iew_impl.hh revision 7850:02450f4443ce
1/*
2 * Copyright (c) 2010 ARM Limited
3 * All rights reserved.
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder.  You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2004-2006 The Regents of The University of Michigan
15 * All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions are
19 * met: redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer;
21 * redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution;
24 * neither the name of the copyright holders nor the names of its
25 * contributors may be used to endorse or promote products derived from
26 * this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 *
40 * Authors: Kevin Lim
41 */
42
43// @todo: Fix the instantaneous communication among all the stages within
44// iew.  There's a clear delay between issue and execute, yet backwards
45// communication happens simultaneously.
46
47#include <queue>
48
49#include "cpu/timebuf.hh"
50#include "config/the_isa.hh"
51#include "cpu/o3/fu_pool.hh"
52#include "cpu/o3/iew.hh"
53#include "params/DerivO3CPU.hh"
54
55using namespace std;
56
57template<class Impl>
58DefaultIEW<Impl>::DefaultIEW(O3CPU *_cpu, DerivO3CPUParams *params)
59    : issueToExecQueue(params->backComSize, params->forwardComSize),
60      cpu(_cpu),
61      instQueue(_cpu, this, params),
62      ldstQueue(_cpu, this, params),
63      fuPool(params->fuPool),
64      commitToIEWDelay(params->commitToIEWDelay),
65      renameToIEWDelay(params->renameToIEWDelay),
66      issueToExecuteDelay(params->issueToExecuteDelay),
67      dispatchWidth(params->dispatchWidth),
68      issueWidth(params->issueWidth),
69      wbOutstanding(0),
70      wbWidth(params->wbWidth),
71      numThreads(params->numThreads),
72      switchedOut(false)
73{
74    _status = Active;
75    exeStatus = Running;
76    wbStatus = Idle;
77
78    // Setup wire to read instructions coming from issue.
79    fromIssue = issueToExecQueue.getWire(-issueToExecuteDelay);
80
81    // Instruction queue needs the queue between issue and execute.
82    instQueue.setIssueToExecuteQueue(&issueToExecQueue);
83
84    for (ThreadID tid = 0; tid < numThreads; tid++) {
85        dispatchStatus[tid] = Running;
86        stalls[tid].commit = false;
87        fetchRedirect[tid] = false;
88    }
89
90    wbMax = wbWidth * params->wbDepth;
91
92    updateLSQNextCycle = false;
93
94    ableToIssue = true;
95
96    skidBufferMax = (3 * (renameToIEWDelay * params->renameWidth)) + issueWidth;
97}
98
99template <class Impl>
100std::string
101DefaultIEW<Impl>::name() const
102{
103    return cpu->name() + ".iew";
104}
105
106template <class Impl>
107void
108DefaultIEW<Impl>::regStats()
109{
110    using namespace Stats;
111
112    instQueue.regStats();
113    ldstQueue.regStats();
114
115    iewIdleCycles
116        .name(name() + ".iewIdleCycles")
117        .desc("Number of cycles IEW is idle");
118
119    iewSquashCycles
120        .name(name() + ".iewSquashCycles")
121        .desc("Number of cycles IEW is squashing");
122
123    iewBlockCycles
124        .name(name() + ".iewBlockCycles")
125        .desc("Number of cycles IEW is blocking");
126
127    iewUnblockCycles
128        .name(name() + ".iewUnblockCycles")
129        .desc("Number of cycles IEW is unblocking");
130
131    iewDispatchedInsts
132        .name(name() + ".iewDispatchedInsts")
133        .desc("Number of instructions dispatched to IQ");
134
135    iewDispSquashedInsts
136        .name(name() + ".iewDispSquashedInsts")
137        .desc("Number of squashed instructions skipped by dispatch");
138
139    iewDispLoadInsts
140        .name(name() + ".iewDispLoadInsts")
141        .desc("Number of dispatched load instructions");
142
143    iewDispStoreInsts
144        .name(name() + ".iewDispStoreInsts")
145        .desc("Number of dispatched store instructions");
146
147    iewDispNonSpecInsts
148        .name(name() + ".iewDispNonSpecInsts")
149        .desc("Number of dispatched non-speculative instructions");
150
151    iewIQFullEvents
152        .name(name() + ".iewIQFullEvents")
153        .desc("Number of times the IQ has become full, causing a stall");
154
155    iewLSQFullEvents
156        .name(name() + ".iewLSQFullEvents")
157        .desc("Number of times the LSQ has become full, causing a stall");
158
159    memOrderViolationEvents
160        .name(name() + ".memOrderViolationEvents")
161        .desc("Number of memory order violations");
162
163    predictedTakenIncorrect
164        .name(name() + ".predictedTakenIncorrect")
165        .desc("Number of branches that were predicted taken incorrectly");
166
167    predictedNotTakenIncorrect
168        .name(name() + ".predictedNotTakenIncorrect")
169        .desc("Number of branches that were predicted not taken incorrectly");
170
171    branchMispredicts
172        .name(name() + ".branchMispredicts")
173        .desc("Number of branch mispredicts detected at execute");
174
175    branchMispredicts = predictedTakenIncorrect + predictedNotTakenIncorrect;
176
177    iewExecutedInsts
178        .name(name() + ".iewExecutedInsts")
179        .desc("Number of executed instructions");
180
181    iewExecLoadInsts
182        .init(cpu->numThreads)
183        .name(name() + ".iewExecLoadInsts")
184        .desc("Number of load instructions executed")
185        .flags(total);
186
187    iewExecSquashedInsts
188        .name(name() + ".iewExecSquashedInsts")
189        .desc("Number of squashed instructions skipped in execute");
190
191    iewExecutedSwp
192        .init(cpu->numThreads)
193        .name(name() + ".EXEC:swp")
194        .desc("number of swp insts executed")
195        .flags(total);
196
197    iewExecutedNop
198        .init(cpu->numThreads)
199        .name(name() + ".EXEC:nop")
200        .desc("number of nop insts executed")
201        .flags(total);
202
203    iewExecutedRefs
204        .init(cpu->numThreads)
205        .name(name() + ".EXEC:refs")
206        .desc("number of memory reference insts executed")
207        .flags(total);
208
209    iewExecutedBranches
210        .init(cpu->numThreads)
211        .name(name() + ".EXEC:branches")
212        .desc("Number of branches executed")
213        .flags(total);
214
215    iewExecStoreInsts
216        .name(name() + ".EXEC:stores")
217        .desc("Number of stores executed")
218        .flags(total);
219    iewExecStoreInsts = iewExecutedRefs - iewExecLoadInsts;
220
221    iewExecRate
222        .name(name() + ".EXEC:rate")
223        .desc("Inst execution rate")
224        .flags(total);
225
226    iewExecRate = iewExecutedInsts / cpu->numCycles;
227
228    iewInstsToCommit
229        .init(cpu->numThreads)
230        .name(name() + ".WB:sent")
231        .desc("cumulative count of insts sent to commit")
232        .flags(total);
233
234    writebackCount
235        .init(cpu->numThreads)
236        .name(name() + ".WB:count")
237        .desc("cumulative count of insts written-back")
238        .flags(total);
239
240    producerInst
241        .init(cpu->numThreads)
242        .name(name() + ".WB:producers")
243        .desc("num instructions producing a value")
244        .flags(total);
245
246    consumerInst
247        .init(cpu->numThreads)
248        .name(name() + ".WB:consumers")
249        .desc("num instructions consuming a value")
250        .flags(total);
251
252    wbPenalized
253        .init(cpu->numThreads)
254        .name(name() + ".WB:penalized")
255        .desc("number of instrctions required to write to 'other' IQ")
256        .flags(total);
257
258    wbPenalizedRate
259        .name(name() + ".WB:penalized_rate")
260        .desc ("fraction of instructions written-back that wrote to 'other' IQ")
261        .flags(total);
262
263    wbPenalizedRate = wbPenalized / writebackCount;
264
265    wbFanout
266        .name(name() + ".WB:fanout")
267        .desc("average fanout of values written-back")
268        .flags(total);
269
270    wbFanout = producerInst / consumerInst;
271
272    wbRate
273        .name(name() + ".WB:rate")
274        .desc("insts written-back per cycle")
275        .flags(total);
276    wbRate = writebackCount / cpu->numCycles;
277}
278
279template<class Impl>
280void
281DefaultIEW<Impl>::initStage()
282{
283    for (ThreadID tid = 0; tid < numThreads; tid++) {
284        toRename->iewInfo[tid].usedIQ = true;
285        toRename->iewInfo[tid].freeIQEntries =
286            instQueue.numFreeEntries(tid);
287
288        toRename->iewInfo[tid].usedLSQ = true;
289        toRename->iewInfo[tid].freeLSQEntries =
290            ldstQueue.numFreeEntries(tid);
291    }
292
293    cpu->activateStage(O3CPU::IEWIdx);
294}
295
296template<class Impl>
297void
298DefaultIEW<Impl>::setTimeBuffer(TimeBuffer<TimeStruct> *tb_ptr)
299{
300    timeBuffer = tb_ptr;
301
302    // Setup wire to read information from time buffer, from commit.
303    fromCommit = timeBuffer->getWire(-commitToIEWDelay);
304
305    // Setup wire to write information back to previous stages.
306    toRename = timeBuffer->getWire(0);
307
308    toFetch = timeBuffer->getWire(0);
309
310    // Instruction queue also needs main time buffer.
311    instQueue.setTimeBuffer(tb_ptr);
312}
313
314template<class Impl>
315void
316DefaultIEW<Impl>::setRenameQueue(TimeBuffer<RenameStruct> *rq_ptr)
317{
318    renameQueue = rq_ptr;
319
320    // Setup wire to read information from rename queue.
321    fromRename = renameQueue->getWire(-renameToIEWDelay);
322}
323
324template<class Impl>
325void
326DefaultIEW<Impl>::setIEWQueue(TimeBuffer<IEWStruct> *iq_ptr)
327{
328    iewQueue = iq_ptr;
329
330    // Setup wire to write instructions to commit.
331    toCommit = iewQueue->getWire(0);
332}
333
334template<class Impl>
335void
336DefaultIEW<Impl>::setActiveThreads(list<ThreadID> *at_ptr)
337{
338    activeThreads = at_ptr;
339
340    ldstQueue.setActiveThreads(at_ptr);
341    instQueue.setActiveThreads(at_ptr);
342}
343
344template<class Impl>
345void
346DefaultIEW<Impl>::setScoreboard(Scoreboard *sb_ptr)
347{
348    scoreboard = sb_ptr;
349}
350
351template <class Impl>
352bool
353DefaultIEW<Impl>::drain()
354{
355    // IEW is ready to drain at any time.
356    cpu->signalDrained();
357    return true;
358}
359
360template <class Impl>
361void
362DefaultIEW<Impl>::resume()
363{
364}
365
366template <class Impl>
367void
368DefaultIEW<Impl>::switchOut()
369{
370    // Clear any state.
371    switchedOut = true;
372    assert(insts[0].empty());
373    assert(skidBuffer[0].empty());
374
375    instQueue.switchOut();
376    ldstQueue.switchOut();
377    fuPool->switchOut();
378
379    for (ThreadID tid = 0; tid < numThreads; tid++) {
380        while (!insts[tid].empty())
381            insts[tid].pop();
382        while (!skidBuffer[tid].empty())
383            skidBuffer[tid].pop();
384    }
385}
386
387template <class Impl>
388void
389DefaultIEW<Impl>::takeOverFrom()
390{
391    // Reset all state.
392    _status = Active;
393    exeStatus = Running;
394    wbStatus = Idle;
395    switchedOut = false;
396
397    instQueue.takeOverFrom();
398    ldstQueue.takeOverFrom();
399    fuPool->takeOverFrom();
400
401    initStage();
402    cpu->activityThisCycle();
403
404    for (ThreadID tid = 0; tid < numThreads; tid++) {
405        dispatchStatus[tid] = Running;
406        stalls[tid].commit = false;
407        fetchRedirect[tid] = false;
408    }
409
410    updateLSQNextCycle = false;
411
412    for (int i = 0; i < issueToExecQueue.getSize(); ++i) {
413        issueToExecQueue.advance();
414    }
415}
416
417template<class Impl>
418void
419DefaultIEW<Impl>::squash(ThreadID tid)
420{
421    DPRINTF(IEW, "[tid:%i]: Squashing all instructions.\n", tid);
422
423    // Tell the IQ to start squashing.
424    instQueue.squash(tid);
425
426    // Tell the LDSTQ to start squashing.
427    ldstQueue.squash(fromCommit->commitInfo[tid].doneSeqNum, tid);
428    updatedQueues = true;
429
430    // Clear the skid buffer in case it has any data in it.
431    DPRINTF(IEW, "[tid:%i]: Removing skidbuffer instructions until [sn:%i].\n",
432            tid, fromCommit->commitInfo[tid].doneSeqNum);
433
434    while (!skidBuffer[tid].empty()) {
435        if (skidBuffer[tid].front()->isLoad() ||
436            skidBuffer[tid].front()->isStore() ) {
437            toRename->iewInfo[tid].dispatchedToLSQ++;
438        }
439
440        toRename->iewInfo[tid].dispatched++;
441
442        skidBuffer[tid].pop();
443    }
444
445    emptyRenameInsts(tid);
446}
447
448template<class Impl>
449void
450DefaultIEW<Impl>::squashDueToBranch(DynInstPtr &inst, ThreadID tid)
451{
452    DPRINTF(IEW, "[tid:%i]: Squashing from a specific instruction, PC: %s "
453            "[sn:%i].\n", tid, inst->pcState(), inst->seqNum);
454
455    toCommit->squash[tid] = true;
456    toCommit->squashedSeqNum[tid] = inst->seqNum;
457    toCommit->mispredPC[tid] = inst->instAddr();
458    toCommit->branchMispredict[tid] = true;
459
460    toCommit->branchTaken[tid] = inst->pcState().branching();
461    TheISA::PCState pc = inst->pcState();
462    TheISA::advancePC(pc, inst->staticInst);
463    toCommit->pc[tid] = pc;
464
465    toCommit->includeSquashInst[tid] = false;
466
467    wroteToTimeBuffer = true;
468}
469
470template<class Impl>
471void
472DefaultIEW<Impl>::squashDueToMemOrder(DynInstPtr &inst, ThreadID tid)
473{
474    DPRINTF(IEW, "[tid:%i]: Squashing from a specific instruction, "
475            "PC: %s [sn:%i].\n", tid, inst->pcState(), inst->seqNum);
476
477    toCommit->squash[tid] = true;
478    toCommit->squashedSeqNum[tid] = inst->seqNum;
479    TheISA::PCState pc = inst->pcState();
480    TheISA::advancePC(pc, inst->staticInst);
481    toCommit->pc[tid] = pc;
482    toCommit->branchMispredict[tid] = false;
483
484    toCommit->includeSquashInst[tid] = false;
485
486    wroteToTimeBuffer = true;
487}
488
489template<class Impl>
490void
491DefaultIEW<Impl>::squashDueToMemBlocked(DynInstPtr &inst, ThreadID tid)
492{
493    DPRINTF(IEW, "[tid:%i]: Memory blocked, squashing load and younger insts, "
494            "PC: %s [sn:%i].\n", tid, inst->pcState(), inst->seqNum);
495
496    toCommit->squash[tid] = true;
497    toCommit->squashedSeqNum[tid] = inst->seqNum;
498    toCommit->pc[tid] = inst->pcState();
499    toCommit->branchMispredict[tid] = false;
500
501    // Must include the broadcasted SN in the squash.
502    toCommit->includeSquashInst[tid] = true;
503
504    ldstQueue.setLoadBlockedHandled(tid);
505
506    wroteToTimeBuffer = true;
507}
508
509template<class Impl>
510void
511DefaultIEW<Impl>::block(ThreadID tid)
512{
513    DPRINTF(IEW, "[tid:%u]: Blocking.\n", tid);
514
515    if (dispatchStatus[tid] != Blocked &&
516        dispatchStatus[tid] != Unblocking) {
517        toRename->iewBlock[tid] = true;
518        wroteToTimeBuffer = true;
519    }
520
521    // Add the current inputs to the skid buffer so they can be
522    // reprocessed when this stage unblocks.
523    skidInsert(tid);
524
525    dispatchStatus[tid] = Blocked;
526}
527
528template<class Impl>
529void
530DefaultIEW<Impl>::unblock(ThreadID tid)
531{
532    DPRINTF(IEW, "[tid:%i]: Reading instructions out of the skid "
533            "buffer %u.\n",tid, tid);
534
535    // If the skid bufffer is empty, signal back to previous stages to unblock.
536    // Also switch status to running.
537    if (skidBuffer[tid].empty()) {
538        toRename->iewUnblock[tid] = true;
539        wroteToTimeBuffer = true;
540        DPRINTF(IEW, "[tid:%i]: Done unblocking.\n",tid);
541        dispatchStatus[tid] = Running;
542    }
543}
544
545template<class Impl>
546void
547DefaultIEW<Impl>::wakeDependents(DynInstPtr &inst)
548{
549    instQueue.wakeDependents(inst);
550}
551
552template<class Impl>
553void
554DefaultIEW<Impl>::rescheduleMemInst(DynInstPtr &inst)
555{
556    instQueue.rescheduleMemInst(inst);
557}
558
559template<class Impl>
560void
561DefaultIEW<Impl>::replayMemInst(DynInstPtr &inst)
562{
563    instQueue.replayMemInst(inst);
564}
565
566template<class Impl>
567void
568DefaultIEW<Impl>::instToCommit(DynInstPtr &inst)
569{
570    // This function should not be called after writebackInsts in a
571    // single cycle.  That will cause problems with an instruction
572    // being added to the queue to commit without being processed by
573    // writebackInsts prior to being sent to commit.
574
575    // First check the time slot that this instruction will write
576    // to.  If there are free write ports at the time, then go ahead
577    // and write the instruction to that time.  If there are not,
578    // keep looking back to see where's the first time there's a
579    // free slot.
580    while ((*iewQueue)[wbCycle].insts[wbNumInst]) {
581        ++wbNumInst;
582        if (wbNumInst == wbWidth) {
583            ++wbCycle;
584            wbNumInst = 0;
585        }
586
587        assert((wbCycle * wbWidth + wbNumInst) <= wbMax);
588    }
589
590    DPRINTF(IEW, "Current wb cycle: %i, width: %i, numInst: %i\nwbActual:%i\n",
591            wbCycle, wbWidth, wbNumInst, wbCycle * wbWidth + wbNumInst);
592    // Add finished instruction to queue to commit.
593    (*iewQueue)[wbCycle].insts[wbNumInst] = inst;
594    (*iewQueue)[wbCycle].size++;
595}
596
597template <class Impl>
598unsigned
599DefaultIEW<Impl>::validInstsFromRename()
600{
601    unsigned inst_count = 0;
602
603    for (int i=0; i<fromRename->size; i++) {
604        if (!fromRename->insts[i]->isSquashed())
605            inst_count++;
606    }
607
608    return inst_count;
609}
610
611template<class Impl>
612void
613DefaultIEW<Impl>::skidInsert(ThreadID tid)
614{
615    DynInstPtr inst = NULL;
616
617    while (!insts[tid].empty()) {
618        inst = insts[tid].front();
619
620        insts[tid].pop();
621
622        DPRINTF(Decode,"[tid:%i]: Inserting [sn:%lli] PC:%s into "
623                "dispatch skidBuffer %i\n",tid, inst->seqNum,
624                inst->pcState(),tid);
625
626        skidBuffer[tid].push(inst);
627    }
628
629    assert(skidBuffer[tid].size() <= skidBufferMax &&
630           "Skidbuffer Exceeded Max Size");
631}
632
633template<class Impl>
634int
635DefaultIEW<Impl>::skidCount()
636{
637    int max=0;
638
639    list<ThreadID>::iterator threads = activeThreads->begin();
640    list<ThreadID>::iterator end = activeThreads->end();
641
642    while (threads != end) {
643        ThreadID tid = *threads++;
644        unsigned thread_count = skidBuffer[tid].size();
645        if (max < thread_count)
646            max = thread_count;
647    }
648
649    return max;
650}
651
652template<class Impl>
653bool
654DefaultIEW<Impl>::skidsEmpty()
655{
656    list<ThreadID>::iterator threads = activeThreads->begin();
657    list<ThreadID>::iterator end = activeThreads->end();
658
659    while (threads != end) {
660        ThreadID tid = *threads++;
661
662        if (!skidBuffer[tid].empty())
663            return false;
664    }
665
666    return true;
667}
668
669template <class Impl>
670void
671DefaultIEW<Impl>::updateStatus()
672{
673    bool any_unblocking = false;
674
675    list<ThreadID>::iterator threads = activeThreads->begin();
676    list<ThreadID>::iterator end = activeThreads->end();
677
678    while (threads != end) {
679        ThreadID tid = *threads++;
680
681        if (dispatchStatus[tid] == Unblocking) {
682            any_unblocking = true;
683            break;
684        }
685    }
686
687    // If there are no ready instructions waiting to be scheduled by the IQ,
688    // and there's no stores waiting to write back, and dispatch is not
689    // unblocking, then there is no internal activity for the IEW stage.
690    if (_status == Active && !instQueue.hasReadyInsts() &&
691        !ldstQueue.willWB() && !any_unblocking) {
692        DPRINTF(IEW, "IEW switching to idle\n");
693
694        deactivateStage();
695
696        _status = Inactive;
697    } else if (_status == Inactive && (instQueue.hasReadyInsts() ||
698                                       ldstQueue.willWB() ||
699                                       any_unblocking)) {
700        // Otherwise there is internal activity.  Set to active.
701        DPRINTF(IEW, "IEW switching to active\n");
702
703        activateStage();
704
705        _status = Active;
706    }
707}
708
709template <class Impl>
710void
711DefaultIEW<Impl>::resetEntries()
712{
713    instQueue.resetEntries();
714    ldstQueue.resetEntries();
715}
716
717template <class Impl>
718void
719DefaultIEW<Impl>::readStallSignals(ThreadID tid)
720{
721    if (fromCommit->commitBlock[tid]) {
722        stalls[tid].commit = true;
723    }
724
725    if (fromCommit->commitUnblock[tid]) {
726        assert(stalls[tid].commit);
727        stalls[tid].commit = false;
728    }
729}
730
731template <class Impl>
732bool
733DefaultIEW<Impl>::checkStall(ThreadID tid)
734{
735    bool ret_val(false);
736
737    if (stalls[tid].commit) {
738        DPRINTF(IEW,"[tid:%i]: Stall from Commit stage detected.\n",tid);
739        ret_val = true;
740    } else if (instQueue.isFull(tid)) {
741        DPRINTF(IEW,"[tid:%i]: Stall: IQ  is full.\n",tid);
742        ret_val = true;
743    } else if (ldstQueue.isFull(tid)) {
744        DPRINTF(IEW,"[tid:%i]: Stall: LSQ is full\n",tid);
745
746        if (ldstQueue.numLoads(tid) > 0 ) {
747
748            DPRINTF(IEW,"[tid:%i]: LSQ oldest load: [sn:%i] \n",
749                    tid,ldstQueue.getLoadHeadSeqNum(tid));
750        }
751
752        if (ldstQueue.numStores(tid) > 0) {
753
754            DPRINTF(IEW,"[tid:%i]: LSQ oldest store: [sn:%i] \n",
755                    tid,ldstQueue.getStoreHeadSeqNum(tid));
756        }
757
758        ret_val = true;
759    } else if (ldstQueue.isStalled(tid)) {
760        DPRINTF(IEW,"[tid:%i]: Stall: LSQ stall detected.\n",tid);
761        ret_val = true;
762    }
763
764    return ret_val;
765}
766
767template <class Impl>
768void
769DefaultIEW<Impl>::checkSignalsAndUpdate(ThreadID tid)
770{
771    // Check if there's a squash signal, squash if there is
772    // Check stall signals, block if there is.
773    // If status was Blocked
774    //     if so then go to unblocking
775    // If status was Squashing
776    //     check if squashing is not high.  Switch to running this cycle.
777
778    readStallSignals(tid);
779
780    if (fromCommit->commitInfo[tid].squash) {
781        squash(tid);
782
783        if (dispatchStatus[tid] == Blocked ||
784            dispatchStatus[tid] == Unblocking) {
785            toRename->iewUnblock[tid] = true;
786            wroteToTimeBuffer = true;
787        }
788
789        dispatchStatus[tid] = Squashing;
790
791        fetchRedirect[tid] = false;
792        return;
793    }
794
795    if (fromCommit->commitInfo[tid].robSquashing) {
796        DPRINTF(IEW, "[tid:%i]: ROB is still squashing.\n", tid);
797
798        dispatchStatus[tid] = Squashing;
799
800        emptyRenameInsts(tid);
801        wroteToTimeBuffer = true;
802        return;
803    }
804
805    if (checkStall(tid)) {
806        block(tid);
807        dispatchStatus[tid] = Blocked;
808        return;
809    }
810
811    if (dispatchStatus[tid] == Blocked) {
812        // Status from previous cycle was blocked, but there are no more stall
813        // conditions.  Switch over to unblocking.
814        DPRINTF(IEW, "[tid:%i]: Done blocking, switching to unblocking.\n",
815                tid);
816
817        dispatchStatus[tid] = Unblocking;
818
819        unblock(tid);
820
821        return;
822    }
823
824    if (dispatchStatus[tid] == Squashing) {
825        // Switch status to running if rename isn't being told to block or
826        // squash this cycle.
827        DPRINTF(IEW, "[tid:%i]: Done squashing, switching to running.\n",
828                tid);
829
830        dispatchStatus[tid] = Running;
831
832        return;
833    }
834}
835
836template <class Impl>
837void
838DefaultIEW<Impl>::sortInsts()
839{
840    int insts_from_rename = fromRename->size;
841#ifdef DEBUG
842    for (ThreadID tid = 0; tid < numThreads; tid++)
843        assert(insts[tid].empty());
844#endif
845    for (int i = 0; i < insts_from_rename; ++i) {
846        insts[fromRename->insts[i]->threadNumber].push(fromRename->insts[i]);
847    }
848}
849
850template <class Impl>
851void
852DefaultIEW<Impl>::emptyRenameInsts(ThreadID tid)
853{
854    DPRINTF(IEW, "[tid:%i]: Removing incoming rename instructions\n", tid);
855
856    while (!insts[tid].empty()) {
857
858        if (insts[tid].front()->isLoad() ||
859            insts[tid].front()->isStore() ) {
860            toRename->iewInfo[tid].dispatchedToLSQ++;
861        }
862
863        toRename->iewInfo[tid].dispatched++;
864
865        insts[tid].pop();
866    }
867}
868
869template <class Impl>
870void
871DefaultIEW<Impl>::wakeCPU()
872{
873    cpu->wakeCPU();
874}
875
876template <class Impl>
877void
878DefaultIEW<Impl>::activityThisCycle()
879{
880    DPRINTF(Activity, "Activity this cycle.\n");
881    cpu->activityThisCycle();
882}
883
884template <class Impl>
885inline void
886DefaultIEW<Impl>::activateStage()
887{
888    DPRINTF(Activity, "Activating stage.\n");
889    cpu->activateStage(O3CPU::IEWIdx);
890}
891
892template <class Impl>
893inline void
894DefaultIEW<Impl>::deactivateStage()
895{
896    DPRINTF(Activity, "Deactivating stage.\n");
897    cpu->deactivateStage(O3CPU::IEWIdx);
898}
899
900template<class Impl>
901void
902DefaultIEW<Impl>::dispatch(ThreadID tid)
903{
904    // If status is Running or idle,
905    //     call dispatchInsts()
906    // If status is Unblocking,
907    //     buffer any instructions coming from rename
908    //     continue trying to empty skid buffer
909    //     check if stall conditions have passed
910
911    if (dispatchStatus[tid] == Blocked) {
912        ++iewBlockCycles;
913
914    } else if (dispatchStatus[tid] == Squashing) {
915        ++iewSquashCycles;
916    }
917
918    // Dispatch should try to dispatch as many instructions as its bandwidth
919    // will allow, as long as it is not currently blocked.
920    if (dispatchStatus[tid] == Running ||
921        dispatchStatus[tid] == Idle) {
922        DPRINTF(IEW, "[tid:%i] Not blocked, so attempting to run "
923                "dispatch.\n", tid);
924
925        dispatchInsts(tid);
926    } else if (dispatchStatus[tid] == Unblocking) {
927        // Make sure that the skid buffer has something in it if the
928        // status is unblocking.
929        assert(!skidsEmpty());
930
931        // If the status was unblocking, then instructions from the skid
932        // buffer were used.  Remove those instructions and handle
933        // the rest of unblocking.
934        dispatchInsts(tid);
935
936        ++iewUnblockCycles;
937
938        if (validInstsFromRename()) {
939            // Add the current inputs to the skid buffer so they can be
940            // reprocessed when this stage unblocks.
941            skidInsert(tid);
942        }
943
944        unblock(tid);
945    }
946}
947
948template <class Impl>
949void
950DefaultIEW<Impl>::dispatchInsts(ThreadID tid)
951{
952    // Obtain instructions from skid buffer if unblocking, or queue from rename
953    // otherwise.
954    std::queue<DynInstPtr> &insts_to_dispatch =
955        dispatchStatus[tid] == Unblocking ?
956        skidBuffer[tid] : insts[tid];
957
958    int insts_to_add = insts_to_dispatch.size();
959
960    DynInstPtr inst;
961    bool add_to_iq = false;
962    int dis_num_inst = 0;
963
964    // Loop through the instructions, putting them in the instruction
965    // queue.
966    for ( ; dis_num_inst < insts_to_add &&
967              dis_num_inst < dispatchWidth;
968          ++dis_num_inst)
969    {
970        inst = insts_to_dispatch.front();
971
972        if (dispatchStatus[tid] == Unblocking) {
973            DPRINTF(IEW, "[tid:%i]: Issue: Examining instruction from skid "
974                    "buffer\n", tid);
975        }
976
977        // Make sure there's a valid instruction there.
978        assert(inst);
979
980        DPRINTF(IEW, "[tid:%i]: Issue: Adding PC %s [sn:%lli] [tid:%i] to "
981                "IQ.\n",
982                tid, inst->pcState(), inst->seqNum, inst->threadNumber);
983
984        // Be sure to mark these instructions as ready so that the
985        // commit stage can go ahead and execute them, and mark
986        // them as issued so the IQ doesn't reprocess them.
987
988        // Check for squashed instructions.
989        if (inst->isSquashed()) {
990            DPRINTF(IEW, "[tid:%i]: Issue: Squashed instruction encountered, "
991                    "not adding to IQ.\n", tid);
992
993            ++iewDispSquashedInsts;
994
995            insts_to_dispatch.pop();
996
997            //Tell Rename That An Instruction has been processed
998            if (inst->isLoad() || inst->isStore()) {
999                toRename->iewInfo[tid].dispatchedToLSQ++;
1000            }
1001            toRename->iewInfo[tid].dispatched++;
1002
1003            continue;
1004        }
1005
1006        // Check for full conditions.
1007        if (instQueue.isFull(tid)) {
1008            DPRINTF(IEW, "[tid:%i]: Issue: IQ has become full.\n", tid);
1009
1010            // Call function to start blocking.
1011            block(tid);
1012
1013            // Set unblock to false. Special case where we are using
1014            // skidbuffer (unblocking) instructions but then we still
1015            // get full in the IQ.
1016            toRename->iewUnblock[tid] = false;
1017
1018            ++iewIQFullEvents;
1019            break;
1020        } else if (ldstQueue.isFull(tid)) {
1021            DPRINTF(IEW, "[tid:%i]: Issue: LSQ has become full.\n",tid);
1022
1023            // Call function to start blocking.
1024            block(tid);
1025
1026            // Set unblock to false. Special case where we are using
1027            // skidbuffer (unblocking) instructions but then we still
1028            // get full in the IQ.
1029            toRename->iewUnblock[tid] = false;
1030
1031            ++iewLSQFullEvents;
1032            break;
1033        }
1034
1035        // Otherwise issue the instruction just fine.
1036        if (inst->isLoad()) {
1037            DPRINTF(IEW, "[tid:%i]: Issue: Memory instruction "
1038                    "encountered, adding to LSQ.\n", tid);
1039
1040            // Reserve a spot in the load store queue for this
1041            // memory access.
1042            ldstQueue.insertLoad(inst);
1043
1044            ++iewDispLoadInsts;
1045
1046            add_to_iq = true;
1047
1048            toRename->iewInfo[tid].dispatchedToLSQ++;
1049        } else if (inst->isStore()) {
1050            DPRINTF(IEW, "[tid:%i]: Issue: Memory instruction "
1051                    "encountered, adding to LSQ.\n", tid);
1052
1053            ldstQueue.insertStore(inst);
1054
1055            ++iewDispStoreInsts;
1056
1057            if (inst->isStoreConditional()) {
1058                // Store conditionals need to be set as "canCommit()"
1059                // so that commit can process them when they reach the
1060                // head of commit.
1061                // @todo: This is somewhat specific to Alpha.
1062                inst->setCanCommit();
1063                instQueue.insertNonSpec(inst);
1064                add_to_iq = false;
1065
1066                ++iewDispNonSpecInsts;
1067            } else {
1068                add_to_iq = true;
1069            }
1070
1071            toRename->iewInfo[tid].dispatchedToLSQ++;
1072        } else if (inst->isMemBarrier() || inst->isWriteBarrier()) {
1073            // Same as non-speculative stores.
1074            inst->setCanCommit();
1075            instQueue.insertBarrier(inst);
1076            add_to_iq = false;
1077        } else if (inst->isNop()) {
1078            DPRINTF(IEW, "[tid:%i]: Issue: Nop instruction encountered, "
1079                    "skipping.\n", tid);
1080
1081            inst->setIssued();
1082            inst->setExecuted();
1083            inst->setCanCommit();
1084
1085            instQueue.recordProducer(inst);
1086
1087            iewExecutedNop[tid]++;
1088
1089            add_to_iq = false;
1090        } else if (inst->isExecuted()) {
1091            assert(0 && "Instruction shouldn't be executed.\n");
1092            DPRINTF(IEW, "Issue: Executed branch encountered, "
1093                    "skipping.\n");
1094
1095            inst->setIssued();
1096            inst->setCanCommit();
1097
1098            instQueue.recordProducer(inst);
1099
1100            add_to_iq = false;
1101        } else {
1102            add_to_iq = true;
1103        }
1104        if (inst->isNonSpeculative()) {
1105            DPRINTF(IEW, "[tid:%i]: Issue: Nonspeculative instruction "
1106                    "encountered, skipping.\n", tid);
1107
1108            // Same as non-speculative stores.
1109            inst->setCanCommit();
1110
1111            // Specifically insert it as nonspeculative.
1112            instQueue.insertNonSpec(inst);
1113
1114            ++iewDispNonSpecInsts;
1115
1116            add_to_iq = false;
1117        }
1118
1119        // If the instruction queue is not full, then add the
1120        // instruction.
1121        if (add_to_iq) {
1122            instQueue.insert(inst);
1123        }
1124
1125        insts_to_dispatch.pop();
1126
1127        toRename->iewInfo[tid].dispatched++;
1128
1129        ++iewDispatchedInsts;
1130    }
1131
1132    if (!insts_to_dispatch.empty()) {
1133        DPRINTF(IEW,"[tid:%i]: Issue: Bandwidth Full. Blocking.\n", tid);
1134        block(tid);
1135        toRename->iewUnblock[tid] = false;
1136    }
1137
1138    if (dispatchStatus[tid] == Idle && dis_num_inst) {
1139        dispatchStatus[tid] = Running;
1140
1141        updatedQueues = true;
1142    }
1143
1144    dis_num_inst = 0;
1145}
1146
1147template <class Impl>
1148void
1149DefaultIEW<Impl>::printAvailableInsts()
1150{
1151    int inst = 0;
1152
1153    std::cout << "Available Instructions: ";
1154
1155    while (fromIssue->insts[inst]) {
1156
1157        if (inst%3==0) std::cout << "\n\t";
1158
1159        std::cout << "PC: " << fromIssue->insts[inst]->pcState()
1160             << " TN: " << fromIssue->insts[inst]->threadNumber
1161             << " SN: " << fromIssue->insts[inst]->seqNum << " | ";
1162
1163        inst++;
1164
1165    }
1166
1167    std::cout << "\n";
1168}
1169
1170template <class Impl>
1171void
1172DefaultIEW<Impl>::executeInsts()
1173{
1174    wbNumInst = 0;
1175    wbCycle = 0;
1176
1177    list<ThreadID>::iterator threads = activeThreads->begin();
1178    list<ThreadID>::iterator end = activeThreads->end();
1179
1180    while (threads != end) {
1181        ThreadID tid = *threads++;
1182        fetchRedirect[tid] = false;
1183    }
1184
1185    // Uncomment this if you want to see all available instructions.
1186    // @todo This doesn't actually work anymore, we should fix it.
1187//    printAvailableInsts();
1188
1189    // Execute/writeback any instructions that are available.
1190    int insts_to_execute = fromIssue->size;
1191    int inst_num = 0;
1192    for (; inst_num < insts_to_execute;
1193          ++inst_num) {
1194
1195        DPRINTF(IEW, "Execute: Executing instructions from IQ.\n");
1196
1197        DynInstPtr inst = instQueue.getInstToExecute();
1198
1199        DPRINTF(IEW, "Execute: Processing PC %s, [tid:%i] [sn:%i].\n",
1200                inst->pcState(), inst->threadNumber,inst->seqNum);
1201
1202        // Check if the instruction is squashed; if so then skip it
1203        if (inst->isSquashed()) {
1204            DPRINTF(IEW, "Execute: Instruction was squashed.\n");
1205
1206            // Consider this instruction executed so that commit can go
1207            // ahead and retire the instruction.
1208            inst->setExecuted();
1209
1210            // Not sure if I should set this here or just let commit try to
1211            // commit any squashed instructions.  I like the latter a bit more.
1212            inst->setCanCommit();
1213
1214            ++iewExecSquashedInsts;
1215
1216            decrWb(inst->seqNum);
1217            continue;
1218        }
1219
1220        Fault fault = NoFault;
1221
1222        // Execute instruction.
1223        // Note that if the instruction faults, it will be handled
1224        // at the commit stage.
1225        if (inst->isMemRef()) {
1226            DPRINTF(IEW, "Execute: Calculating address for memory "
1227                    "reference.\n");
1228
1229            // Tell the LDSTQ to execute this instruction (if it is a load).
1230            if (inst->isLoad()) {
1231                // Loads will mark themselves as executed, and their writeback
1232                // event adds the instruction to the queue to commit
1233                fault = ldstQueue.executeLoad(inst);
1234                if (inst->isDataPrefetch() || inst->isInstPrefetch()) {
1235                    fault = NoFault;
1236                }
1237            } else if (inst->isStore()) {
1238                fault = ldstQueue.executeStore(inst);
1239
1240                // If the store had a fault then it may not have a mem req
1241                if (fault != NoFault || inst->readPredicate() == false ||
1242                        !inst->isStoreConditional()) {
1243                    // If the instruction faulted, then we need to send it along
1244                    // to commit without the instruction completing.
1245                    // Send this instruction to commit, also make sure iew stage
1246                    // realizes there is activity.
1247                    inst->setExecuted();
1248                    instToCommit(inst);
1249                    activityThisCycle();
1250                }
1251
1252                // Store conditionals will mark themselves as
1253                // executed, and their writeback event will add the
1254                // instruction to the queue to commit.
1255            } else {
1256                panic("Unexpected memory type!\n");
1257            }
1258
1259        } else {
1260            // If the instruction has already faulted, then skip executing it.
1261            // Such case can happen when it faulted during ITLB translation.
1262            // If we execute the instruction (even if it's a nop) the fault
1263            // will be replaced and we will lose it.
1264            if (inst->getFault() == NoFault) {
1265                inst->execute();
1266                if (inst->readPredicate() == false)
1267                    inst->forwardOldRegs();
1268            }
1269
1270            inst->setExecuted();
1271
1272            instToCommit(inst);
1273        }
1274
1275        updateExeInstStats(inst);
1276
1277        // Check if branch prediction was correct, if not then we need
1278        // to tell commit to squash in flight instructions.  Only
1279        // handle this if there hasn't already been something that
1280        // redirects fetch in this group of instructions.
1281
1282        // This probably needs to prioritize the redirects if a different
1283        // scheduler is used.  Currently the scheduler schedules the oldest
1284        // instruction first, so the branch resolution order will be correct.
1285        ThreadID tid = inst->threadNumber;
1286
1287        if (!fetchRedirect[tid] ||
1288            toCommit->squashedSeqNum[tid] > inst->seqNum) {
1289
1290            if (inst->mispredicted()) {
1291                fetchRedirect[tid] = true;
1292
1293                DPRINTF(IEW, "Execute: Branch mispredict detected.\n");
1294                DPRINTF(IEW, "Predicted target was PC:%#x, NPC:%#x.\n",
1295                        inst->predInstAddr(), inst->predNextInstAddr());
1296                DPRINTF(IEW, "Execute: Redirecting fetch to PC: %s.\n",
1297                        inst->pcState(), inst->nextInstAddr());
1298                // If incorrect, then signal the ROB that it must be squashed.
1299                squashDueToBranch(inst, tid);
1300
1301                if (inst->readPredTaken()) {
1302                    predictedTakenIncorrect++;
1303                } else {
1304                    predictedNotTakenIncorrect++;
1305                }
1306            } else if (ldstQueue.violation(tid)) {
1307                assert(inst->isMemRef());
1308                // If there was an ordering violation, then get the
1309                // DynInst that caused the violation.  Note that this
1310                // clears the violation signal.
1311                DynInstPtr violator;
1312                violator = ldstQueue.getMemDepViolator(tid);
1313
1314                DPRINTF(IEW, "LDSTQ detected a violation. Violator PC: %s "
1315                        "[sn:%lli], inst PC: %s [sn:%lli]. Addr is: %#x.\n",
1316                        violator->pcState(), violator->seqNum,
1317                        inst->pcState(), inst->seqNum, inst->physEffAddr);
1318
1319                fetchRedirect[tid] = true;
1320
1321                // Tell the instruction queue that a violation has occured.
1322                instQueue.violation(inst, violator);
1323
1324                // Squash.
1325                squashDueToMemOrder(inst,tid);
1326
1327                ++memOrderViolationEvents;
1328            } else if (ldstQueue.loadBlocked(tid) &&
1329                       !ldstQueue.isLoadBlockedHandled(tid)) {
1330                fetchRedirect[tid] = true;
1331
1332                DPRINTF(IEW, "Load operation couldn't execute because the "
1333                        "memory system is blocked.  PC: %s [sn:%lli]\n",
1334                        inst->pcState(), inst->seqNum);
1335
1336                squashDueToMemBlocked(inst, tid);
1337            }
1338        } else {
1339            // Reset any state associated with redirects that will not
1340            // be used.
1341            if (ldstQueue.violation(tid)) {
1342                assert(inst->isMemRef());
1343
1344                DynInstPtr violator = ldstQueue.getMemDepViolator(tid);
1345
1346                DPRINTF(IEW, "LDSTQ detected a violation.  Violator PC: "
1347                        "%s, inst PC: %s.  Addr is: %#x.\n",
1348                        violator->pcState(), inst->pcState(),
1349                        inst->physEffAddr);
1350                DPRINTF(IEW, "Violation will not be handled because "
1351                        "already squashing\n");
1352
1353                ++memOrderViolationEvents;
1354            }
1355            if (ldstQueue.loadBlocked(tid) &&
1356                !ldstQueue.isLoadBlockedHandled(tid)) {
1357                DPRINTF(IEW, "Load operation couldn't execute because the "
1358                        "memory system is blocked.  PC: %s [sn:%lli]\n",
1359                        inst->pcState(), inst->seqNum);
1360                DPRINTF(IEW, "Blocked load will not be handled because "
1361                        "already squashing\n");
1362
1363                ldstQueue.setLoadBlockedHandled(tid);
1364            }
1365
1366        }
1367    }
1368
1369    // Update and record activity if we processed any instructions.
1370    if (inst_num) {
1371        if (exeStatus == Idle) {
1372            exeStatus = Running;
1373        }
1374
1375        updatedQueues = true;
1376
1377        cpu->activityThisCycle();
1378    }
1379
1380    // Need to reset this in case a writeback event needs to write into the
1381    // iew queue.  That way the writeback event will write into the correct
1382    // spot in the queue.
1383    wbNumInst = 0;
1384}
1385
1386template <class Impl>
1387void
1388DefaultIEW<Impl>::writebackInsts()
1389{
1390    // Loop through the head of the time buffer and wake any
1391    // dependents.  These instructions are about to write back.  Also
1392    // mark scoreboard that this instruction is finally complete.
1393    // Either have IEW have direct access to scoreboard, or have this
1394    // as part of backwards communication.
1395    for (int inst_num = 0; inst_num < wbWidth &&
1396             toCommit->insts[inst_num]; inst_num++) {
1397        DynInstPtr inst = toCommit->insts[inst_num];
1398        ThreadID tid = inst->threadNumber;
1399
1400        DPRINTF(IEW, "Sending instructions to commit, [sn:%lli] PC %s.\n",
1401                inst->seqNum, inst->pcState());
1402
1403        iewInstsToCommit[tid]++;
1404
1405        // Some instructions will be sent to commit without having
1406        // executed because they need commit to handle them.
1407        // E.g. Uncached loads have not actually executed when they
1408        // are first sent to commit.  Instead commit must tell the LSQ
1409        // when it's ready to execute the uncached load.
1410        if (!inst->isSquashed() && inst->isExecuted() && inst->getFault() == NoFault) {
1411            int dependents = instQueue.wakeDependents(inst);
1412
1413            for (int i = 0; i < inst->numDestRegs(); i++) {
1414                //mark as Ready
1415                DPRINTF(IEW,"Setting Destination Register %i\n",
1416                        inst->renamedDestRegIdx(i));
1417                scoreboard->setReg(inst->renamedDestRegIdx(i));
1418            }
1419
1420            if (dependents) {
1421                producerInst[tid]++;
1422                consumerInst[tid]+= dependents;
1423            }
1424            writebackCount[tid]++;
1425        }
1426
1427        decrWb(inst->seqNum);
1428    }
1429}
1430
1431template<class Impl>
1432void
1433DefaultIEW<Impl>::tick()
1434{
1435    wbNumInst = 0;
1436    wbCycle = 0;
1437
1438    wroteToTimeBuffer = false;
1439    updatedQueues = false;
1440
1441    sortInsts();
1442
1443    // Free function units marked as being freed this cycle.
1444    fuPool->processFreeUnits();
1445
1446    list<ThreadID>::iterator threads = activeThreads->begin();
1447    list<ThreadID>::iterator end = activeThreads->end();
1448
1449    // Check stall and squash signals, dispatch any instructions.
1450    while (threads != end) {
1451        ThreadID tid = *threads++;
1452
1453        DPRINTF(IEW,"Issue: Processing [tid:%i]\n",tid);
1454
1455        checkSignalsAndUpdate(tid);
1456        dispatch(tid);
1457    }
1458
1459    if (exeStatus != Squashing) {
1460        executeInsts();
1461
1462        writebackInsts();
1463
1464        // Have the instruction queue try to schedule any ready instructions.
1465        // (In actuality, this scheduling is for instructions that will
1466        // be executed next cycle.)
1467        instQueue.scheduleReadyInsts();
1468
1469        // Also should advance its own time buffers if the stage ran.
1470        // Not the best place for it, but this works (hopefully).
1471        issueToExecQueue.advance();
1472    }
1473
1474    bool broadcast_free_entries = false;
1475
1476    if (updatedQueues || exeStatus == Running || updateLSQNextCycle) {
1477        exeStatus = Idle;
1478        updateLSQNextCycle = false;
1479
1480        broadcast_free_entries = true;
1481    }
1482
1483    // Writeback any stores using any leftover bandwidth.
1484    ldstQueue.writebackStores();
1485
1486    // Check the committed load/store signals to see if there's a load
1487    // or store to commit.  Also check if it's being told to execute a
1488    // nonspeculative instruction.
1489    // This is pretty inefficient...
1490
1491    threads = activeThreads->begin();
1492    while (threads != end) {
1493        ThreadID tid = (*threads++);
1494
1495        DPRINTF(IEW,"Processing [tid:%i]\n",tid);
1496
1497        // Update structures based on instructions committed.
1498        if (fromCommit->commitInfo[tid].doneSeqNum != 0 &&
1499            !fromCommit->commitInfo[tid].squash &&
1500            !fromCommit->commitInfo[tid].robSquashing) {
1501
1502            ldstQueue.commitStores(fromCommit->commitInfo[tid].doneSeqNum,tid);
1503
1504            ldstQueue.commitLoads(fromCommit->commitInfo[tid].doneSeqNum,tid);
1505
1506            updateLSQNextCycle = true;
1507            instQueue.commit(fromCommit->commitInfo[tid].doneSeqNum,tid);
1508        }
1509
1510        if (fromCommit->commitInfo[tid].nonSpecSeqNum != 0) {
1511
1512            //DPRINTF(IEW,"NonspecInst from thread %i",tid);
1513            if (fromCommit->commitInfo[tid].uncached) {
1514                instQueue.replayMemInst(fromCommit->commitInfo[tid].uncachedLoad);
1515                fromCommit->commitInfo[tid].uncachedLoad->setAtCommit();
1516            } else {
1517                instQueue.scheduleNonSpec(
1518                    fromCommit->commitInfo[tid].nonSpecSeqNum);
1519            }
1520        }
1521
1522        if (broadcast_free_entries) {
1523            toFetch->iewInfo[tid].iqCount =
1524                instQueue.getCount(tid);
1525            toFetch->iewInfo[tid].ldstqCount =
1526                ldstQueue.getCount(tid);
1527
1528            toRename->iewInfo[tid].usedIQ = true;
1529            toRename->iewInfo[tid].freeIQEntries =
1530                instQueue.numFreeEntries();
1531            toRename->iewInfo[tid].usedLSQ = true;
1532            toRename->iewInfo[tid].freeLSQEntries =
1533                ldstQueue.numFreeEntries(tid);
1534
1535            wroteToTimeBuffer = true;
1536        }
1537
1538        DPRINTF(IEW, "[tid:%i], Dispatch dispatched %i instructions.\n",
1539                tid, toRename->iewInfo[tid].dispatched);
1540    }
1541
1542    DPRINTF(IEW, "IQ has %i free entries (Can schedule: %i).  "
1543            "LSQ has %i free entries.\n",
1544            instQueue.numFreeEntries(), instQueue.hasReadyInsts(),
1545            ldstQueue.numFreeEntries());
1546
1547    updateStatus();
1548
1549    if (wroteToTimeBuffer) {
1550        DPRINTF(Activity, "Activity this cycle.\n");
1551        cpu->activityThisCycle();
1552    }
1553}
1554
1555template <class Impl>
1556void
1557DefaultIEW<Impl>::updateExeInstStats(DynInstPtr &inst)
1558{
1559    ThreadID tid = inst->threadNumber;
1560
1561    //
1562    //  Pick off the software prefetches
1563    //
1564#ifdef TARGET_ALPHA
1565    if (inst->isDataPrefetch())
1566        iewExecutedSwp[tid]++;
1567    else
1568        iewIewExecutedcutedInsts++;
1569#else
1570    iewExecutedInsts++;
1571#endif
1572
1573    //
1574    //  Control operations
1575    //
1576    if (inst->isControl())
1577        iewExecutedBranches[tid]++;
1578
1579    //
1580    //  Memory operations
1581    //
1582    if (inst->isMemRef()) {
1583        iewExecutedRefs[tid]++;
1584
1585        if (inst->isLoad()) {
1586            iewExecLoadInsts[tid]++;
1587        }
1588    }
1589}
1590
1591template <class Impl>
1592void
1593DefaultIEW<Impl>::checkMisprediction(DynInstPtr &inst)
1594{
1595    ThreadID tid = inst->threadNumber;
1596
1597    if (!fetchRedirect[tid] ||
1598        toCommit->squashedSeqNum[tid] > inst->seqNum) {
1599
1600        if (inst->mispredicted()) {
1601            fetchRedirect[tid] = true;
1602
1603            DPRINTF(IEW, "Execute: Branch mispredict detected.\n");
1604            DPRINTF(IEW, "Predicted target was PC:%#x, NPC:%#x.\n",
1605                    inst->predInstAddr(), inst->predNextInstAddr());
1606            DPRINTF(IEW, "Execute: Redirecting fetch to PC: %#x,"
1607                    " NPC: %#x.\n", inst->nextInstAddr(),
1608                    inst->nextInstAddr());
1609            // If incorrect, then signal the ROB that it must be squashed.
1610            squashDueToBranch(inst, tid);
1611
1612            if (inst->readPredTaken()) {
1613                predictedTakenIncorrect++;
1614            } else {
1615                predictedNotTakenIncorrect++;
1616            }
1617        }
1618    }
1619}
1620