire(-commitToIEWDelay);
308
309    // Setup wire to write information back to previous stages.
310    toRename = timeBuffer->getWire(0);
311
312    toFetch = timeBuffer->getWire(0);
313
314    // Instruction queue also needs main time buffer.
315    instQueue.setTimeBuffer(tb_ptr);
316}
317
318template<class Impl>
319void
320DefaultIEW<Impl>::setRenameQueue(TimeBuffer<RenameStruct> *rq_ptr)
321{
322    renameQueue = rq_ptr;
323
324    // Setup wire to read information from rename queue.
325    fromRename = renameQueue->getWire(-renameToIEWDelay);
326}
327
328template<class Impl>
329void
330DefaultIEW<Impl>::setIEWQueue(TimeBuffer<IEWStruct> *iq_ptr)
331{
332    iewQueue = iq_ptr;
333
334    // Setup wire to write instructions to commit.
335    toCommit = iewQueue->getWire(0);
336}
337
338template<class Impl>
339void
340DefaultIEW<Impl>::setActiveThreads(list<ThreadID> *at_ptr)
341{
342    activeThreads = at_ptr;
343
344    ldstQueue.setActiveThreads(at_ptr);
345    instQueue.setActiveThreads(at_ptr);
346}
347
348template<class Impl>
349void
350DefaultIEW<Impl>::setScoreboard(Scoreboard *sb_ptr)
351{
352    scoreboard = sb_ptr;
353}
354
355template <class Impl>
356bool
357DefaultIEW<Impl>::drain()
358{
359    // IEW is ready to drain at any time.
360    cpu->signalDrained();
361    return true;
362}
363
364template <class Impl>
365void
366DefaultIEW<Impl>::resume()
367{
368}
369
370template <class Impl>
371void
372DefaultIEW<Impl>::switchOut()
373{
374    // Clear any state.
375    switchedOut = true;
376    assert(insts[0].empty());
377    assert(skidBuffer[0].empty());
378
379    instQueue.switchOut();
380    ldstQueue.switchOut();
381    fuPool->switchOut();
382
383    for (ThreadID tid = 0; tid < numThreads; tid++) {
384        while (!insts[tid].empty())
385            insts[tid].pop();
386        while (!skidBuffer[tid].empty())
387            skidBuffer[tid].pop();
388    }
389}
390
391template <class Impl>
392void
393DefaultIEW<Impl>::takeOverFrom()
394{
395    // Reset all state.
396    _status = Active;
397    exeStatus = Running;
398    wbStatus = Idle;
399    switchedOut = false;
400
401    instQueue.takeOverFrom();
402    ldstQueue.takeOverFrom();
403    fuPool->takeOverFrom();
404
405    initStage();
406    cpu->activityThisCycle();
407
408    for (ThreadID tid = 0; tid < numThreads; tid++) {
409        dispatchStatus[tid] = Running;
410        stalls[tid].commit = false;
411        fetchRedirect[tid] = false;
412    }
413
414    updateLSQNextCycle = false;
415
416    for (int i = 0; i < issueToExecQueue.getSize(); ++i) {
417        issueToExecQueue.advance();
418    }
419}
420
421template<class Impl>
422void
423DefaultIEW<Impl>::squash(ThreadID tid)
424{
425    DPRINTF(IEW, "[tid:%i]: Squashing all instructions.\n", tid);
426
427    // Tell the IQ to start squashing.
428    instQueue.squash(tid);
429
430    // Tell the LDSTQ to start squashing.
431    ldstQueue.squash(fromCommit->commitInfo[tid].doneSeqNum, tid);
432    updatedQueues = true;
433
434    // Clear the skid buffer in case it has any data in it.
435    DPRINTF(IEW, "[tid:%i]: Removing skidbuffer instructions until [sn:%i].\n",
436            tid, fromCommit->commitInfo[tid].doneSeqNum);
437
438    while (!skidBuffer[tid].empty()) {
439        if (skidBuffer[tid].front()->isLoad() ||
440            skidBuffer[tid].front()->isStore() ) {
441            toRename->iewInfo[tid].dispatchedToLSQ++;
442        }
443
444        toRename->iewInfo[tid].dispatched++;
445
446        skidBuffer[tid].pop();
447    }
448
449    emptyRenameInsts(tid);
450}
451
452template<class Impl>
453void
454DefaultIEW<Impl>::squashDueToBranch(DynInstPtr &inst, ThreadID tid)
455{
456    DPRINTF(IEW, "[tid:%i]: Squashing from a specific instruction, PC: %s "
457            "[sn:%i].\n", tid, inst->pcState(), inst->seqNum);
458
459    if (toCommit->squash[tid] == false ||
460            inst->seqNum < toCommit->squashedSeqNum[tid]) {
461        toCommit->squash[tid] = true;
462        toCommit->squashedSeqNum[tid] = inst->seqNum;
463        toCommit->branchTaken[tid] = inst->pcState().branching();
464
465        TheISA::PCState pc = inst->pcState();
466        TheISA::advancePC(pc, inst->staticInst);
467
468        toCommit->pc[tid] = pc;
469        toCommit->mispredictInst[tid] = inst;
470        toCommit->includeSquashInst[tid] = false;
471
472        wroteToTimeBuffer = true;
473    }
474
475}
476
477template<class Impl>
478void
479DefaultIEW<Impl>::squashDueToMemOrder(DynInstPtr &inst, ThreadID tid)
480{
481    DPRINTF(IEW, "[tid:%i]: Squashing from a specific instruction, "
482            "PC: %s [sn:%i].\n", tid, inst->pcState(), inst->seqNum);
483
484    if (toCommit->squash[tid] == false ||
485            inst->seqNum < toCommit->squashedSeqNum[tid]) {
486        toCommit->squash[tid] = true;
487        toCommit->squashedSeqNum[tid] = inst->seqNum;
488        TheISA::PCState pc = inst->pcState();
489        TheISA::advancePC(pc, inst->staticInst);
490        toCommit->pc[tid] = pc;
491        toCommit->mispredictInst[tid] = NULL;
492
493        toCommit->includeSquashInst[tid] = false;
494
495        wroteToTimeBuffer = true;
496    }
497}
498
499template<class Impl>
500void
501DefaultIEW<Impl>::squashDueToMemBlocked(DynInstPtr &inst, ThreadID tid)
502{
503    DPRINTF(IEW, "[tid:%i]: Memory blocked, squashing load and younger insts, "
504            "PC: %s [sn:%i].\n", tid, inst->pcState(), inst->seqNum);
505    if (toCommit->squash[tid] == false ||
506            inst->seqNum < toCommit->squashedSeqNum[tid]) {
507        toCommit->squash[tid] = true;
508
509        toCommit->squashedSeqNum[tid] = inst->seqNum;
510        toCommit->pc[tid] = inst->pcState();
511        toCommit->mispredictInst[tid] = NULL;
512
513        // Must include the broadcasted SN in the squash.
514        toCommit->includeSquashInst[tid] = true;
515
516        ldstQueue.setLoadBlockedHandled(tid);
517
518        wroteToTimeBuffer = true;
519    }
520}
521
522template<class Impl>
523void
524DefaultIEW<Impl>::block(ThreadID tid)
525{
526    DPRINTF(IEW, "[tid:%u]: Blocking.\n", tid);
527
528    if (dispatchStatus[tid] != Blocked &&
529        dispatchStatus[tid] != Unblocking) {
530        toRename->iewBlock[tid] = true;
531        wroteToTimeBuffer = true;
532    }
533
534    // Add the current inputs to the skid buffer so they can be
535    // reprocessed when this stage unblocks.
536    skidInsert(tid);
537
538    dispatchStatus[tid] = Blocked;
539}
540
541template<class Impl>
542void
543DefaultIEW<Impl>::unblock(ThreadID tid)
544{
545    DPRINTF(IEW, "[tid:%i]: Reading instructions out of the skid "
546            "buffer %u.\n",tid, tid);
547
548    // If the skid bufffer is empty, signal back to previous stages to unblock.
549    // Also switch status to running.
550    if (skidBuffer[tid].empty()) {
551        toRename->iewUnblock[tid] = true;
552        wroteToTimeBuffer = true;
553        DPRINTF(IEW, "[tid:%i]: Done unblocking.\n",tid);
554        dispatchStatus[tid] = Running;
555    }
556}
557
558template<class Impl>
559void
560DefaultIEW<Impl>::wakeDependents(DynInstPtr &inst)
561{
562    instQueue.wakeDependents(inst);
563}
564
565template<class Impl>
566void
567DefaultIEW<Impl>::rescheduleMemInst(DynInstPtr &inst)
568{
569    instQueue.rescheduleMemInst(inst);
570}
571
572template<class Impl>
573void
574DefaultIEW<Impl>::replayMemInst(DynInstPtr &inst)
575{
576    instQueue.replayMemInst(inst);
577}
578
579template<class Impl>
580void
581DefaultIEW<Impl>::instToCommit(DynInstPtr &inst)
582{
583    // This function should not be called after writebackInsts in a
584    // single cycle.  That will cause problems with an instruction
585    // being added to the queue to commit without being processed by
586    // writebackInsts prior to being sent to commit.
587
588    // First check the time slot that this instruction will write
589    // to.  If there are free write ports at the time, then go ahead
590    // and write the instruction to that time.  If there are not,
591    // keep looking back to see where's the first time there's a
592    // free slot.
593    while ((*iewQueue)[wbCycle].insts[wbNumInst]) {
594        ++wbNumInst;
595        if (wbNumInst == wbWidth) {
596            ++wbCycle;
597            wbNumInst = 0;
598        }
599
600        assert((wbCycle * wbWidth + wbNumInst) <= wbMax);
601    }
602
603    DPRINTF(IEW, "Current wb cycle: %i, width: %i, numInst: %i\nwbActual:%i\n",
604            wbCycle, wbWidth, wbNumInst, wbCycle * wbWidth + wbNumInst);
605    // Add finished instruction to queue to commit.
606    (*iewQueue)[wbCycle].insts[wbNumInst] = inst;
607    (*iewQueue)[wbCycle].size++;
608}
609
610template <class Impl>
611unsigned
612DefaultIEW<Impl>::validInstsFromRename()
613{
614    unsigned inst_count = 0;
615
616    for (int i=0; i<fromRename->size; i++) {
617        if (!fromRename->insts[i]->isSquashed())
618            inst_count++;
619    }
620
621    return inst_count;
622}
623
624template<class Impl>
625void
626DefaultIEW<Impl>::skidInsert(ThreadID tid)
627{
628    DynInstPtr inst = NULL;
629
630    while (!insts[tid].empty()) {
631        inst = insts[tid].front();
632
633        insts[tid].pop();
634
635        DPRINTF(Decode,"[tid:%i]: Inserting [sn:%lli] PC:%s into "
636                "dispatch skidBuffer %i\n",tid, inst->seqNum,
637                inst->pcState(),tid);
638
639        skidBuffer[tid].push(inst);
640    }
641
642    assert(skidBuffer[tid].size() <= skidBufferMax &&
643           "Skidbuffer Exceeded Max Size");
644}
645
646template<class Impl>
647int
648DefaultIEW<Impl>::skidCount()
649{
650    int max=0;
651
652    list<ThreadID>::iterator threads = activeThreads->begin();
653    list<ThreadID>::iterator end = activeThreads->end();
654
655    while (threads != end) {
656        ThreadID tid = *threads++;
657        unsigned thread_count = skidBuffer[tid].size();
658        if (max < thread_count)
659            max = thread_count;
660    }
661
662    return max;
663}
664
665template<class Impl>
666bool
667DefaultIEW<Impl>::skidsEmpty()
668{
669    list<ThreadID>::iterator threads = activeThreads->begin();
670    list<ThreadID>::iterator end = activeThreads->end();
671
672    while (threads != end) {
673        ThreadID tid = *threads++;
674
675        if (!skidBuffer[tid].empty())
676            return false;
677    }
678
679    return true;
680}
681
682template <class Impl>
683void
684DefaultIEW<Impl>::updateStatus()
685{
686    bool any_unblocking = false;
687
688    list<ThreadID>::iterator threads = activeThreads->begin();
689    list<ThreadID>::iterator end = activeThreads->end();
690
691    while (threads != end) {
692        ThreadID tid = *threads++;
693
694        if (dispatchStatus[tid] == Unblocking) {
695            any_unblocking = true;
696            break;
697        }
698    }
699
700    // If there are no ready instructions waiting to be scheduled by the IQ,
701    // and there's no stores waiting to write back, and dispatch is not
702    // unblocking, then there is no internal activity for the IEW stage.
703    instQueue.intInstQueueReads++;
704    if (_status == Active && !instQueue.hasReadyInsts() &&
705        !ldstQueue.willWB() && !any_unblocking) {
706        DPRINTF(IEW, "IEW switching to idle\n");
707
708        deactivateStage();
709
710        _status = Inactive;
711    } else if (_status == Inactive && (instQueue.hasReadyInsts() ||
712                                       ldstQueue.willWB() ||
713                                       any_unblocking)) {
714        // Otherwise there is internal activity.  Set to active.
715        DPRINTF(IEW, "IEW switching to active\n");
716
717        activateStage();
718
719        _status = Active;
720    }
721}
722
723template <class Impl>
724void
725DefaultIEW<Impl>::resetEntries()
726{
727    instQueue.resetEntries();
728    ldstQueue.resetEntries();
729}
730
731template <class Impl>
732void
733DefaultIEW<Impl>::readStallSignals(ThreadID tid)
734{
735    if (fromCommit->commitBlock[tid]) {
736        stalls[tid].commit = true;
737    }
738
739    if (fromCommit->commitUnblock[tid]) {
740        assert(stalls[tid].commit);
741        stalls[tid].commit = false;
742    }
743}
744
745template <class Impl>
746bool
747DefaultIEW<Impl>::checkStall(ThreadID tid)
748{
749    bool ret_val(false);
750
751    if (stalls[tid].commit) {
752        DPRINTF(IEW,"[tid:%i]: Stall from Commit stage detected.\n",tid);
753        ret_val = true;
754    } else if (instQueue.isFull(tid)) {
755        DPRINTF(IEW,"[tid:%i]: Stall: IQ  is full.\n",tid);
756        ret_val = true;
757    } else if (ldstQueue.isFull(tid)) {
758        DPRINTF(IEW,"[tid:%i]: Stall: LSQ is full\n",tid);
759
760        if (ldstQueue.numLoads(tid) > 0 ) {
761
762            DPRINTF(IEW,"[tid:%i]: LSQ oldest load: [sn:%i] \n",
763                    tid,ldstQueue.getLoadHeadSeqNum(tid));
764        }
765
766        if (ldstQueue.numStores(tid) > 0) {
767
768            DPRINTF(IEW,"[tid:%i]: LSQ oldest store: [sn:%i] \n",
769                    tid,ldstQueue.getStoreHeadSeqNum(tid));
770        }
771
772        ret_val = true;
773    } else if (ldstQueue.isStalled(tid)) {
774        DPRINTF(IEW,"[tid:%i]: Stall: LSQ stall detected.\n",tid);
775        ret_val = true;
776    }
777
778    return ret_val;
779}
780
781template <class Impl>
782void
783DefaultIEW<Impl>::checkSignalsAndUpdate(ThreadID tid)
784{
785    // Check if there's a squash signal, squash if there is
786    // Check stall signals, block if there is.
787    // If status was Blocked
788    //     if so then go to unblocking
789    // If status was Squashing
790    //     check if squashing is not high.  Switch to running this cycle.
791
792    readStallSignals(tid);
793
794    if (fromCommit->commitInfo[tid].squash) {
795        squash(tid);
796
797        if (dispatchStatus[tid] == Blocked ||
798            dispatchStatus[tid] == Unblocking) {
799            toRename->iewUnblock[tid] = true;
800            wroteToTimeBuffer = true;
801        }
802
803        dispatchStatus[tid] = Squashing;
804        fetchRedirect[tid] = false;
805        return;
806    }
807
808    if (fromCommit->commitInfo[tid].robSquashing) {
809        DPRINTF(IEW, "[tid:%i]: ROB is still squashing.\n", tid);
810
811        dispatchStatus[tid] = Squashing;
812        emptyRenameInsts(tid);
813        wroteToTimeBuffer = true;
814        return;
815    }
816
817    if (checkStall(tid)) {
818        block(tid);
819        dispatchStatus[tid] = Blocked;
820        return;
821    }
822
823    if (dispatchStatus[tid] == Blocked) {
824        // Status from previous cycle was blocked, but there are no more stall
825        // conditions.  Switch over to unblocking.
826        DPRINTF(IEW, "[tid:%i]: Done blocking, switching to unblocking.\n",
827                tid);
828
829        dispatchStatus[tid] = Unblocking;
830
831        unblock(tid);
832
833        return;
834    }
835
836    if (dispatchStatus[tid] == Squashing) {
837        // Switch status to running if rename isn't being told to block or
838        // squash this cycle.
839        DPRINTF(IEW, "[tid:%i]: Done squashing, switching to running.\n",
840                tid);
841
842        dispatchStatus[tid] = Running;
843
844        return;
845    }
846}
847
848template <class Impl>
849void
850DefaultIEW<Impl>::sortInsts()
851{
852    int insts_from_rename = fromRename->size;
853#ifdef DEBUG
854    for (ThreadID tid = 0; tid < numThreads; tid++)
855        assert(insts[tid].empty());
856#endif
857    for (int i = 0; i < insts_from_rename; ++i) {
858        insts[fromRename->insts[i]->threadNumber].push(fromRename->insts[i]);
859    }
860}
861
862template <class Impl>
863void
864DefaultIEW<Impl>::emptyRenameInsts(ThreadID tid)
865{
866    DPRINTF(IEW, "[tid:%i]: Removing incoming rename instructions\n", tid);
867
868    while (!insts[tid].empty()) {
869
870        if (insts[tid].front()->isLoad() ||
871            insts[tid].front()->isStore() ) {
872            toRename->iewInfo[tid].dispatchedToLSQ++;
873        }
874
875        toRename->iewInfo[tid].dispatched++;
876
877        insts[tid].pop();
878    }
879}
880
881template <class Impl>
882void
883DefaultIEW<Impl>::wakeCPU()
884{
885    cpu->wakeCPU();
886}
887
888template <class Impl>
889void
890DefaultIEW<Impl>::activityThisCycle()
891{
892    DPRINTF(Activity, "Activity this cycle.\n");
893    cpu->activityThisCycle();
894}
895
896template <class Impl>
897inline void
898DefaultIEW<Impl>::activateStage()
899{
900    DPRINTF(Activity, "Activating stage.\n");
901    cpu->activateStage(O3CPU::IEWIdx);
902}
903
904template <class Impl>
905inline void
906DefaultIEW<Impl>::deactivateStage()
907{
908    DPRINTF(Activity, "Deactivating stage.\n");
909    cpu->deactivateStage(O3CPU::IEWIdx);
910}
911
912template<class Impl>
913void
914DefaultIEW<Impl>::dispatch(ThreadID tid)
915{
916    // If status is Running or idle,
917    //     call dispatchInsts()
918    // If status is Unblocking,
919    //     buffer any instructions coming from rename
920    //     continue trying to empty skid buffer
921    //     check if stall conditions have passed
922
923    if (dispatchStatus[tid] == Blocked) {
924        ++iewBlockCycles;
925
926    } else if (dispatchStatus[tid] == Squashing) {
927        ++iewSquashCycles;
928    }
929
930    // Dispatch should try to dispatch as many instructions as its bandwidth
931    // will allow, as long as it is not currently blocked.
932    if (dispatchStatus[tid] == Running ||
933        dispatchStatus[tid] == Idle) {
934        DPRINTF(IEW, "[tid:%i] Not blocked, so attempting to run "
935                "dispatch.\n", tid);
936
937        dispatchInsts(tid);
938    } else if (dispatchStatus[tid] == Unblocking) {
939        // Make sure that the skid buffer has something in it if the
940        // status is unblocking.
941        assert(!skidsEmpty());
942
943        // If the status was unblocking, then instructions from the skid
944        // buffer were used.  Remove those instructions and handle
945        // the rest of unblocking.
946        dispatchInsts(tid);
947
948        ++iewUnblockCycles;
949
950        if (validInstsFromRename()) {
951            // Add the current inputs to the skid buffer so they can be
952            // reprocessed when this stage unblocks.
953            skidInsert(tid);
954        }
955
956        unblock(tid);
957    }
958}
959
960template <class Impl>
961void
962DefaultIEW<Impl>::dispatchInsts(ThreadID tid)
963{
964    // Obtain instructions from skid buffer if unblocking, or queue from rename
965    // otherwise.
966    std::queue<DynInstPtr> &insts_to_dispatch =
967        dispatchStatus[tid] == Unblocking ?
968        skidBuffer[tid] : insts[tid];
969
970    int insts_to_add = insts_to_dispatch.size();
971
972    DynInstPtr inst;
973    bool add_to_iq = false;
974    int dis_num_inst = 0;
975
976    // Loop through the instructions, putting them in the instruction
977    // queue.
978    for ( ; dis_num_inst < insts_to_add &&
979              dis_num_inst < dispatchWidth;
980          ++dis_num_inst)
981    {
982        inst = insts_to_dispatch.front();
983
984        if (dispatchStatus[tid] == Unblocking) {
985            DPRINTF(IEW, "[tid:%i]: Issue: Examining instruction from skid "
986                    "buffer\n", tid);
987        }
988
989        // Make sure there's a valid instruction there.
990        assert(inst);
991
992        DPRINTF(IEW, "[tid:%i]: Issue: Adding PC %s [sn:%lli] [tid:%i] to "
993                "IQ.\n",
994                tid, inst->pcState(), inst->seqNum, inst->threadNumber);
995
996        // Be sure to mark these instructions as ready so that the
997        // commit stage can go ahead and execute them, and mark
998        // them as issued so the IQ doesn't reprocess them.
999
1000        // Check for squashed instructions.
1001        if (inst->isSquashed()) {
1002            DPRINTF(IEW, "[tid:%i]: Issue: Squashed instruction encountered, "
1003                    "not adding to IQ.\n", tid);
1004
1005            ++iewDispSquashedInsts;
1006
1007            insts_to_dispatch.pop();
1008
1009            //Tell Rename That An Instruction has been processed
1010            if (inst->isLoad() || inst->isStore()) {
1011                toRename->iewInfo[tid].dispatchedToLSQ++;
1012            }
1013            toRename->iewInfo[tid].dispatched++;
1014
1015            continue;
1016        }
1017
1018        // Check for full conditions.
1019        if (instQueue.isFull(tid)) {
1020            DPRINTF(IEW, "[tid:%i]: Issue: IQ has become full.\n", tid);
1021
1022            // Call function to start blocking.
1023            block(tid);
1024
1025            // Set unblock to false. Special case where we are using
1026            // skidbuffer (unblocking) instructions but then we still
1027            // get full in the IQ.
1028            toRename->iewUnblock[tid] = false;
1029
1030            ++iewIQFullEvents;
1031            break;
1032        } else if (ldstQueue.isFull(tid)) {
1033            DPRINTF(IEW, "[tid:%i]: Issue: LSQ has become full.\n",tid);
1034
1035            // Call function to start blocking.
1036            block(tid);
1037
1038            // Set unblock to false. Special case where we are using
1039            // skidbuffer (unblocking) instructions but then we still
1040            // get full in the IQ.
1041            toRename->iewUnblock[tid] = false;
1042
1043            ++iewLSQFullEvents;
1044            break;
1045        }
1046
1047        // Otherwise issue the instruction just fine.
1048        if (inst->isLoad()) {
1049            DPRINTF(IEW, "[tid:%i]: Issue: Memory instruction "
1050                    "encountered, adding to LSQ.\n", tid);
1051
1052            // Reserve a spot in the load store queue for this
1053            // memory access.
1054            ldstQueue.insertLoad(inst);
1055
1056            ++iewDispLoadInsts;
1057
1058            add_to_iq = true;
1059
1060            toRename->iewInfo[tid].dispatchedToLSQ++;
1061        } else if (inst->isStore()) {
1062            DPRINTF(IEW, "[tid:%i]: Issue: Memory instruction "
1063                    "encountered, adding to LSQ.\n", tid);
1064
1065            ldstQueue.insertStore(inst);
1066
1067            ++iewDispStoreInsts;
1068
1069            if (inst->isStoreConditional()) {
1070                // Store conditionals need to be set as "canCommit()"
1071                // so that commit can process them when they reach the
1072                // head of commit.
1073                // @todo: This is somewhat specific to Alpha.
1074                inst->setCanCommit();
1075                instQueue.insertNonSpec(inst);
1076                add_to_iq = false;
1077
1078                ++iewDispNonSpecInsts;
1079            } else {
1080                add_to_iq = true;
1081            }
1082
1083            toRename->iewInfo[tid].dispatchedToLSQ++;
1084        } else if (inst->isMemBarrier() || inst->isWriteBarrier()) {
1085            // Same as non-speculative stores.
1086            inst->setCanCommit();
1087            instQueue.insertBarrier(inst);
1088            add_to_iq = false;
1089        } else if (inst->isNop()) {
1090            DPRINTF(IEW, "[tid:%i]: Issue: Nop instruction encountered, "
1091                    "skipping.\n", tid);
1092
1093            inst->setIssued();
1094            inst->setExecuted();
1095            inst->setCanCommit();
1096
1097            instQueue.recordProducer(inst);
1098
1099            iewExecutedNop[tid]++;
1100
1101            add_to_iq = false;
1102        } else if (inst->isExecuted()) {
1103            assert(0 && "Instruction shouldn't be executed.\n");
1104            DPRINTF(IEW, "Issue: Executed branch encountered, "
1105                    "skipping.\n");
1106
1107            inst->setIssued();
1108            inst->setCanCommit();
1109
1110            instQueue.recordProducer(inst);
1111
1112            add_to_iq = false;
1113        } else {
1114            add_to_iq = true;
1115        }
1116        if (inst->isNonSpeculative()) {
1117            DPRINTF(IEW, "[tid:%i]: Issue: Nonspeculative instruction "
1118                    "encountered, skipping.\n", tid);
1119
1120            // Same as non-speculative stores.
1121            inst->setCanCommit();
1122
1123            // Specifically insert it as nonspeculative.
1124            instQueue.insertNonSpec(inst);
1125
1126            ++iewDispNonSpecInsts;
1127
1128            add_to_iq = false;
1129        }
1130
1131        // If the instruction queue is not full, then add the
1132        // instruction.
1133        if (add_to_iq) {
1134            instQueue.insert(inst);
1135        }
1136
1137        insts_to_dispatch.pop();
1138
1139        toRename->iewInfo[tid].dispatched++;
1140
1141        ++iewDispatchedInsts;
1142    }
1143
1144    if (!insts_to_dispatch.empty()) {
1145        DPRINTF(IEW,"[tid:%i]: Issue: Bandwidth Full. Blocking.\n", tid);
1146        block(tid);
1147        toRename->iewUnblock[tid] = false;
1148    }
1149
1150    if (dispatchStatus[tid] == Idle && dis_num_inst) {
1151        dispatchStatus[tid] = Running;
1152
1153        updatedQueues = true;
1154    }
1155
1156    dis_num_inst = 0;
1157}
1158
1159template <class Impl>
1160void
1161DefaultIEW<Impl>::printAvailableInsts()
1162{
1163    int inst = 0;
1164
1165    std::cout << "Available Instructions: ";
1166
1167    while (fromIssue->insts[inst]) {
1168
1169        if (inst%3==0) std::cout << "\n\t";
1170
1171        std::cout << "PC: " << fromIssue->insts[inst]->pcState()
1172             << " TN: " << fromIssue->insts[inst]->threadNumber
1173             << " SN: " << fromIssue->insts[inst]->seqNum << " | ";
1174
1175        inst++;
1176
1177    }
1178
1179    std::cout << "\n";
1180}
1181
1182template <class Impl>
1183void
1184DefaultIEW<Impl>::executeInsts()
1185{
1186    wbNumInst = 0;
1187    wbCycle = 0;
1188
1189    list<ThreadID>::iterator threads = activeThreads->begin();
1190    list<ThreadID>::iterator end = activeThreads->end();
1191
1192    while (threads != end) {
1193        ThreadID tid = *threads++;
1194        fetchRedirect[tid] = false;
1195    }
1196
1197    // Uncomment this if you want to see all available instructions.
1198    // @todo This doesn't actually work anymore, we should fix it.
1199//    printAvailableInsts();
1200
1201    // Execute/writeback any instructions that are available.
1202    int insts_to_execute = fromIssue->size;
1203    int inst_num = 0;
1204    for (; inst_num < insts_to_execute;
1205          ++inst_num) {
1206
1207        DPRINTF(IEW, "Execute: Executing instructions from IQ.\n");
1208
1209        DynInstPtr inst = instQueue.getInstToExecute();
1210
1211        DPRINTF(IEW, "Execute: Processing PC %s, [tid:%i] [sn:%i].\n",
1212                inst->pcState(), inst->threadNumber,inst->seqNum);
1213
1214        // Check if the instruction is squashed; if so then skip it
1215        if (inst->isSquashed()) {
1216            DPRINTF(IEW, "Execute: Instruction was squashed.\n");
1217
1218            // Consider this instruction executed so that commit can go
1219            // ahead and retire the instruction.
1220            inst->setExecuted();
1221
1222            // Not sure if I should set this here or just let commit try to
1223            // commit any squashed instructions.  I like the latter a bit more.
1224            inst->setCanCommit();
1225
1226            ++iewExecSquashedInsts;
1227
1228            decrWb(inst->seqNum);
1229            continue;
1230        }
1231
1232        Fault fault = NoFault;
1233
1234        // Execute instruction.
1235        // Note that if the instruction faults, it will be handled
1236        // at the commit stage.
1237        if (inst->isMemRef()) {
1238            DPRINTF(IEW, "Execute: Calculating address for memory "
1239                    "reference.\n");
1240
1241            // Tell the LDSTQ to execute this instruction (if it is a load).
1242            if (inst->isLoad()) {
1243                // Loads will mark themselves as executed, and their writeback
1244                // event adds the instruction to the queue to commit
1245                fault = ldstQueue.executeLoad(inst);
1246
1247                if (inst->isTranslationDelayed() &&
1248                    fault == NoFault) {
1249                    // A hw page table walk is currently going on; the
1250                    // instruction must be deferred.
1251                    DPRINTF(IEW, "Execute: Delayed translation, deferring "
1252                            "load.\n");
1253                    instQueue.deferMemInst(inst);
1254                    continue;
1255                }
1256
1257                if (inst->isDataPrefetch() || inst->isInstPrefetch()) {
1258                    inst->fault = NoFault;
1259                }
1260            } else if (inst->isStore()) {
1261                fault = ldstQueue.executeStore(inst);
1262
1263                if (inst->isTranslationDelayed() &&
1264                    fault == NoFault) {
1265                    // A hw page table walk is currently going on; the
1266                    // instruction must be deferred.
1267                    DPRINTF(IEW, "Execute: Delayed translation, deferring "
1268                            "store.\n");
1269                    instQueue.deferMemInst(inst);
1270                    continue;
1271                }
1272
1273                // If the store had a fault then it may not have a mem req
1274                if (fault != NoFault || inst->readPredicate() == false ||
1275                        !inst->isStoreConditional()) {
1276                    // If the instruction faulted, then we need to send it along
1277                    // to commit without the instruction completing.
1278                    // Send this instruction to commit, also make sure iew stage
1279                    // realizes there is activity.
1280                    inst->setExecuted();
1281                    instToCommit(inst);
1282                    activityThisCycle();
1283                }
1284
1285                // Store conditionals will mark themselves as
1286                // executed, and their writeback event will add the
1287                // instruction to the queue to commit.
1288            } else {
1289                panic("Unexpected memory type!\n");
1290            }
1291
1292        } else {
1293            // If the instruction has already faulted, then skip executing it.
1294            // Such case can happen when it faulted during ITLB translation.
1295            // If we execute the instruction (even if it's a nop) the fault
1296            // will be replaced and we will lose it.
1297            if (inst->getFault() == NoFault) {
1298                inst->execute();
1299                if (inst->readPredicate() == false)
1300                    inst->forwardOldRegs();
1301            }
1302
1303            inst->setExecuted();
1304
1305            instToCommit(inst);
1306        }
1307
1308        updateExeInstStats(inst);
1309
1310        // Check if branch prediction was correct, if not then we need
1311        // to tell commit to squash in flight instructions.  Only
1312        // handle this if there hasn't already been something that
1313        // redirects fetch in this group of instructions.
1314
1315        // This probably needs to prioritize the redirects if a different
1316        // scheduler is used.  Currently the scheduler schedules the oldest
1317        // instruction first, so the branch resolution order will be correct.
1318        ThreadID tid = inst->threadNumber;
1319
1320        if (!fetchRedirect[tid] ||
1321            !toCommit->squash[tid] ||
1322            toCommit->squashedSeqNum[tid] > inst->seqNum) {
1323
1324            // Prevent testing for misprediction on load instructions,
1325            // that have not been executed.
1326            bool loadNotExecuted = !inst->isExecuted() && inst->isLoad();
1327
1328            if (inst->mispredicted() && !loadNotExecuted) {
1329                fetchRedirect[tid] = true;
1330
1331                DPRINTF(IEW, "Execute: Branch mispredict detected.\n");
1332                DPRINTF(IEW, "Predicted target was PC:%#x, NPC:%#x.\n",
1333                        inst->predInstAddr(), inst->predNextInstAddr());
1334                DPRINTF(IEW, "Execute: Redirecting fetch to PC: %s.\n",
1335                        inst->pcState(), inst->nextInstAddr());
1336                // If incorrect, then signal the ROB that it must be squashed.
1337                squashDueToBranch(inst, tid);
1338
1339                if (inst->readPredTaken()) {
1340                    predictedTakenIncorrect++;
1341                } else {
1342                    predictedNotTakenIncorrect++;
1343                }
1344            } else if (ldstQueue.violation(tid)) {
1345                assert(inst->isMemRef());
1346                // If there was an ordering violation, then get the
1347                // DynInst that caused the violation.  Note that this
1348                // clears the violation signal.
1349                DynInstPtr violator;
1350                violator = ldstQueue.getMemDepViolator(tid);
1351
1352                DPRINTF(IEW, "LDSTQ detected a violation. Violator PC: %s "
1353                        "[sn:%lli], inst PC: %s [sn:%lli]. Addr is: %#x.\n",
1354                        violator->pcState(), violator->seqNum,
1355                        inst->pcState(), inst->seqNum, inst->physEffAddr);
1356
1357                fetchRedirect[tid] = true;
1358
1359                // Tell the instruction queue that a violation has occured.
1360                instQueue.violation(inst, violator);
1361
1362                // Squash.
1363                squashDueToMemOrder(inst,tid);
1364
1365                ++memOrderViolationEvents;
1366            } else if (ldstQueue.loadBlocked(tid) &&
1367                       !ldstQueue.isLoadBlockedHandled(tid)) {
1368                fetchRedirect[tid] = true;
1369
1370                DPRINTF(IEW, "Load operation couldn't execute because the "
1371                        "memory system is blocked.  PC: %s [sn:%lli]\n",
1372                        inst->pcState(), inst->seqNum);
1373
1374                squashDueToMemBlocked(inst, tid);
1375            }
1376        } else {
1377            // Reset any state associated with redirects that will not
1378            // be used.
1379            if (ldstQueue.violation(tid)) {
1380                assert(inst->isMemRef());
1381
1382                DynInstPtr violator = ldstQueue.getMemDepViolator(tid);
1383
1384                DPRINTF(IEW, "LDSTQ detected a violation.  Violator PC: "
1385                        "%s, inst PC: %s.  Addr is: %#x.\n",
1386                        violator->pcState(), inst->pcState(),
1387                        inst->physEffAddr);
1388                DPRINTF(IEW, "Violation will not be handled because "
1389                        "already squashing\n");
1390
1391                ++memOrderViolationEvents;
1392            }
1393            if (ldstQueue.loadBlocked(tid) &&
1394                !ldstQueue.isLoadBlockedHandled(tid)) {
1395                DPRINTF(IEW, "Load operation couldn't execute because the "
1396                        "memory system is blocked.  PC: %s [sn:%lli]\n",
1397                        inst->pcState(), inst->seqNum);
1398                DPRINTF(IEW, "Blocked load will not be handled because "
1399                        "already squashing\n");
1400
1401                ldstQueue.setLoadBlockedHandled(tid);
1402            }
1403
1404        }
1405    }
1406
1407    // Update and record activity if we processed any instructions.
1408    if (inst_num) {
1409        if (exeStatus == Idle) {
1410            exeStatus = Running;
1411        }
1412
1413        updatedQueues = true;
1414
1415        cpu->activityThisCycle();
1416    }
1417
1418    // Need to reset this in case a writeback event needs to write into the
1419    // iew queue.  That way the writeback event will write into the correct
1420    // spot in the queue.
1421    wbNumInst = 0;
1422
1423}
1424
1425template <class Impl>
1426void
1427DefaultIEW<Impl>::writebackInsts()
1428{
1429    // Loop through the head of the time buffer and wake any
1430    // dependents.  These instructions are about to write back.  Also
1431    // mark scoreboard that this instruction is finally complete.
1432    // Either have IEW have direct access to scoreboard, or have this
1433    // as part of backwards communication.
1434    for (int inst_num = 0; inst_num < wbWidth &&
1435             toCommit->insts[inst_num]; inst_num++) {
1436        DynInstPtr inst = toCommit->insts[inst_num];
1437        ThreadID tid = inst->threadNumber;
1438
1439        DPRINTF(IEW, "Sending instructions to commit, [sn:%lli] PC %s.\n",
1440                inst->seqNum, inst->pcState());
1441
1442        iewInstsToCommit[tid]++;
1443
1444        // Some instructions will be sent to commit without having
1445        // executed because they need commit to handle them.
1446        // E.g. Uncached loads have not actually executed when they
1447        // are first sent to commit.  Instead commit must tell the LSQ
1448        // when it's ready to execute the uncached load.
1449        if (!inst->isSquashed() && inst->isExecuted() && inst->getFault() == NoFault) {
1450            int dependents = instQueue.wakeDependents(inst);
1451
1452            for (int i = 0; i < inst->numDestRegs(); i++) {
1453                //mark as Ready
1454                DPRINTF(IEW,"Setting Destination Register %i\n",
1455                        inst->renamedDestRegIdx(i));
1456                scoreboard->setReg(inst->renamedDestRegIdx(i));
1457            }
1458
1459            if (dependents) {
1460                producerInst[tid]++;
1461                consumerInst[tid]+= dependents;
1462            }
1463            writebackCount[tid]++;
1464        }
1465
1466        decrWb(inst->seqNum);
1467    }
1468}
1469
1470template<class Impl>
1471void
1472DefaultIEW<Impl>::tick()
1473{
1474    wbNumInst = 0;
1475    wbCycle = 0;
1476
1477    wroteToTimeBuffer = false;
1478    updatedQueues = false;
1479
1480    sortInsts();
1481
1482    // Free function units marked as being freed this cycle.
1483    fuPool->processFreeUnits();
1484
1485    list<ThreadID>::iterator threads = activeThreads->begin();
1486    list<ThreadID>::iterator end = activeThreads->end();
1487
1488    // Check stall and squash signals, dispatch any instructions.
1489    while (threads != end) {
1490        ThreadID tid = *threads++;
1491
1492        DPRINTF(IEW,"Issue: Processing [tid:%i]\n",tid);
1493
1494        checkSignalsAndUpdate(tid);
1495        dispatch(tid);
1496    }
1497
1498    if (exeStatus != Squashing) {
1499        executeInsts();
1500
1501        writebackInsts();
1502
1503        // Have the instruction queue try to schedule any ready instructions.
1504        // (In actuality, this scheduling is for instructions that will
1505        // be executed next cycle.)
1506        instQueue.scheduleReadyInsts();
1507
1508        // Also should advance its own time buffers if the stage ran.
1509        // Not the best place for it, but this works (hopefully).
1510        issueToExecQueue.advance();
1511    }
1512
1513    bool broadcast_free_entries = false;
1514
1515    if (updatedQueues || exeStatus == Running || updateLSQNextCycle) {
1516        exeStatus = Idle;
1517        updateLSQNextCycle = false;
1518
1519        broadcast_free_entries = true;
1520    }
1521
1522    // Writeback any stores using any leftover bandwidth.
1523    ldstQueue.writebackStores();
1524
1525    // Check the committed load/store signals to see if there's a load
1526    // or store to commit.  Also check if it's being told to execute a
1527    // nonspeculative instruction.
1528    // This is pretty inefficient...
1529
1530    threads = activeThreads->begin();
1531    while (threads != end) {
1532        ThreadID tid = (*threads++);
1533
1534        DPRINTF(IEW,"Processing [tid:%i]\n",tid);
1535
1536        // Update structures based on instructions committed.
1537        if (fromCommit->commitInfo[tid].doneSeqNum != 0 &&
1538            !fromCommit->commitInfo[tid].squash &&
1539            !fromCommit->commitInfo[tid].robSquashing) {
1540
1541            ldstQueue.commitStores(fromCommit->commitInfo[tid].doneSeqNum,tid);
1542
1543            ldstQueue.commitLoads(fromCommit->commitInfo[tid].doneSeqNum,tid);
1544
1545            updateLSQNextCycle = true;
1546            instQueue.commit(fromCommit->commitInfo[tid].doneSeqNum,tid);
1547        }
1548
1549        if (fromCommit->commitInfo[tid].nonSpecSeqNum != 0) {
1550
1551            //DPRINTF(IEW,"NonspecInst from thread %i",tid);
1552            if (fromCommit->commitInfo[tid].uncached) {
1553                instQueue.replayMemInst(fromCommit->commitInfo[tid].uncachedLoad);
1554                fromCommit->commitInfo[tid].uncachedLoad->setAtCommit();
1555            } else {
1556                instQueue.scheduleNonSpec(
1557                    fromCommit->commitInfo[tid].nonSpecSeqNum);
1558            }
1559        }
1560
1561        if (broadcast_free_entries) {
1562            toFetch->iewInfo[tid].iqCount =
1563                instQueue.getCount(tid);
1564            toFetch->iewInfo[tid].ldstqCount =
1565                ldstQueue.getCount(tid);
1566
1567            toRename->iewInfo[tid].usedIQ = true;
1568            toRename->iewInfo[tid].freeIQEntries =
1569                instQueue.numFreeEntries();
1570            toRename->iewInfo[tid].usedLSQ = true;
1571            toRename->iewInfo[tid].freeLSQEntries =
1572                ldstQueue.numFreeEntries(tid);
1573
1574            wroteToTimeBuffer = true;
1575        }
1576
1577        DPRINTF(IEW, "[tid:%i], Dispatch dispatched %i instructions.\n",
1578                tid, toRename->iewInfo[tid].dispatched);
1579    }
1580
1581    DPRINTF(IEW, "IQ has %i free entries (Can schedule: %i).  "
1582            "LSQ has %i free entries.\n",
1583            instQueue.numFreeEntries(), instQueue.hasReadyInsts(),
1584            ldstQueue.numFreeEntries());
1585
1586    updateStatus();
1587
1588    if (wroteToTimeBuffer) {
1589        DPRINTF(Activity, "Activity this cycle.\n");
1590        cpu->activityThisCycle();
1591    }
1592}
1593
1594template <class Impl>
1595void
1596DefaultIEW<Impl>::updateExeInstStats(DynInstPtr &inst)
1597{
1598    ThreadID tid = inst->threadNumber;
1599
1600    //
1601    //  Pick off the software prefetches
1602    //
1603#ifdef TARGET_ALPHA
1604    if (inst->isDataPrefetch())
1605        iewExecutedSwp[tid]++;
1606    else
1607        iewIewExecutedcutedInsts++;
1608#else
1609    iewExecutedInsts++;
1610#endif
1611
1612    //
1613    //  Control operations
1614    //
1615    if (inst->isControl())
1616        iewExecutedBranches[tid]++;
1617
1618    //
1619    //  Memory operations
1620    //
1621    if (inst->isMemRef()) {
1622        iewExecutedRefs[tid]++;
1623
1624        if (inst->isLoad()) {
1625            iewExecLoadInsts[tid]++;
1626        }
1627    }
1628}
1629
1630template <class Impl>
1631void
1632DefaultIEW<Impl>::checkMisprediction(DynInstPtr &inst)
1633{
1634    ThreadID tid = inst->threadNumber;
1635
1636    if (!fetchRedirect[tid] ||
1637        !toCommit->squash[tid] ||
1638        toCommit->squashedSeqNum[tid] > inst->seqNum) {
1639
1640        if (inst->mispredicted()) {
1641            fetchRedirect[tid] = true;
1642
1643            DPRINTF(IEW, "Execute: Branch mispredict detected.\n");
1644            DPRINTF(IEW, "Predicted target was PC:%#x, NPC:%#x.\n",
1645                    inst->predInstAddr(), inst->predNextInstAddr());
1646            DPRINTF(IEW, "Execute: Redirecting fetch to PC: %#x,"
1647                    " NPC: %#x.\n", inst->nextInstAddr(),
1648                    inst->nextInstAddr());
1649            // If incorrect, then signal the ROB that it must be squashed.
1650            squashDueToBranch(inst, tid);
1651
1652            if (inst->readPredTaken()) {
1653                predictedTakenIncorrect++;
1654            } else {
1655                predictedNotTakenIncorrect++;
1656            }
1657        }
1658    }
1659}
1660