iew_impl.hh revision 6658:f4de76601762
1/*
2 * Copyright (c) 2004-2006 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Kevin Lim
29 */
30
31// @todo: Fix the instantaneous communication among all the stages within
32// iew.  There's a clear delay between issue and execute, yet backwards
33// communication happens simultaneously.
34
35#include <queue>
36
37#include "base/timebuf.hh"
38#include "config/the_isa.hh"
39#include "cpu/o3/fu_pool.hh"
40#include "cpu/o3/iew.hh"
41#include "params/DerivO3CPU.hh"
42
43using namespace std;
44
45template<class Impl>
46DefaultIEW<Impl>::DefaultIEW(O3CPU *_cpu, DerivO3CPUParams *params)
47    : issueToExecQueue(params->backComSize, params->forwardComSize),
48      cpu(_cpu),
49      instQueue(_cpu, this, params),
50      ldstQueue(_cpu, this, params),
51      fuPool(params->fuPool),
52      commitToIEWDelay(params->commitToIEWDelay),
53      renameToIEWDelay(params->renameToIEWDelay),
54      issueToExecuteDelay(params->issueToExecuteDelay),
55      dispatchWidth(params->dispatchWidth),
56      issueWidth(params->issueWidth),
57      wbOutstanding(0),
58      wbWidth(params->wbWidth),
59      numThreads(params->numThreads),
60      switchedOut(false)
61{
62    _status = Active;
63    exeStatus = Running;
64    wbStatus = Idle;
65
66    // Setup wire to read instructions coming from issue.
67    fromIssue = issueToExecQueue.getWire(-issueToExecuteDelay);
68
69    // Instruction queue needs the queue between issue and execute.
70    instQueue.setIssueToExecuteQueue(&issueToExecQueue);
71
72    for (ThreadID tid = 0; tid < numThreads; tid++) {
73        dispatchStatus[tid] = Running;
74        stalls[tid].commit = false;
75        fetchRedirect[tid] = false;
76    }
77
78    wbMax = wbWidth * params->wbDepth;
79
80    updateLSQNextCycle = false;
81
82    ableToIssue = true;
83
84    skidBufferMax = (3 * (renameToIEWDelay * params->renameWidth)) + issueWidth;
85}
86
87template <class Impl>
88std::string
89DefaultIEW<Impl>::name() const
90{
91    return cpu->name() + ".iew";
92}
93
94template <class Impl>
95void
96DefaultIEW<Impl>::regStats()
97{
98    using namespace Stats;
99
100    instQueue.regStats();
101    ldstQueue.regStats();
102
103    iewIdleCycles
104        .name(name() + ".iewIdleCycles")
105        .desc("Number of cycles IEW is idle");
106
107    iewSquashCycles
108        .name(name() + ".iewSquashCycles")
109        .desc("Number of cycles IEW is squashing");
110
111    iewBlockCycles
112        .name(name() + ".iewBlockCycles")
113        .desc("Number of cycles IEW is blocking");
114
115    iewUnblockCycles
116        .name(name() + ".iewUnblockCycles")
117        .desc("Number of cycles IEW is unblocking");
118
119    iewDispatchedInsts
120        .name(name() + ".iewDispatchedInsts")
121        .desc("Number of instructions dispatched to IQ");
122
123    iewDispSquashedInsts
124        .name(name() + ".iewDispSquashedInsts")
125        .desc("Number of squashed instructions skipped by dispatch");
126
127    iewDispLoadInsts
128        .name(name() + ".iewDispLoadInsts")
129        .desc("Number of dispatched load instructions");
130
131    iewDispStoreInsts
132        .name(name() + ".iewDispStoreInsts")
133        .desc("Number of dispatched store instructions");
134
135    iewDispNonSpecInsts
136        .name(name() + ".iewDispNonSpecInsts")
137        .desc("Number of dispatched non-speculative instructions");
138
139    iewIQFullEvents
140        .name(name() + ".iewIQFullEvents")
141        .desc("Number of times the IQ has become full, causing a stall");
142
143    iewLSQFullEvents
144        .name(name() + ".iewLSQFullEvents")
145        .desc("Number of times the LSQ has become full, causing a stall");
146
147    memOrderViolationEvents
148        .name(name() + ".memOrderViolationEvents")
149        .desc("Number of memory order violations");
150
151    predictedTakenIncorrect
152        .name(name() + ".predictedTakenIncorrect")
153        .desc("Number of branches that were predicted taken incorrectly");
154
155    predictedNotTakenIncorrect
156        .name(name() + ".predictedNotTakenIncorrect")
157        .desc("Number of branches that were predicted not taken incorrectly");
158
159    branchMispredicts
160        .name(name() + ".branchMispredicts")
161        .desc("Number of branch mispredicts detected at execute");
162
163    branchMispredicts = predictedTakenIncorrect + predictedNotTakenIncorrect;
164
165    iewExecutedInsts
166        .name(name() + ".iewExecutedInsts")
167        .desc("Number of executed instructions");
168
169    iewExecLoadInsts
170        .init(cpu->numThreads)
171        .name(name() + ".iewExecLoadInsts")
172        .desc("Number of load instructions executed")
173        .flags(total);
174
175    iewExecSquashedInsts
176        .name(name() + ".iewExecSquashedInsts")
177        .desc("Number of squashed instructions skipped in execute");
178
179    iewExecutedSwp
180        .init(cpu->numThreads)
181        .name(name() + ".EXEC:swp")
182        .desc("number of swp insts executed")
183        .flags(total);
184
185    iewExecutedNop
186        .init(cpu->numThreads)
187        .name(name() + ".EXEC:nop")
188        .desc("number of nop insts executed")
189        .flags(total);
190
191    iewExecutedRefs
192        .init(cpu->numThreads)
193        .name(name() + ".EXEC:refs")
194        .desc("number of memory reference insts executed")
195        .flags(total);
196
197    iewExecutedBranches
198        .init(cpu->numThreads)
199        .name(name() + ".EXEC:branches")
200        .desc("Number of branches executed")
201        .flags(total);
202
203    iewExecStoreInsts
204        .name(name() + ".EXEC:stores")
205        .desc("Number of stores executed")
206        .flags(total);
207    iewExecStoreInsts = iewExecutedRefs - iewExecLoadInsts;
208
209    iewExecRate
210        .name(name() + ".EXEC:rate")
211        .desc("Inst execution rate")
212        .flags(total);
213
214    iewExecRate = iewExecutedInsts / cpu->numCycles;
215
216    iewInstsToCommit
217        .init(cpu->numThreads)
218        .name(name() + ".WB:sent")
219        .desc("cumulative count of insts sent to commit")
220        .flags(total);
221
222    writebackCount
223        .init(cpu->numThreads)
224        .name(name() + ".WB:count")
225        .desc("cumulative count of insts written-back")
226        .flags(total);
227
228    producerInst
229        .init(cpu->numThreads)
230        .name(name() + ".WB:producers")
231        .desc("num instructions producing a value")
232        .flags(total);
233
234    consumerInst
235        .init(cpu->numThreads)
236        .name(name() + ".WB:consumers")
237        .desc("num instructions consuming a value")
238        .flags(total);
239
240    wbPenalized
241        .init(cpu->numThreads)
242        .name(name() + ".WB:penalized")
243        .desc("number of instrctions required to write to 'other' IQ")
244        .flags(total);
245
246    wbPenalizedRate
247        .name(name() + ".WB:penalized_rate")
248        .desc ("fraction of instructions written-back that wrote to 'other' IQ")
249        .flags(total);
250
251    wbPenalizedRate = wbPenalized / writebackCount;
252
253    wbFanout
254        .name(name() + ".WB:fanout")
255        .desc("average fanout of values written-back")
256        .flags(total);
257
258    wbFanout = producerInst / consumerInst;
259
260    wbRate
261        .name(name() + ".WB:rate")
262        .desc("insts written-back per cycle")
263        .flags(total);
264    wbRate = writebackCount / cpu->numCycles;
265}
266
267template<class Impl>
268void
269DefaultIEW<Impl>::initStage()
270{
271    for (ThreadID tid = 0; tid < numThreads; tid++) {
272        toRename->iewInfo[tid].usedIQ = true;
273        toRename->iewInfo[tid].freeIQEntries =
274            instQueue.numFreeEntries(tid);
275
276        toRename->iewInfo[tid].usedLSQ = true;
277        toRename->iewInfo[tid].freeLSQEntries =
278            ldstQueue.numFreeEntries(tid);
279    }
280
281    cpu->activateStage(O3CPU::IEWIdx);
282}
283
284template<class Impl>
285void
286DefaultIEW<Impl>::setTimeBuffer(TimeBuffer<TimeStruct> *tb_ptr)
287{
288    timeBuffer = tb_ptr;
289
290    // Setup wire to read information from time buffer, from commit.
291    fromCommit = timeBuffer->getWire(-commitToIEWDelay);
292
293    // Setup wire to write information back to previous stages.
294    toRename = timeBuffer->getWire(0);
295
296    toFetch = timeBuffer->getWire(0);
297
298    // Instruction queue also needs main time buffer.
299    instQueue.setTimeBuffer(tb_ptr);
300}
301
302template<class Impl>
303void
304DefaultIEW<Impl>::setRenameQueue(TimeBuffer<RenameStruct> *rq_ptr)
305{
306    renameQueue = rq_ptr;
307
308    // Setup wire to read information from rename queue.
309    fromRename = renameQueue->getWire(-renameToIEWDelay);
310}
311
312template<class Impl>
313void
314DefaultIEW<Impl>::setIEWQueue(TimeBuffer<IEWStruct> *iq_ptr)
315{
316    iewQueue = iq_ptr;
317
318    // Setup wire to write instructions to commit.
319    toCommit = iewQueue->getWire(0);
320}
321
322template<class Impl>
323void
324DefaultIEW<Impl>::setActiveThreads(list<ThreadID> *at_ptr)
325{
326    activeThreads = at_ptr;
327
328    ldstQueue.setActiveThreads(at_ptr);
329    instQueue.setActiveThreads(at_ptr);
330}
331
332template<class Impl>
333void
334DefaultIEW<Impl>::setScoreboard(Scoreboard *sb_ptr)
335{
336    scoreboard = sb_ptr;
337}
338
339template <class Impl>
340bool
341DefaultIEW<Impl>::drain()
342{
343    // IEW is ready to drain at any time.
344    cpu->signalDrained();
345    return true;
346}
347
348template <class Impl>
349void
350DefaultIEW<Impl>::resume()
351{
352}
353
354template <class Impl>
355void
356DefaultIEW<Impl>::switchOut()
357{
358    // Clear any state.
359    switchedOut = true;
360    assert(insts[0].empty());
361    assert(skidBuffer[0].empty());
362
363    instQueue.switchOut();
364    ldstQueue.switchOut();
365    fuPool->switchOut();
366
367    for (ThreadID tid = 0; tid < numThreads; tid++) {
368        while (!insts[tid].empty())
369            insts[tid].pop();
370        while (!skidBuffer[tid].empty())
371            skidBuffer[tid].pop();
372    }
373}
374
375template <class Impl>
376void
377DefaultIEW<Impl>::takeOverFrom()
378{
379    // Reset all state.
380    _status = Active;
381    exeStatus = Running;
382    wbStatus = Idle;
383    switchedOut = false;
384
385    instQueue.takeOverFrom();
386    ldstQueue.takeOverFrom();
387    fuPool->takeOverFrom();
388
389    initStage();
390    cpu->activityThisCycle();
391
392    for (ThreadID tid = 0; tid < numThreads; tid++) {
393        dispatchStatus[tid] = Running;
394        stalls[tid].commit = false;
395        fetchRedirect[tid] = false;
396    }
397
398    updateLSQNextCycle = false;
399
400    for (int i = 0; i < issueToExecQueue.getSize(); ++i) {
401        issueToExecQueue.advance();
402    }
403}
404
405template<class Impl>
406void
407DefaultIEW<Impl>::squash(ThreadID tid)
408{
409    DPRINTF(IEW, "[tid:%i]: Squashing all instructions.\n", tid);
410
411    // Tell the IQ to start squashing.
412    instQueue.squash(tid);
413
414    // Tell the LDSTQ to start squashing.
415    ldstQueue.squash(fromCommit->commitInfo[tid].doneSeqNum, tid);
416    updatedQueues = true;
417
418    // Clear the skid buffer in case it has any data in it.
419    DPRINTF(IEW, "[tid:%i]: Removing skidbuffer instructions until [sn:%i].\n",
420            tid, fromCommit->commitInfo[tid].doneSeqNum);
421
422    while (!skidBuffer[tid].empty()) {
423        if (skidBuffer[tid].front()->isLoad() ||
424            skidBuffer[tid].front()->isStore() ) {
425            toRename->iewInfo[tid].dispatchedToLSQ++;
426        }
427
428        toRename->iewInfo[tid].dispatched++;
429
430        skidBuffer[tid].pop();
431    }
432
433    emptyRenameInsts(tid);
434}
435
436template<class Impl>
437void
438DefaultIEW<Impl>::squashDueToBranch(DynInstPtr &inst, ThreadID tid)
439{
440    DPRINTF(IEW, "[tid:%i]: Squashing from a specific instruction, PC: %#x "
441            "[sn:%i].\n", tid, inst->readPC(), inst->seqNum);
442
443    toCommit->squash[tid] = true;
444    toCommit->squashedSeqNum[tid] = inst->seqNum;
445    toCommit->mispredPC[tid] = inst->readPC();
446    toCommit->branchMispredict[tid] = true;
447
448#if ISA_HAS_DELAY_SLOT
449    int instSize = sizeof(TheISA::MachInst);
450    toCommit->branchTaken[tid] =
451        !(inst->readNextPC() + instSize == inst->readNextNPC() &&
452          (inst->readNextPC() == inst->readPC() + instSize ||
453           inst->readNextPC() == inst->readPC() + 2 * instSize));
454#else
455    toCommit->branchTaken[tid] = inst->readNextPC() !=
456        (inst->readPC() + sizeof(TheISA::MachInst));
457#endif
458    toCommit->nextPC[tid] = inst->readNextPC();
459    toCommit->nextNPC[tid] = inst->readNextNPC();
460    toCommit->nextMicroPC[tid] = inst->readNextMicroPC();
461
462    toCommit->includeSquashInst[tid] = false;
463
464    wroteToTimeBuffer = true;
465}
466
467template<class Impl>
468void
469DefaultIEW<Impl>::squashDueToMemOrder(DynInstPtr &inst, ThreadID tid)
470{
471    DPRINTF(IEW, "[tid:%i]: Squashing from a specific instruction, "
472            "PC: %#x [sn:%i].\n", tid, inst->readPC(), inst->seqNum);
473
474    toCommit->squash[tid] = true;
475    toCommit->squashedSeqNum[tid] = inst->seqNum;
476    toCommit->nextPC[tid] = inst->readNextPC();
477    toCommit->nextNPC[tid] = inst->readNextNPC();
478    toCommit->branchMispredict[tid] = false;
479
480    toCommit->includeSquashInst[tid] = false;
481
482    wroteToTimeBuffer = true;
483}
484
485template<class Impl>
486void
487DefaultIEW<Impl>::squashDueToMemBlocked(DynInstPtr &inst, ThreadID tid)
488{
489    DPRINTF(IEW, "[tid:%i]: Memory blocked, squashing load and younger insts, "
490            "PC: %#x [sn:%i].\n", tid, inst->readPC(), inst->seqNum);
491
492    toCommit->squash[tid] = true;
493    toCommit->squashedSeqNum[tid] = inst->seqNum;
494    toCommit->nextPC[tid] = inst->readPC();
495    toCommit->nextNPC[tid] = inst->readNextPC();
496    toCommit->branchMispredict[tid] = false;
497
498    // Must include the broadcasted SN in the squash.
499    toCommit->includeSquashInst[tid] = true;
500
501    ldstQueue.setLoadBlockedHandled(tid);
502
503    wroteToTimeBuffer = true;
504}
505
506template<class Impl>
507void
508DefaultIEW<Impl>::block(ThreadID tid)
509{
510    DPRINTF(IEW, "[tid:%u]: Blocking.\n", tid);
511
512    if (dispatchStatus[tid] != Blocked &&
513        dispatchStatus[tid] != Unblocking) {
514        toRename->iewBlock[tid] = true;
515        wroteToTimeBuffer = true;
516    }
517
518    // Add the current inputs to the skid buffer so they can be
519    // reprocessed when this stage unblocks.
520    skidInsert(tid);
521
522    dispatchStatus[tid] = Blocked;
523}
524
525template<class Impl>
526void
527DefaultIEW<Impl>::unblock(ThreadID tid)
528{
529    DPRINTF(IEW, "[tid:%i]: Reading instructions out of the skid "
530            "buffer %u.\n",tid, tid);
531
532    // If the skid bufffer is empty, signal back to previous stages to unblock.
533    // Also switch status to running.
534    if (skidBuffer[tid].empty()) {
535        toRename->iewUnblock[tid] = true;
536        wroteToTimeBuffer = true;
537        DPRINTF(IEW, "[tid:%i]: Done unblocking.\n",tid);
538        dispatchStatus[tid] = Running;
539    }
540}
541
542template<class Impl>
543void
544DefaultIEW<Impl>::wakeDependents(DynInstPtr &inst)
545{
546    instQueue.wakeDependents(inst);
547}
548
549template<class Impl>
550void
551DefaultIEW<Impl>::rescheduleMemInst(DynInstPtr &inst)
552{
553    instQueue.rescheduleMemInst(inst);
554}
555
556template<class Impl>
557void
558DefaultIEW<Impl>::replayMemInst(DynInstPtr &inst)
559{
560    instQueue.replayMemInst(inst);
561}
562
563template<class Impl>
564void
565DefaultIEW<Impl>::instToCommit(DynInstPtr &inst)
566{
567    // This function should not be called after writebackInsts in a
568    // single cycle.  That will cause problems with an instruction
569    // being added to the queue to commit without being processed by
570    // writebackInsts prior to being sent to commit.
571
572    // First check the time slot that this instruction will write
573    // to.  If there are free write ports at the time, then go ahead
574    // and write the instruction to that time.  If there are not,
575    // keep looking back to see where's the first time there's a
576    // free slot.
577    while ((*iewQueue)[wbCycle].insts[wbNumInst]) {
578        ++wbNumInst;
579        if (wbNumInst == wbWidth) {
580            ++wbCycle;
581            wbNumInst = 0;
582        }
583
584        assert((wbCycle * wbWidth + wbNumInst) <= wbMax);
585    }
586
587    DPRINTF(IEW, "Current wb cycle: %i, width: %i, numInst: %i\nwbActual:%i\n",
588            wbCycle, wbWidth, wbNumInst, wbCycle * wbWidth + wbNumInst);
589    // Add finished instruction to queue to commit.
590    (*iewQueue)[wbCycle].insts[wbNumInst] = inst;
591    (*iewQueue)[wbCycle].size++;
592}
593
594template <class Impl>
595unsigned
596DefaultIEW<Impl>::validInstsFromRename()
597{
598    unsigned inst_count = 0;
599
600    for (int i=0; i<fromRename->size; i++) {
601        if (!fromRename->insts[i]->isSquashed())
602            inst_count++;
603    }
604
605    return inst_count;
606}
607
608template<class Impl>
609void
610DefaultIEW<Impl>::skidInsert(ThreadID tid)
611{
612    DynInstPtr inst = NULL;
613
614    while (!insts[tid].empty()) {
615        inst = insts[tid].front();
616
617        insts[tid].pop();
618
619        DPRINTF(Decode,"[tid:%i]: Inserting [sn:%lli] PC:%#x into "
620                "dispatch skidBuffer %i\n",tid, inst->seqNum,
621                inst->readPC(),tid);
622
623        skidBuffer[tid].push(inst);
624    }
625
626    assert(skidBuffer[tid].size() <= skidBufferMax &&
627           "Skidbuffer Exceeded Max Size");
628}
629
630template<class Impl>
631int
632DefaultIEW<Impl>::skidCount()
633{
634    int max=0;
635
636    list<ThreadID>::iterator threads = activeThreads->begin();
637    list<ThreadID>::iterator end = activeThreads->end();
638
639    while (threads != end) {
640        ThreadID tid = *threads++;
641        unsigned thread_count = skidBuffer[tid].size();
642        if (max < thread_count)
643            max = thread_count;
644    }
645
646    return max;
647}
648
649template<class Impl>
650bool
651DefaultIEW<Impl>::skidsEmpty()
652{
653    list<ThreadID>::iterator threads = activeThreads->begin();
654    list<ThreadID>::iterator end = activeThreads->end();
655
656    while (threads != end) {
657        ThreadID tid = *threads++;
658
659        if (!skidBuffer[tid].empty())
660            return false;
661    }
662
663    return true;
664}
665
666template <class Impl>
667void
668DefaultIEW<Impl>::updateStatus()
669{
670    bool any_unblocking = false;
671
672    list<ThreadID>::iterator threads = activeThreads->begin();
673    list<ThreadID>::iterator end = activeThreads->end();
674
675    while (threads != end) {
676        ThreadID tid = *threads++;
677
678        if (dispatchStatus[tid] == Unblocking) {
679            any_unblocking = true;
680            break;
681        }
682    }
683
684    // If there are no ready instructions waiting to be scheduled by the IQ,
685    // and there's no stores waiting to write back, and dispatch is not
686    // unblocking, then there is no internal activity for the IEW stage.
687    if (_status == Active && !instQueue.hasReadyInsts() &&
688        !ldstQueue.willWB() && !any_unblocking) {
689        DPRINTF(IEW, "IEW switching to idle\n");
690
691        deactivateStage();
692
693        _status = Inactive;
694    } else if (_status == Inactive && (instQueue.hasReadyInsts() ||
695                                       ldstQueue.willWB() ||
696                                       any_unblocking)) {
697        // Otherwise there is internal activity.  Set to active.
698        DPRINTF(IEW, "IEW switching to active\n");
699
700        activateStage();
701
702        _status = Active;
703    }
704}
705
706template <class Impl>
707void
708DefaultIEW<Impl>::resetEntries()
709{
710    instQueue.resetEntries();
711    ldstQueue.resetEntries();
712}
713
714template <class Impl>
715void
716DefaultIEW<Impl>::readStallSignals(ThreadID tid)
717{
718    if (fromCommit->commitBlock[tid]) {
719        stalls[tid].commit = true;
720    }
721
722    if (fromCommit->commitUnblock[tid]) {
723        assert(stalls[tid].commit);
724        stalls[tid].commit = false;
725    }
726}
727
728template <class Impl>
729bool
730DefaultIEW<Impl>::checkStall(ThreadID tid)
731{
732    bool ret_val(false);
733
734    if (stalls[tid].commit) {
735        DPRINTF(IEW,"[tid:%i]: Stall from Commit stage detected.\n",tid);
736        ret_val = true;
737    } else if (instQueue.isFull(tid)) {
738        DPRINTF(IEW,"[tid:%i]: Stall: IQ  is full.\n",tid);
739        ret_val = true;
740    } else if (ldstQueue.isFull(tid)) {
741        DPRINTF(IEW,"[tid:%i]: Stall: LSQ is full\n",tid);
742
743        if (ldstQueue.numLoads(tid) > 0 ) {
744
745            DPRINTF(IEW,"[tid:%i]: LSQ oldest load: [sn:%i] \n",
746                    tid,ldstQueue.getLoadHeadSeqNum(tid));
747        }
748
749        if (ldstQueue.numStores(tid) > 0) {
750
751            DPRINTF(IEW,"[tid:%i]: LSQ oldest store: [sn:%i] \n",
752                    tid,ldstQueue.getStoreHeadSeqNum(tid));
753        }
754
755        ret_val = true;
756    } else if (ldstQueue.isStalled(tid)) {
757        DPRINTF(IEW,"[tid:%i]: Stall: LSQ stall detected.\n",tid);
758        ret_val = true;
759    }
760
761    return ret_val;
762}
763
764template <class Impl>
765void
766DefaultIEW<Impl>::checkSignalsAndUpdate(ThreadID tid)
767{
768    // Check if there's a squash signal, squash if there is
769    // Check stall signals, block if there is.
770    // If status was Blocked
771    //     if so then go to unblocking
772    // If status was Squashing
773    //     check if squashing is not high.  Switch to running this cycle.
774
775    readStallSignals(tid);
776
777    if (fromCommit->commitInfo[tid].squash) {
778        squash(tid);
779
780        if (dispatchStatus[tid] == Blocked ||
781            dispatchStatus[tid] == Unblocking) {
782            toRename->iewUnblock[tid] = true;
783            wroteToTimeBuffer = true;
784        }
785
786        dispatchStatus[tid] = Squashing;
787
788        fetchRedirect[tid] = false;
789        return;
790    }
791
792    if (fromCommit->commitInfo[tid].robSquashing) {
793        DPRINTF(IEW, "[tid:%i]: ROB is still squashing.\n", tid);
794
795        dispatchStatus[tid] = Squashing;
796
797        emptyRenameInsts(tid);
798        wroteToTimeBuffer = true;
799        return;
800    }
801
802    if (checkStall(tid)) {
803        block(tid);
804        dispatchStatus[tid] = Blocked;
805        return;
806    }
807
808    if (dispatchStatus[tid] == Blocked) {
809        // Status from previous cycle was blocked, but there are no more stall
810        // conditions.  Switch over to unblocking.
811        DPRINTF(IEW, "[tid:%i]: Done blocking, switching to unblocking.\n",
812                tid);
813
814        dispatchStatus[tid] = Unblocking;
815
816        unblock(tid);
817
818        return;
819    }
820
821    if (dispatchStatus[tid] == Squashing) {
822        // Switch status to running if rename isn't being told to block or
823        // squash this cycle.
824        DPRINTF(IEW, "[tid:%i]: Done squashing, switching to running.\n",
825                tid);
826
827        dispatchStatus[tid] = Running;
828
829        return;
830    }
831}
832
833template <class Impl>
834void
835DefaultIEW<Impl>::sortInsts()
836{
837    int insts_from_rename = fromRename->size;
838#ifdef DEBUG
839    for (ThreadID tid = 0; tid < numThreads; tid++)
840        assert(insts[tid].empty());
841#endif
842    for (int i = 0; i < insts_from_rename; ++i) {
843        insts[fromRename->insts[i]->threadNumber].push(fromRename->insts[i]);
844    }
845}
846
847template <class Impl>
848void
849DefaultIEW<Impl>::emptyRenameInsts(ThreadID tid)
850{
851    DPRINTF(IEW, "[tid:%i]: Removing incoming rename instructions\n", tid);
852
853    while (!insts[tid].empty()) {
854
855        if (insts[tid].front()->isLoad() ||
856            insts[tid].front()->isStore() ) {
857            toRename->iewInfo[tid].dispatchedToLSQ++;
858        }
859
860        toRename->iewInfo[tid].dispatched++;
861
862        insts[tid].pop();
863    }
864}
865
866template <class Impl>
867void
868DefaultIEW<Impl>::wakeCPU()
869{
870    cpu->wakeCPU();
871}
872
873template <class Impl>
874void
875DefaultIEW<Impl>::activityThisCycle()
876{
877    DPRINTF(Activity, "Activity this cycle.\n");
878    cpu->activityThisCycle();
879}
880
881template <class Impl>
882inline void
883DefaultIEW<Impl>::activateStage()
884{
885    DPRINTF(Activity, "Activating stage.\n");
886    cpu->activateStage(O3CPU::IEWIdx);
887}
888
889template <class Impl>
890inline void
891DefaultIEW<Impl>::deactivateStage()
892{
893    DPRINTF(Activity, "Deactivating stage.\n");
894    cpu->deactivateStage(O3CPU::IEWIdx);
895}
896
897template<class Impl>
898void
899DefaultIEW<Impl>::dispatch(ThreadID tid)
900{
901    // If status is Running or idle,
902    //     call dispatchInsts()
903    // If status is Unblocking,
904    //     buffer any instructions coming from rename
905    //     continue trying to empty skid buffer
906    //     check if stall conditions have passed
907
908    if (dispatchStatus[tid] == Blocked) {
909        ++iewBlockCycles;
910
911    } else if (dispatchStatus[tid] == Squashing) {
912        ++iewSquashCycles;
913    }
914
915    // Dispatch should try to dispatch as many instructions as its bandwidth
916    // will allow, as long as it is not currently blocked.
917    if (dispatchStatus[tid] == Running ||
918        dispatchStatus[tid] == Idle) {
919        DPRINTF(IEW, "[tid:%i] Not blocked, so attempting to run "
920                "dispatch.\n", tid);
921
922        dispatchInsts(tid);
923    } else if (dispatchStatus[tid] == Unblocking) {
924        // Make sure that the skid buffer has something in it if the
925        // status is unblocking.
926        assert(!skidsEmpty());
927
928        // If the status was unblocking, then instructions from the skid
929        // buffer were used.  Remove those instructions and handle
930        // the rest of unblocking.
931        dispatchInsts(tid);
932
933        ++iewUnblockCycles;
934
935        if (validInstsFromRename()) {
936            // Add the current inputs to the skid buffer so they can be
937            // reprocessed when this stage unblocks.
938            skidInsert(tid);
939        }
940
941        unblock(tid);
942    }
943}
944
945template <class Impl>
946void
947DefaultIEW<Impl>::dispatchInsts(ThreadID tid)
948{
949    // Obtain instructions from skid buffer if unblocking, or queue from rename
950    // otherwise.
951    std::queue<DynInstPtr> &insts_to_dispatch =
952        dispatchStatus[tid] == Unblocking ?
953        skidBuffer[tid] : insts[tid];
954
955    int insts_to_add = insts_to_dispatch.size();
956
957    DynInstPtr inst;
958    bool add_to_iq = false;
959    int dis_num_inst = 0;
960
961    // Loop through the instructions, putting them in the instruction
962    // queue.
963    for ( ; dis_num_inst < insts_to_add &&
964              dis_num_inst < dispatchWidth;
965          ++dis_num_inst)
966    {
967        inst = insts_to_dispatch.front();
968
969        if (dispatchStatus[tid] == Unblocking) {
970            DPRINTF(IEW, "[tid:%i]: Issue: Examining instruction from skid "
971                    "buffer\n", tid);
972        }
973
974        // Make sure there's a valid instruction there.
975        assert(inst);
976
977        DPRINTF(IEW, "[tid:%i]: Issue: Adding PC %#x [sn:%lli] [tid:%i] to "
978                "IQ.\n",
979                tid, inst->readPC(), inst->seqNum, inst->threadNumber);
980
981        // Be sure to mark these instructions as ready so that the
982        // commit stage can go ahead and execute them, and mark
983        // them as issued so the IQ doesn't reprocess them.
984
985        // Check for squashed instructions.
986        if (inst->isSquashed()) {
987            DPRINTF(IEW, "[tid:%i]: Issue: Squashed instruction encountered, "
988                    "not adding to IQ.\n", tid);
989
990            ++iewDispSquashedInsts;
991
992            insts_to_dispatch.pop();
993
994            //Tell Rename That An Instruction has been processed
995            if (inst->isLoad() || inst->isStore()) {
996                toRename->iewInfo[tid].dispatchedToLSQ++;
997            }
998            toRename->iewInfo[tid].dispatched++;
999
1000            continue;
1001        }
1002
1003        // Check for full conditions.
1004        if (instQueue.isFull(tid)) {
1005            DPRINTF(IEW, "[tid:%i]: Issue: IQ has become full.\n", tid);
1006
1007            // Call function to start blocking.
1008            block(tid);
1009
1010            // Set unblock to false. Special case where we are using
1011            // skidbuffer (unblocking) instructions but then we still
1012            // get full in the IQ.
1013            toRename->iewUnblock[tid] = false;
1014
1015            ++iewIQFullEvents;
1016            break;
1017        } else if (ldstQueue.isFull(tid)) {
1018            DPRINTF(IEW, "[tid:%i]: Issue: LSQ has become full.\n",tid);
1019
1020            // Call function to start blocking.
1021            block(tid);
1022
1023            // Set unblock to false. Special case where we are using
1024            // skidbuffer (unblocking) instructions but then we still
1025            // get full in the IQ.
1026            toRename->iewUnblock[tid] = false;
1027
1028            ++iewLSQFullEvents;
1029            break;
1030        }
1031
1032        // Otherwise issue the instruction just fine.
1033        if (inst->isLoad()) {
1034            DPRINTF(IEW, "[tid:%i]: Issue: Memory instruction "
1035                    "encountered, adding to LSQ.\n", tid);
1036
1037            // Reserve a spot in the load store queue for this
1038            // memory access.
1039            ldstQueue.insertLoad(inst);
1040
1041            ++iewDispLoadInsts;
1042
1043            add_to_iq = true;
1044
1045            toRename->iewInfo[tid].dispatchedToLSQ++;
1046        } else if (inst->isStore()) {
1047            DPRINTF(IEW, "[tid:%i]: Issue: Memory instruction "
1048                    "encountered, adding to LSQ.\n", tid);
1049
1050            ldstQueue.insertStore(inst);
1051
1052            ++iewDispStoreInsts;
1053
1054            if (inst->isStoreConditional()) {
1055                // Store conditionals need to be set as "canCommit()"
1056                // so that commit can process them when they reach the
1057                // head of commit.
1058                // @todo: This is somewhat specific to Alpha.
1059                inst->setCanCommit();
1060                instQueue.insertNonSpec(inst);
1061                add_to_iq = false;
1062
1063                ++iewDispNonSpecInsts;
1064            } else {
1065                add_to_iq = true;
1066            }
1067
1068            toRename->iewInfo[tid].dispatchedToLSQ++;
1069        } else if (inst->isMemBarrier() || inst->isWriteBarrier()) {
1070            // Same as non-speculative stores.
1071            inst->setCanCommit();
1072            instQueue.insertBarrier(inst);
1073            add_to_iq = false;
1074        } else if (inst->isNop()) {
1075            DPRINTF(IEW, "[tid:%i]: Issue: Nop instruction encountered, "
1076                    "skipping.\n", tid);
1077
1078            inst->setIssued();
1079            inst->setExecuted();
1080            inst->setCanCommit();
1081
1082            instQueue.recordProducer(inst);
1083
1084            iewExecutedNop[tid]++;
1085
1086            add_to_iq = false;
1087        } else if (inst->isExecuted()) {
1088            assert(0 && "Instruction shouldn't be executed.\n");
1089            DPRINTF(IEW, "Issue: Executed branch encountered, "
1090                    "skipping.\n");
1091
1092            inst->setIssued();
1093            inst->setCanCommit();
1094
1095            instQueue.recordProducer(inst);
1096
1097            add_to_iq = false;
1098        } else {
1099            add_to_iq = true;
1100        }
1101        if (inst->isNonSpeculative()) {
1102            DPRINTF(IEW, "[tid:%i]: Issue: Nonspeculative instruction "
1103                    "encountered, skipping.\n", tid);
1104
1105            // Same as non-speculative stores.
1106            inst->setCanCommit();
1107
1108            // Specifically insert it as nonspeculative.
1109            instQueue.insertNonSpec(inst);
1110
1111            ++iewDispNonSpecInsts;
1112
1113            add_to_iq = false;
1114        }
1115
1116        // If the instruction queue is not full, then add the
1117        // instruction.
1118        if (add_to_iq) {
1119            instQueue.insert(inst);
1120        }
1121
1122        insts_to_dispatch.pop();
1123
1124        toRename->iewInfo[tid].dispatched++;
1125
1126        ++iewDispatchedInsts;
1127    }
1128
1129    if (!insts_to_dispatch.empty()) {
1130        DPRINTF(IEW,"[tid:%i]: Issue: Bandwidth Full. Blocking.\n", tid);
1131        block(tid);
1132        toRename->iewUnblock[tid] = false;
1133    }
1134
1135    if (dispatchStatus[tid] == Idle && dis_num_inst) {
1136        dispatchStatus[tid] = Running;
1137
1138        updatedQueues = true;
1139    }
1140
1141    dis_num_inst = 0;
1142}
1143
1144template <class Impl>
1145void
1146DefaultIEW<Impl>::printAvailableInsts()
1147{
1148    int inst = 0;
1149
1150    std::cout << "Available Instructions: ";
1151
1152    while (fromIssue->insts[inst]) {
1153
1154        if (inst%3==0) std::cout << "\n\t";
1155
1156        std::cout << "PC: " << fromIssue->insts[inst]->readPC()
1157             << " TN: " << fromIssue->insts[inst]->threadNumber
1158             << " SN: " << fromIssue->insts[inst]->seqNum << " | ";
1159
1160        inst++;
1161
1162    }
1163
1164    std::cout << "\n";
1165}
1166
1167template <class Impl>
1168void
1169DefaultIEW<Impl>::executeInsts()
1170{
1171    wbNumInst = 0;
1172    wbCycle = 0;
1173
1174    list<ThreadID>::iterator threads = activeThreads->begin();
1175    list<ThreadID>::iterator end = activeThreads->end();
1176
1177    while (threads != end) {
1178        ThreadID tid = *threads++;
1179        fetchRedirect[tid] = false;
1180    }
1181
1182    // Uncomment this if you want to see all available instructions.
1183//    printAvailableInsts();
1184
1185    // Execute/writeback any instructions that are available.
1186    int insts_to_execute = fromIssue->size;
1187    int inst_num = 0;
1188    for (; inst_num < insts_to_execute;
1189          ++inst_num) {
1190
1191        DPRINTF(IEW, "Execute: Executing instructions from IQ.\n");
1192
1193        DynInstPtr inst = instQueue.getInstToExecute();
1194
1195        DPRINTF(IEW, "Execute: Processing PC %#x, [tid:%i] [sn:%i].\n",
1196                inst->readPC(), inst->threadNumber,inst->seqNum);
1197
1198        // Check if the instruction is squashed; if so then skip it
1199        if (inst->isSquashed()) {
1200            DPRINTF(IEW, "Execute: Instruction was squashed.\n");
1201
1202            // Consider this instruction executed so that commit can go
1203            // ahead and retire the instruction.
1204            inst->setExecuted();
1205
1206            // Not sure if I should set this here or just let commit try to
1207            // commit any squashed instructions.  I like the latter a bit more.
1208            inst->setCanCommit();
1209
1210            ++iewExecSquashedInsts;
1211
1212            decrWb(inst->seqNum);
1213            continue;
1214        }
1215
1216        Fault fault = NoFault;
1217
1218        // Execute instruction.
1219        // Note that if the instruction faults, it will be handled
1220        // at the commit stage.
1221        if (inst->isMemRef() &&
1222            (!inst->isDataPrefetch() && !inst->isInstPrefetch())) {
1223            DPRINTF(IEW, "Execute: Calculating address for memory "
1224                    "reference.\n");
1225
1226            // Tell the LDSTQ to execute this instruction (if it is a load).
1227            if (inst->isLoad()) {
1228                // Loads will mark themselves as executed, and their writeback
1229                // event adds the instruction to the queue to commit
1230                fault = ldstQueue.executeLoad(inst);
1231            } else if (inst->isStore()) {
1232                fault = ldstQueue.executeStore(inst);
1233
1234                // If the store had a fault then it may not have a mem req
1235                if (!inst->isStoreConditional() && fault == NoFault) {
1236                    inst->setExecuted();
1237
1238                    instToCommit(inst);
1239                } else if (fault != NoFault) {
1240                    // If the instruction faulted, then we need to send it along to commit
1241                    // without the instruction completing.
1242                    DPRINTF(IEW, "Store has fault %s! [sn:%lli]\n",
1243                            fault->name(), inst->seqNum);
1244
1245                    // Send this instruction to commit, also make sure iew stage
1246                    // realizes there is activity.
1247                    inst->setExecuted();
1248
1249                    instToCommit(inst);
1250                    activityThisCycle();
1251                }
1252
1253                // Store conditionals will mark themselves as
1254                // executed, and their writeback event will add the
1255                // instruction to the queue to commit.
1256            } else {
1257                panic("Unexpected memory type!\n");
1258            }
1259
1260        } else {
1261            inst->execute();
1262
1263            inst->setExecuted();
1264
1265            instToCommit(inst);
1266        }
1267
1268        updateExeInstStats(inst);
1269
1270        // Check if branch prediction was correct, if not then we need
1271        // to tell commit to squash in flight instructions.  Only
1272        // handle this if there hasn't already been something that
1273        // redirects fetch in this group of instructions.
1274
1275        // This probably needs to prioritize the redirects if a different
1276        // scheduler is used.  Currently the scheduler schedules the oldest
1277        // instruction first, so the branch resolution order will be correct.
1278        ThreadID tid = inst->threadNumber;
1279
1280        if (!fetchRedirect[tid] ||
1281            toCommit->squashedSeqNum[tid] > inst->seqNum) {
1282
1283            if (inst->mispredicted()) {
1284                fetchRedirect[tid] = true;
1285
1286                DPRINTF(IEW, "Execute: Branch mispredict detected.\n");
1287                DPRINTF(IEW, "Predicted target was PC:%#x, NPC:%#x.\n",
1288                        inst->readPredPC(), inst->readPredNPC());
1289                DPRINTF(IEW, "Execute: Redirecting fetch to PC: %#x,"
1290                        " NPC: %#x.\n", inst->readNextPC(),
1291                        inst->readNextNPC());
1292                // If incorrect, then signal the ROB that it must be squashed.
1293                squashDueToBranch(inst, tid);
1294
1295                if (inst->readPredTaken()) {
1296                    predictedTakenIncorrect++;
1297                } else {
1298                    predictedNotTakenIncorrect++;
1299                }
1300            } else if (ldstQueue.violation(tid)) {
1301                assert(inst->isMemRef());
1302                // If there was an ordering violation, then get the
1303                // DynInst that caused the violation.  Note that this
1304                // clears the violation signal.
1305                DynInstPtr violator;
1306                violator = ldstQueue.getMemDepViolator(tid);
1307
1308                DPRINTF(IEW, "LDSTQ detected a violation.  Violator PC: "
1309                        "%#x, inst PC: %#x.  Addr is: %#x.\n",
1310                        violator->readPC(), inst->readPC(), inst->physEffAddr);
1311
1312                // Ensure the violating instruction is older than
1313                // current squash
1314/*                if (fetchRedirect[tid] &&
1315                    violator->seqNum >= toCommit->squashedSeqNum[tid] + 1)
1316                    continue;
1317*/
1318                fetchRedirect[tid] = true;
1319
1320                // Tell the instruction queue that a violation has occured.
1321                instQueue.violation(inst, violator);
1322
1323                // Squash.
1324                squashDueToMemOrder(inst,tid);
1325
1326                ++memOrderViolationEvents;
1327            } else if (ldstQueue.loadBlocked(tid) &&
1328                       !ldstQueue.isLoadBlockedHandled(tid)) {
1329                fetchRedirect[tid] = true;
1330
1331                DPRINTF(IEW, "Load operation couldn't execute because the "
1332                        "memory system is blocked.  PC: %#x [sn:%lli]\n",
1333                        inst->readPC(), inst->seqNum);
1334
1335                squashDueToMemBlocked(inst, tid);
1336            }
1337        } else {
1338            // Reset any state associated with redirects that will not
1339            // be used.
1340            if (ldstQueue.violation(tid)) {
1341                assert(inst->isMemRef());
1342
1343                DynInstPtr violator = ldstQueue.getMemDepViolator(tid);
1344
1345                DPRINTF(IEW, "LDSTQ detected a violation.  Violator PC: "
1346                        "%#x, inst PC: %#x.  Addr is: %#x.\n",
1347                        violator->readPC(), inst->readPC(), inst->physEffAddr);
1348                DPRINTF(IEW, "Violation will not be handled because "
1349                        "already squashing\n");
1350
1351                ++memOrderViolationEvents;
1352            }
1353            if (ldstQueue.loadBlocked(tid) &&
1354                !ldstQueue.isLoadBlockedHandled(tid)) {
1355                DPRINTF(IEW, "Load operation couldn't execute because the "
1356                        "memory system is blocked.  PC: %#x [sn:%lli]\n",
1357                        inst->readPC(), inst->seqNum);
1358                DPRINTF(IEW, "Blocked load will not be handled because "
1359                        "already squashing\n");
1360
1361                ldstQueue.setLoadBlockedHandled(tid);
1362            }
1363
1364        }
1365    }
1366
1367    // Update and record activity if we processed any instructions.
1368    if (inst_num) {
1369        if (exeStatus == Idle) {
1370            exeStatus = Running;
1371        }
1372
1373        updatedQueues = true;
1374
1375        cpu->activityThisCycle();
1376    }
1377
1378    // Need to reset this in case a writeback event needs to write into the
1379    // iew queue.  That way the writeback event will write into the correct
1380    // spot in the queue.
1381    wbNumInst = 0;
1382}
1383
1384template <class Impl>
1385void
1386DefaultIEW<Impl>::writebackInsts()
1387{
1388    // Loop through the head of the time buffer and wake any
1389    // dependents.  These instructions are about to write back.  Also
1390    // mark scoreboard that this instruction is finally complete.
1391    // Either have IEW have direct access to scoreboard, or have this
1392    // as part of backwards communication.
1393    for (int inst_num = 0; inst_num < wbWidth &&
1394             toCommit->insts[inst_num]; inst_num++) {
1395        DynInstPtr inst = toCommit->insts[inst_num];
1396        ThreadID tid = inst->threadNumber;
1397
1398        DPRINTF(IEW, "Sending instructions to commit, [sn:%lli] PC %#x.\n",
1399                inst->seqNum, inst->readPC());
1400
1401        iewInstsToCommit[tid]++;
1402
1403        // Some instructions will be sent to commit without having
1404        // executed because they need commit to handle them.
1405        // E.g. Uncached loads have not actually executed when they
1406        // are first sent to commit.  Instead commit must tell the LSQ
1407        // when it's ready to execute the uncached load.
1408        if (!inst->isSquashed() && inst->isExecuted() && inst->getFault() == NoFault) {
1409            int dependents = instQueue.wakeDependents(inst);
1410
1411            for (int i = 0; i < inst->numDestRegs(); i++) {
1412                //mark as Ready
1413                DPRINTF(IEW,"Setting Destination Register %i\n",
1414                        inst->renamedDestRegIdx(i));
1415                scoreboard->setReg(inst->renamedDestRegIdx(i));
1416            }
1417
1418            if (dependents) {
1419                producerInst[tid]++;
1420                consumerInst[tid]+= dependents;
1421            }
1422            writebackCount[tid]++;
1423        }
1424
1425        decrWb(inst->seqNum);
1426    }
1427}
1428
1429template<class Impl>
1430void
1431DefaultIEW<Impl>::tick()
1432{
1433    wbNumInst = 0;
1434    wbCycle = 0;
1435
1436    wroteToTimeBuffer = false;
1437    updatedQueues = false;
1438
1439    sortInsts();
1440
1441    // Free function units marked as being freed this cycle.
1442    fuPool->processFreeUnits();
1443
1444    list<ThreadID>::iterator threads = activeThreads->begin();
1445    list<ThreadID>::iterator end = activeThreads->end();
1446
1447    // Check stall and squash signals, dispatch any instructions.
1448    while (threads != end) {
1449        ThreadID tid = *threads++;
1450
1451        DPRINTF(IEW,"Issue: Processing [tid:%i]\n",tid);
1452
1453        checkSignalsAndUpdate(tid);
1454        dispatch(tid);
1455    }
1456
1457    if (exeStatus != Squashing) {
1458        executeInsts();
1459
1460        writebackInsts();
1461
1462        // Have the instruction queue try to schedule any ready instructions.
1463        // (In actuality, this scheduling is for instructions that will
1464        // be executed next cycle.)
1465        instQueue.scheduleReadyInsts();
1466
1467        // Also should advance its own time buffers if the stage ran.
1468        // Not the best place for it, but this works (hopefully).
1469        issueToExecQueue.advance();
1470    }
1471
1472    bool broadcast_free_entries = false;
1473
1474    if (updatedQueues || exeStatus == Running || updateLSQNextCycle) {
1475        exeStatus = Idle;
1476        updateLSQNextCycle = false;
1477
1478        broadcast_free_entries = true;
1479    }
1480
1481    // Writeback any stores using any leftover bandwidth.
1482    ldstQueue.writebackStores();
1483
1484    // Check the committed load/store signals to see if there's a load
1485    // or store to commit.  Also check if it's being told to execute a
1486    // nonspeculative instruction.
1487    // This is pretty inefficient...
1488
1489    threads = activeThreads->begin();
1490    while (threads != end) {
1491        ThreadID tid = (*threads++);
1492
1493        DPRINTF(IEW,"Processing [tid:%i]\n",tid);
1494
1495        // Update structures based on instructions committed.
1496        if (fromCommit->commitInfo[tid].doneSeqNum != 0 &&
1497            !fromCommit->commitInfo[tid].squash &&
1498            !fromCommit->commitInfo[tid].robSquashing) {
1499
1500            ldstQueue.commitStores(fromCommit->commitInfo[tid].doneSeqNum,tid);
1501
1502            ldstQueue.commitLoads(fromCommit->commitInfo[tid].doneSeqNum,tid);
1503
1504            updateLSQNextCycle = true;
1505            instQueue.commit(fromCommit->commitInfo[tid].doneSeqNum,tid);
1506        }
1507
1508        if (fromCommit->commitInfo[tid].nonSpecSeqNum != 0) {
1509
1510            //DPRINTF(IEW,"NonspecInst from thread %i",tid);
1511            if (fromCommit->commitInfo[tid].uncached) {
1512                instQueue.replayMemInst(fromCommit->commitInfo[tid].uncachedLoad);
1513                fromCommit->commitInfo[tid].uncachedLoad->setAtCommit();
1514            } else {
1515                instQueue.scheduleNonSpec(
1516                    fromCommit->commitInfo[tid].nonSpecSeqNum);
1517            }
1518        }
1519
1520        if (broadcast_free_entries) {
1521            toFetch->iewInfo[tid].iqCount =
1522                instQueue.getCount(tid);
1523            toFetch->iewInfo[tid].ldstqCount =
1524                ldstQueue.getCount(tid);
1525
1526            toRename->iewInfo[tid].usedIQ = true;
1527            toRename->iewInfo[tid].freeIQEntries =
1528                instQueue.numFreeEntries();
1529            toRename->iewInfo[tid].usedLSQ = true;
1530            toRename->iewInfo[tid].freeLSQEntries =
1531                ldstQueue.numFreeEntries(tid);
1532
1533            wroteToTimeBuffer = true;
1534        }
1535
1536        DPRINTF(IEW, "[tid:%i], Dispatch dispatched %i instructions.\n",
1537                tid, toRename->iewInfo[tid].dispatched);
1538    }
1539
1540    DPRINTF(IEW, "IQ has %i free entries (Can schedule: %i).  "
1541            "LSQ has %i free entries.\n",
1542            instQueue.numFreeEntries(), instQueue.hasReadyInsts(),
1543            ldstQueue.numFreeEntries());
1544
1545    updateStatus();
1546
1547    if (wroteToTimeBuffer) {
1548        DPRINTF(Activity, "Activity this cycle.\n");
1549        cpu->activityThisCycle();
1550    }
1551}
1552
1553template <class Impl>
1554void
1555DefaultIEW<Impl>::updateExeInstStats(DynInstPtr &inst)
1556{
1557    ThreadID tid = inst->threadNumber;
1558
1559    //
1560    //  Pick off the software prefetches
1561    //
1562#ifdef TARGET_ALPHA
1563    if (inst->isDataPrefetch())
1564        iewExecutedSwp[tid]++;
1565    else
1566        iewIewExecutedcutedInsts++;
1567#else
1568    iewExecutedInsts++;
1569#endif
1570
1571    //
1572    //  Control operations
1573    //
1574    if (inst->isControl())
1575        iewExecutedBranches[tid]++;
1576
1577    //
1578    //  Memory operations
1579    //
1580    if (inst->isMemRef()) {
1581        iewExecutedRefs[tid]++;
1582
1583        if (inst->isLoad()) {
1584            iewExecLoadInsts[tid]++;
1585        }
1586    }
1587}
1588