iew_impl.hh revision 3958:58d09260d073
1/*
2 * Copyright (c) 2004-2006 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Kevin Lim
29 */
30
31// @todo: Fix the instantaneous communication among all the stages within
32// iew.  There's a clear delay between issue and execute, yet backwards
33// communication happens simultaneously.
34
35#include <queue>
36
37#include "base/timebuf.hh"
38#include "cpu/o3/fu_pool.hh"
39#include "cpu/o3/iew.hh"
40
41template<class Impl>
42DefaultIEW<Impl>::DefaultIEW(Params *params)
43    : issueToExecQueue(params->backComSize, params->forwardComSize),
44      instQueue(params),
45      ldstQueue(params),
46      fuPool(params->fuPool),
47      commitToIEWDelay(params->commitToIEWDelay),
48      renameToIEWDelay(params->renameToIEWDelay),
49      issueToExecuteDelay(params->issueToExecuteDelay),
50      dispatchWidth(params->dispatchWidth),
51      issueWidth(params->issueWidth),
52      wbOutstanding(0),
53      wbWidth(params->wbWidth),
54      numThreads(params->numberOfThreads),
55      switchedOut(false)
56{
57    _status = Active;
58    exeStatus = Running;
59    wbStatus = Idle;
60
61    // Setup wire to read instructions coming from issue.
62    fromIssue = issueToExecQueue.getWire(-issueToExecuteDelay);
63
64    // Instruction queue needs the queue between issue and execute.
65    instQueue.setIssueToExecuteQueue(&issueToExecQueue);
66
67    instQueue.setIEW(this);
68    ldstQueue.setIEW(this);
69
70    for (int i=0; i < numThreads; i++) {
71        dispatchStatus[i] = Running;
72        stalls[i].commit = false;
73        fetchRedirect[i] = false;
74        bdelayDoneSeqNum[i] = 0;
75    }
76
77    wbMax = wbWidth * params->wbDepth;
78
79    updateLSQNextCycle = false;
80
81    ableToIssue = true;
82
83    skidBufferMax = (3 * (renameToIEWDelay * params->renameWidth)) + issueWidth;
84}
85
86template <class Impl>
87std::string
88DefaultIEW<Impl>::name() const
89{
90    return cpu->name() + ".iew";
91}
92
93template <class Impl>
94void
95DefaultIEW<Impl>::regStats()
96{
97    using namespace Stats;
98
99    instQueue.regStats();
100    ldstQueue.regStats();
101
102    iewIdleCycles
103        .name(name() + ".iewIdleCycles")
104        .desc("Number of cycles IEW is idle");
105
106    iewSquashCycles
107        .name(name() + ".iewSquashCycles")
108        .desc("Number of cycles IEW is squashing");
109
110    iewBlockCycles
111        .name(name() + ".iewBlockCycles")
112        .desc("Number of cycles IEW is blocking");
113
114    iewUnblockCycles
115        .name(name() + ".iewUnblockCycles")
116        .desc("Number of cycles IEW is unblocking");
117
118    iewDispatchedInsts
119        .name(name() + ".iewDispatchedInsts")
120        .desc("Number of instructions dispatched to IQ");
121
122    iewDispSquashedInsts
123        .name(name() + ".iewDispSquashedInsts")
124        .desc("Number of squashed instructions skipped by dispatch");
125
126    iewDispLoadInsts
127        .name(name() + ".iewDispLoadInsts")
128        .desc("Number of dispatched load instructions");
129
130    iewDispStoreInsts
131        .name(name() + ".iewDispStoreInsts")
132        .desc("Number of dispatched store instructions");
133
134    iewDispNonSpecInsts
135        .name(name() + ".iewDispNonSpecInsts")
136        .desc("Number of dispatched non-speculative instructions");
137
138    iewIQFullEvents
139        .name(name() + ".iewIQFullEvents")
140        .desc("Number of times the IQ has become full, causing a stall");
141
142    iewLSQFullEvents
143        .name(name() + ".iewLSQFullEvents")
144        .desc("Number of times the LSQ has become full, causing a stall");
145
146    memOrderViolationEvents
147        .name(name() + ".memOrderViolationEvents")
148        .desc("Number of memory order violations");
149
150    predictedTakenIncorrect
151        .name(name() + ".predictedTakenIncorrect")
152        .desc("Number of branches that were predicted taken incorrectly");
153
154    predictedNotTakenIncorrect
155        .name(name() + ".predictedNotTakenIncorrect")
156        .desc("Number of branches that were predicted not taken incorrectly");
157
158    branchMispredicts
159        .name(name() + ".branchMispredicts")
160        .desc("Number of branch mispredicts detected at execute");
161
162    branchMispredicts = predictedTakenIncorrect + predictedNotTakenIncorrect;
163
164    iewExecutedInsts
165        .name(name() + ".iewExecutedInsts")
166        .desc("Number of executed instructions");
167
168    iewExecLoadInsts
169        .init(cpu->number_of_threads)
170        .name(name() + ".iewExecLoadInsts")
171        .desc("Number of load instructions executed")
172        .flags(total);
173
174    iewExecSquashedInsts
175        .name(name() + ".iewExecSquashedInsts")
176        .desc("Number of squashed instructions skipped in execute");
177
178    iewExecutedSwp
179        .init(cpu->number_of_threads)
180        .name(name() + ".EXEC:swp")
181        .desc("number of swp insts executed")
182        .flags(total);
183
184    iewExecutedNop
185        .init(cpu->number_of_threads)
186        .name(name() + ".EXEC:nop")
187        .desc("number of nop insts executed")
188        .flags(total);
189
190    iewExecutedRefs
191        .init(cpu->number_of_threads)
192        .name(name() + ".EXEC:refs")
193        .desc("number of memory reference insts executed")
194        .flags(total);
195
196    iewExecutedBranches
197        .init(cpu->number_of_threads)
198        .name(name() + ".EXEC:branches")
199        .desc("Number of branches executed")
200        .flags(total);
201
202    iewExecStoreInsts
203        .name(name() + ".EXEC:stores")
204        .desc("Number of stores executed")
205        .flags(total);
206    iewExecStoreInsts = iewExecutedRefs - iewExecLoadInsts;
207
208    iewExecRate
209        .name(name() + ".EXEC:rate")
210        .desc("Inst execution rate")
211        .flags(total);
212
213    iewExecRate = iewExecutedInsts / cpu->numCycles;
214
215    iewInstsToCommit
216        .init(cpu->number_of_threads)
217        .name(name() + ".WB:sent")
218        .desc("cumulative count of insts sent to commit")
219        .flags(total);
220
221    writebackCount
222        .init(cpu->number_of_threads)
223        .name(name() + ".WB:count")
224        .desc("cumulative count of insts written-back")
225        .flags(total);
226
227    producerInst
228        .init(cpu->number_of_threads)
229        .name(name() + ".WB:producers")
230        .desc("num instructions producing a value")
231        .flags(total);
232
233    consumerInst
234        .init(cpu->number_of_threads)
235        .name(name() + ".WB:consumers")
236        .desc("num instructions consuming a value")
237        .flags(total);
238
239    wbPenalized
240        .init(cpu->number_of_threads)
241        .name(name() + ".WB:penalized")
242        .desc("number of instrctions required to write to 'other' IQ")
243        .flags(total);
244
245    wbPenalizedRate
246        .name(name() + ".WB:penalized_rate")
247        .desc ("fraction of instructions written-back that wrote to 'other' IQ")
248        .flags(total);
249
250    wbPenalizedRate = wbPenalized / writebackCount;
251
252    wbFanout
253        .name(name() + ".WB:fanout")
254        .desc("average fanout of values written-back")
255        .flags(total);
256
257    wbFanout = producerInst / consumerInst;
258
259    wbRate
260        .name(name() + ".WB:rate")
261        .desc("insts written-back per cycle")
262        .flags(total);
263    wbRate = writebackCount / cpu->numCycles;
264}
265
266template<class Impl>
267void
268DefaultIEW<Impl>::initStage()
269{
270    for (int tid=0; tid < numThreads; tid++) {
271        toRename->iewInfo[tid].usedIQ = true;
272        toRename->iewInfo[tid].freeIQEntries =
273            instQueue.numFreeEntries(tid);
274
275        toRename->iewInfo[tid].usedLSQ = true;
276        toRename->iewInfo[tid].freeLSQEntries =
277            ldstQueue.numFreeEntries(tid);
278    }
279}
280
281template<class Impl>
282void
283DefaultIEW<Impl>::setCPU(O3CPU *cpu_ptr)
284{
285    DPRINTF(IEW, "Setting CPU pointer.\n");
286    cpu = cpu_ptr;
287
288    instQueue.setCPU(cpu_ptr);
289    ldstQueue.setCPU(cpu_ptr);
290
291    cpu->activateStage(O3CPU::IEWIdx);
292}
293
294template<class Impl>
295void
296DefaultIEW<Impl>::setTimeBuffer(TimeBuffer<TimeStruct> *tb_ptr)
297{
298    DPRINTF(IEW, "Setting time buffer pointer.\n");
299    timeBuffer = tb_ptr;
300
301    // Setup wire to read information from time buffer, from commit.
302    fromCommit = timeBuffer->getWire(-commitToIEWDelay);
303
304    // Setup wire to write information back to previous stages.
305    toRename = timeBuffer->getWire(0);
306
307    toFetch = timeBuffer->getWire(0);
308
309    // Instruction queue also needs main time buffer.
310    instQueue.setTimeBuffer(tb_ptr);
311}
312
313template<class Impl>
314void
315DefaultIEW<Impl>::setRenameQueue(TimeBuffer<RenameStruct> *rq_ptr)
316{
317    DPRINTF(IEW, "Setting rename queue pointer.\n");
318    renameQueue = rq_ptr;
319
320    // Setup wire to read information from rename queue.
321    fromRename = renameQueue->getWire(-renameToIEWDelay);
322}
323
324template<class Impl>
325void
326DefaultIEW<Impl>::setIEWQueue(TimeBuffer<IEWStruct> *iq_ptr)
327{
328    DPRINTF(IEW, "Setting IEW queue pointer.\n");
329    iewQueue = iq_ptr;
330
331    // Setup wire to write instructions to commit.
332    toCommit = iewQueue->getWire(0);
333}
334
335template<class Impl>
336void
337DefaultIEW<Impl>::setActiveThreads(std::list<unsigned> *at_ptr)
338{
339    DPRINTF(IEW, "Setting active threads list pointer.\n");
340    activeThreads = at_ptr;
341
342    ldstQueue.setActiveThreads(at_ptr);
343    instQueue.setActiveThreads(at_ptr);
344}
345
346template<class Impl>
347void
348DefaultIEW<Impl>::setScoreboard(Scoreboard *sb_ptr)
349{
350    DPRINTF(IEW, "Setting scoreboard pointer.\n");
351    scoreboard = sb_ptr;
352}
353
354template <class Impl>
355bool
356DefaultIEW<Impl>::drain()
357{
358    // IEW is ready to drain at any time.
359    cpu->signalDrained();
360    return true;
361}
362
363template <class Impl>
364void
365DefaultIEW<Impl>::resume()
366{
367}
368
369template <class Impl>
370void
371DefaultIEW<Impl>::switchOut()
372{
373    // Clear any state.
374    switchedOut = true;
375    assert(insts[0].empty());
376    assert(skidBuffer[0].empty());
377
378    instQueue.switchOut();
379    ldstQueue.switchOut();
380    fuPool->switchOut();
381
382    for (int i = 0; i < numThreads; i++) {
383        while (!insts[i].empty())
384            insts[i].pop();
385        while (!skidBuffer[i].empty())
386            skidBuffer[i].pop();
387    }
388}
389
390template <class Impl>
391void
392DefaultIEW<Impl>::takeOverFrom()
393{
394    // Reset all state.
395    _status = Active;
396    exeStatus = Running;
397    wbStatus = Idle;
398    switchedOut = false;
399
400    instQueue.takeOverFrom();
401    ldstQueue.takeOverFrom();
402    fuPool->takeOverFrom();
403
404    initStage();
405    cpu->activityThisCycle();
406
407    for (int i=0; i < numThreads; i++) {
408        dispatchStatus[i] = Running;
409        stalls[i].commit = false;
410        fetchRedirect[i] = false;
411    }
412
413    updateLSQNextCycle = false;
414
415    for (int i = 0; i < issueToExecQueue.getSize(); ++i) {
416        issueToExecQueue.advance();
417    }
418}
419
420template<class Impl>
421void
422DefaultIEW<Impl>::squash(unsigned tid)
423{
424    DPRINTF(IEW, "[tid:%i]: Squashing all instructions.\n",
425            tid);
426
427    // Tell the IQ to start squashing.
428    instQueue.squash(tid);
429
430    // Tell the LDSTQ to start squashing.
431#if ISA_HAS_DELAY_SLOT
432    ldstQueue.squash(fromCommit->commitInfo[tid].bdelayDoneSeqNum, tid);
433#else
434    ldstQueue.squash(fromCommit->commitInfo[tid].doneSeqNum, tid);
435#endif
436    updatedQueues = true;
437
438    // Clear the skid buffer in case it has any data in it.
439    DPRINTF(IEW, "[tid:%i]: Removing skidbuffer instructions until [sn:%i].\n",
440            tid, fromCommit->commitInfo[tid].bdelayDoneSeqNum);
441
442    while (!skidBuffer[tid].empty()) {
443#if ISA_HAS_DELAY_SLOT
444        if (skidBuffer[tid].front()->seqNum <=
445            fromCommit->commitInfo[tid].bdelayDoneSeqNum) {
446            DPRINTF(IEW, "[tid:%i]: Cannot remove skidbuffer instructions "
447                    "that occur before delay slot [sn:%i].\n",
448                    fromCommit->commitInfo[tid].bdelayDoneSeqNum,
449                    tid);
450            break;
451        } else {
452            DPRINTF(IEW, "[tid:%i]: Removing instruction [sn:%i] from "
453                    "skidBuffer.\n", tid, skidBuffer[tid].front()->seqNum);
454        }
455#endif
456        if (skidBuffer[tid].front()->isLoad() ||
457            skidBuffer[tid].front()->isStore() ) {
458            toRename->iewInfo[tid].dispatchedToLSQ++;
459        }
460
461        toRename->iewInfo[tid].dispatched++;
462
463        skidBuffer[tid].pop();
464    }
465
466    bdelayDoneSeqNum[tid] = fromCommit->commitInfo[tid].bdelayDoneSeqNum;
467
468    emptyRenameInsts(tid);
469}
470
471template<class Impl>
472void
473DefaultIEW<Impl>::squashDueToBranch(DynInstPtr &inst, unsigned tid)
474{
475    DPRINTF(IEW, "[tid:%i]: Squashing from a specific instruction, PC: %#x "
476            "[sn:%i].\n", tid, inst->readPC(), inst->seqNum);
477
478    toCommit->squash[tid] = true;
479    toCommit->squashedSeqNum[tid] = inst->seqNum;
480    toCommit->mispredPC[tid] = inst->readPC();
481    toCommit->branchMispredict[tid] = true;
482
483#if ISA_HAS_DELAY_SLOT
484    int instSize = sizeof(TheISA::MachInst);
485    bool branch_taken =
486        !(inst->readNextPC() + instSize == inst->readNextNPC() &&
487          (inst->readNextPC() == inst->readPC() + instSize ||
488           inst->readNextPC() == inst->readPC() + 2 * instSize));
489    DPRINTF(Sparc, "Branch taken = %s [sn:%i]\n",
490            branch_taken ? "true": "false", inst->seqNum);
491
492    toCommit->branchTaken[tid] = branch_taken;
493
494    bool squashDelaySlot = true;
495//	(inst->readNextPC() != inst->readPC() + sizeof(TheISA::MachInst));
496    DPRINTF(Sparc, "Squash delay slot = %s [sn:%i]\n",
497            squashDelaySlot ? "true": "false", inst->seqNum);
498    toCommit->squashDelaySlot[tid] = squashDelaySlot;
499    //If we're squashing the delay slot, we need to pick back up at NextPC.
500    //Otherwise, NextPC isn't being squashed, so we should pick back up at
501    //NextNPC.
502    if (squashDelaySlot) {
503        toCommit->nextPC[tid] = inst->readNextPC();
504        toCommit->nextNPC[tid] = inst->readNextNPC();
505    } else
506        toCommit->nextPC[tid] = inst->readNextNPC();
507#else
508    toCommit->branchTaken[tid] = inst->readNextPC() !=
509        (inst->readPC() + sizeof(TheISA::MachInst));
510    toCommit->nextPC[tid] = inst->readNextPC();
511#endif
512
513    toCommit->includeSquashInst[tid] = false;
514
515    wroteToTimeBuffer = true;
516}
517
518template<class Impl>
519void
520DefaultIEW<Impl>::squashDueToMemOrder(DynInstPtr &inst, unsigned tid)
521{
522    DPRINTF(IEW, "[tid:%i]: Squashing from a specific instruction, "
523            "PC: %#x [sn:%i].\n", tid, inst->readPC(), inst->seqNum);
524
525    toCommit->squash[tid] = true;
526    toCommit->squashedSeqNum[tid] = inst->seqNum;
527    toCommit->nextPC[tid] = inst->readNextPC();
528#if ISA_HAS_DELAY_SLOT
529    toCommit->nextNPC[tid] = inst->readNextNPC();
530#endif
531    toCommit->branchMispredict[tid] = false;
532
533    toCommit->includeSquashInst[tid] = false;
534
535    wroteToTimeBuffer = true;
536}
537
538template<class Impl>
539void
540DefaultIEW<Impl>::squashDueToMemBlocked(DynInstPtr &inst, unsigned tid)
541{
542    DPRINTF(IEW, "[tid:%i]: Memory blocked, squashing load and younger insts, "
543            "PC: %#x [sn:%i].\n", tid, inst->readPC(), inst->seqNum);
544
545    toCommit->squash[tid] = true;
546    toCommit->squashedSeqNum[tid] = inst->seqNum;
547    toCommit->nextPC[tid] = inst->readPC();
548#if ISA_HAS_DELAY_SLOT
549    toCommit->nextNPC[tid] = inst->readNextPC();
550#endif
551    toCommit->branchMispredict[tid] = false;
552
553    // Must include the broadcasted SN in the squash.
554    toCommit->includeSquashInst[tid] = true;
555
556    ldstQueue.setLoadBlockedHandled(tid);
557
558    wroteToTimeBuffer = true;
559}
560
561template<class Impl>
562void
563DefaultIEW<Impl>::block(unsigned tid)
564{
565    DPRINTF(IEW, "[tid:%u]: Blocking.\n", tid);
566
567    if (dispatchStatus[tid] != Blocked &&
568        dispatchStatus[tid] != Unblocking) {
569        toRename->iewBlock[tid] = true;
570        wroteToTimeBuffer = true;
571    }
572
573    // Add the current inputs to the skid buffer so they can be
574    // reprocessed when this stage unblocks.
575    skidInsert(tid);
576
577    dispatchStatus[tid] = Blocked;
578}
579
580template<class Impl>
581void
582DefaultIEW<Impl>::unblock(unsigned tid)
583{
584    DPRINTF(IEW, "[tid:%i]: Reading instructions out of the skid "
585            "buffer %u.\n",tid, tid);
586
587    // If the skid bufffer is empty, signal back to previous stages to unblock.
588    // Also switch status to running.
589    if (skidBuffer[tid].empty()) {
590        toRename->iewUnblock[tid] = true;
591        wroteToTimeBuffer = true;
592        DPRINTF(IEW, "[tid:%i]: Done unblocking.\n",tid);
593        dispatchStatus[tid] = Running;
594    }
595}
596
597template<class Impl>
598void
599DefaultIEW<Impl>::wakeDependents(DynInstPtr &inst)
600{
601    instQueue.wakeDependents(inst);
602}
603
604template<class Impl>
605void
606DefaultIEW<Impl>::rescheduleMemInst(DynInstPtr &inst)
607{
608    instQueue.rescheduleMemInst(inst);
609}
610
611template<class Impl>
612void
613DefaultIEW<Impl>::replayMemInst(DynInstPtr &inst)
614{
615    instQueue.replayMemInst(inst);
616}
617
618template<class Impl>
619void
620DefaultIEW<Impl>::instToCommit(DynInstPtr &inst)
621{
622    // This function should not be called after writebackInsts in a
623    // single cycle.  That will cause problems with an instruction
624    // being added to the queue to commit without being processed by
625    // writebackInsts prior to being sent to commit.
626
627    // First check the time slot that this instruction will write
628    // to.  If there are free write ports at the time, then go ahead
629    // and write the instruction to that time.  If there are not,
630    // keep looking back to see where's the first time there's a
631    // free slot.
632    while ((*iewQueue)[wbCycle].insts[wbNumInst]) {
633        ++wbNumInst;
634        if (wbNumInst == wbWidth) {
635            ++wbCycle;
636            wbNumInst = 0;
637        }
638
639        assert((wbCycle * wbWidth + wbNumInst) <= wbMax);
640    }
641
642    DPRINTF(IEW, "Current wb cycle: %i, width: %i, numInst: %i\nwbActual:%i\n",
643            wbCycle, wbWidth, wbNumInst, wbCycle * wbWidth + wbNumInst);
644    // Add finished instruction to queue to commit.
645    (*iewQueue)[wbCycle].insts[wbNumInst] = inst;
646    (*iewQueue)[wbCycle].size++;
647}
648
649template <class Impl>
650unsigned
651DefaultIEW<Impl>::validInstsFromRename()
652{
653    unsigned inst_count = 0;
654
655    for (int i=0; i<fromRename->size; i++) {
656        if (!fromRename->insts[i]->isSquashed())
657            inst_count++;
658    }
659
660    return inst_count;
661}
662
663template<class Impl>
664void
665DefaultIEW<Impl>::skidInsert(unsigned tid)
666{
667    DynInstPtr inst = NULL;
668
669    while (!insts[tid].empty()) {
670        inst = insts[tid].front();
671
672        insts[tid].pop();
673
674        DPRINTF(Decode,"[tid:%i]: Inserting [sn:%lli] PC:%#x into "
675                "dispatch skidBuffer %i\n",tid, inst->seqNum,
676                inst->readPC(),tid);
677
678        skidBuffer[tid].push(inst);
679    }
680
681    assert(skidBuffer[tid].size() <= skidBufferMax &&
682           "Skidbuffer Exceeded Max Size");
683}
684
685template<class Impl>
686int
687DefaultIEW<Impl>::skidCount()
688{
689    int max=0;
690
691    std::list<unsigned>::iterator threads = (*activeThreads).begin();
692
693    while (threads != (*activeThreads).end()) {
694        unsigned thread_count = skidBuffer[*threads++].size();
695        if (max < thread_count)
696            max = thread_count;
697    }
698
699    return max;
700}
701
702template<class Impl>
703bool
704DefaultIEW<Impl>::skidsEmpty()
705{
706    std::list<unsigned>::iterator threads = (*activeThreads).begin();
707
708    while (threads != (*activeThreads).end()) {
709        if (!skidBuffer[*threads++].empty())
710            return false;
711    }
712
713    return true;
714}
715
716template <class Impl>
717void
718DefaultIEW<Impl>::updateStatus()
719{
720    bool any_unblocking = false;
721
722    std::list<unsigned>::iterator threads = (*activeThreads).begin();
723
724    threads = (*activeThreads).begin();
725
726    while (threads != (*activeThreads).end()) {
727        unsigned tid = *threads++;
728
729        if (dispatchStatus[tid] == Unblocking) {
730            any_unblocking = true;
731            break;
732        }
733    }
734
735    // If there are no ready instructions waiting to be scheduled by the IQ,
736    // and there's no stores waiting to write back, and dispatch is not
737    // unblocking, then there is no internal activity for the IEW stage.
738    if (_status == Active && !instQueue.hasReadyInsts() &&
739        !ldstQueue.willWB() && !any_unblocking) {
740        DPRINTF(IEW, "IEW switching to idle\n");
741
742        deactivateStage();
743
744        _status = Inactive;
745    } else if (_status == Inactive && (instQueue.hasReadyInsts() ||
746                                       ldstQueue.willWB() ||
747                                       any_unblocking)) {
748        // Otherwise there is internal activity.  Set to active.
749        DPRINTF(IEW, "IEW switching to active\n");
750
751        activateStage();
752
753        _status = Active;
754    }
755}
756
757template <class Impl>
758void
759DefaultIEW<Impl>::resetEntries()
760{
761    instQueue.resetEntries();
762    ldstQueue.resetEntries();
763}
764
765template <class Impl>
766void
767DefaultIEW<Impl>::readStallSignals(unsigned tid)
768{
769    if (fromCommit->commitBlock[tid]) {
770        stalls[tid].commit = true;
771    }
772
773    if (fromCommit->commitUnblock[tid]) {
774        assert(stalls[tid].commit);
775        stalls[tid].commit = false;
776    }
777}
778
779template <class Impl>
780bool
781DefaultIEW<Impl>::checkStall(unsigned tid)
782{
783    bool ret_val(false);
784
785    if (stalls[tid].commit) {
786        DPRINTF(IEW,"[tid:%i]: Stall from Commit stage detected.\n",tid);
787        ret_val = true;
788    } else if (instQueue.isFull(tid)) {
789        DPRINTF(IEW,"[tid:%i]: Stall: IQ  is full.\n",tid);
790        ret_val = true;
791    } else if (ldstQueue.isFull(tid)) {
792        DPRINTF(IEW,"[tid:%i]: Stall: LSQ is full\n",tid);
793
794        if (ldstQueue.numLoads(tid) > 0 ) {
795
796            DPRINTF(IEW,"[tid:%i]: LSQ oldest load: [sn:%i] \n",
797                    tid,ldstQueue.getLoadHeadSeqNum(tid));
798        }
799
800        if (ldstQueue.numStores(tid) > 0) {
801
802            DPRINTF(IEW,"[tid:%i]: LSQ oldest store: [sn:%i] \n",
803                    tid,ldstQueue.getStoreHeadSeqNum(tid));
804        }
805
806        ret_val = true;
807    } else if (ldstQueue.isStalled(tid)) {
808        DPRINTF(IEW,"[tid:%i]: Stall: LSQ stall detected.\n",tid);
809        ret_val = true;
810    }
811
812    return ret_val;
813}
814
815template <class Impl>
816void
817DefaultIEW<Impl>::checkSignalsAndUpdate(unsigned tid)
818{
819    // Check if there's a squash signal, squash if there is
820    // Check stall signals, block if there is.
821    // If status was Blocked
822    //     if so then go to unblocking
823    // If status was Squashing
824    //     check if squashing is not high.  Switch to running this cycle.
825
826    readStallSignals(tid);
827
828    if (fromCommit->commitInfo[tid].squash) {
829        squash(tid);
830
831        if (dispatchStatus[tid] == Blocked ||
832            dispatchStatus[tid] == Unblocking) {
833            toRename->iewUnblock[tid] = true;
834            wroteToTimeBuffer = true;
835        }
836
837        dispatchStatus[tid] = Squashing;
838
839        fetchRedirect[tid] = false;
840        return;
841    }
842
843    if (fromCommit->commitInfo[tid].robSquashing) {
844        DPRINTF(IEW, "[tid:%i]: ROB is still squashing.\n", tid);
845
846        dispatchStatus[tid] = Squashing;
847
848        emptyRenameInsts(tid);
849        wroteToTimeBuffer = true;
850        return;
851    }
852
853    if (checkStall(tid)) {
854        block(tid);
855        dispatchStatus[tid] = Blocked;
856        return;
857    }
858
859    if (dispatchStatus[tid] == Blocked) {
860        // Status from previous cycle was blocked, but there are no more stall
861        // conditions.  Switch over to unblocking.
862        DPRINTF(IEW, "[tid:%i]: Done blocking, switching to unblocking.\n",
863                tid);
864
865        dispatchStatus[tid] = Unblocking;
866
867        unblock(tid);
868
869        return;
870    }
871
872    if (dispatchStatus[tid] == Squashing) {
873        // Switch status to running if rename isn't being told to block or
874        // squash this cycle.
875        DPRINTF(IEW, "[tid:%i]: Done squashing, switching to running.\n",
876                tid);
877
878        dispatchStatus[tid] = Running;
879
880        return;
881    }
882}
883
884template <class Impl>
885void
886DefaultIEW<Impl>::sortInsts()
887{
888    int insts_from_rename = fromRename->size;
889#ifdef DEBUG
890#if !ISA_HAS_DELAY_SLOT
891    for (int i = 0; i < numThreads; i++)
892        assert(insts[i].empty());
893#endif
894#endif
895    for (int i = 0; i < insts_from_rename; ++i) {
896        insts[fromRename->insts[i]->threadNumber].push(fromRename->insts[i]);
897    }
898}
899
900template <class Impl>
901void
902DefaultIEW<Impl>::emptyRenameInsts(unsigned tid)
903{
904    DPRINTF(IEW, "[tid:%i]: Removing incoming rename instructions until "
905            "[sn:%i].\n", tid, bdelayDoneSeqNum[tid]);
906
907    while (!insts[tid].empty()) {
908#if ISA_HAS_DELAY_SLOT
909        if (insts[tid].front()->seqNum <= bdelayDoneSeqNum[tid]) {
910            DPRINTF(IEW, "[tid:%i]: Done removing, cannot remove instruction"
911                    " that occurs at or before delay slot [sn:%i].\n",
912                    tid, bdelayDoneSeqNum[tid]);
913            break;
914        } else {
915            DPRINTF(IEW, "[tid:%i]: Removing incoming rename instruction "
916                    "[sn:%i].\n", tid, insts[tid].front()->seqNum);
917        }
918#endif
919
920        if (insts[tid].front()->isLoad() ||
921            insts[tid].front()->isStore() ) {
922            toRename->iewInfo[tid].dispatchedToLSQ++;
923        }
924
925        toRename->iewInfo[tid].dispatched++;
926
927        insts[tid].pop();
928    }
929}
930
931template <class Impl>
932void
933DefaultIEW<Impl>::wakeCPU()
934{
935    cpu->wakeCPU();
936}
937
938template <class Impl>
939void
940DefaultIEW<Impl>::activityThisCycle()
941{
942    DPRINTF(Activity, "Activity this cycle.\n");
943    cpu->activityThisCycle();
944}
945
946template <class Impl>
947inline void
948DefaultIEW<Impl>::activateStage()
949{
950    DPRINTF(Activity, "Activating stage.\n");
951    cpu->activateStage(O3CPU::IEWIdx);
952}
953
954template <class Impl>
955inline void
956DefaultIEW<Impl>::deactivateStage()
957{
958    DPRINTF(Activity, "Deactivating stage.\n");
959    cpu->deactivateStage(O3CPU::IEWIdx);
960}
961
962template<class Impl>
963void
964DefaultIEW<Impl>::dispatch(unsigned tid)
965{
966    // If status is Running or idle,
967    //     call dispatchInsts()
968    // If status is Unblocking,
969    //     buffer any instructions coming from rename
970    //     continue trying to empty skid buffer
971    //     check if stall conditions have passed
972
973    if (dispatchStatus[tid] == Blocked) {
974        ++iewBlockCycles;
975
976    } else if (dispatchStatus[tid] == Squashing) {
977        ++iewSquashCycles;
978    }
979
980    // Dispatch should try to dispatch as many instructions as its bandwidth
981    // will allow, as long as it is not currently blocked.
982    if (dispatchStatus[tid] == Running ||
983        dispatchStatus[tid] == Idle) {
984        DPRINTF(IEW, "[tid:%i] Not blocked, so attempting to run "
985                "dispatch.\n", tid);
986
987        dispatchInsts(tid);
988    } else if (dispatchStatus[tid] == Unblocking) {
989        // Make sure that the skid buffer has something in it if the
990        // status is unblocking.
991        assert(!skidsEmpty());
992
993        // If the status was unblocking, then instructions from the skid
994        // buffer were used.  Remove those instructions and handle
995        // the rest of unblocking.
996        dispatchInsts(tid);
997
998        ++iewUnblockCycles;
999
1000        if (validInstsFromRename() && dispatchedAllInsts) {
1001            // Add the current inputs to the skid buffer so they can be
1002            // reprocessed when this stage unblocks.
1003            skidInsert(tid);
1004        }
1005
1006        unblock(tid);
1007    }
1008}
1009
1010template <class Impl>
1011void
1012DefaultIEW<Impl>::dispatchInsts(unsigned tid)
1013{
1014    dispatchedAllInsts = true;
1015
1016    // Obtain instructions from skid buffer if unblocking, or queue from rename
1017    // otherwise.
1018    std::queue<DynInstPtr> &insts_to_dispatch =
1019        dispatchStatus[tid] == Unblocking ?
1020        skidBuffer[tid] : insts[tid];
1021
1022    int insts_to_add = insts_to_dispatch.size();
1023
1024    DynInstPtr inst;
1025    bool add_to_iq = false;
1026    int dis_num_inst = 0;
1027
1028    // Loop through the instructions, putting them in the instruction
1029    // queue.
1030    for ( ; dis_num_inst < insts_to_add &&
1031              dis_num_inst < dispatchWidth;
1032          ++dis_num_inst)
1033    {
1034        inst = insts_to_dispatch.front();
1035
1036        if (dispatchStatus[tid] == Unblocking) {
1037            DPRINTF(IEW, "[tid:%i]: Issue: Examining instruction from skid "
1038                    "buffer\n", tid);
1039        }
1040
1041        // Make sure there's a valid instruction there.
1042        assert(inst);
1043
1044        DPRINTF(IEW, "[tid:%i]: Issue: Adding PC %#x [sn:%lli] [tid:%i] to "
1045                "IQ.\n",
1046                tid, inst->readPC(), inst->seqNum, inst->threadNumber);
1047
1048        // Be sure to mark these instructions as ready so that the
1049        // commit stage can go ahead and execute them, and mark
1050        // them as issued so the IQ doesn't reprocess them.
1051
1052        // Check for squashed instructions.
1053        if (inst->isSquashed()) {
1054            DPRINTF(IEW, "[tid:%i]: Issue: Squashed instruction encountered, "
1055                    "not adding to IQ.\n", tid);
1056
1057            ++iewDispSquashedInsts;
1058
1059            insts_to_dispatch.pop();
1060
1061            //Tell Rename That An Instruction has been processed
1062            if (inst->isLoad() || inst->isStore()) {
1063                toRename->iewInfo[tid].dispatchedToLSQ++;
1064            }
1065            toRename->iewInfo[tid].dispatched++;
1066
1067            continue;
1068        }
1069
1070        // Check for full conditions.
1071        if (instQueue.isFull(tid)) {
1072            DPRINTF(IEW, "[tid:%i]: Issue: IQ has become full.\n", tid);
1073
1074            // Call function to start blocking.
1075            block(tid);
1076
1077            // Set unblock to false. Special case where we are using
1078            // skidbuffer (unblocking) instructions but then we still
1079            // get full in the IQ.
1080            toRename->iewUnblock[tid] = false;
1081
1082            dispatchedAllInsts = false;
1083
1084            ++iewIQFullEvents;
1085            break;
1086        } else if (ldstQueue.isFull(tid)) {
1087            DPRINTF(IEW, "[tid:%i]: Issue: LSQ has become full.\n",tid);
1088
1089            // Call function to start blocking.
1090            block(tid);
1091
1092            // Set unblock to false. Special case where we are using
1093            // skidbuffer (unblocking) instructions but then we still
1094            // get full in the IQ.
1095            toRename->iewUnblock[tid] = false;
1096
1097            dispatchedAllInsts = false;
1098
1099            ++iewLSQFullEvents;
1100            break;
1101        }
1102
1103        // Otherwise issue the instruction just fine.
1104        if (inst->isLoad()) {
1105            DPRINTF(IEW, "[tid:%i]: Issue: Memory instruction "
1106                    "encountered, adding to LSQ.\n", tid);
1107
1108            // Reserve a spot in the load store queue for this
1109            // memory access.
1110            ldstQueue.insertLoad(inst);
1111
1112            ++iewDispLoadInsts;
1113
1114            add_to_iq = true;
1115
1116            toRename->iewInfo[tid].dispatchedToLSQ++;
1117        } else if (inst->isStore()) {
1118            DPRINTF(IEW, "[tid:%i]: Issue: Memory instruction "
1119                    "encountered, adding to LSQ.\n", tid);
1120
1121            ldstQueue.insertStore(inst);
1122
1123            ++iewDispStoreInsts;
1124
1125            if (inst->isStoreConditional()) {
1126                // Store conditionals need to be set as "canCommit()"
1127                // so that commit can process them when they reach the
1128                // head of commit.
1129                // @todo: This is somewhat specific to Alpha.
1130                inst->setCanCommit();
1131                instQueue.insertNonSpec(inst);
1132                add_to_iq = false;
1133
1134                ++iewDispNonSpecInsts;
1135            } else {
1136                add_to_iq = true;
1137            }
1138
1139            toRename->iewInfo[tid].dispatchedToLSQ++;
1140#if FULL_SYSTEM
1141        } else if (inst->isMemBarrier() || inst->isWriteBarrier()) {
1142            // Same as non-speculative stores.
1143            inst->setCanCommit();
1144            instQueue.insertBarrier(inst);
1145            add_to_iq = false;
1146#endif
1147        } else if (inst->isNonSpeculative()) {
1148            DPRINTF(IEW, "[tid:%i]: Issue: Nonspeculative instruction "
1149                    "encountered, skipping.\n", tid);
1150
1151            // Same as non-speculative stores.
1152            inst->setCanCommit();
1153
1154            // Specifically insert it as nonspeculative.
1155            instQueue.insertNonSpec(inst);
1156
1157            ++iewDispNonSpecInsts;
1158
1159            add_to_iq = false;
1160        } else if (inst->isNop()) {
1161            DPRINTF(IEW, "[tid:%i]: Issue: Nop instruction encountered, "
1162                    "skipping.\n", tid);
1163
1164            inst->setIssued();
1165            inst->setExecuted();
1166            inst->setCanCommit();
1167
1168            instQueue.recordProducer(inst);
1169
1170            iewExecutedNop[tid]++;
1171
1172            add_to_iq = false;
1173        } else if (inst->isExecuted()) {
1174            assert(0 && "Instruction shouldn't be executed.\n");
1175            DPRINTF(IEW, "Issue: Executed branch encountered, "
1176                    "skipping.\n");
1177
1178            inst->setIssued();
1179            inst->setCanCommit();
1180
1181            instQueue.recordProducer(inst);
1182
1183            add_to_iq = false;
1184        } else {
1185            add_to_iq = true;
1186        }
1187
1188        // If the instruction queue is not full, then add the
1189        // instruction.
1190        if (add_to_iq) {
1191            instQueue.insert(inst);
1192        }
1193
1194        insts_to_dispatch.pop();
1195
1196        toRename->iewInfo[tid].dispatched++;
1197
1198        ++iewDispatchedInsts;
1199    }
1200
1201    if (!insts_to_dispatch.empty()) {
1202        DPRINTF(IEW,"[tid:%i]: Issue: Bandwidth Full. Blocking.\n", tid);
1203        block(tid);
1204        toRename->iewUnblock[tid] = false;
1205    }
1206
1207    if (dispatchStatus[tid] == Idle && dis_num_inst) {
1208        dispatchStatus[tid] = Running;
1209
1210        updatedQueues = true;
1211    }
1212
1213    dis_num_inst = 0;
1214}
1215
1216template <class Impl>
1217void
1218DefaultIEW<Impl>::printAvailableInsts()
1219{
1220    int inst = 0;
1221
1222    std::cout << "Available Instructions: ";
1223
1224    while (fromIssue->insts[inst]) {
1225
1226        if (inst%3==0) std::cout << "\n\t";
1227
1228        std::cout << "PC: " << fromIssue->insts[inst]->readPC()
1229             << " TN: " << fromIssue->insts[inst]->threadNumber
1230             << " SN: " << fromIssue->insts[inst]->seqNum << " | ";
1231
1232        inst++;
1233
1234    }
1235
1236    std::cout << "\n";
1237}
1238
1239template <class Impl>
1240void
1241DefaultIEW<Impl>::executeInsts()
1242{
1243    wbNumInst = 0;
1244    wbCycle = 0;
1245
1246    std::list<unsigned>::iterator threads = (*activeThreads).begin();
1247
1248    while (threads != (*activeThreads).end()) {
1249        unsigned tid = *threads++;
1250        fetchRedirect[tid] = false;
1251    }
1252
1253    // Uncomment this if you want to see all available instructions.
1254//    printAvailableInsts();
1255
1256    // Execute/writeback any instructions that are available.
1257    int insts_to_execute = fromIssue->size;
1258    int inst_num = 0;
1259    for (; inst_num < insts_to_execute;
1260          ++inst_num) {
1261
1262        DPRINTF(IEW, "Execute: Executing instructions from IQ.\n");
1263
1264        DynInstPtr inst = instQueue.getInstToExecute();
1265
1266        DPRINTF(IEW, "Execute: Processing PC %#x, [tid:%i] [sn:%i].\n",
1267                inst->readPC(), inst->threadNumber,inst->seqNum);
1268
1269        // Check if the instruction is squashed; if so then skip it
1270        if (inst->isSquashed()) {
1271            DPRINTF(IEW, "Execute: Instruction was squashed.\n");
1272
1273            // Consider this instruction executed so that commit can go
1274            // ahead and retire the instruction.
1275            inst->setExecuted();
1276
1277            // Not sure if I should set this here or just let commit try to
1278            // commit any squashed instructions.  I like the latter a bit more.
1279            inst->setCanCommit();
1280
1281            ++iewExecSquashedInsts;
1282
1283            decrWb(inst->seqNum);
1284            continue;
1285        }
1286
1287        Fault fault = NoFault;
1288
1289        // Execute instruction.
1290        // Note that if the instruction faults, it will be handled
1291        // at the commit stage.
1292        if (inst->isMemRef() &&
1293            (!inst->isDataPrefetch() && !inst->isInstPrefetch())) {
1294            DPRINTF(IEW, "Execute: Calculating address for memory "
1295                    "reference.\n");
1296
1297            // Tell the LDSTQ to execute this instruction (if it is a load).
1298            if (inst->isLoad()) {
1299                // Loads will mark themselves as executed, and their writeback
1300                // event adds the instruction to the queue to commit
1301                fault = ldstQueue.executeLoad(inst);
1302            } else if (inst->isStore()) {
1303                fault = ldstQueue.executeStore(inst);
1304
1305                // If the store had a fault then it may not have a mem req
1306                if (!inst->isStoreConditional() && fault == NoFault) {
1307                    inst->setExecuted();
1308
1309                    instToCommit(inst);
1310                } else if (fault != NoFault) {
1311                    // If the instruction faulted, then we need to send it along to commit
1312                    // without the instruction completing.
1313                    DPRINTF(IEW, "Store has fault %s! [sn:%lli]\n",
1314                            fault->name(), inst->seqNum);
1315
1316                    // Send this instruction to commit, also make sure iew stage
1317                    // realizes there is activity.
1318                    inst->setExecuted();
1319
1320                    instToCommit(inst);
1321                    activityThisCycle();
1322                }
1323
1324                // Store conditionals will mark themselves as
1325                // executed, and their writeback event will add the
1326                // instruction to the queue to commit.
1327            } else {
1328                panic("Unexpected memory type!\n");
1329            }
1330
1331        } else {
1332            inst->execute();
1333
1334            inst->setExecuted();
1335
1336            instToCommit(inst);
1337        }
1338
1339        updateExeInstStats(inst);
1340
1341        // Check if branch prediction was correct, if not then we need
1342        // to tell commit to squash in flight instructions.  Only
1343        // handle this if there hasn't already been something that
1344        // redirects fetch in this group of instructions.
1345
1346        // This probably needs to prioritize the redirects if a different
1347        // scheduler is used.  Currently the scheduler schedules the oldest
1348        // instruction first, so the branch resolution order will be correct.
1349        unsigned tid = inst->threadNumber;
1350
1351        if (!fetchRedirect[tid] ||
1352            toCommit->squashedSeqNum[tid] > inst->seqNum) {
1353
1354            if (inst->mispredicted()) {
1355                fetchRedirect[tid] = true;
1356
1357                DPRINTF(IEW, "Execute: Branch mispredict detected.\n");
1358                DPRINTF(IEW, "Predicted target was %#x.\n", inst->predPC);
1359#if ISA_HAS_DELAY_SLOT
1360                DPRINTF(IEW, "Execute: Redirecting fetch to PC: %#x.\n",
1361                        inst->nextNPC);
1362#else
1363                DPRINTF(IEW, "Execute: Redirecting fetch to PC: %#x.\n",
1364                        inst->nextPC);
1365#endif
1366                // If incorrect, then signal the ROB that it must be squashed.
1367                squashDueToBranch(inst, tid);
1368
1369                if (inst->readPredTaken()) {
1370                    predictedTakenIncorrect++;
1371                } else {
1372                    predictedNotTakenIncorrect++;
1373                }
1374            } else if (ldstQueue.violation(tid)) {
1375                // If there was an ordering violation, then get the
1376                // DynInst that caused the violation.  Note that this
1377                // clears the violation signal.
1378                DynInstPtr violator;
1379                violator = ldstQueue.getMemDepViolator(tid);
1380
1381                DPRINTF(IEW, "LDSTQ detected a violation.  Violator PC: "
1382                        "%#x, inst PC: %#x.  Addr is: %#x.\n",
1383                        violator->readPC(), inst->readPC(), inst->physEffAddr);
1384
1385                // Ensure the violating instruction is older than
1386                // current squash
1387                if (fetchRedirect[tid] &&
1388                    violator->seqNum >= toCommit->squashedSeqNum[tid])
1389                    continue;
1390
1391                fetchRedirect[tid] = true;
1392
1393                // Tell the instruction queue that a violation has occured.
1394                instQueue.violation(inst, violator);
1395
1396                // Squash.
1397                squashDueToMemOrder(inst,tid);
1398
1399                ++memOrderViolationEvents;
1400            } else if (ldstQueue.loadBlocked(tid) &&
1401                       !ldstQueue.isLoadBlockedHandled(tid)) {
1402                fetchRedirect[tid] = true;
1403
1404                DPRINTF(IEW, "Load operation couldn't execute because the "
1405                        "memory system is blocked.  PC: %#x [sn:%lli]\n",
1406                        inst->readPC(), inst->seqNum);
1407
1408                squashDueToMemBlocked(inst, tid);
1409            }
1410        }
1411    }
1412
1413    // Update and record activity if we processed any instructions.
1414    if (inst_num) {
1415        if (exeStatus == Idle) {
1416            exeStatus = Running;
1417        }
1418
1419        updatedQueues = true;
1420
1421        cpu->activityThisCycle();
1422    }
1423
1424    // Need to reset this in case a writeback event needs to write into the
1425    // iew queue.  That way the writeback event will write into the correct
1426    // spot in the queue.
1427    wbNumInst = 0;
1428}
1429
1430template <class Impl>
1431void
1432DefaultIEW<Impl>::writebackInsts()
1433{
1434    // Loop through the head of the time buffer and wake any
1435    // dependents.  These instructions are about to write back.  Also
1436    // mark scoreboard that this instruction is finally complete.
1437    // Either have IEW have direct access to scoreboard, or have this
1438    // as part of backwards communication.
1439    for (int inst_num = 0; inst_num < wbWidth &&
1440             toCommit->insts[inst_num]; inst_num++) {
1441        DynInstPtr inst = toCommit->insts[inst_num];
1442        int tid = inst->threadNumber;
1443
1444        DPRINTF(IEW, "Sending instructions to commit, [sn:%lli] PC %#x.\n",
1445                inst->seqNum, inst->readPC());
1446
1447        iewInstsToCommit[tid]++;
1448
1449        // Some instructions will be sent to commit without having
1450        // executed because they need commit to handle them.
1451        // E.g. Uncached loads have not actually executed when they
1452        // are first sent to commit.  Instead commit must tell the LSQ
1453        // when it's ready to execute the uncached load.
1454        if (!inst->isSquashed() && inst->isExecuted() && inst->getFault() == NoFault) {
1455            int dependents = instQueue.wakeDependents(inst);
1456
1457            for (int i = 0; i < inst->numDestRegs(); i++) {
1458                //mark as Ready
1459                DPRINTF(IEW,"Setting Destination Register %i\n",
1460                        inst->renamedDestRegIdx(i));
1461                scoreboard->setReg(inst->renamedDestRegIdx(i));
1462            }
1463
1464            if (dependents) {
1465                producerInst[tid]++;
1466                consumerInst[tid]+= dependents;
1467            }
1468            writebackCount[tid]++;
1469        }
1470
1471        decrWb(inst->seqNum);
1472    }
1473}
1474
1475template<class Impl>
1476void
1477DefaultIEW<Impl>::tick()
1478{
1479    wbNumInst = 0;
1480    wbCycle = 0;
1481
1482    wroteToTimeBuffer = false;
1483    updatedQueues = false;
1484
1485    sortInsts();
1486
1487    // Free function units marked as being freed this cycle.
1488    fuPool->processFreeUnits();
1489
1490    std::list<unsigned>::iterator threads = (*activeThreads).begin();
1491
1492    // Check stall and squash signals, dispatch any instructions.
1493    while (threads != (*activeThreads).end()) {
1494           unsigned tid = *threads++;
1495
1496        DPRINTF(IEW,"Issue: Processing [tid:%i]\n",tid);
1497
1498        checkSignalsAndUpdate(tid);
1499        dispatch(tid);
1500    }
1501
1502    if (exeStatus != Squashing) {
1503        executeInsts();
1504
1505        writebackInsts();
1506
1507        // Have the instruction queue try to schedule any ready instructions.
1508        // (In actuality, this scheduling is for instructions that will
1509        // be executed next cycle.)
1510        instQueue.scheduleReadyInsts();
1511
1512        // Also should advance its own time buffers if the stage ran.
1513        // Not the best place for it, but this works (hopefully).
1514        issueToExecQueue.advance();
1515    }
1516
1517    bool broadcast_free_entries = false;
1518
1519    if (updatedQueues || exeStatus == Running || updateLSQNextCycle) {
1520        exeStatus = Idle;
1521        updateLSQNextCycle = false;
1522
1523        broadcast_free_entries = true;
1524    }
1525
1526    // Writeback any stores using any leftover bandwidth.
1527    ldstQueue.writebackStores();
1528
1529    // Check the committed load/store signals to see if there's a load
1530    // or store to commit.  Also check if it's being told to execute a
1531    // nonspeculative instruction.
1532    // This is pretty inefficient...
1533
1534    threads = (*activeThreads).begin();
1535    while (threads != (*activeThreads).end()) {
1536        unsigned tid = (*threads++);
1537
1538        DPRINTF(IEW,"Processing [tid:%i]\n",tid);
1539
1540        // Update structures based on instructions committed.
1541        if (fromCommit->commitInfo[tid].doneSeqNum != 0 &&
1542            !fromCommit->commitInfo[tid].squash &&
1543            !fromCommit->commitInfo[tid].robSquashing) {
1544
1545            ldstQueue.commitStores(fromCommit->commitInfo[tid].doneSeqNum,tid);
1546
1547            ldstQueue.commitLoads(fromCommit->commitInfo[tid].doneSeqNum,tid);
1548
1549            updateLSQNextCycle = true;
1550            instQueue.commit(fromCommit->commitInfo[tid].doneSeqNum,tid);
1551        }
1552
1553        if (fromCommit->commitInfo[tid].nonSpecSeqNum != 0) {
1554
1555            //DPRINTF(IEW,"NonspecInst from thread %i",tid);
1556            if (fromCommit->commitInfo[tid].uncached) {
1557                instQueue.replayMemInst(fromCommit->commitInfo[tid].uncachedLoad);
1558            } else {
1559                instQueue.scheduleNonSpec(
1560                    fromCommit->commitInfo[tid].nonSpecSeqNum);
1561            }
1562        }
1563
1564        if (broadcast_free_entries) {
1565            toFetch->iewInfo[tid].iqCount =
1566                instQueue.getCount(tid);
1567            toFetch->iewInfo[tid].ldstqCount =
1568                ldstQueue.getCount(tid);
1569
1570            toRename->iewInfo[tid].usedIQ = true;
1571            toRename->iewInfo[tid].freeIQEntries =
1572                instQueue.numFreeEntries();
1573            toRename->iewInfo[tid].usedLSQ = true;
1574            toRename->iewInfo[tid].freeLSQEntries =
1575                ldstQueue.numFreeEntries(tid);
1576
1577            wroteToTimeBuffer = true;
1578        }
1579
1580        DPRINTF(IEW, "[tid:%i], Dispatch dispatched %i instructions.\n",
1581                tid, toRename->iewInfo[tid].dispatched);
1582    }
1583
1584    DPRINTF(IEW, "IQ has %i free entries (Can schedule: %i).  "
1585            "LSQ has %i free entries.\n",
1586            instQueue.numFreeEntries(), instQueue.hasReadyInsts(),
1587            ldstQueue.numFreeEntries());
1588
1589    updateStatus();
1590
1591    if (wroteToTimeBuffer) {
1592        DPRINTF(Activity, "Activity this cycle.\n");
1593        cpu->activityThisCycle();
1594    }
1595}
1596
1597template <class Impl>
1598void
1599DefaultIEW<Impl>::updateExeInstStats(DynInstPtr &inst)
1600{
1601    int thread_number = inst->threadNumber;
1602
1603    //
1604    //  Pick off the software prefetches
1605    //
1606#ifdef TARGET_ALPHA
1607    if (inst->isDataPrefetch())
1608        iewExecutedSwp[thread_number]++;
1609    else
1610        iewIewExecutedcutedInsts++;
1611#else
1612    iewExecutedInsts++;
1613#endif
1614
1615    //
1616    //  Control operations
1617    //
1618    if (inst->isControl())
1619        iewExecutedBranches[thread_number]++;
1620
1621    //
1622    //  Memory operations
1623    //
1624    if (inst->isMemRef()) {
1625        iewExecutedRefs[thread_number]++;
1626
1627        if (inst->isLoad()) {
1628            iewExecLoadInsts[thread_number]++;
1629        }
1630    }
1631}
1632