iew_impl.hh revision 2863
1/*
2 * Copyright (c) 2004-2006 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Kevin Lim
29 */
30
31// @todo: Fix the instantaneous communication among all the stages within
32// iew.  There's a clear delay between issue and execute, yet backwards
33// communication happens simultaneously.
34
35#include <queue>
36
37#include "base/timebuf.hh"
38#include "cpu/o3/fu_pool.hh"
39#include "cpu/o3/iew.hh"
40
41using namespace std;
42
43template<class Impl>
44DefaultIEW<Impl>::DefaultIEW(Params *params)
45    : // @todo: Make this into a parameter.
46      issueToExecQueue(5, 5),
47      instQueue(params),
48      ldstQueue(params),
49      fuPool(params->fuPool),
50      commitToIEWDelay(params->commitToIEWDelay),
51      renameToIEWDelay(params->renameToIEWDelay),
52      issueToExecuteDelay(params->issueToExecuteDelay),
53      dispatchWidth(params->dispatchWidth),
54      issueWidth(params->issueWidth),
55      wbOutstanding(0),
56      wbWidth(params->wbWidth),
57      numThreads(params->numberOfThreads),
58      switchedOut(false)
59{
60    _status = Active;
61    exeStatus = Running;
62    wbStatus = Idle;
63
64    // Setup wire to read instructions coming from issue.
65    fromIssue = issueToExecQueue.getWire(-issueToExecuteDelay);
66
67    // Instruction queue needs the queue between issue and execute.
68    instQueue.setIssueToExecuteQueue(&issueToExecQueue);
69
70    instQueue.setIEW(this);
71    ldstQueue.setIEW(this);
72
73    for (int i=0; i < numThreads; i++) {
74        dispatchStatus[i] = Running;
75        stalls[i].commit = false;
76        fetchRedirect[i] = false;
77    }
78
79    wbMax = wbWidth * params->wbDepth;
80
81    updateLSQNextCycle = false;
82
83    ableToIssue = true;
84
85    skidBufferMax = (3 * (renameToIEWDelay * params->renameWidth)) + issueWidth;
86}
87
88template <class Impl>
89std::string
90DefaultIEW<Impl>::name() const
91{
92    return cpu->name() + ".iew";
93}
94
95template <class Impl>
96void
97DefaultIEW<Impl>::regStats()
98{
99    using namespace Stats;
100
101    instQueue.regStats();
102    ldstQueue.regStats();
103
104    iewIdleCycles
105        .name(name() + ".iewIdleCycles")
106        .desc("Number of cycles IEW is idle");
107
108    iewSquashCycles
109        .name(name() + ".iewSquashCycles")
110        .desc("Number of cycles IEW is squashing");
111
112    iewBlockCycles
113        .name(name() + ".iewBlockCycles")
114        .desc("Number of cycles IEW is blocking");
115
116    iewUnblockCycles
117        .name(name() + ".iewUnblockCycles")
118        .desc("Number of cycles IEW is unblocking");
119
120    iewDispatchedInsts
121        .name(name() + ".iewDispatchedInsts")
122        .desc("Number of instructions dispatched to IQ");
123
124    iewDispSquashedInsts
125        .name(name() + ".iewDispSquashedInsts")
126        .desc("Number of squashed instructions skipped by dispatch");
127
128    iewDispLoadInsts
129        .name(name() + ".iewDispLoadInsts")
130        .desc("Number of dispatched load instructions");
131
132    iewDispStoreInsts
133        .name(name() + ".iewDispStoreInsts")
134        .desc("Number of dispatched store instructions");
135
136    iewDispNonSpecInsts
137        .name(name() + ".iewDispNonSpecInsts")
138        .desc("Number of dispatched non-speculative instructions");
139
140    iewIQFullEvents
141        .name(name() + ".iewIQFullEvents")
142        .desc("Number of times the IQ has become full, causing a stall");
143
144    iewLSQFullEvents
145        .name(name() + ".iewLSQFullEvents")
146        .desc("Number of times the LSQ has become full, causing a stall");
147
148    memOrderViolationEvents
149        .name(name() + ".memOrderViolationEvents")
150        .desc("Number of memory order violations");
151
152    predictedTakenIncorrect
153        .name(name() + ".predictedTakenIncorrect")
154        .desc("Number of branches that were predicted taken incorrectly");
155
156    predictedNotTakenIncorrect
157        .name(name() + ".predictedNotTakenIncorrect")
158        .desc("Number of branches that were predicted not taken incorrectly");
159
160    branchMispredicts
161        .name(name() + ".branchMispredicts")
162        .desc("Number of branch mispredicts detected at execute");
163
164    branchMispredicts = predictedTakenIncorrect + predictedNotTakenIncorrect;
165
166    iewExecutedInsts
167        .name(name() + ".EXEC:insts")
168        .desc("Number of executed instructions");
169
170    iewExecLoadInsts
171        .init(cpu->number_of_threads)
172        .name(name() + ".EXEC:loads")
173        .desc("Number of load instructions executed")
174        .flags(total);
175
176    iewExecSquashedInsts
177        .name(name() + ".EXEC:squashedInsts")
178        .desc("Number of squashed instructions skipped in execute");
179
180    iewExecutedSwp
181        .init(cpu->number_of_threads)
182        .name(name() + ".EXEC:swp")
183        .desc("number of swp insts executed")
184        .flags(total);
185
186    iewExecutedNop
187        .init(cpu->number_of_threads)
188        .name(name() + ".EXEC:nop")
189        .desc("number of nop insts executed")
190        .flags(total);
191
192    iewExecutedRefs
193        .init(cpu->number_of_threads)
194        .name(name() + ".EXEC:refs")
195        .desc("number of memory reference insts executed")
196        .flags(total);
197
198    iewExecutedBranches
199        .init(cpu->number_of_threads)
200        .name(name() + ".EXEC:branches")
201        .desc("Number of branches executed")
202        .flags(total);
203
204    iewExecStoreInsts
205        .name(name() + ".EXEC:stores")
206        .desc("Number of stores executed")
207        .flags(total);
208    iewExecStoreInsts = iewExecutedRefs - iewExecLoadInsts;
209
210    iewExecRate
211        .name(name() + ".EXEC:rate")
212        .desc("Inst execution rate")
213        .flags(total);
214
215    iewExecRate = iewExecutedInsts / cpu->numCycles;
216
217    iewInstsToCommit
218        .init(cpu->number_of_threads)
219        .name(name() + ".WB:sent")
220        .desc("cumulative count of insts sent to commit")
221        .flags(total);
222
223    writebackCount
224        .init(cpu->number_of_threads)
225        .name(name() + ".WB:count")
226        .desc("cumulative count of insts written-back")
227        .flags(total);
228
229    producerInst
230        .init(cpu->number_of_threads)
231        .name(name() + ".WB:producers")
232        .desc("num instructions producing a value")
233        .flags(total);
234
235    consumerInst
236        .init(cpu->number_of_threads)
237        .name(name() + ".WB:consumers")
238        .desc("num instructions consuming a value")
239        .flags(total);
240
241    wbPenalized
242        .init(cpu->number_of_threads)
243        .name(name() + ".WB:penalized")
244        .desc("number of instrctions required to write to 'other' IQ")
245        .flags(total);
246
247    wbPenalizedRate
248        .name(name() + ".WB:penalized_rate")
249        .desc ("fraction of instructions written-back that wrote to 'other' IQ")
250        .flags(total);
251
252    wbPenalizedRate = wbPenalized / writebackCount;
253
254    wbFanout
255        .name(name() + ".WB:fanout")
256        .desc("average fanout of values written-back")
257        .flags(total);
258
259    wbFanout = producerInst / consumerInst;
260
261    wbRate
262        .name(name() + ".WB:rate")
263        .desc("insts written-back per cycle")
264        .flags(total);
265    wbRate = writebackCount / cpu->numCycles;
266}
267
268template<class Impl>
269void
270DefaultIEW<Impl>::initStage()
271{
272    for (int tid=0; tid < numThreads; tid++) {
273        toRename->iewInfo[tid].usedIQ = true;
274        toRename->iewInfo[tid].freeIQEntries =
275            instQueue.numFreeEntries(tid);
276
277        toRename->iewInfo[tid].usedLSQ = true;
278        toRename->iewInfo[tid].freeLSQEntries =
279            ldstQueue.numFreeEntries(tid);
280    }
281}
282
283template<class Impl>
284void
285DefaultIEW<Impl>::setCPU(O3CPU *cpu_ptr)
286{
287    DPRINTF(IEW, "Setting CPU pointer.\n");
288    cpu = cpu_ptr;
289
290    instQueue.setCPU(cpu_ptr);
291    ldstQueue.setCPU(cpu_ptr);
292
293    cpu->activateStage(O3CPU::IEWIdx);
294}
295
296template<class Impl>
297void
298DefaultIEW<Impl>::setTimeBuffer(TimeBuffer<TimeStruct> *tb_ptr)
299{
300    DPRINTF(IEW, "Setting time buffer pointer.\n");
301    timeBuffer = tb_ptr;
302
303    // Setup wire to read information from time buffer, from commit.
304    fromCommit = timeBuffer->getWire(-commitToIEWDelay);
305
306    // Setup wire to write information back to previous stages.
307    toRename = timeBuffer->getWire(0);
308
309    toFetch = timeBuffer->getWire(0);
310
311    // Instruction queue also needs main time buffer.
312    instQueue.setTimeBuffer(tb_ptr);
313}
314
315template<class Impl>
316void
317DefaultIEW<Impl>::setRenameQueue(TimeBuffer<RenameStruct> *rq_ptr)
318{
319    DPRINTF(IEW, "Setting rename queue pointer.\n");
320    renameQueue = rq_ptr;
321
322    // Setup wire to read information from rename queue.
323    fromRename = renameQueue->getWire(-renameToIEWDelay);
324}
325
326template<class Impl>
327void
328DefaultIEW<Impl>::setIEWQueue(TimeBuffer<IEWStruct> *iq_ptr)
329{
330    DPRINTF(IEW, "Setting IEW queue pointer.\n");
331    iewQueue = iq_ptr;
332
333    // Setup wire to write instructions to commit.
334    toCommit = iewQueue->getWire(0);
335}
336
337template<class Impl>
338void
339DefaultIEW<Impl>::setActiveThreads(list<unsigned> *at_ptr)
340{
341    DPRINTF(IEW, "Setting active threads list pointer.\n");
342    activeThreads = at_ptr;
343
344    ldstQueue.setActiveThreads(at_ptr);
345    instQueue.setActiveThreads(at_ptr);
346}
347
348template<class Impl>
349void
350DefaultIEW<Impl>::setScoreboard(Scoreboard *sb_ptr)
351{
352    DPRINTF(IEW, "Setting scoreboard pointer.\n");
353    scoreboard = sb_ptr;
354}
355
356template <class Impl>
357bool
358DefaultIEW<Impl>::drain()
359{
360    // IEW is ready to drain at any time.
361    cpu->signalDrained();
362    return true;
363}
364
365template <class Impl>
366void
367DefaultIEW<Impl>::resume()
368{
369}
370
371template <class Impl>
372void
373DefaultIEW<Impl>::switchOut()
374{
375    // Clear any state.
376    switchedOut = true;
377
378    instQueue.switchOut();
379    ldstQueue.switchOut();
380    fuPool->switchOut();
381
382    for (int i = 0; i < numThreads; i++) {
383        while (!insts[i].empty())
384            insts[i].pop();
385        while (!skidBuffer[i].empty())
386            skidBuffer[i].pop();
387    }
388}
389
390template <class Impl>
391void
392DefaultIEW<Impl>::takeOverFrom()
393{
394    // Reset all state.
395    _status = Active;
396    exeStatus = Running;
397    wbStatus = Idle;
398    switchedOut = false;
399
400    instQueue.takeOverFrom();
401    ldstQueue.takeOverFrom();
402    fuPool->takeOverFrom();
403
404    initStage();
405    cpu->activityThisCycle();
406
407    for (int i=0; i < numThreads; i++) {
408        dispatchStatus[i] = Running;
409        stalls[i].commit = false;
410        fetchRedirect[i] = false;
411    }
412
413    updateLSQNextCycle = false;
414
415    // @todo: Fix hardcoded number
416    for (int i = 0; i < 6; ++i) {
417        issueToExecQueue.advance();
418    }
419}
420
421template<class Impl>
422void
423DefaultIEW<Impl>::squash(unsigned tid)
424{
425    DPRINTF(IEW, "[tid:%i]: Squashing all instructions.\n",
426            tid);
427
428    // Tell the IQ to start squashing.
429    instQueue.squash(tid);
430
431    // Tell the LDSTQ to start squashing.
432    ldstQueue.squash(fromCommit->commitInfo[tid].doneSeqNum, tid);
433
434    updatedQueues = true;
435
436    // Clear the skid buffer in case it has any data in it.
437    while (!skidBuffer[tid].empty()) {
438
439        if (skidBuffer[tid].front()->isLoad() ||
440            skidBuffer[tid].front()->isStore() ) {
441            toRename->iewInfo[tid].dispatchedToLSQ++;
442        }
443
444        toRename->iewInfo[tid].dispatched++;
445
446        skidBuffer[tid].pop();
447    }
448
449    emptyRenameInsts(tid);
450}
451
452template<class Impl>
453void
454DefaultIEW<Impl>::squashDueToBranch(DynInstPtr &inst, unsigned tid)
455{
456    DPRINTF(IEW, "[tid:%i]: Squashing from a specific instruction, PC: %#x "
457            "[sn:%i].\n", tid, inst->readPC(), inst->seqNum);
458
459    toCommit->squash[tid] = true;
460    toCommit->squashedSeqNum[tid] = inst->seqNum;
461    toCommit->mispredPC[tid] = inst->readPC();
462    toCommit->nextPC[tid] = inst->readNextPC();
463    toCommit->branchMispredict[tid] = true;
464    toCommit->branchTaken[tid] = inst->readNextPC() !=
465        (inst->readPC() + sizeof(TheISA::MachInst));
466
467    toCommit->includeSquashInst[tid] = false;
468
469    wroteToTimeBuffer = true;
470}
471
472template<class Impl>
473void
474DefaultIEW<Impl>::squashDueToMemOrder(DynInstPtr &inst, unsigned tid)
475{
476    DPRINTF(IEW, "[tid:%i]: Squashing from a specific instruction, "
477            "PC: %#x [sn:%i].\n", tid, inst->readPC(), inst->seqNum);
478
479    toCommit->squash[tid] = true;
480    toCommit->squashedSeqNum[tid] = inst->seqNum;
481    toCommit->nextPC[tid] = inst->readNextPC();
482
483    toCommit->includeSquashInst[tid] = false;
484
485    wroteToTimeBuffer = true;
486}
487
488template<class Impl>
489void
490DefaultIEW<Impl>::squashDueToMemBlocked(DynInstPtr &inst, unsigned tid)
491{
492    DPRINTF(IEW, "[tid:%i]: Memory blocked, squashing load and younger insts, "
493            "PC: %#x [sn:%i].\n", tid, inst->readPC(), inst->seqNum);
494
495    toCommit->squash[tid] = true;
496    toCommit->squashedSeqNum[tid] = inst->seqNum;
497    toCommit->nextPC[tid] = inst->readPC();
498
499    // Must include the broadcasted SN in the squash.
500    toCommit->includeSquashInst[tid] = true;
501
502    ldstQueue.setLoadBlockedHandled(tid);
503
504    wroteToTimeBuffer = true;
505}
506
507template<class Impl>
508void
509DefaultIEW<Impl>::block(unsigned tid)
510{
511    DPRINTF(IEW, "[tid:%u]: Blocking.\n", tid);
512
513    if (dispatchStatus[tid] != Blocked &&
514        dispatchStatus[tid] != Unblocking) {
515        toRename->iewBlock[tid] = true;
516        wroteToTimeBuffer = true;
517    }
518
519    // Add the current inputs to the skid buffer so they can be
520    // reprocessed when this stage unblocks.
521    skidInsert(tid);
522
523    dispatchStatus[tid] = Blocked;
524}
525
526template<class Impl>
527void
528DefaultIEW<Impl>::unblock(unsigned tid)
529{
530    DPRINTF(IEW, "[tid:%i]: Reading instructions out of the skid "
531            "buffer %u.\n",tid, tid);
532
533    // If the skid bufffer is empty, signal back to previous stages to unblock.
534    // Also switch status to running.
535    if (skidBuffer[tid].empty()) {
536        toRename->iewUnblock[tid] = true;
537        wroteToTimeBuffer = true;
538        DPRINTF(IEW, "[tid:%i]: Done unblocking.\n",tid);
539        dispatchStatus[tid] = Running;
540    }
541}
542
543template<class Impl>
544void
545DefaultIEW<Impl>::wakeDependents(DynInstPtr &inst)
546{
547    instQueue.wakeDependents(inst);
548}
549
550template<class Impl>
551void
552DefaultIEW<Impl>::rescheduleMemInst(DynInstPtr &inst)
553{
554    instQueue.rescheduleMemInst(inst);
555}
556
557template<class Impl>
558void
559DefaultIEW<Impl>::replayMemInst(DynInstPtr &inst)
560{
561    instQueue.replayMemInst(inst);
562}
563
564template<class Impl>
565void
566DefaultIEW<Impl>::instToCommit(DynInstPtr &inst)
567{
568    // First check the time slot that this instruction will write
569    // to.  If there are free write ports at the time, then go ahead
570    // and write the instruction to that time.  If there are not,
571    // keep looking back to see where's the first time there's a
572    // free slot.
573    while ((*iewQueue)[wbCycle].insts[wbNumInst]) {
574        ++wbNumInst;
575        if (wbNumInst == wbWidth) {
576            ++wbCycle;
577            wbNumInst = 0;
578        }
579
580        assert((wbCycle * wbWidth + wbNumInst) < wbMax);
581    }
582
583    // Add finished instruction to queue to commit.
584    (*iewQueue)[wbCycle].insts[wbNumInst] = inst;
585    (*iewQueue)[wbCycle].size++;
586}
587
588template <class Impl>
589unsigned
590DefaultIEW<Impl>::validInstsFromRename()
591{
592    unsigned inst_count = 0;
593
594    for (int i=0; i<fromRename->size; i++) {
595        if (!fromRename->insts[i]->isSquashed())
596            inst_count++;
597    }
598
599    return inst_count;
600}
601
602template<class Impl>
603void
604DefaultIEW<Impl>::skidInsert(unsigned tid)
605{
606    DynInstPtr inst = NULL;
607
608    while (!insts[tid].empty()) {
609        inst = insts[tid].front();
610
611        insts[tid].pop();
612
613        DPRINTF(Decode,"[tid:%i]: Inserting [sn:%lli] PC:%#x into "
614                "dispatch skidBuffer %i\n",tid, inst->seqNum,
615                inst->readPC(),tid);
616
617        skidBuffer[tid].push(inst);
618    }
619
620    assert(skidBuffer[tid].size() <= skidBufferMax &&
621           "Skidbuffer Exceeded Max Size");
622}
623
624template<class Impl>
625int
626DefaultIEW<Impl>::skidCount()
627{
628    int max=0;
629
630    list<unsigned>::iterator threads = (*activeThreads).begin();
631
632    while (threads != (*activeThreads).end()) {
633        unsigned thread_count = skidBuffer[*threads++].size();
634        if (max < thread_count)
635            max = thread_count;
636    }
637
638    return max;
639}
640
641template<class Impl>
642bool
643DefaultIEW<Impl>::skidsEmpty()
644{
645    list<unsigned>::iterator threads = (*activeThreads).begin();
646
647    while (threads != (*activeThreads).end()) {
648        if (!skidBuffer[*threads++].empty())
649            return false;
650    }
651
652    return true;
653}
654
655template <class Impl>
656void
657DefaultIEW<Impl>::updateStatus()
658{
659    bool any_unblocking = false;
660
661    list<unsigned>::iterator threads = (*activeThreads).begin();
662
663    threads = (*activeThreads).begin();
664
665    while (threads != (*activeThreads).end()) {
666        unsigned tid = *threads++;
667
668        if (dispatchStatus[tid] == Unblocking) {
669            any_unblocking = true;
670            break;
671        }
672    }
673
674    // If there are no ready instructions waiting to be scheduled by the IQ,
675    // and there's no stores waiting to write back, and dispatch is not
676    // unblocking, then there is no internal activity for the IEW stage.
677    if (_status == Active && !instQueue.hasReadyInsts() &&
678        !ldstQueue.willWB() && !any_unblocking) {
679        DPRINTF(IEW, "IEW switching to idle\n");
680
681        deactivateStage();
682
683        _status = Inactive;
684    } else if (_status == Inactive && (instQueue.hasReadyInsts() ||
685                                       ldstQueue.willWB() ||
686                                       any_unblocking)) {
687        // Otherwise there is internal activity.  Set to active.
688        DPRINTF(IEW, "IEW switching to active\n");
689
690        activateStage();
691
692        _status = Active;
693    }
694}
695
696template <class Impl>
697void
698DefaultIEW<Impl>::resetEntries()
699{
700    instQueue.resetEntries();
701    ldstQueue.resetEntries();
702}
703
704template <class Impl>
705void
706DefaultIEW<Impl>::readStallSignals(unsigned tid)
707{
708    if (fromCommit->commitBlock[tid]) {
709        stalls[tid].commit = true;
710    }
711
712    if (fromCommit->commitUnblock[tid]) {
713        assert(stalls[tid].commit);
714        stalls[tid].commit = false;
715    }
716}
717
718template <class Impl>
719bool
720DefaultIEW<Impl>::checkStall(unsigned tid)
721{
722    bool ret_val(false);
723
724    if (stalls[tid].commit) {
725        DPRINTF(IEW,"[tid:%i]: Stall from Commit stage detected.\n",tid);
726        ret_val = true;
727    } else if (instQueue.isFull(tid)) {
728        DPRINTF(IEW,"[tid:%i]: Stall: IQ  is full.\n",tid);
729        ret_val = true;
730    } else if (ldstQueue.isFull(tid)) {
731        DPRINTF(IEW,"[tid:%i]: Stall: LSQ is full\n",tid);
732
733        if (ldstQueue.numLoads(tid) > 0 ) {
734
735            DPRINTF(IEW,"[tid:%i]: LSQ oldest load: [sn:%i] \n",
736                    tid,ldstQueue.getLoadHeadSeqNum(tid));
737        }
738
739        if (ldstQueue.numStores(tid) > 0) {
740
741            DPRINTF(IEW,"[tid:%i]: LSQ oldest store: [sn:%i] \n",
742                    tid,ldstQueue.getStoreHeadSeqNum(tid));
743        }
744
745        ret_val = true;
746    } else if (ldstQueue.isStalled(tid)) {
747        DPRINTF(IEW,"[tid:%i]: Stall: LSQ stall detected.\n",tid);
748        ret_val = true;
749    }
750
751    return ret_val;
752}
753
754template <class Impl>
755void
756DefaultIEW<Impl>::checkSignalsAndUpdate(unsigned tid)
757{
758    // Check if there's a squash signal, squash if there is
759    // Check stall signals, block if there is.
760    // If status was Blocked
761    //     if so then go to unblocking
762    // If status was Squashing
763    //     check if squashing is not high.  Switch to running this cycle.
764
765    readStallSignals(tid);
766
767    if (fromCommit->commitInfo[tid].squash) {
768        squash(tid);
769
770        if (dispatchStatus[tid] == Blocked ||
771            dispatchStatus[tid] == Unblocking) {
772            toRename->iewUnblock[tid] = true;
773            wroteToTimeBuffer = true;
774        }
775
776        dispatchStatus[tid] = Squashing;
777
778        fetchRedirect[tid] = false;
779        return;
780    }
781
782    if (fromCommit->commitInfo[tid].robSquashing) {
783        DPRINTF(IEW, "[tid:%i]: ROB is still squashing.\n", tid);
784
785        dispatchStatus[tid] = Squashing;
786
787        emptyRenameInsts(tid);
788        wroteToTimeBuffer = true;
789        return;
790    }
791
792    if (checkStall(tid)) {
793        block(tid);
794        dispatchStatus[tid] = Blocked;
795        return;
796    }
797
798    if (dispatchStatus[tid] == Blocked) {
799        // Status from previous cycle was blocked, but there are no more stall
800        // conditions.  Switch over to unblocking.
801        DPRINTF(IEW, "[tid:%i]: Done blocking, switching to unblocking.\n",
802                tid);
803
804        dispatchStatus[tid] = Unblocking;
805
806        unblock(tid);
807
808        return;
809    }
810
811    if (dispatchStatus[tid] == Squashing) {
812        // Switch status to running if rename isn't being told to block or
813        // squash this cycle.
814        DPRINTF(IEW, "[tid:%i]: Done squashing, switching to running.\n",
815                tid);
816
817        dispatchStatus[tid] = Running;
818
819        return;
820    }
821}
822
823template <class Impl>
824void
825DefaultIEW<Impl>::sortInsts()
826{
827    int insts_from_rename = fromRename->size;
828#ifdef DEBUG
829    for (int i = 0; i < numThreads; i++)
830        assert(insts[i].empty());
831#endif
832    for (int i = 0; i < insts_from_rename; ++i) {
833        insts[fromRename->insts[i]->threadNumber].push(fromRename->insts[i]);
834    }
835}
836
837template <class Impl>
838void
839DefaultIEW<Impl>::emptyRenameInsts(unsigned tid)
840{
841    while (!insts[tid].empty()) {
842        if (insts[tid].front()->isLoad() ||
843            insts[tid].front()->isStore() ) {
844            toRename->iewInfo[tid].dispatchedToLSQ++;
845        }
846
847        toRename->iewInfo[tid].dispatched++;
848
849        insts[tid].pop();
850    }
851}
852
853template <class Impl>
854void
855DefaultIEW<Impl>::wakeCPU()
856{
857    cpu->wakeCPU();
858}
859
860template <class Impl>
861void
862DefaultIEW<Impl>::activityThisCycle()
863{
864    DPRINTF(Activity, "Activity this cycle.\n");
865    cpu->activityThisCycle();
866}
867
868template <class Impl>
869inline void
870DefaultIEW<Impl>::activateStage()
871{
872    DPRINTF(Activity, "Activating stage.\n");
873    cpu->activateStage(O3CPU::IEWIdx);
874}
875
876template <class Impl>
877inline void
878DefaultIEW<Impl>::deactivateStage()
879{
880    DPRINTF(Activity, "Deactivating stage.\n");
881    cpu->deactivateStage(O3CPU::IEWIdx);
882}
883
884template<class Impl>
885void
886DefaultIEW<Impl>::dispatch(unsigned tid)
887{
888    // If status is Running or idle,
889    //     call dispatchInsts()
890    // If status is Unblocking,
891    //     buffer any instructions coming from rename
892    //     continue trying to empty skid buffer
893    //     check if stall conditions have passed
894
895    if (dispatchStatus[tid] == Blocked) {
896        ++iewBlockCycles;
897
898    } else if (dispatchStatus[tid] == Squashing) {
899        ++iewSquashCycles;
900    }
901
902    // Dispatch should try to dispatch as many instructions as its bandwidth
903    // will allow, as long as it is not currently blocked.
904    if (dispatchStatus[tid] == Running ||
905        dispatchStatus[tid] == Idle) {
906        DPRINTF(IEW, "[tid:%i] Not blocked, so attempting to run "
907                "dispatch.\n", tid);
908
909        dispatchInsts(tid);
910    } else if (dispatchStatus[tid] == Unblocking) {
911        // Make sure that the skid buffer has something in it if the
912        // status is unblocking.
913        assert(!skidsEmpty());
914
915        // If the status was unblocking, then instructions from the skid
916        // buffer were used.  Remove those instructions and handle
917        // the rest of unblocking.
918        dispatchInsts(tid);
919
920        ++iewUnblockCycles;
921
922        if (validInstsFromRename() && dispatchedAllInsts) {
923            // Add the current inputs to the skid buffer so they can be
924            // reprocessed when this stage unblocks.
925            skidInsert(tid);
926        }
927
928        unblock(tid);
929    }
930}
931
932template <class Impl>
933void
934DefaultIEW<Impl>::dispatchInsts(unsigned tid)
935{
936    dispatchedAllInsts = true;
937
938    // Obtain instructions from skid buffer if unblocking, or queue from rename
939    // otherwise.
940    std::queue<DynInstPtr> &insts_to_dispatch =
941        dispatchStatus[tid] == Unblocking ?
942        skidBuffer[tid] : insts[tid];
943
944    int insts_to_add = insts_to_dispatch.size();
945
946    DynInstPtr inst;
947    bool add_to_iq = false;
948    int dis_num_inst = 0;
949
950    // Loop through the instructions, putting them in the instruction
951    // queue.
952    for ( ; dis_num_inst < insts_to_add &&
953              dis_num_inst < dispatchWidth;
954          ++dis_num_inst)
955    {
956        inst = insts_to_dispatch.front();
957
958        if (dispatchStatus[tid] == Unblocking) {
959            DPRINTF(IEW, "[tid:%i]: Issue: Examining instruction from skid "
960                    "buffer\n", tid);
961        }
962
963        // Make sure there's a valid instruction there.
964        assert(inst);
965
966        DPRINTF(IEW, "[tid:%i]: Issue: Adding PC %#x [sn:%lli] [tid:%i] to "
967                "IQ.\n",
968                tid, inst->readPC(), inst->seqNum, inst->threadNumber);
969
970        // Be sure to mark these instructions as ready so that the
971        // commit stage can go ahead and execute them, and mark
972        // them as issued so the IQ doesn't reprocess them.
973
974        // Check for squashed instructions.
975        if (inst->isSquashed()) {
976            DPRINTF(IEW, "[tid:%i]: Issue: Squashed instruction encountered, "
977                    "not adding to IQ.\n", tid);
978
979            ++iewDispSquashedInsts;
980
981            insts_to_dispatch.pop();
982
983            //Tell Rename That An Instruction has been processed
984            if (inst->isLoad() || inst->isStore()) {
985                toRename->iewInfo[tid].dispatchedToLSQ++;
986            }
987            toRename->iewInfo[tid].dispatched++;
988
989            continue;
990        }
991
992        // Check for full conditions.
993        if (instQueue.isFull(tid)) {
994            DPRINTF(IEW, "[tid:%i]: Issue: IQ has become full.\n", tid);
995
996            // Call function to start blocking.
997            block(tid);
998
999            // Set unblock to false. Special case where we are using
1000            // skidbuffer (unblocking) instructions but then we still
1001            // get full in the IQ.
1002            toRename->iewUnblock[tid] = false;
1003
1004            dispatchedAllInsts = false;
1005
1006            ++iewIQFullEvents;
1007            break;
1008        } else if (ldstQueue.isFull(tid)) {
1009            DPRINTF(IEW, "[tid:%i]: Issue: LSQ has become full.\n",tid);
1010
1011            // Call function to start blocking.
1012            block(tid);
1013
1014            // Set unblock to false. Special case where we are using
1015            // skidbuffer (unblocking) instructions but then we still
1016            // get full in the IQ.
1017            toRename->iewUnblock[tid] = false;
1018
1019            dispatchedAllInsts = false;
1020
1021            ++iewLSQFullEvents;
1022            break;
1023        }
1024
1025        // Otherwise issue the instruction just fine.
1026        if (inst->isLoad()) {
1027            DPRINTF(IEW, "[tid:%i]: Issue: Memory instruction "
1028                    "encountered, adding to LSQ.\n", tid);
1029
1030            // Reserve a spot in the load store queue for this
1031            // memory access.
1032            ldstQueue.insertLoad(inst);
1033
1034            ++iewDispLoadInsts;
1035
1036            add_to_iq = true;
1037
1038            toRename->iewInfo[tid].dispatchedToLSQ++;
1039        } else if (inst->isStore()) {
1040            DPRINTF(IEW, "[tid:%i]: Issue: Memory instruction "
1041                    "encountered, adding to LSQ.\n", tid);
1042
1043            ldstQueue.insertStore(inst);
1044
1045            ++iewDispStoreInsts;
1046
1047            if (inst->isStoreConditional()) {
1048                // Store conditionals need to be set as "canCommit()"
1049                // so that commit can process them when they reach the
1050                // head of commit.
1051                // @todo: This is somewhat specific to Alpha.
1052                inst->setCanCommit();
1053                instQueue.insertNonSpec(inst);
1054                add_to_iq = false;
1055
1056                ++iewDispNonSpecInsts;
1057            } else {
1058                add_to_iq = true;
1059            }
1060
1061            toRename->iewInfo[tid].dispatchedToLSQ++;
1062#if FULL_SYSTEM
1063        } else if (inst->isMemBarrier() || inst->isWriteBarrier()) {
1064            // Same as non-speculative stores.
1065            inst->setCanCommit();
1066            instQueue.insertBarrier(inst);
1067            add_to_iq = false;
1068#endif
1069        } else if (inst->isNonSpeculative()) {
1070            DPRINTF(IEW, "[tid:%i]: Issue: Nonspeculative instruction "
1071                    "encountered, skipping.\n", tid);
1072
1073            // Same as non-speculative stores.
1074            inst->setCanCommit();
1075
1076            // Specifically insert it as nonspeculative.
1077            instQueue.insertNonSpec(inst);
1078
1079            ++iewDispNonSpecInsts;
1080
1081            add_to_iq = false;
1082        } else if (inst->isNop()) {
1083            DPRINTF(IEW, "[tid:%i]: Issue: Nop instruction encountered, "
1084                    "skipping.\n", tid);
1085
1086            inst->setIssued();
1087            inst->setExecuted();
1088            inst->setCanCommit();
1089
1090            instQueue.recordProducer(inst);
1091
1092            iewExecutedNop[tid]++;
1093
1094            add_to_iq = false;
1095        } else if (inst->isExecuted()) {
1096            assert(0 && "Instruction shouldn't be executed.\n");
1097            DPRINTF(IEW, "Issue: Executed branch encountered, "
1098                    "skipping.\n");
1099
1100            inst->setIssued();
1101            inst->setCanCommit();
1102
1103            instQueue.recordProducer(inst);
1104
1105            add_to_iq = false;
1106        } else {
1107            add_to_iq = true;
1108        }
1109
1110        // If the instruction queue is not full, then add the
1111        // instruction.
1112        if (add_to_iq) {
1113            instQueue.insert(inst);
1114        }
1115
1116        insts_to_dispatch.pop();
1117
1118        toRename->iewInfo[tid].dispatched++;
1119
1120        ++iewDispatchedInsts;
1121    }
1122
1123    if (!insts_to_dispatch.empty()) {
1124        DPRINTF(IEW,"[tid:%i]: Issue: Bandwidth Full. Blocking.\n");
1125        block(tid);
1126        toRename->iewUnblock[tid] = false;
1127    }
1128
1129    if (dispatchStatus[tid] == Idle && dis_num_inst) {
1130        dispatchStatus[tid] = Running;
1131
1132        updatedQueues = true;
1133    }
1134
1135    dis_num_inst = 0;
1136}
1137
1138template <class Impl>
1139void
1140DefaultIEW<Impl>::printAvailableInsts()
1141{
1142    int inst = 0;
1143
1144    cout << "Available Instructions: ";
1145
1146    while (fromIssue->insts[inst]) {
1147
1148        if (inst%3==0) cout << "\n\t";
1149
1150        cout << "PC: " << fromIssue->insts[inst]->readPC()
1151             << " TN: " << fromIssue->insts[inst]->threadNumber
1152             << " SN: " << fromIssue->insts[inst]->seqNum << " | ";
1153
1154        inst++;
1155
1156    }
1157
1158    cout << "\n";
1159}
1160
1161template <class Impl>
1162void
1163DefaultIEW<Impl>::executeInsts()
1164{
1165    wbNumInst = 0;
1166    wbCycle = 0;
1167
1168    list<unsigned>::iterator threads = (*activeThreads).begin();
1169
1170    while (threads != (*activeThreads).end()) {
1171        unsigned tid = *threads++;
1172        fetchRedirect[tid] = false;
1173    }
1174
1175    // Uncomment this if you want to see all available instructions.
1176//    printAvailableInsts();
1177
1178    // Execute/writeback any instructions that are available.
1179    int insts_to_execute = fromIssue->size;
1180    int inst_num = 0;
1181    for (; inst_num < insts_to_execute;
1182          ++inst_num) {
1183
1184        DPRINTF(IEW, "Execute: Executing instructions from IQ.\n");
1185
1186        DynInstPtr inst = instQueue.getInstToExecute();
1187
1188        DPRINTF(IEW, "Execute: Processing PC %#x, [tid:%i] [sn:%i].\n",
1189                inst->readPC(), inst->threadNumber,inst->seqNum);
1190
1191        // Check if the instruction is squashed; if so then skip it
1192        if (inst->isSquashed()) {
1193            DPRINTF(IEW, "Execute: Instruction was squashed.\n");
1194
1195            // Consider this instruction executed so that commit can go
1196            // ahead and retire the instruction.
1197            inst->setExecuted();
1198
1199            // Not sure if I should set this here or just let commit try to
1200            // commit any squashed instructions.  I like the latter a bit more.
1201            inst->setCanCommit();
1202
1203            ++iewExecSquashedInsts;
1204
1205            decrWb(inst->seqNum);
1206            continue;
1207        }
1208
1209        Fault fault = NoFault;
1210
1211        // Execute instruction.
1212        // Note that if the instruction faults, it will be handled
1213        // at the commit stage.
1214        if (inst->isMemRef() &&
1215            (!inst->isDataPrefetch() && !inst->isInstPrefetch())) {
1216            DPRINTF(IEW, "Execute: Calculating address for memory "
1217                    "reference.\n");
1218
1219            // Tell the LDSTQ to execute this instruction (if it is a load).
1220            if (inst->isLoad()) {
1221                // Loads will mark themselves as executed, and their writeback
1222                // event adds the instruction to the queue to commit
1223                fault = ldstQueue.executeLoad(inst);
1224            } else if (inst->isStore()) {
1225                ldstQueue.executeStore(inst);
1226
1227                // If the store had a fault then it may not have a mem req
1228                if (inst->req && !(inst->req->getFlags() & LOCKED)) {
1229                    inst->setExecuted();
1230
1231                    instToCommit(inst);
1232                }
1233
1234                // Store conditionals will mark themselves as
1235                // executed, and their writeback event will add the
1236                // instruction to the queue to commit.
1237            } else {
1238                panic("Unexpected memory type!\n");
1239            }
1240
1241        } else {
1242            inst->execute();
1243
1244            inst->setExecuted();
1245
1246            instToCommit(inst);
1247        }
1248
1249        updateExeInstStats(inst);
1250
1251        // Check if branch prediction was correct, if not then we need
1252        // to tell commit to squash in flight instructions.  Only
1253        // handle this if there hasn't already been something that
1254        // redirects fetch in this group of instructions.
1255
1256        // This probably needs to prioritize the redirects if a different
1257        // scheduler is used.  Currently the scheduler schedules the oldest
1258        // instruction first, so the branch resolution order will be correct.
1259        unsigned tid = inst->threadNumber;
1260
1261        if (!fetchRedirect[tid]) {
1262
1263            if (inst->mispredicted()) {
1264                fetchRedirect[tid] = true;
1265
1266                DPRINTF(IEW, "Execute: Branch mispredict detected.\n");
1267                DPRINTF(IEW, "Execute: Redirecting fetch to PC: %#x.\n",
1268                        inst->nextPC);
1269
1270                // If incorrect, then signal the ROB that it must be squashed.
1271                squashDueToBranch(inst, tid);
1272
1273                if (inst->predTaken()) {
1274                    predictedTakenIncorrect++;
1275                } else {
1276                    predictedNotTakenIncorrect++;
1277                }
1278            } else if (ldstQueue.violation(tid)) {
1279                fetchRedirect[tid] = true;
1280
1281                // If there was an ordering violation, then get the
1282                // DynInst that caused the violation.  Note that this
1283                // clears the violation signal.
1284                DynInstPtr violator;
1285                violator = ldstQueue.getMemDepViolator(tid);
1286
1287                DPRINTF(IEW, "LDSTQ detected a violation.  Violator PC: "
1288                        "%#x, inst PC: %#x.  Addr is: %#x.\n",
1289                        violator->readPC(), inst->readPC(), inst->physEffAddr);
1290
1291                // Tell the instruction queue that a violation has occured.
1292                instQueue.violation(inst, violator);
1293
1294                // Squash.
1295                squashDueToMemOrder(inst,tid);
1296
1297                ++memOrderViolationEvents;
1298            } else if (ldstQueue.loadBlocked(tid) &&
1299                       !ldstQueue.isLoadBlockedHandled(tid)) {
1300                fetchRedirect[tid] = true;
1301
1302                DPRINTF(IEW, "Load operation couldn't execute because the "
1303                        "memory system is blocked.  PC: %#x [sn:%lli]\n",
1304                        inst->readPC(), inst->seqNum);
1305
1306                squashDueToMemBlocked(inst, tid);
1307            }
1308        }
1309    }
1310
1311    // Update and record activity if we processed any instructions.
1312    if (inst_num) {
1313        if (exeStatus == Idle) {
1314            exeStatus = Running;
1315        }
1316
1317        updatedQueues = true;
1318
1319        cpu->activityThisCycle();
1320    }
1321
1322    // Need to reset this in case a writeback event needs to write into the
1323    // iew queue.  That way the writeback event will write into the correct
1324    // spot in the queue.
1325    wbNumInst = 0;
1326}
1327
1328template <class Impl>
1329void
1330DefaultIEW<Impl>::writebackInsts()
1331{
1332    // Loop through the head of the time buffer and wake any
1333    // dependents.  These instructions are about to write back.  Also
1334    // mark scoreboard that this instruction is finally complete.
1335    // Either have IEW have direct access to scoreboard, or have this
1336    // as part of backwards communication.
1337    for (int inst_num = 0; inst_num < issueWidth &&
1338             toCommit->insts[inst_num]; inst_num++) {
1339        DynInstPtr inst = toCommit->insts[inst_num];
1340        int tid = inst->threadNumber;
1341
1342        DPRINTF(IEW, "Sending instructions to commit, [sn:%lli] PC %#x.\n",
1343                inst->seqNum, inst->readPC());
1344
1345        iewInstsToCommit[tid]++;
1346
1347        // Some instructions will be sent to commit without having
1348        // executed because they need commit to handle them.
1349        // E.g. Uncached loads have not actually executed when they
1350        // are first sent to commit.  Instead commit must tell the LSQ
1351        // when it's ready to execute the uncached load.
1352        if (!inst->isSquashed() && inst->isExecuted()) {
1353            int dependents = instQueue.wakeDependents(inst);
1354
1355            for (int i = 0; i < inst->numDestRegs(); i++) {
1356                //mark as Ready
1357                DPRINTF(IEW,"Setting Destination Register %i\n",
1358                        inst->renamedDestRegIdx(i));
1359                scoreboard->setReg(inst->renamedDestRegIdx(i));
1360            }
1361
1362            if (dependents) {
1363                producerInst[tid]++;
1364                consumerInst[tid]+= dependents;
1365            }
1366            writebackCount[tid]++;
1367        }
1368
1369        decrWb(inst->seqNum);
1370    }
1371}
1372
1373template<class Impl>
1374void
1375DefaultIEW<Impl>::tick()
1376{
1377    wbNumInst = 0;
1378    wbCycle = 0;
1379
1380    wroteToTimeBuffer = false;
1381    updatedQueues = false;
1382
1383    sortInsts();
1384
1385    // Free function units marked as being freed this cycle.
1386    fuPool->processFreeUnits();
1387
1388    list<unsigned>::iterator threads = (*activeThreads).begin();
1389
1390    // Check stall and squash signals, dispatch any instructions.
1391    while (threads != (*activeThreads).end()) {
1392           unsigned tid = *threads++;
1393
1394        DPRINTF(IEW,"Issue: Processing [tid:%i]\n",tid);
1395
1396        checkSignalsAndUpdate(tid);
1397        dispatch(tid);
1398    }
1399
1400    if (exeStatus != Squashing) {
1401        executeInsts();
1402
1403        writebackInsts();
1404
1405        // Have the instruction queue try to schedule any ready instructions.
1406        // (In actuality, this scheduling is for instructions that will
1407        // be executed next cycle.)
1408        instQueue.scheduleReadyInsts();
1409
1410        // Also should advance its own time buffers if the stage ran.
1411        // Not the best place for it, but this works (hopefully).
1412        issueToExecQueue.advance();
1413    }
1414
1415    bool broadcast_free_entries = false;
1416
1417    if (updatedQueues || exeStatus == Running || updateLSQNextCycle) {
1418        exeStatus = Idle;
1419        updateLSQNextCycle = false;
1420
1421        broadcast_free_entries = true;
1422    }
1423
1424    // Writeback any stores using any leftover bandwidth.
1425    ldstQueue.writebackStores();
1426
1427    // Check the committed load/store signals to see if there's a load
1428    // or store to commit.  Also check if it's being told to execute a
1429    // nonspeculative instruction.
1430    // This is pretty inefficient...
1431
1432    threads = (*activeThreads).begin();
1433    while (threads != (*activeThreads).end()) {
1434        unsigned tid = (*threads++);
1435
1436        DPRINTF(IEW,"Processing [tid:%i]\n",tid);
1437
1438        // Update structures based on instructions committed.
1439        if (fromCommit->commitInfo[tid].doneSeqNum != 0 &&
1440            !fromCommit->commitInfo[tid].squash &&
1441            !fromCommit->commitInfo[tid].robSquashing) {
1442
1443            ldstQueue.commitStores(fromCommit->commitInfo[tid].doneSeqNum,tid);
1444
1445            ldstQueue.commitLoads(fromCommit->commitInfo[tid].doneSeqNum,tid);
1446
1447            updateLSQNextCycle = true;
1448            instQueue.commit(fromCommit->commitInfo[tid].doneSeqNum,tid);
1449        }
1450
1451        if (fromCommit->commitInfo[tid].nonSpecSeqNum != 0) {
1452
1453            //DPRINTF(IEW,"NonspecInst from thread %i",tid);
1454            if (fromCommit->commitInfo[tid].uncached) {
1455                instQueue.replayMemInst(fromCommit->commitInfo[tid].uncachedLoad);
1456            } else {
1457                instQueue.scheduleNonSpec(
1458                    fromCommit->commitInfo[tid].nonSpecSeqNum);
1459            }
1460        }
1461
1462        if (broadcast_free_entries) {
1463            toFetch->iewInfo[tid].iqCount =
1464                instQueue.getCount(tid);
1465            toFetch->iewInfo[tid].ldstqCount =
1466                ldstQueue.getCount(tid);
1467
1468            toRename->iewInfo[tid].usedIQ = true;
1469            toRename->iewInfo[tid].freeIQEntries =
1470                instQueue.numFreeEntries();
1471            toRename->iewInfo[tid].usedLSQ = true;
1472            toRename->iewInfo[tid].freeLSQEntries =
1473                ldstQueue.numFreeEntries(tid);
1474
1475            wroteToTimeBuffer = true;
1476        }
1477
1478        DPRINTF(IEW, "[tid:%i], Dispatch dispatched %i instructions.\n",
1479                tid, toRename->iewInfo[tid].dispatched);
1480    }
1481
1482    DPRINTF(IEW, "IQ has %i free entries (Can schedule: %i).  "
1483            "LSQ has %i free entries.\n",
1484            instQueue.numFreeEntries(), instQueue.hasReadyInsts(),
1485            ldstQueue.numFreeEntries());
1486
1487    updateStatus();
1488
1489    if (wroteToTimeBuffer) {
1490        DPRINTF(Activity, "Activity this cycle.\n");
1491        cpu->activityThisCycle();
1492    }
1493}
1494
1495template <class Impl>
1496void
1497DefaultIEW<Impl>::updateExeInstStats(DynInstPtr &inst)
1498{
1499    int thread_number = inst->threadNumber;
1500
1501    //
1502    //  Pick off the software prefetches
1503    //
1504#ifdef TARGET_ALPHA
1505    if (inst->isDataPrefetch())
1506        iewExecutedSwp[thread_number]++;
1507    else
1508        iewIewExecutedcutedInsts++;
1509#else
1510    iewExecutedInsts++;
1511#endif
1512
1513    //
1514    //  Control operations
1515    //
1516    if (inst->isControl())
1517        iewExecutedBranches[thread_number]++;
1518
1519    //
1520    //  Memory operations
1521    //
1522    if (inst->isMemRef()) {
1523        iewExecutedRefs[thread_number]++;
1524
1525        if (inst->isLoad()) {
1526            iewExecLoadInsts[thread_number]++;
1527        }
1528    }
1529}
1530