iew_impl.hh revision 2665:a124942bacb8
1/*
2 * Copyright (c) 2004-2005 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Kevin Lim
29 */
30
31// @todo: Fix the instantaneous communication among all the stages within
32// iew.  There's a clear delay between issue and execute, yet backwards
33// communication happens simultaneously.
34// Update the statuses for each stage.
35
36#include <queue>
37
38#include "base/timebuf.hh"
39#include "cpu/o3/iew.hh"
40
41template<class Impl>
42SimpleIEW<Impl>::WritebackEvent::WritebackEvent(DynInstPtr &_inst,
43                                                SimpleIEW<Impl> *_iew)
44    : Event(&mainEventQueue, CPU_Tick_Pri), inst(_inst), iewStage(_iew)
45{
46    this->setFlags(Event::AutoDelete);
47}
48
49template<class Impl>
50void
51SimpleIEW<Impl>::WritebackEvent::process()
52{
53    DPRINTF(IEW, "IEW: WRITEBACK EVENT!!!!\n");
54
55    // Need to insert instruction into queue to commit
56    iewStage->instToCommit(inst);
57    // Need to execute second half of the instruction, do actual writing to
58    // registers and such
59    inst->execute();
60}
61
62template<class Impl>
63const char *
64SimpleIEW<Impl>::WritebackEvent::description()
65{
66    return "LSQ writeback event";
67}
68
69template<class Impl>
70SimpleIEW<Impl>::SimpleIEW(Params &params)
71    : // Just make this time buffer really big for now
72      issueToExecQueue(5, 5),
73      instQueue(params),
74      ldstQueue(params),
75      commitToIEWDelay(params.commitToIEWDelay),
76      renameToIEWDelay(params.renameToIEWDelay),
77      issueToExecuteDelay(params.issueToExecuteDelay),
78      issueReadWidth(params.issueWidth),
79      issueWidth(params.issueWidth),
80      executeWidth(params.executeWidth)
81{
82    DPRINTF(IEW, "IEW: executeIntWidth: %i.\n", params.executeIntWidth);
83    _status = Idle;
84    _issueStatus = Idle;
85    _exeStatus = Idle;
86    _wbStatus = Idle;
87
88    // Setup wire to read instructions coming from issue.
89    fromIssue = issueToExecQueue.getWire(-issueToExecuteDelay);
90
91    // Instruction queue needs the queue between issue and execute.
92    instQueue.setIssueToExecuteQueue(&issueToExecQueue);
93
94    ldstQueue.setIEW(this);
95}
96
97template <class Impl>
98void
99SimpleIEW<Impl>::regStats()
100{
101    instQueue.regStats();
102
103    iewIdleCycles
104        .name(name() + ".iewIdleCycles")
105        .desc("Number of cycles IEW is idle");
106
107    iewSquashCycles
108        .name(name() + ".iewSquashCycles")
109        .desc("Number of cycles IEW is squashing");
110
111    iewBlockCycles
112        .name(name() + ".iewBlockCycles")
113        .desc("Number of cycles IEW is blocking");
114
115    iewUnblockCycles
116        .name(name() + ".iewUnblockCycles")
117        .desc("Number of cycles IEW is unblocking");
118
119//    iewWBInsts;
120
121    iewDispatchedInsts
122        .name(name() + ".iewDispatchedInsts")
123        .desc("Number of instructions dispatched to IQ");
124
125    iewDispSquashedInsts
126        .name(name() + ".iewDispSquashedInsts")
127        .desc("Number of squashed instructions skipped by dispatch");
128
129    iewDispLoadInsts
130        .name(name() + ".iewDispLoadInsts")
131        .desc("Number of dispatched load instructions");
132
133    iewDispStoreInsts
134        .name(name() + ".iewDispStoreInsts")
135        .desc("Number of dispatched store instructions");
136
137    iewDispNonSpecInsts
138        .name(name() + ".iewDispNonSpecInsts")
139        .desc("Number of dispatched non-speculative instructions");
140
141    iewIQFullEvents
142        .name(name() + ".iewIQFullEvents")
143        .desc("Number of times the IQ has become full, causing a stall");
144
145    iewExecutedInsts
146        .name(name() + ".iewExecutedInsts")
147        .desc("Number of executed instructions");
148
149    iewExecLoadInsts
150        .name(name() + ".iewExecLoadInsts")
151        .desc("Number of load instructions executed");
152
153    iewExecStoreInsts
154        .name(name() + ".iewExecStoreInsts")
155        .desc("Number of store instructions executed");
156
157    iewExecSquashedInsts
158        .name(name() + ".iewExecSquashedInsts")
159        .desc("Number of squashed instructions skipped in execute");
160
161    memOrderViolationEvents
162        .name(name() + ".memOrderViolationEvents")
163        .desc("Number of memory order violations");
164
165    predictedTakenIncorrect
166        .name(name() + ".predictedTakenIncorrect")
167        .desc("Number of branches that were predicted taken incorrectly");
168}
169
170template<class Impl>
171void
172SimpleIEW<Impl>::setCPU(FullCPU *cpu_ptr)
173{
174    DPRINTF(IEW, "IEW: Setting CPU pointer.\n");
175    cpu = cpu_ptr;
176
177    instQueue.setCPU(cpu_ptr);
178    ldstQueue.setCPU(cpu_ptr);
179}
180
181template<class Impl>
182void
183SimpleIEW<Impl>::setTimeBuffer(TimeBuffer<TimeStruct> *tb_ptr)
184{
185    DPRINTF(IEW, "IEW: Setting time buffer pointer.\n");
186    timeBuffer = tb_ptr;
187
188    // Setup wire to read information from time buffer, from commit.
189    fromCommit = timeBuffer->getWire(-commitToIEWDelay);
190
191    // Setup wire to write information back to previous stages.
192    toRename = timeBuffer->getWire(0);
193
194    // Instruction queue also needs main time buffer.
195    instQueue.setTimeBuffer(tb_ptr);
196}
197
198template<class Impl>
199void
200SimpleIEW<Impl>::setRenameQueue(TimeBuffer<RenameStruct> *rq_ptr)
201{
202    DPRINTF(IEW, "IEW: Setting rename queue pointer.\n");
203    renameQueue = rq_ptr;
204
205    // Setup wire to read information from rename queue.
206    fromRename = renameQueue->getWire(-renameToIEWDelay);
207}
208
209template<class Impl>
210void
211SimpleIEW<Impl>::setIEWQueue(TimeBuffer<IEWStruct> *iq_ptr)
212{
213    DPRINTF(IEW, "IEW: Setting IEW queue pointer.\n");
214    iewQueue = iq_ptr;
215
216    // Setup wire to write instructions to commit.
217    toCommit = iewQueue->getWire(0);
218}
219
220template<class Impl>
221void
222SimpleIEW<Impl>::setRenameMap(RenameMap *rm_ptr)
223{
224    DPRINTF(IEW, "IEW: Setting rename map pointer.\n");
225    renameMap = rm_ptr;
226}
227
228template<class Impl>
229void
230SimpleIEW<Impl>::squash()
231{
232    DPRINTF(IEW, "IEW: Squashing all instructions.\n");
233    _status = Squashing;
234
235    // Tell the IQ to start squashing.
236    instQueue.squash();
237
238    // Tell the LDSTQ to start squashing.
239    ldstQueue.squash(fromCommit->commitInfo.doneSeqNum);
240}
241
242template<class Impl>
243void
244SimpleIEW<Impl>::squashDueToBranch(DynInstPtr &inst)
245{
246    DPRINTF(IEW, "IEW: Squashing from a specific instruction, PC: %#x.\n",
247            inst->PC);
248    // Perhaps leave the squashing up to the ROB stage to tell it when to
249    // squash?
250    _status = Squashing;
251
252    // Tell rename to squash through the time buffer.
253    toCommit->squash = true;
254    // Also send PC update information back to prior stages.
255    toCommit->squashedSeqNum = inst->seqNum;
256    toCommit->mispredPC = inst->readPC();
257    toCommit->nextPC = inst->readNextPC();
258    toCommit->branchMispredict = true;
259    // Prediction was incorrect, so send back inverse.
260    toCommit->branchTaken = inst->readNextPC() !=
261        (inst->readPC() + sizeof(TheISA::MachInst));
262}
263
264template<class Impl>
265void
266SimpleIEW<Impl>::squashDueToMem(DynInstPtr &inst)
267{
268    DPRINTF(IEW, "IEW: Squashing from a specific instruction, PC: %#x.\n",
269            inst->PC);
270    // Perhaps leave the squashing up to the ROB stage to tell it when to
271    // squash?
272    _status = Squashing;
273
274    // Tell rename to squash through the time buffer.
275    toCommit->squash = true;
276    // Also send PC update information back to prior stages.
277    toCommit->squashedSeqNum = inst->seqNum;
278    toCommit->nextPC = inst->readNextPC();
279}
280
281template<class Impl>
282void
283SimpleIEW<Impl>::block()
284{
285    DPRINTF(IEW, "IEW: Blocking.\n");
286    // Set the status to Blocked.
287    _status = Blocked;
288
289    // Add the current inputs to the skid buffer so they can be
290    // reprocessed when this stage unblocks.
291    skidBuffer.push(*fromRename);
292
293    // Note that this stage only signals previous stages to stall when
294    // it is the cause of the stall originates at this stage.  Otherwise
295    // the previous stages are expected to check all possible stall signals.
296}
297
298template<class Impl>
299inline void
300SimpleIEW<Impl>::unblock()
301{
302    // Check if there's information in the skid buffer.  If there is, then
303    // set status to unblocking, otherwise set it directly to running.
304    DPRINTF(IEW, "IEW: Reading instructions out of the skid "
305            "buffer.\n");
306    // Remove the now processed instructions from the skid buffer.
307    skidBuffer.pop();
308
309    // If there's still information in the skid buffer, then
310    // continue to tell previous stages to stall.  They will be
311    // able to restart once the skid buffer is empty.
312    if (!skidBuffer.empty()) {
313        toRename->iewInfo.stall = true;
314    } else {
315        DPRINTF(IEW, "IEW: Stage is done unblocking.\n");
316        _status = Running;
317    }
318}
319
320template<class Impl>
321void
322SimpleIEW<Impl>::wakeDependents(DynInstPtr &inst)
323{
324    instQueue.wakeDependents(inst);
325}
326
327
328template<class Impl>
329void
330SimpleIEW<Impl>::instToCommit(DynInstPtr &inst)
331{
332
333}
334
335template <class Impl>
336void
337SimpleIEW<Impl>::dispatchInsts()
338{
339    ////////////////////////////////////////
340    // DISPATCH/ISSUE stage
341    ////////////////////////////////////////
342
343    //Put into its own function?
344    //Add instructions to IQ if there are any instructions there
345
346    // Check if there are any instructions coming from rename, and we're.
347    // not squashing.
348    if (fromRename->size > 0) {
349        int insts_to_add = fromRename->size;
350
351        // Loop through the instructions, putting them in the instruction
352        // queue.
353        for (int inst_num = 0; inst_num < insts_to_add; ++inst_num)
354        {
355            DynInstPtr inst = fromRename->insts[inst_num];
356
357            // Make sure there's a valid instruction there.
358            assert(inst);
359
360            DPRINTF(IEW, "IEW: Issue: Adding PC %#x to IQ.\n",
361                    inst->readPC());
362
363            // Be sure to mark these instructions as ready so that the
364            // commit stage can go ahead and execute them, and mark
365            // them as issued so the IQ doesn't reprocess them.
366            if (inst->isSquashed()) {
367                ++iewDispSquashedInsts;
368                continue;
369            } else if (instQueue.isFull()) {
370                DPRINTF(IEW, "IEW: Issue: IQ has become full.\n");
371                // Call function to start blocking.
372                block();
373                // Tell previous stage to stall.
374                toRename->iewInfo.stall = true;
375
376                ++iewIQFullEvents;
377                break;
378            } else if (inst->isLoad()) {
379                DPRINTF(IEW, "IEW: Issue: Memory instruction "
380                        "encountered, adding to LDSTQ.\n");
381
382                // Reserve a spot in the load store queue for this
383                // memory access.
384                ldstQueue.insertLoad(inst);
385
386                ++iewDispLoadInsts;
387            } else if (inst->isStore()) {
388                ldstQueue.insertStore(inst);
389
390                ++iewDispStoreInsts;
391            } else if (inst->isNonSpeculative()) {
392                DPRINTF(IEW, "IEW: Issue: Nonspeculative instruction "
393                        "encountered, skipping.\n");
394
395                // Same hack as with stores.
396                inst->setCanCommit();
397
398                // Specificall insert it as nonspeculative.
399                instQueue.insertNonSpec(inst);
400
401                ++iewDispNonSpecInsts;
402
403                continue;
404            } else if (inst->isNop()) {
405                DPRINTF(IEW, "IEW: Issue: Nop instruction encountered "
406                        ", skipping.\n");
407
408                inst->setIssued();
409                inst->setExecuted();
410                inst->setCanCommit();
411
412                instQueue.advanceTail(inst);
413
414                continue;
415            } else if (inst->isExecuted()) {
416                assert(0 && "Instruction shouldn't be executed.\n");
417                DPRINTF(IEW, "IEW: Issue: Executed branch encountered, "
418                        "skipping.\n");
419
420                inst->setIssued();
421                inst->setCanCommit();
422
423                instQueue.advanceTail(inst);
424
425                continue;
426            }
427
428            // If the instruction queue is not full, then add the
429            // instruction.
430            instQueue.insert(fromRename->insts[inst_num]);
431
432            ++iewDispatchedInsts;
433        }
434    }
435}
436
437template <class Impl>
438void
439SimpleIEW<Impl>::executeInsts()
440{
441    ////////////////////////////////////////
442    //EXECUTE/WRITEBACK stage
443    ////////////////////////////////////////
444
445    //Put into its own function?
446    //Similarly should probably have separate execution for int vs FP.
447    // Above comment is handled by the issue queue only issuing a valid
448    // mix of int/fp instructions.
449    //Actually okay to just have one execution, buuuuuut will need
450    //somewhere that defines the execution latency of all instructions.
451    // @todo: Move to the FU pool used in the current full cpu.
452
453    int fu_usage = 0;
454    bool fetch_redirect = false;
455    int inst_slot = 0;
456    int time_slot = 0;
457
458    // Execute/writeback any instructions that are available.
459    for (int inst_num = 0;
460         fu_usage < executeWidth && /* Haven't exceeded available FU's. */
461             inst_num < issueWidth &&
462             fromIssue->insts[inst_num];
463         ++inst_num) {
464
465        DPRINTF(IEW, "IEW: Execute: Executing instructions from IQ.\n");
466
467        // Get instruction from issue's queue.
468        DynInstPtr inst = fromIssue->insts[inst_num];
469
470        DPRINTF(IEW, "IEW: Execute: Processing PC %#x.\n", inst->readPC());
471
472        // Check if the instruction is squashed; if so then skip it
473        // and don't count it towards the FU usage.
474        if (inst->isSquashed()) {
475            DPRINTF(IEW, "IEW: Execute: Instruction was squashed.\n");
476
477            // Consider this instruction executed so that commit can go
478            // ahead and retire the instruction.
479            inst->setExecuted();
480
481            toCommit->insts[inst_num] = inst;
482
483            ++iewExecSquashedInsts;
484
485            continue;
486        }
487
488        inst->setExecuted();
489
490        // If an instruction is executed, then count it towards FU usage.
491        ++fu_usage;
492
493        // Execute instruction.
494        // Note that if the instruction faults, it will be handled
495        // at the commit stage.
496        if (inst->isMemRef()) {
497            DPRINTF(IEW, "IEW: Execute: Calculating address for memory "
498                    "reference.\n");
499
500            // Tell the LDSTQ to execute this instruction (if it is a load).
501            if (inst->isLoad()) {
502                ldstQueue.executeLoad(inst);
503
504                ++iewExecLoadInsts;
505            } else if (inst->isStore()) {
506                ldstQueue.executeStore(inst);
507
508                ++iewExecStoreInsts;
509            } else {
510                panic("IEW: Unexpected memory type!\n");
511            }
512
513        } else {
514            inst->execute();
515
516            ++iewExecutedInsts;
517        }
518
519        // First check the time slot that this instruction will write
520        // to.  If there are free write ports at the time, then go ahead
521        // and write the instruction to that time.  If there are not,
522        // keep looking back to see where's the first time there's a
523        // free slot.  What happens if you run out of free spaces?
524        // For now naively assume that all instructions take one cycle.
525        // Otherwise would have to look into the time buffer based on the
526        // latency of the instruction.
527        (*iewQueue)[time_slot].insts[inst_slot];
528        while ((*iewQueue)[time_slot].insts[inst_slot]) {
529            if (inst_slot < issueWidth) {
530                ++inst_slot;
531            } else {
532                ++time_slot;
533                inst_slot = 0;
534            }
535
536            assert(time_slot < 5);
537        }
538
539        // May actually have to work this out, especially with loads and stores
540
541        // Add finished instruction to queue to commit.
542        (*iewQueue)[time_slot].insts[inst_slot] = inst;
543        (*iewQueue)[time_slot].size++;
544
545        // Check if branch was correct.  This check happens after the
546        // instruction is added to the queue because even if the branch
547        // is mispredicted, the branch instruction itself is still valid.
548        // Only handle this if there hasn't already been something that
549        // redirects fetch in this group of instructions.
550        if (!fetch_redirect) {
551            if (inst->mispredicted()) {
552                fetch_redirect = true;
553
554                DPRINTF(IEW, "IEW: Execute: Branch mispredict detected.\n");
555                DPRINTF(IEW, "IEW: Execute: Redirecting fetch to PC: %#x.\n",
556                        inst->nextPC);
557
558                // If incorrect, then signal the ROB that it must be squashed.
559                squashDueToBranch(inst);
560
561                if (inst->predTaken()) {
562                    predictedTakenIncorrect++;
563                }
564            } else if (ldstQueue.violation()) {
565                fetch_redirect = true;
566
567                // Get the DynInst that caused the violation.
568                DynInstPtr violator = ldstQueue.getMemDepViolator();
569
570                DPRINTF(IEW, "IEW: LDSTQ detected a violation.  Violator PC: "
571                        "%#x, inst PC: %#x.  Addr is: %#x.\n",
572                        violator->readPC(), inst->readPC(), inst->physEffAddr);
573
574                // Tell the instruction queue that a violation has occured.
575                instQueue.violation(inst, violator);
576
577                // Squash.
578                squashDueToMem(inst);
579
580                ++memOrderViolationEvents;
581            }
582        }
583    }
584}
585
586template<class Impl>
587void
588SimpleIEW<Impl>::tick()
589{
590    // Considering putting all the state-determining stuff in this section.
591
592    // Try to fill up issue queue with as many instructions as bandwidth
593    // allows.
594    // Decode should try to execute as many instructions as its bandwidth
595    // will allow, as long as it is not currently blocked.
596
597    // Check if the stage is in a running status.
598    if (_status != Blocked && _status != Squashing) {
599        DPRINTF(IEW, "IEW: Status is not blocked, attempting to run "
600                     "stage.\n");
601        iew();
602
603        // If it's currently unblocking, check to see if it should switch
604        // to running.
605        if (_status == Unblocking) {
606            unblock();
607
608            ++iewUnblockCycles;
609        }
610    } else if (_status == Squashing) {
611
612        DPRINTF(IEW, "IEW: Still squashing.\n");
613
614        // Check if stage should remain squashing.  Stop squashing if the
615        // squash signal clears.
616        if (!fromCommit->commitInfo.squash &&
617            !fromCommit->commitInfo.robSquashing) {
618            DPRINTF(IEW, "IEW: Done squashing, changing status to "
619                    "running.\n");
620
621            _status = Running;
622            instQueue.stopSquash();
623        } else {
624            instQueue.doSquash();
625        }
626
627        ++iewSquashCycles;
628    } else if (_status == Blocked) {
629        // Continue to tell previous stage to stall.
630        toRename->iewInfo.stall = true;
631
632        // Check if possible stall conditions have cleared.
633        if (!fromCommit->commitInfo.stall &&
634            !instQueue.isFull()) {
635            DPRINTF(IEW, "IEW: Stall signals cleared, going to unblock.\n");
636            _status = Unblocking;
637        }
638
639        // If there's still instructions coming from rename, continue to
640        // put them on the skid buffer.
641        if (fromRename->size == 0) {
642            block();
643        }
644
645        if (fromCommit->commitInfo.squash ||
646            fromCommit->commitInfo.robSquashing) {
647            squash();
648        }
649
650        ++iewBlockCycles;
651    }
652
653    // @todo: Maybe put these at the beginning, so if it's idle it can
654    // return early.
655    // Write back number of free IQ entries here.
656    toRename->iewInfo.freeIQEntries = instQueue.numFreeEntries();
657
658    ldstQueue.writebackStores();
659
660    // Check the committed load/store signals to see if there's a load
661    // or store to commit.  Also check if it's being told to execute a
662    // nonspeculative instruction.
663    // This is pretty inefficient...
664    if (!fromCommit->commitInfo.squash &&
665        !fromCommit->commitInfo.robSquashing) {
666        ldstQueue.commitStores(fromCommit->commitInfo.doneSeqNum);
667        ldstQueue.commitLoads(fromCommit->commitInfo.doneSeqNum);
668    }
669
670    if (fromCommit->commitInfo.nonSpecSeqNum != 0) {
671        instQueue.scheduleNonSpec(fromCommit->commitInfo.nonSpecSeqNum);
672    }
673
674    DPRINTF(IEW, "IEW: IQ has %i free entries.\n",
675            instQueue.numFreeEntries());
676}
677
678template<class Impl>
679void
680SimpleIEW<Impl>::iew()
681{
682    // Might want to put all state checks in the tick() function.
683    // Check if being told to stall from commit.
684    if (fromCommit->commitInfo.stall) {
685        block();
686        return;
687    } else if (fromCommit->commitInfo.squash ||
688               fromCommit->commitInfo.robSquashing) {
689        // Also check if commit is telling this stage to squash.
690        squash();
691        return;
692    }
693
694    dispatchInsts();
695
696    // Have the instruction queue try to schedule any ready instructions.
697    instQueue.scheduleReadyInsts();
698
699    executeInsts();
700
701    // Loop through the head of the time buffer and wake any dependents.
702    // These instructions are about to write back.  In the simple model
703    // this loop can really happen within the previous loop, but when
704    // instructions have actual latencies, this loop must be separate.
705    // Also mark scoreboard that this instruction is finally complete.
706    // Either have IEW have direct access to rename map, or have this as
707    // part of backwards communication.
708    for (int inst_num = 0; inst_num < issueWidth &&
709             toCommit->insts[inst_num]; inst_num++)
710    {
711        DynInstPtr inst = toCommit->insts[inst_num];
712
713        DPRINTF(IEW, "IEW: Sending instructions to commit, PC %#x.\n",
714                inst->readPC());
715
716        if(!inst->isSquashed()) {
717            instQueue.wakeDependents(inst);
718
719            for (int i = 0; i < inst->numDestRegs(); i++)
720            {
721                renameMap->markAsReady(inst->renamedDestRegIdx(i));
722            }
723        }
724    }
725
726    // Also should advance its own time buffers if the stage ran.
727    // Not the best place for it, but this works (hopefully).
728    issueToExecQueue.advance();
729}
730
731#if !FULL_SYSTEM
732template<class Impl>
733void
734SimpleIEW<Impl>::lsqWriteback()
735{
736    ldstQueue.writebackAllInsts();
737}
738#endif
739