iew_impl.hh revision 2820:7fde0b0f8f78
1/*
2 * Copyright (c) 2004-2006 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Kevin Lim
29 */
30
31// @todo: Fix the instantaneous communication among all the stages within
32// iew.  There's a clear delay between issue and execute, yet backwards
33// communication happens simultaneously.
34
35#include <queue>
36
37#include "base/timebuf.hh"
38#include "cpu/o3/fu_pool.hh"
39#include "cpu/o3/iew.hh"
40
41using namespace std;
42
43template<class Impl>
44DefaultIEW<Impl>::DefaultIEW(Params *params)
45    : // @todo: Make this into a parameter.
46      issueToExecQueue(5, 5),
47      instQueue(params),
48      ldstQueue(params),
49      fuPool(params->fuPool),
50      commitToIEWDelay(params->commitToIEWDelay),
51      renameToIEWDelay(params->renameToIEWDelay),
52      issueToExecuteDelay(params->issueToExecuteDelay),
53      dispatchWidth(params->dispatchWidth),
54      issueWidth(params->issueWidth),
55      wbOutstanding(0),
56      wbWidth(params->wbWidth),
57      numThreads(params->numberOfThreads),
58      switchedOut(false)
59{
60    _status = Active;
61    exeStatus = Running;
62    wbStatus = Idle;
63
64    // Setup wire to read instructions coming from issue.
65    fromIssue = issueToExecQueue.getWire(-issueToExecuteDelay);
66
67    // Instruction queue needs the queue between issue and execute.
68    instQueue.setIssueToExecuteQueue(&issueToExecQueue);
69
70    instQueue.setIEW(this);
71    ldstQueue.setIEW(this);
72
73    for (int i=0; i < numThreads; i++) {
74        dispatchStatus[i] = Running;
75        stalls[i].commit = false;
76        fetchRedirect[i] = false;
77    }
78
79    wbMax = wbWidth * params->wbDepth;
80
81    updateLSQNextCycle = false;
82
83    ableToIssue = true;
84
85    skidBufferMax = (3 * (renameToIEWDelay * params->renameWidth)) + issueWidth;
86}
87
88template <class Impl>
89std::string
90DefaultIEW<Impl>::name() const
91{
92    return cpu->name() + ".iew";
93}
94
95template <class Impl>
96void
97DefaultIEW<Impl>::regStats()
98{
99    using namespace Stats;
100
101    instQueue.regStats();
102    ldstQueue.regStats();
103
104    iewIdleCycles
105        .name(name() + ".iewIdleCycles")
106        .desc("Number of cycles IEW is idle");
107
108    iewSquashCycles
109        .name(name() + ".iewSquashCycles")
110        .desc("Number of cycles IEW is squashing");
111
112    iewBlockCycles
113        .name(name() + ".iewBlockCycles")
114        .desc("Number of cycles IEW is blocking");
115
116    iewUnblockCycles
117        .name(name() + ".iewUnblockCycles")
118        .desc("Number of cycles IEW is unblocking");
119
120    iewDispatchedInsts
121        .name(name() + ".iewDispatchedInsts")
122        .desc("Number of instructions dispatched to IQ");
123
124    iewDispSquashedInsts
125        .name(name() + ".iewDispSquashedInsts")
126        .desc("Number of squashed instructions skipped by dispatch");
127
128    iewDispLoadInsts
129        .name(name() + ".iewDispLoadInsts")
130        .desc("Number of dispatched load instructions");
131
132    iewDispStoreInsts
133        .name(name() + ".iewDispStoreInsts")
134        .desc("Number of dispatched store instructions");
135
136    iewDispNonSpecInsts
137        .name(name() + ".iewDispNonSpecInsts")
138        .desc("Number of dispatched non-speculative instructions");
139
140    iewIQFullEvents
141        .name(name() + ".iewIQFullEvents")
142        .desc("Number of times the IQ has become full, causing a stall");
143
144    iewLSQFullEvents
145        .name(name() + ".iewLSQFullEvents")
146        .desc("Number of times the LSQ has become full, causing a stall");
147
148    memOrderViolationEvents
149        .name(name() + ".memOrderViolationEvents")
150        .desc("Number of memory order violations");
151
152    predictedTakenIncorrect
153        .name(name() + ".predictedTakenIncorrect")
154        .desc("Number of branches that were predicted taken incorrectly");
155
156    predictedNotTakenIncorrect
157        .name(name() + ".predictedNotTakenIncorrect")
158        .desc("Number of branches that were predicted not taken incorrectly");
159
160    branchMispredicts
161        .name(name() + ".branchMispredicts")
162        .desc("Number of branch mispredicts detected at execute");
163
164    branchMispredicts = predictedTakenIncorrect + predictedNotTakenIncorrect;
165
166    iewExecutedInsts
167        .name(name() + ".EXEC:insts")
168        .desc("Number of executed instructions");
169
170    iewExecLoadInsts
171        .init(cpu->number_of_threads)
172        .name(name() + ".EXEC:loads")
173        .desc("Number of load instructions executed")
174        .flags(total);
175
176    iewExecSquashedInsts
177        .name(name() + ".EXEC:squashedInsts")
178        .desc("Number of squashed instructions skipped in execute");
179
180    iewExecutedSwp
181        .init(cpu->number_of_threads)
182        .name(name() + ".EXEC:swp")
183        .desc("number of swp insts executed")
184        .flags(total);
185
186    iewExecutedNop
187        .init(cpu->number_of_threads)
188        .name(name() + ".EXEC:nop")
189        .desc("number of nop insts executed")
190        .flags(total);
191
192    iewExecutedRefs
193        .init(cpu->number_of_threads)
194        .name(name() + ".EXEC:refs")
195        .desc("number of memory reference insts executed")
196        .flags(total);
197
198    iewExecutedBranches
199        .init(cpu->number_of_threads)
200        .name(name() + ".EXEC:branches")
201        .desc("Number of branches executed")
202        .flags(total);
203
204    iewExecStoreInsts
205        .name(name() + ".EXEC:stores")
206        .desc("Number of stores executed")
207        .flags(total);
208    iewExecStoreInsts = iewExecutedRefs - iewExecLoadInsts;
209
210    iewExecRate
211        .name(name() + ".EXEC:rate")
212        .desc("Inst execution rate")
213        .flags(total);
214
215    iewExecRate = iewExecutedInsts / cpu->numCycles;
216
217    iewInstsToCommit
218        .init(cpu->number_of_threads)
219        .name(name() + ".WB:sent")
220        .desc("cumulative count of insts sent to commit")
221        .flags(total);
222
223    writebackCount
224        .init(cpu->number_of_threads)
225        .name(name() + ".WB:count")
226        .desc("cumulative count of insts written-back")
227        .flags(total);
228
229    producerInst
230        .init(cpu->number_of_threads)
231        .name(name() + ".WB:producers")
232        .desc("num instructions producing a value")
233        .flags(total);
234
235    consumerInst
236        .init(cpu->number_of_threads)
237        .name(name() + ".WB:consumers")
238        .desc("num instructions consuming a value")
239        .flags(total);
240
241    wbPenalized
242        .init(cpu->number_of_threads)
243        .name(name() + ".WB:penalized")
244        .desc("number of instrctions required to write to 'other' IQ")
245        .flags(total);
246
247    wbPenalizedRate
248        .name(name() + ".WB:penalized_rate")
249        .desc ("fraction of instructions written-back that wrote to 'other' IQ")
250        .flags(total);
251
252    wbPenalizedRate = wbPenalized / writebackCount;
253
254    wbFanout
255        .name(name() + ".WB:fanout")
256        .desc("average fanout of values written-back")
257        .flags(total);
258
259    wbFanout = producerInst / consumerInst;
260
261    wbRate
262        .name(name() + ".WB:rate")
263        .desc("insts written-back per cycle")
264        .flags(total);
265    wbRate = writebackCount / cpu->numCycles;
266}
267
268template<class Impl>
269void
270DefaultIEW<Impl>::initStage()
271{
272    for (int tid=0; tid < numThreads; tid++) {
273        toRename->iewInfo[tid].usedIQ = true;
274        toRename->iewInfo[tid].freeIQEntries =
275            instQueue.numFreeEntries(tid);
276
277        toRename->iewInfo[tid].usedLSQ = true;
278        toRename->iewInfo[tid].freeLSQEntries =
279            ldstQueue.numFreeEntries(tid);
280    }
281}
282
283template<class Impl>
284void
285DefaultIEW<Impl>::setCPU(O3CPU *cpu_ptr)
286{
287    DPRINTF(IEW, "Setting CPU pointer.\n");
288    cpu = cpu_ptr;
289
290    instQueue.setCPU(cpu_ptr);
291    ldstQueue.setCPU(cpu_ptr);
292
293    cpu->activateStage(O3CPU::IEWIdx);
294}
295
296template<class Impl>
297void
298DefaultIEW<Impl>::setTimeBuffer(TimeBuffer<TimeStruct> *tb_ptr)
299{
300    DPRINTF(IEW, "Setting time buffer pointer.\n");
301    timeBuffer = tb_ptr;
302
303    // Setup wire to read information from time buffer, from commit.
304    fromCommit = timeBuffer->getWire(-commitToIEWDelay);
305
306    // Setup wire to write information back to previous stages.
307    toRename = timeBuffer->getWire(0);
308
309    toFetch = timeBuffer->getWire(0);
310
311    // Instruction queue also needs main time buffer.
312    instQueue.setTimeBuffer(tb_ptr);
313}
314
315template<class Impl>
316void
317DefaultIEW<Impl>::setRenameQueue(TimeBuffer<RenameStruct> *rq_ptr)
318{
319    DPRINTF(IEW, "Setting rename queue pointer.\n");
320    renameQueue = rq_ptr;
321
322    // Setup wire to read information from rename queue.
323    fromRename = renameQueue->getWire(-renameToIEWDelay);
324}
325
326template<class Impl>
327void
328DefaultIEW<Impl>::setIEWQueue(TimeBuffer<IEWStruct> *iq_ptr)
329{
330    DPRINTF(IEW, "Setting IEW queue pointer.\n");
331    iewQueue = iq_ptr;
332
333    // Setup wire to write instructions to commit.
334    toCommit = iewQueue->getWire(0);
335}
336
337template<class Impl>
338void
339DefaultIEW<Impl>::setActiveThreads(list<unsigned> *at_ptr)
340{
341    DPRINTF(IEW, "Setting active threads list pointer.\n");
342    activeThreads = at_ptr;
343
344    ldstQueue.setActiveThreads(at_ptr);
345    instQueue.setActiveThreads(at_ptr);
346}
347
348template<class Impl>
349void
350DefaultIEW<Impl>::setScoreboard(Scoreboard *sb_ptr)
351{
352    DPRINTF(IEW, "Setting scoreboard pointer.\n");
353    scoreboard = sb_ptr;
354}
355
356template <class Impl>
357void
358DefaultIEW<Impl>::switchOut()
359{
360    // IEW is ready to switch out at any time.
361    cpu->signalSwitched();
362}
363
364template <class Impl>
365void
366DefaultIEW<Impl>::doSwitchOut()
367{
368    // Clear any state.
369    switchedOut = true;
370
371    instQueue.switchOut();
372    ldstQueue.switchOut();
373    fuPool->switchOut();
374
375    for (int i = 0; i < numThreads; i++) {
376        while (!insts[i].empty())
377            insts[i].pop();
378        while (!skidBuffer[i].empty())
379            skidBuffer[i].pop();
380    }
381}
382
383template <class Impl>
384void
385DefaultIEW<Impl>::takeOverFrom()
386{
387    // Reset all state.
388    _status = Active;
389    exeStatus = Running;
390    wbStatus = Idle;
391    switchedOut = false;
392
393    instQueue.takeOverFrom();
394    ldstQueue.takeOverFrom();
395    fuPool->takeOverFrom();
396
397    initStage();
398    cpu->activityThisCycle();
399
400    for (int i=0; i < numThreads; i++) {
401        dispatchStatus[i] = Running;
402        stalls[i].commit = false;
403        fetchRedirect[i] = false;
404    }
405
406    updateLSQNextCycle = false;
407
408    // @todo: Fix hardcoded number
409    for (int i = 0; i < 6; ++i) {
410        issueToExecQueue.advance();
411    }
412}
413
414template<class Impl>
415void
416DefaultIEW<Impl>::squash(unsigned tid)
417{
418    DPRINTF(IEW, "[tid:%i]: Squashing all instructions.\n",
419            tid);
420
421    // Tell the IQ to start squashing.
422    instQueue.squash(tid);
423
424    // Tell the LDSTQ to start squashing.
425    ldstQueue.squash(fromCommit->commitInfo[tid].doneSeqNum, tid);
426
427    updatedQueues = true;
428
429    // Clear the skid buffer in case it has any data in it.
430    while (!skidBuffer[tid].empty()) {
431
432        if (skidBuffer[tid].front()->isLoad() ||
433            skidBuffer[tid].front()->isStore() ) {
434            toRename->iewInfo[tid].dispatchedToLSQ++;
435        }
436
437        toRename->iewInfo[tid].dispatched++;
438
439        skidBuffer[tid].pop();
440    }
441
442    emptyRenameInsts(tid);
443}
444
445template<class Impl>
446void
447DefaultIEW<Impl>::squashDueToBranch(DynInstPtr &inst, unsigned tid)
448{
449    DPRINTF(IEW, "[tid:%i]: Squashing from a specific instruction, PC: %#x "
450            "[sn:%i].\n", tid, inst->readPC(), inst->seqNum);
451
452    toCommit->squash[tid] = true;
453    toCommit->squashedSeqNum[tid] = inst->seqNum;
454    toCommit->mispredPC[tid] = inst->readPC();
455    toCommit->nextPC[tid] = inst->readNextPC();
456    toCommit->branchMispredict[tid] = true;
457    toCommit->branchTaken[tid] = inst->readNextPC() !=
458        (inst->readPC() + sizeof(TheISA::MachInst));
459
460    toCommit->includeSquashInst[tid] = false;
461
462    wroteToTimeBuffer = true;
463}
464
465template<class Impl>
466void
467DefaultIEW<Impl>::squashDueToMemOrder(DynInstPtr &inst, unsigned tid)
468{
469    DPRINTF(IEW, "[tid:%i]: Squashing from a specific instruction, "
470            "PC: %#x [sn:%i].\n", tid, inst->readPC(), inst->seqNum);
471
472    toCommit->squash[tid] = true;
473    toCommit->squashedSeqNum[tid] = inst->seqNum;
474    toCommit->nextPC[tid] = inst->readNextPC();
475
476    toCommit->includeSquashInst[tid] = false;
477
478    wroteToTimeBuffer = true;
479}
480
481template<class Impl>
482void
483DefaultIEW<Impl>::squashDueToMemBlocked(DynInstPtr &inst, unsigned tid)
484{
485    DPRINTF(IEW, "[tid:%i]: Memory blocked, squashing load and younger insts, "
486            "PC: %#x [sn:%i].\n", tid, inst->readPC(), inst->seqNum);
487
488    toCommit->squash[tid] = true;
489    toCommit->squashedSeqNum[tid] = inst->seqNum;
490    toCommit->nextPC[tid] = inst->readPC();
491
492    // Must include the broadcasted SN in the squash.
493    toCommit->includeSquashInst[tid] = true;
494
495    ldstQueue.setLoadBlockedHandled(tid);
496
497    wroteToTimeBuffer = true;
498}
499
500template<class Impl>
501void
502DefaultIEW<Impl>::block(unsigned tid)
503{
504    DPRINTF(IEW, "[tid:%u]: Blocking.\n", tid);
505
506    if (dispatchStatus[tid] != Blocked &&
507        dispatchStatus[tid] != Unblocking) {
508        toRename->iewBlock[tid] = true;
509        wroteToTimeBuffer = true;
510    }
511
512    // Add the current inputs to the skid buffer so they can be
513    // reprocessed when this stage unblocks.
514    skidInsert(tid);
515
516    dispatchStatus[tid] = Blocked;
517}
518
519template<class Impl>
520void
521DefaultIEW<Impl>::unblock(unsigned tid)
522{
523    DPRINTF(IEW, "[tid:%i]: Reading instructions out of the skid "
524            "buffer %u.\n",tid, tid);
525
526    // If the skid bufffer is empty, signal back to previous stages to unblock.
527    // Also switch status to running.
528    if (skidBuffer[tid].empty()) {
529        toRename->iewUnblock[tid] = true;
530        wroteToTimeBuffer = true;
531        DPRINTF(IEW, "[tid:%i]: Done unblocking.\n",tid);
532        dispatchStatus[tid] = Running;
533    }
534}
535
536template<class Impl>
537void
538DefaultIEW<Impl>::wakeDependents(DynInstPtr &inst)
539{
540    instQueue.wakeDependents(inst);
541}
542
543template<class Impl>
544void
545DefaultIEW<Impl>::rescheduleMemInst(DynInstPtr &inst)
546{
547    instQueue.rescheduleMemInst(inst);
548}
549
550template<class Impl>
551void
552DefaultIEW<Impl>::replayMemInst(DynInstPtr &inst)
553{
554    instQueue.replayMemInst(inst);
555}
556
557template<class Impl>
558void
559DefaultIEW<Impl>::instToCommit(DynInstPtr &inst)
560{
561    // First check the time slot that this instruction will write
562    // to.  If there are free write ports at the time, then go ahead
563    // and write the instruction to that time.  If there are not,
564    // keep looking back to see where's the first time there's a
565    // free slot.
566    while ((*iewQueue)[wbCycle].insts[wbNumInst]) {
567        ++wbNumInst;
568        if (wbNumInst == wbWidth) {
569            ++wbCycle;
570            wbNumInst = 0;
571        }
572
573        assert((wbCycle * wbWidth + wbNumInst) < wbMax);
574    }
575
576    // Add finished instruction to queue to commit.
577    (*iewQueue)[wbCycle].insts[wbNumInst] = inst;
578    (*iewQueue)[wbCycle].size++;
579}
580
581template <class Impl>
582unsigned
583DefaultIEW<Impl>::validInstsFromRename()
584{
585    unsigned inst_count = 0;
586
587    for (int i=0; i<fromRename->size; i++) {
588        if (!fromRename->insts[i]->isSquashed())
589            inst_count++;
590    }
591
592    return inst_count;
593}
594
595template<class Impl>
596void
597DefaultIEW<Impl>::skidInsert(unsigned tid)
598{
599    DynInstPtr inst = NULL;
600
601    while (!insts[tid].empty()) {
602        inst = insts[tid].front();
603
604        insts[tid].pop();
605
606        DPRINTF(Decode,"[tid:%i]: Inserting [sn:%lli] PC:%#x into "
607                "dispatch skidBuffer %i\n",tid, inst->seqNum,
608                inst->readPC(),tid);
609
610        skidBuffer[tid].push(inst);
611    }
612
613    assert(skidBuffer[tid].size() <= skidBufferMax &&
614           "Skidbuffer Exceeded Max Size");
615}
616
617template<class Impl>
618int
619DefaultIEW<Impl>::skidCount()
620{
621    int max=0;
622
623    list<unsigned>::iterator threads = (*activeThreads).begin();
624
625    while (threads != (*activeThreads).end()) {
626        unsigned thread_count = skidBuffer[*threads++].size();
627        if (max < thread_count)
628            max = thread_count;
629    }
630
631    return max;
632}
633
634template<class Impl>
635bool
636DefaultIEW<Impl>::skidsEmpty()
637{
638    list<unsigned>::iterator threads = (*activeThreads).begin();
639
640    while (threads != (*activeThreads).end()) {
641        if (!skidBuffer[*threads++].empty())
642            return false;
643    }
644
645    return true;
646}
647
648template <class Impl>
649void
650DefaultIEW<Impl>::updateStatus()
651{
652    bool any_unblocking = false;
653
654    list<unsigned>::iterator threads = (*activeThreads).begin();
655
656    threads = (*activeThreads).begin();
657
658    while (threads != (*activeThreads).end()) {
659        unsigned tid = *threads++;
660
661        if (dispatchStatus[tid] == Unblocking) {
662            any_unblocking = true;
663            break;
664        }
665    }
666
667    // If there are no ready instructions waiting to be scheduled by the IQ,
668    // and there's no stores waiting to write back, and dispatch is not
669    // unblocking, then there is no internal activity for the IEW stage.
670    if (_status == Active && !instQueue.hasReadyInsts() &&
671        !ldstQueue.willWB() && !any_unblocking) {
672        DPRINTF(IEW, "IEW switching to idle\n");
673
674        deactivateStage();
675
676        _status = Inactive;
677    } else if (_status == Inactive && (instQueue.hasReadyInsts() ||
678                                       ldstQueue.willWB() ||
679                                       any_unblocking)) {
680        // Otherwise there is internal activity.  Set to active.
681        DPRINTF(IEW, "IEW switching to active\n");
682
683        activateStage();
684
685        _status = Active;
686    }
687}
688
689template <class Impl>
690void
691DefaultIEW<Impl>::resetEntries()
692{
693    instQueue.resetEntries();
694    ldstQueue.resetEntries();
695}
696
697template <class Impl>
698void
699DefaultIEW<Impl>::readStallSignals(unsigned tid)
700{
701    if (fromCommit->commitBlock[tid]) {
702        stalls[tid].commit = true;
703    }
704
705    if (fromCommit->commitUnblock[tid]) {
706        assert(stalls[tid].commit);
707        stalls[tid].commit = false;
708    }
709}
710
711template <class Impl>
712bool
713DefaultIEW<Impl>::checkStall(unsigned tid)
714{
715    bool ret_val(false);
716
717    if (stalls[tid].commit) {
718        DPRINTF(IEW,"[tid:%i]: Stall from Commit stage detected.\n",tid);
719        ret_val = true;
720    } else if (instQueue.isFull(tid)) {
721        DPRINTF(IEW,"[tid:%i]: Stall: IQ  is full.\n",tid);
722        ret_val = true;
723    } else if (ldstQueue.isFull(tid)) {
724        DPRINTF(IEW,"[tid:%i]: Stall: LSQ is full\n",tid);
725
726        if (ldstQueue.numLoads(tid) > 0 ) {
727
728            DPRINTF(IEW,"[tid:%i]: LSQ oldest load: [sn:%i] \n",
729                    tid,ldstQueue.getLoadHeadSeqNum(tid));
730        }
731
732        if (ldstQueue.numStores(tid) > 0) {
733
734            DPRINTF(IEW,"[tid:%i]: LSQ oldest store: [sn:%i] \n",
735                    tid,ldstQueue.getStoreHeadSeqNum(tid));
736        }
737
738        ret_val = true;
739    } else if (ldstQueue.isStalled(tid)) {
740        DPRINTF(IEW,"[tid:%i]: Stall: LSQ stall detected.\n",tid);
741        ret_val = true;
742    }
743
744    return ret_val;
745}
746
747template <class Impl>
748void
749DefaultIEW<Impl>::checkSignalsAndUpdate(unsigned tid)
750{
751    // Check if there's a squash signal, squash if there is
752    // Check stall signals, block if there is.
753    // If status was Blocked
754    //     if so then go to unblocking
755    // If status was Squashing
756    //     check if squashing is not high.  Switch to running this cycle.
757
758    readStallSignals(tid);
759
760    if (fromCommit->commitInfo[tid].squash) {
761        squash(tid);
762
763        if (dispatchStatus[tid] == Blocked ||
764            dispatchStatus[tid] == Unblocking) {
765            toRename->iewUnblock[tid] = true;
766            wroteToTimeBuffer = true;
767        }
768
769        dispatchStatus[tid] = Squashing;
770
771        fetchRedirect[tid] = false;
772        return;
773    }
774
775    if (fromCommit->commitInfo[tid].robSquashing) {
776        DPRINTF(IEW, "[tid:%i]: ROB is still squashing.\n", tid);
777
778        dispatchStatus[tid] = Squashing;
779
780        emptyRenameInsts(tid);
781        wroteToTimeBuffer = true;
782        return;
783    }
784
785    if (checkStall(tid)) {
786        block(tid);
787        dispatchStatus[tid] = Blocked;
788        return;
789    }
790
791    if (dispatchStatus[tid] == Blocked) {
792        // Status from previous cycle was blocked, but there are no more stall
793        // conditions.  Switch over to unblocking.
794        DPRINTF(IEW, "[tid:%i]: Done blocking, switching to unblocking.\n",
795                tid);
796
797        dispatchStatus[tid] = Unblocking;
798
799        unblock(tid);
800
801        return;
802    }
803
804    if (dispatchStatus[tid] == Squashing) {
805        // Switch status to running if rename isn't being told to block or
806        // squash this cycle.
807        DPRINTF(IEW, "[tid:%i]: Done squashing, switching to running.\n",
808                tid);
809
810        dispatchStatus[tid] = Running;
811
812        return;
813    }
814}
815
816template <class Impl>
817void
818DefaultIEW<Impl>::sortInsts()
819{
820    int insts_from_rename = fromRename->size;
821#ifdef DEBUG
822    for (int i = 0; i < numThreads; i++)
823        assert(insts[i].empty());
824#endif
825    for (int i = 0; i < insts_from_rename; ++i) {
826        insts[fromRename->insts[i]->threadNumber].push(fromRename->insts[i]);
827    }
828}
829
830template <class Impl>
831void
832DefaultIEW<Impl>::emptyRenameInsts(unsigned tid)
833{
834    while (!insts[tid].empty()) {
835        if (insts[tid].front()->isLoad() ||
836            insts[tid].front()->isStore() ) {
837            toRename->iewInfo[tid].dispatchedToLSQ++;
838        }
839
840        toRename->iewInfo[tid].dispatched++;
841
842        insts[tid].pop();
843    }
844}
845
846template <class Impl>
847void
848DefaultIEW<Impl>::wakeCPU()
849{
850    cpu->wakeCPU();
851}
852
853template <class Impl>
854void
855DefaultIEW<Impl>::activityThisCycle()
856{
857    DPRINTF(Activity, "Activity this cycle.\n");
858    cpu->activityThisCycle();
859}
860
861template <class Impl>
862inline void
863DefaultIEW<Impl>::activateStage()
864{
865    DPRINTF(Activity, "Activating stage.\n");
866    cpu->activateStage(O3CPU::IEWIdx);
867}
868
869template <class Impl>
870inline void
871DefaultIEW<Impl>::deactivateStage()
872{
873    DPRINTF(Activity, "Deactivating stage.\n");
874    cpu->deactivateStage(O3CPU::IEWIdx);
875}
876
877template<class Impl>
878void
879DefaultIEW<Impl>::dispatch(unsigned tid)
880{
881    // If status is Running or idle,
882    //     call dispatchInsts()
883    // If status is Unblocking,
884    //     buffer any instructions coming from rename
885    //     continue trying to empty skid buffer
886    //     check if stall conditions have passed
887
888    if (dispatchStatus[tid] == Blocked) {
889        ++iewBlockCycles;
890
891    } else if (dispatchStatus[tid] == Squashing) {
892        ++iewSquashCycles;
893    }
894
895    // Dispatch should try to dispatch as many instructions as its bandwidth
896    // will allow, as long as it is not currently blocked.
897    if (dispatchStatus[tid] == Running ||
898        dispatchStatus[tid] == Idle) {
899        DPRINTF(IEW, "[tid:%i] Not blocked, so attempting to run "
900                "dispatch.\n", tid);
901
902        dispatchInsts(tid);
903    } else if (dispatchStatus[tid] == Unblocking) {
904        // Make sure that the skid buffer has something in it if the
905        // status is unblocking.
906        assert(!skidsEmpty());
907
908        // If the status was unblocking, then instructions from the skid
909        // buffer were used.  Remove those instructions and handle
910        // the rest of unblocking.
911        dispatchInsts(tid);
912
913        ++iewUnblockCycles;
914
915        if (validInstsFromRename() && dispatchedAllInsts) {
916            // Add the current inputs to the skid buffer so they can be
917            // reprocessed when this stage unblocks.
918            skidInsert(tid);
919        }
920
921        unblock(tid);
922    }
923}
924
925template <class Impl>
926void
927DefaultIEW<Impl>::dispatchInsts(unsigned tid)
928{
929    dispatchedAllInsts = true;
930
931    // Obtain instructions from skid buffer if unblocking, or queue from rename
932    // otherwise.
933    std::queue<DynInstPtr> &insts_to_dispatch =
934        dispatchStatus[tid] == Unblocking ?
935        skidBuffer[tid] : insts[tid];
936
937    int insts_to_add = insts_to_dispatch.size();
938
939    DynInstPtr inst;
940    bool add_to_iq = false;
941    int dis_num_inst = 0;
942
943    // Loop through the instructions, putting them in the instruction
944    // queue.
945    for ( ; dis_num_inst < insts_to_add &&
946              dis_num_inst < dispatchWidth;
947          ++dis_num_inst)
948    {
949        inst = insts_to_dispatch.front();
950
951        if (dispatchStatus[tid] == Unblocking) {
952            DPRINTF(IEW, "[tid:%i]: Issue: Examining instruction from skid "
953                    "buffer\n", tid);
954        }
955
956        // Make sure there's a valid instruction there.
957        assert(inst);
958
959        DPRINTF(IEW, "[tid:%i]: Issue: Adding PC %#x [sn:%lli] [tid:%i] to "
960                "IQ.\n",
961                tid, inst->readPC(), inst->seqNum, inst->threadNumber);
962
963        // Be sure to mark these instructions as ready so that the
964        // commit stage can go ahead and execute them, and mark
965        // them as issued so the IQ doesn't reprocess them.
966
967        // Check for squashed instructions.
968        if (inst->isSquashed()) {
969            DPRINTF(IEW, "[tid:%i]: Issue: Squashed instruction encountered, "
970                    "not adding to IQ.\n", tid);
971
972            ++iewDispSquashedInsts;
973
974            insts_to_dispatch.pop();
975
976            //Tell Rename That An Instruction has been processed
977            if (inst->isLoad() || inst->isStore()) {
978                toRename->iewInfo[tid].dispatchedToLSQ++;
979            }
980            toRename->iewInfo[tid].dispatched++;
981
982            continue;
983        }
984
985        // Check for full conditions.
986        if (instQueue.isFull(tid)) {
987            DPRINTF(IEW, "[tid:%i]: Issue: IQ has become full.\n", tid);
988
989            // Call function to start blocking.
990            block(tid);
991
992            // Set unblock to false. Special case where we are using
993            // skidbuffer (unblocking) instructions but then we still
994            // get full in the IQ.
995            toRename->iewUnblock[tid] = false;
996
997            dispatchedAllInsts = false;
998
999            ++iewIQFullEvents;
1000            break;
1001        } else if (ldstQueue.isFull(tid)) {
1002            DPRINTF(IEW, "[tid:%i]: Issue: LSQ has become full.\n",tid);
1003
1004            // Call function to start blocking.
1005            block(tid);
1006
1007            // Set unblock to false. Special case where we are using
1008            // skidbuffer (unblocking) instructions but then we still
1009            // get full in the IQ.
1010            toRename->iewUnblock[tid] = false;
1011
1012            dispatchedAllInsts = false;
1013
1014            ++iewLSQFullEvents;
1015            break;
1016        }
1017
1018        // Otherwise issue the instruction just fine.
1019        if (inst->isLoad()) {
1020            DPRINTF(IEW, "[tid:%i]: Issue: Memory instruction "
1021                    "encountered, adding to LSQ.\n", tid);
1022
1023            // Reserve a spot in the load store queue for this
1024            // memory access.
1025            ldstQueue.insertLoad(inst);
1026
1027            ++iewDispLoadInsts;
1028
1029            add_to_iq = true;
1030
1031            toRename->iewInfo[tid].dispatchedToLSQ++;
1032        } else if (inst->isStore()) {
1033            DPRINTF(IEW, "[tid:%i]: Issue: Memory instruction "
1034                    "encountered, adding to LSQ.\n", tid);
1035
1036            ldstQueue.insertStore(inst);
1037
1038            ++iewDispStoreInsts;
1039
1040            if (inst->isStoreConditional()) {
1041                // Store conditionals need to be set as "canCommit()"
1042                // so that commit can process them when they reach the
1043                // head of commit.
1044                // @todo: This is somewhat specific to Alpha.
1045                inst->setCanCommit();
1046                instQueue.insertNonSpec(inst);
1047                add_to_iq = false;
1048
1049                ++iewDispNonSpecInsts;
1050            } else {
1051                add_to_iq = true;
1052            }
1053
1054            toRename->iewInfo[tid].dispatchedToLSQ++;
1055#if FULL_SYSTEM
1056        } else if (inst->isMemBarrier() || inst->isWriteBarrier()) {
1057            // Same as non-speculative stores.
1058            inst->setCanCommit();
1059            instQueue.insertBarrier(inst);
1060            add_to_iq = false;
1061#endif
1062        } else if (inst->isNonSpeculative()) {
1063            DPRINTF(IEW, "[tid:%i]: Issue: Nonspeculative instruction "
1064                    "encountered, skipping.\n", tid);
1065
1066            // Same as non-speculative stores.
1067            inst->setCanCommit();
1068
1069            // Specifically insert it as nonspeculative.
1070            instQueue.insertNonSpec(inst);
1071
1072            ++iewDispNonSpecInsts;
1073
1074            add_to_iq = false;
1075        } else if (inst->isNop()) {
1076            DPRINTF(IEW, "[tid:%i]: Issue: Nop instruction encountered, "
1077                    "skipping.\n", tid);
1078
1079            inst->setIssued();
1080            inst->setExecuted();
1081            inst->setCanCommit();
1082
1083            instQueue.recordProducer(inst);
1084
1085            iewExecutedNop[tid]++;
1086
1087            add_to_iq = false;
1088        } else if (inst->isExecuted()) {
1089            assert(0 && "Instruction shouldn't be executed.\n");
1090            DPRINTF(IEW, "Issue: Executed branch encountered, "
1091                    "skipping.\n");
1092
1093            inst->setIssued();
1094            inst->setCanCommit();
1095
1096            instQueue.recordProducer(inst);
1097
1098            add_to_iq = false;
1099        } else {
1100            add_to_iq = true;
1101        }
1102
1103        // If the instruction queue is not full, then add the
1104        // instruction.
1105        if (add_to_iq) {
1106            instQueue.insert(inst);
1107        }
1108
1109        insts_to_dispatch.pop();
1110
1111        toRename->iewInfo[tid].dispatched++;
1112
1113        ++iewDispatchedInsts;
1114    }
1115
1116    if (!insts_to_dispatch.empty()) {
1117        DPRINTF(IEW,"[tid:%i]: Issue: Bandwidth Full. Blocking.\n");
1118        block(tid);
1119        toRename->iewUnblock[tid] = false;
1120    }
1121
1122    if (dispatchStatus[tid] == Idle && dis_num_inst) {
1123        dispatchStatus[tid] = Running;
1124
1125        updatedQueues = true;
1126    }
1127
1128    dis_num_inst = 0;
1129}
1130
1131template <class Impl>
1132void
1133DefaultIEW<Impl>::printAvailableInsts()
1134{
1135    int inst = 0;
1136
1137    cout << "Available Instructions: ";
1138
1139    while (fromIssue->insts[inst]) {
1140
1141        if (inst%3==0) cout << "\n\t";
1142
1143        cout << "PC: " << fromIssue->insts[inst]->readPC()
1144             << " TN: " << fromIssue->insts[inst]->threadNumber
1145             << " SN: " << fromIssue->insts[inst]->seqNum << " | ";
1146
1147        inst++;
1148
1149    }
1150
1151    cout << "\n";
1152}
1153
1154template <class Impl>
1155void
1156DefaultIEW<Impl>::executeInsts()
1157{
1158    wbNumInst = 0;
1159    wbCycle = 0;
1160
1161    list<unsigned>::iterator threads = (*activeThreads).begin();
1162
1163    while (threads != (*activeThreads).end()) {
1164        unsigned tid = *threads++;
1165        fetchRedirect[tid] = false;
1166    }
1167
1168    // Uncomment this if you want to see all available instructions.
1169//    printAvailableInsts();
1170
1171    // Execute/writeback any instructions that are available.
1172    int insts_to_execute = fromIssue->size;
1173    int inst_num = 0;
1174    for (; inst_num < insts_to_execute;
1175          ++inst_num) {
1176
1177        DPRINTF(IEW, "Execute: Executing instructions from IQ.\n");
1178
1179        DynInstPtr inst = instQueue.getInstToExecute();
1180
1181        DPRINTF(IEW, "Execute: Processing PC %#x, [tid:%i] [sn:%i].\n",
1182                inst->readPC(), inst->threadNumber,inst->seqNum);
1183
1184        // Check if the instruction is squashed; if so then skip it
1185        if (inst->isSquashed()) {
1186            DPRINTF(IEW, "Execute: Instruction was squashed.\n");
1187
1188            // Consider this instruction executed so that commit can go
1189            // ahead and retire the instruction.
1190            inst->setExecuted();
1191
1192            // Not sure if I should set this here or just let commit try to
1193            // commit any squashed instructions.  I like the latter a bit more.
1194            inst->setCanCommit();
1195
1196            ++iewExecSquashedInsts;
1197
1198            decrWb(inst->seqNum);
1199            continue;
1200        }
1201
1202        Fault fault = NoFault;
1203
1204        // Execute instruction.
1205        // Note that if the instruction faults, it will be handled
1206        // at the commit stage.
1207        if (inst->isMemRef() &&
1208            (!inst->isDataPrefetch() && !inst->isInstPrefetch())) {
1209            DPRINTF(IEW, "Execute: Calculating address for memory "
1210                    "reference.\n");
1211
1212            // Tell the LDSTQ to execute this instruction (if it is a load).
1213            if (inst->isLoad()) {
1214                // Loads will mark themselves as executed, and their writeback
1215                // event adds the instruction to the queue to commit
1216                fault = ldstQueue.executeLoad(inst);
1217            } else if (inst->isStore()) {
1218                ldstQueue.executeStore(inst);
1219
1220                // If the store had a fault then it may not have a mem req
1221                if (inst->req && !(inst->req->getFlags() & LOCKED)) {
1222                    inst->setExecuted();
1223
1224                    instToCommit(inst);
1225                }
1226
1227                // Store conditionals will mark themselves as
1228                // executed, and their writeback event will add the
1229                // instruction to the queue to commit.
1230            } else {
1231                panic("Unexpected memory type!\n");
1232            }
1233
1234        } else {
1235            inst->execute();
1236
1237            inst->setExecuted();
1238
1239            instToCommit(inst);
1240        }
1241
1242        updateExeInstStats(inst);
1243
1244        // Check if branch prediction was correct, if not then we need
1245        // to tell commit to squash in flight instructions.  Only
1246        // handle this if there hasn't already been something that
1247        // redirects fetch in this group of instructions.
1248
1249        // This probably needs to prioritize the redirects if a different
1250        // scheduler is used.  Currently the scheduler schedules the oldest
1251        // instruction first, so the branch resolution order will be correct.
1252        unsigned tid = inst->threadNumber;
1253
1254        if (!fetchRedirect[tid]) {
1255
1256            if (inst->mispredicted()) {
1257                fetchRedirect[tid] = true;
1258
1259                DPRINTF(IEW, "Execute: Branch mispredict detected.\n");
1260                DPRINTF(IEW, "Execute: Redirecting fetch to PC: %#x.\n",
1261                        inst->nextPC);
1262
1263                // If incorrect, then signal the ROB that it must be squashed.
1264                squashDueToBranch(inst, tid);
1265
1266                if (inst->predTaken()) {
1267                    predictedTakenIncorrect++;
1268                } else {
1269                    predictedNotTakenIncorrect++;
1270                }
1271            } else if (ldstQueue.violation(tid)) {
1272                fetchRedirect[tid] = true;
1273
1274                // If there was an ordering violation, then get the
1275                // DynInst that caused the violation.  Note that this
1276                // clears the violation signal.
1277                DynInstPtr violator;
1278                violator = ldstQueue.getMemDepViolator(tid);
1279
1280                DPRINTF(IEW, "LDSTQ detected a violation.  Violator PC: "
1281                        "%#x, inst PC: %#x.  Addr is: %#x.\n",
1282                        violator->readPC(), inst->readPC(), inst->physEffAddr);
1283
1284                // Tell the instruction queue that a violation has occured.
1285                instQueue.violation(inst, violator);
1286
1287                // Squash.
1288                squashDueToMemOrder(inst,tid);
1289
1290                ++memOrderViolationEvents;
1291            } else if (ldstQueue.loadBlocked(tid) &&
1292                       !ldstQueue.isLoadBlockedHandled(tid)) {
1293                fetchRedirect[tid] = true;
1294
1295                DPRINTF(IEW, "Load operation couldn't execute because the "
1296                        "memory system is blocked.  PC: %#x [sn:%lli]\n",
1297                        inst->readPC(), inst->seqNum);
1298
1299                squashDueToMemBlocked(inst, tid);
1300            }
1301        }
1302    }
1303
1304    // Update and record activity if we processed any instructions.
1305    if (inst_num) {
1306        if (exeStatus == Idle) {
1307            exeStatus = Running;
1308        }
1309
1310        updatedQueues = true;
1311
1312        cpu->activityThisCycle();
1313    }
1314
1315    // Need to reset this in case a writeback event needs to write into the
1316    // iew queue.  That way the writeback event will write into the correct
1317    // spot in the queue.
1318    wbNumInst = 0;
1319}
1320
1321template <class Impl>
1322void
1323DefaultIEW<Impl>::writebackInsts()
1324{
1325    // Loop through the head of the time buffer and wake any
1326    // dependents.  These instructions are about to write back.  Also
1327    // mark scoreboard that this instruction is finally complete.
1328    // Either have IEW have direct access to scoreboard, or have this
1329    // as part of backwards communication.
1330    for (int inst_num = 0; inst_num < issueWidth &&
1331             toCommit->insts[inst_num]; inst_num++) {
1332        DynInstPtr inst = toCommit->insts[inst_num];
1333        int tid = inst->threadNumber;
1334
1335        DPRINTF(IEW, "Sending instructions to commit, [sn:%lli] PC %#x.\n",
1336                inst->seqNum, inst->readPC());
1337
1338        iewInstsToCommit[tid]++;
1339
1340        // Some instructions will be sent to commit without having
1341        // executed because they need commit to handle them.
1342        // E.g. Uncached loads have not actually executed when they
1343        // are first sent to commit.  Instead commit must tell the LSQ
1344        // when it's ready to execute the uncached load.
1345        if (!inst->isSquashed() && inst->isExecuted()) {
1346            int dependents = instQueue.wakeDependents(inst);
1347
1348            for (int i = 0; i < inst->numDestRegs(); i++) {
1349                //mark as Ready
1350                DPRINTF(IEW,"Setting Destination Register %i\n",
1351                        inst->renamedDestRegIdx(i));
1352                scoreboard->setReg(inst->renamedDestRegIdx(i));
1353            }
1354
1355            if (dependents) {
1356                producerInst[tid]++;
1357                consumerInst[tid]+= dependents;
1358            }
1359            writebackCount[tid]++;
1360        }
1361
1362        decrWb(inst->seqNum);
1363    }
1364}
1365
1366template<class Impl>
1367void
1368DefaultIEW<Impl>::tick()
1369{
1370    wbNumInst = 0;
1371    wbCycle = 0;
1372
1373    wroteToTimeBuffer = false;
1374    updatedQueues = false;
1375
1376    sortInsts();
1377
1378    // Free function units marked as being freed this cycle.
1379    fuPool->processFreeUnits();
1380
1381    list<unsigned>::iterator threads = (*activeThreads).begin();
1382
1383    // Check stall and squash signals, dispatch any instructions.
1384    while (threads != (*activeThreads).end()) {
1385           unsigned tid = *threads++;
1386
1387        DPRINTF(IEW,"Issue: Processing [tid:%i]\n",tid);
1388
1389        checkSignalsAndUpdate(tid);
1390        dispatch(tid);
1391    }
1392
1393    if (exeStatus != Squashing) {
1394        executeInsts();
1395
1396        writebackInsts();
1397
1398        // Have the instruction queue try to schedule any ready instructions.
1399        // (In actuality, this scheduling is for instructions that will
1400        // be executed next cycle.)
1401        instQueue.scheduleReadyInsts();
1402
1403        // Also should advance its own time buffers if the stage ran.
1404        // Not the best place for it, but this works (hopefully).
1405        issueToExecQueue.advance();
1406    }
1407
1408    bool broadcast_free_entries = false;
1409
1410    if (updatedQueues || exeStatus == Running || updateLSQNextCycle) {
1411        exeStatus = Idle;
1412        updateLSQNextCycle = false;
1413
1414        broadcast_free_entries = true;
1415    }
1416
1417    // Writeback any stores using any leftover bandwidth.
1418    ldstQueue.writebackStores();
1419
1420    // Check the committed load/store signals to see if there's a load
1421    // or store to commit.  Also check if it's being told to execute a
1422    // nonspeculative instruction.
1423    // This is pretty inefficient...
1424
1425    threads = (*activeThreads).begin();
1426    while (threads != (*activeThreads).end()) {
1427        unsigned tid = (*threads++);
1428
1429        DPRINTF(IEW,"Processing [tid:%i]\n",tid);
1430
1431        // Update structures based on instructions committed.
1432        if (fromCommit->commitInfo[tid].doneSeqNum != 0 &&
1433            !fromCommit->commitInfo[tid].squash &&
1434            !fromCommit->commitInfo[tid].robSquashing) {
1435
1436            ldstQueue.commitStores(fromCommit->commitInfo[tid].doneSeqNum,tid);
1437
1438            ldstQueue.commitLoads(fromCommit->commitInfo[tid].doneSeqNum,tid);
1439
1440            updateLSQNextCycle = true;
1441            instQueue.commit(fromCommit->commitInfo[tid].doneSeqNum,tid);
1442        }
1443
1444        if (fromCommit->commitInfo[tid].nonSpecSeqNum != 0) {
1445
1446            //DPRINTF(IEW,"NonspecInst from thread %i",tid);
1447            if (fromCommit->commitInfo[tid].uncached) {
1448                instQueue.replayMemInst(fromCommit->commitInfo[tid].uncachedLoad);
1449            } else {
1450                instQueue.scheduleNonSpec(
1451                    fromCommit->commitInfo[tid].nonSpecSeqNum);
1452            }
1453        }
1454
1455        if (broadcast_free_entries) {
1456            toFetch->iewInfo[tid].iqCount =
1457                instQueue.getCount(tid);
1458            toFetch->iewInfo[tid].ldstqCount =
1459                ldstQueue.getCount(tid);
1460
1461            toRename->iewInfo[tid].usedIQ = true;
1462            toRename->iewInfo[tid].freeIQEntries =
1463                instQueue.numFreeEntries();
1464            toRename->iewInfo[tid].usedLSQ = true;
1465            toRename->iewInfo[tid].freeLSQEntries =
1466                ldstQueue.numFreeEntries(tid);
1467
1468            wroteToTimeBuffer = true;
1469        }
1470
1471        DPRINTF(IEW, "[tid:%i], Dispatch dispatched %i instructions.\n",
1472                tid, toRename->iewInfo[tid].dispatched);
1473    }
1474
1475    DPRINTF(IEW, "IQ has %i free entries (Can schedule: %i).  "
1476            "LSQ has %i free entries.\n",
1477            instQueue.numFreeEntries(), instQueue.hasReadyInsts(),
1478            ldstQueue.numFreeEntries());
1479
1480    updateStatus();
1481
1482    if (wroteToTimeBuffer) {
1483        DPRINTF(Activity, "Activity this cycle.\n");
1484        cpu->activityThisCycle();
1485    }
1486}
1487
1488template <class Impl>
1489void
1490DefaultIEW<Impl>::updateExeInstStats(DynInstPtr &inst)
1491{
1492    int thread_number = inst->threadNumber;
1493
1494    //
1495    //  Pick off the software prefetches
1496    //
1497#ifdef TARGET_ALPHA
1498    if (inst->isDataPrefetch())
1499        iewExecutedSwp[thread_number]++;
1500    else
1501        iewIewExecutedcutedInsts++;
1502#else
1503    iewExecutedInsts++;
1504#endif
1505
1506    //
1507    //  Control operations
1508    //
1509    if (inst->isControl())
1510        iewExecutedBranches[thread_number]++;
1511
1512    //
1513    //  Memory operations
1514    //
1515    if (inst->isMemRef()) {
1516        iewExecutedRefs[thread_number]++;
1517
1518        if (inst->isLoad()) {
1519            iewExecLoadInsts[thread_number]++;
1520        }
1521    }
1522}
1523