iew_impl.hh revision 11246:93d2a1526103
1/*
2 * Copyright (c) 2010-2013 ARM Limited
3 * Copyright (c) 2013 Advanced Micro Devices, Inc.
4 * All rights reserved.
5 *
6 * The license below extends only to copyright in the software and shall
7 * not be construed as granting a license to any other intellectual
8 * property including but not limited to intellectual property relating
9 * to a hardware implementation of the functionality of the software
10 * licensed hereunder.  You may use the software subject to the license
11 * terms below provided that you ensure that this notice is replicated
12 * unmodified and in its entirety in all distributions of the software,
13 * modified or unmodified, in source code or in binary form.
14 *
15 * Copyright (c) 2004-2006 The Regents of The University of Michigan
16 * All rights reserved.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions are
20 * met: redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer;
22 * redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution;
25 * neither the name of the copyright holders nor the names of its
26 * contributors may be used to endorse or promote products derived from
27 * this software without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40 *
41 * Authors: Kevin Lim
42 */
43
44#ifndef __CPU_O3_IEW_IMPL_IMPL_HH__
45#define __CPU_O3_IEW_IMPL_IMPL_HH__
46
47// @todo: Fix the instantaneous communication among all the stages within
48// iew.  There's a clear delay between issue and execute, yet backwards
49// communication happens simultaneously.
50
51#include <queue>
52
53#include "arch/utility.hh"
54#include "config/the_isa.hh"
55#include "cpu/checker/cpu.hh"
56#include "cpu/o3/fu_pool.hh"
57#include "cpu/o3/iew.hh"
58#include "cpu/timebuf.hh"
59#include "debug/Activity.hh"
60#include "debug/Drain.hh"
61#include "debug/IEW.hh"
62#include "debug/O3PipeView.hh"
63#include "params/DerivO3CPU.hh"
64
65using namespace std;
66
67template<class Impl>
68DefaultIEW<Impl>::DefaultIEW(O3CPU *_cpu, DerivO3CPUParams *params)
69    : issueToExecQueue(params->backComSize, params->forwardComSize),
70      cpu(_cpu),
71      instQueue(_cpu, this, params),
72      ldstQueue(_cpu, this, params),
73      fuPool(params->fuPool),
74      commitToIEWDelay(params->commitToIEWDelay),
75      renameToIEWDelay(params->renameToIEWDelay),
76      issueToExecuteDelay(params->issueToExecuteDelay),
77      dispatchWidth(params->dispatchWidth),
78      issueWidth(params->issueWidth),
79      wbWidth(params->wbWidth),
80      numThreads(params->numThreads)
81{
82    if (dispatchWidth > Impl::MaxWidth)
83        fatal("dispatchWidth (%d) is larger than compiled limit (%d),\n"
84             "\tincrease MaxWidth in src/cpu/o3/impl.hh\n",
85             dispatchWidth, static_cast<int>(Impl::MaxWidth));
86    if (issueWidth > Impl::MaxWidth)
87        fatal("issueWidth (%d) is larger than compiled limit (%d),\n"
88             "\tincrease MaxWidth in src/cpu/o3/impl.hh\n",
89             issueWidth, static_cast<int>(Impl::MaxWidth));
90    if (wbWidth > Impl::MaxWidth)
91        fatal("wbWidth (%d) is larger than compiled limit (%d),\n"
92             "\tincrease MaxWidth in src/cpu/o3/impl.hh\n",
93             wbWidth, static_cast<int>(Impl::MaxWidth));
94
95    _status = Active;
96    exeStatus = Running;
97    wbStatus = Idle;
98
99    // Setup wire to read instructions coming from issue.
100    fromIssue = issueToExecQueue.getWire(-issueToExecuteDelay);
101
102    // Instruction queue needs the queue between issue and execute.
103    instQueue.setIssueToExecuteQueue(&issueToExecQueue);
104
105    for (ThreadID tid = 0; tid < numThreads; tid++) {
106        dispatchStatus[tid] = Running;
107        fetchRedirect[tid] = false;
108    }
109
110    updateLSQNextCycle = false;
111
112    skidBufferMax = (renameToIEWDelay + 1) * params->renameWidth;
113}
114
115template <class Impl>
116std::string
117DefaultIEW<Impl>::name() const
118{
119    return cpu->name() + ".iew";
120}
121
122template <class Impl>
123void
124DefaultIEW<Impl>::regProbePoints()
125{
126    ppDispatch = new ProbePointArg<DynInstPtr>(cpu->getProbeManager(), "Dispatch");
127    ppMispredict = new ProbePointArg<DynInstPtr>(cpu->getProbeManager(), "Mispredict");
128    /**
129     * Probe point with dynamic instruction as the argument used to probe when
130     * an instruction starts to execute.
131     */
132    ppExecute = new ProbePointArg<DynInstPtr>(cpu->getProbeManager(),
133                                              "Execute");
134    /**
135     * Probe point with dynamic instruction as the argument used to probe when
136     * an instruction execution completes and it is marked ready to commit.
137     */
138    ppToCommit = new ProbePointArg<DynInstPtr>(cpu->getProbeManager(),
139                                               "ToCommit");
140}
141
142template <class Impl>
143void
144DefaultIEW<Impl>::regStats()
145{
146    using namespace Stats;
147
148    instQueue.regStats();
149    ldstQueue.regStats();
150
151    iewIdleCycles
152        .name(name() + ".iewIdleCycles")
153        .desc("Number of cycles IEW is idle");
154
155    iewSquashCycles
156        .name(name() + ".iewSquashCycles")
157        .desc("Number of cycles IEW is squashing");
158
159    iewBlockCycles
160        .name(name() + ".iewBlockCycles")
161        .desc("Number of cycles IEW is blocking");
162
163    iewUnblockCycles
164        .name(name() + ".iewUnblockCycles")
165        .desc("Number of cycles IEW is unblocking");
166
167    iewDispatchedInsts
168        .name(name() + ".iewDispatchedInsts")
169        .desc("Number of instructions dispatched to IQ");
170
171    iewDispSquashedInsts
172        .name(name() + ".iewDispSquashedInsts")
173        .desc("Number of squashed instructions skipped by dispatch");
174
175    iewDispLoadInsts
176        .name(name() + ".iewDispLoadInsts")
177        .desc("Number of dispatched load instructions");
178
179    iewDispStoreInsts
180        .name(name() + ".iewDispStoreInsts")
181        .desc("Number of dispatched store instructions");
182
183    iewDispNonSpecInsts
184        .name(name() + ".iewDispNonSpecInsts")
185        .desc("Number of dispatched non-speculative instructions");
186
187    iewIQFullEvents
188        .name(name() + ".iewIQFullEvents")
189        .desc("Number of times the IQ has become full, causing a stall");
190
191    iewLSQFullEvents
192        .name(name() + ".iewLSQFullEvents")
193        .desc("Number of times the LSQ has become full, causing a stall");
194
195    memOrderViolationEvents
196        .name(name() + ".memOrderViolationEvents")
197        .desc("Number of memory order violations");
198
199    predictedTakenIncorrect
200        .name(name() + ".predictedTakenIncorrect")
201        .desc("Number of branches that were predicted taken incorrectly");
202
203    predictedNotTakenIncorrect
204        .name(name() + ".predictedNotTakenIncorrect")
205        .desc("Number of branches that were predicted not taken incorrectly");
206
207    branchMispredicts
208        .name(name() + ".branchMispredicts")
209        .desc("Number of branch mispredicts detected at execute");
210
211    branchMispredicts = predictedTakenIncorrect + predictedNotTakenIncorrect;
212
213    iewExecutedInsts
214        .name(name() + ".iewExecutedInsts")
215        .desc("Number of executed instructions");
216
217    iewExecLoadInsts
218        .init(cpu->numThreads)
219        .name(name() + ".iewExecLoadInsts")
220        .desc("Number of load instructions executed")
221        .flags(total);
222
223    iewExecSquashedInsts
224        .name(name() + ".iewExecSquashedInsts")
225        .desc("Number of squashed instructions skipped in execute");
226
227    iewExecutedSwp
228        .init(cpu->numThreads)
229        .name(name() + ".exec_swp")
230        .desc("number of swp insts executed")
231        .flags(total);
232
233    iewExecutedNop
234        .init(cpu->numThreads)
235        .name(name() + ".exec_nop")
236        .desc("number of nop insts executed")
237        .flags(total);
238
239    iewExecutedRefs
240        .init(cpu->numThreads)
241        .name(name() + ".exec_refs")
242        .desc("number of memory reference insts executed")
243        .flags(total);
244
245    iewExecutedBranches
246        .init(cpu->numThreads)
247        .name(name() + ".exec_branches")
248        .desc("Number of branches executed")
249        .flags(total);
250
251    iewExecStoreInsts
252        .name(name() + ".exec_stores")
253        .desc("Number of stores executed")
254        .flags(total);
255    iewExecStoreInsts = iewExecutedRefs - iewExecLoadInsts;
256
257    iewExecRate
258        .name(name() + ".exec_rate")
259        .desc("Inst execution rate")
260        .flags(total);
261
262    iewExecRate = iewExecutedInsts / cpu->numCycles;
263
264    iewInstsToCommit
265        .init(cpu->numThreads)
266        .name(name() + ".wb_sent")
267        .desc("cumulative count of insts sent to commit")
268        .flags(total);
269
270    writebackCount
271        .init(cpu->numThreads)
272        .name(name() + ".wb_count")
273        .desc("cumulative count of insts written-back")
274        .flags(total);
275
276    producerInst
277        .init(cpu->numThreads)
278        .name(name() + ".wb_producers")
279        .desc("num instructions producing a value")
280        .flags(total);
281
282    consumerInst
283        .init(cpu->numThreads)
284        .name(name() + ".wb_consumers")
285        .desc("num instructions consuming a value")
286        .flags(total);
287
288    wbFanout
289        .name(name() + ".wb_fanout")
290        .desc("average fanout of values written-back")
291        .flags(total);
292
293    wbFanout = producerInst / consumerInst;
294
295    wbRate
296        .name(name() + ".wb_rate")
297        .desc("insts written-back per cycle")
298        .flags(total);
299    wbRate = writebackCount / cpu->numCycles;
300}
301
302template<class Impl>
303void
304DefaultIEW<Impl>::startupStage()
305{
306    for (ThreadID tid = 0; tid < numThreads; tid++) {
307        toRename->iewInfo[tid].usedIQ = true;
308        toRename->iewInfo[tid].freeIQEntries =
309            instQueue.numFreeEntries(tid);
310
311        toRename->iewInfo[tid].usedLSQ = true;
312        toRename->iewInfo[tid].freeLQEntries = ldstQueue.numFreeLoadEntries(tid);
313        toRename->iewInfo[tid].freeSQEntries = ldstQueue.numFreeStoreEntries(tid);
314    }
315
316    // Initialize the checker's dcache port here
317    if (cpu->checker) {
318        cpu->checker->setDcachePort(&cpu->getDataPort());
319    }
320
321    cpu->activateStage(O3CPU::IEWIdx);
322}
323
324template<class Impl>
325void
326DefaultIEW<Impl>::setTimeBuffer(TimeBuffer<TimeStruct> *tb_ptr)
327{
328    timeBuffer = tb_ptr;
329
330    // Setup wire to read information from time buffer, from commit.
331    fromCommit = timeBuffer->getWire(-commitToIEWDelay);
332
333    // Setup wire to write information back to previous stages.
334    toRename = timeBuffer->getWire(0);
335
336    toFetch = timeBuffer->getWire(0);
337
338    // Instruction queue also needs main time buffer.
339    instQueue.setTimeBuffer(tb_ptr);
340}
341
342template<class Impl>
343void
344DefaultIEW<Impl>::setRenameQueue(TimeBuffer<RenameStruct> *rq_ptr)
345{
346    renameQueue = rq_ptr;
347
348    // Setup wire to read information from rename queue.
349    fromRename = renameQueue->getWire(-renameToIEWDelay);
350}
351
352template<class Impl>
353void
354DefaultIEW<Impl>::setIEWQueue(TimeBuffer<IEWStruct> *iq_ptr)
355{
356    iewQueue = iq_ptr;
357
358    // Setup wire to write instructions to commit.
359    toCommit = iewQueue->getWire(0);
360}
361
362template<class Impl>
363void
364DefaultIEW<Impl>::setActiveThreads(list<ThreadID> *at_ptr)
365{
366    activeThreads = at_ptr;
367
368    ldstQueue.setActiveThreads(at_ptr);
369    instQueue.setActiveThreads(at_ptr);
370}
371
372template<class Impl>
373void
374DefaultIEW<Impl>::setScoreboard(Scoreboard *sb_ptr)
375{
376    scoreboard = sb_ptr;
377}
378
379template <class Impl>
380bool
381DefaultIEW<Impl>::isDrained() const
382{
383    bool drained = ldstQueue.isDrained() && instQueue.isDrained();
384
385    for (ThreadID tid = 0; tid < numThreads; tid++) {
386        if (!insts[tid].empty()) {
387            DPRINTF(Drain, "%i: Insts not empty.\n", tid);
388            drained = false;
389        }
390        if (!skidBuffer[tid].empty()) {
391            DPRINTF(Drain, "%i: Skid buffer not empty.\n", tid);
392            drained = false;
393        }
394    }
395
396    // Also check the FU pool as instructions are "stored" in FU
397    // completion events until they are done and not accounted for
398    // above
399    if (drained && !fuPool->isDrained()) {
400        DPRINTF(Drain, "FU pool still busy.\n");
401        drained = false;
402    }
403
404    return drained;
405}
406
407template <class Impl>
408void
409DefaultIEW<Impl>::drainSanityCheck() const
410{
411    assert(isDrained());
412
413    instQueue.drainSanityCheck();
414    ldstQueue.drainSanityCheck();
415}
416
417template <class Impl>
418void
419DefaultIEW<Impl>::takeOverFrom()
420{
421    // Reset all state.
422    _status = Active;
423    exeStatus = Running;
424    wbStatus = Idle;
425
426    instQueue.takeOverFrom();
427    ldstQueue.takeOverFrom();
428    fuPool->takeOverFrom();
429
430    startupStage();
431    cpu->activityThisCycle();
432
433    for (ThreadID tid = 0; tid < numThreads; tid++) {
434        dispatchStatus[tid] = Running;
435        fetchRedirect[tid] = false;
436    }
437
438    updateLSQNextCycle = false;
439
440    for (int i = 0; i < issueToExecQueue.getSize(); ++i) {
441        issueToExecQueue.advance();
442    }
443}
444
445template<class Impl>
446void
447DefaultIEW<Impl>::squash(ThreadID tid)
448{
449    DPRINTF(IEW, "[tid:%i]: Squashing all instructions.\n", tid);
450
451    // Tell the IQ to start squashing.
452    instQueue.squash(tid);
453
454    // Tell the LDSTQ to start squashing.
455    ldstQueue.squash(fromCommit->commitInfo[tid].doneSeqNum, tid);
456    updatedQueues = true;
457
458    // Clear the skid buffer in case it has any data in it.
459    DPRINTF(IEW, "[tid:%i]: Removing skidbuffer instructions until [sn:%i].\n",
460            tid, fromCommit->commitInfo[tid].doneSeqNum);
461
462    while (!skidBuffer[tid].empty()) {
463        if (skidBuffer[tid].front()->isLoad()) {
464            toRename->iewInfo[tid].dispatchedToLQ++;
465        }
466        if (skidBuffer[tid].front()->isStore()) {
467            toRename->iewInfo[tid].dispatchedToSQ++;
468        }
469
470        toRename->iewInfo[tid].dispatched++;
471
472        skidBuffer[tid].pop();
473    }
474
475    emptyRenameInsts(tid);
476}
477
478template<class Impl>
479void
480DefaultIEW<Impl>::squashDueToBranch(DynInstPtr &inst, ThreadID tid)
481{
482    DPRINTF(IEW, "[tid:%i]: Squashing from a specific instruction, PC: %s "
483            "[sn:%i].\n", tid, inst->pcState(), inst->seqNum);
484
485    if (!toCommit->squash[tid] ||
486            inst->seqNum < toCommit->squashedSeqNum[tid]) {
487        toCommit->squash[tid] = true;
488        toCommit->squashedSeqNum[tid] = inst->seqNum;
489        toCommit->branchTaken[tid] = inst->pcState().branching();
490
491        TheISA::PCState pc = inst->pcState();
492        TheISA::advancePC(pc, inst->staticInst);
493
494        toCommit->pc[tid] = pc;
495        toCommit->mispredictInst[tid] = inst;
496        toCommit->includeSquashInst[tid] = false;
497
498        wroteToTimeBuffer = true;
499    }
500
501}
502
503template<class Impl>
504void
505DefaultIEW<Impl>::squashDueToMemOrder(DynInstPtr &inst, ThreadID tid)
506{
507    DPRINTF(IEW, "[tid:%i]: Memory violation, squashing violator and younger "
508            "insts, PC: %s [sn:%i].\n", tid, inst->pcState(), inst->seqNum);
509    // Need to include inst->seqNum in the following comparison to cover the
510    // corner case when a branch misprediction and a memory violation for the
511    // same instruction (e.g. load PC) are detected in the same cycle.  In this
512    // case the memory violator should take precedence over the branch
513    // misprediction because it requires the violator itself to be included in
514    // the squash.
515    if (!toCommit->squash[tid] ||
516            inst->seqNum <= toCommit->squashedSeqNum[tid]) {
517        toCommit->squash[tid] = true;
518
519        toCommit->squashedSeqNum[tid] = inst->seqNum;
520        toCommit->pc[tid] = inst->pcState();
521        toCommit->mispredictInst[tid] = NULL;
522
523        // Must include the memory violator in the squash.
524        toCommit->includeSquashInst[tid] = true;
525
526        wroteToTimeBuffer = true;
527    }
528}
529
530template<class Impl>
531void
532DefaultIEW<Impl>::block(ThreadID tid)
533{
534    DPRINTF(IEW, "[tid:%u]: Blocking.\n", tid);
535
536    if (dispatchStatus[tid] != Blocked &&
537        dispatchStatus[tid] != Unblocking) {
538        toRename->iewBlock[tid] = true;
539        wroteToTimeBuffer = true;
540    }
541
542    // Add the current inputs to the skid buffer so they can be
543    // reprocessed when this stage unblocks.
544    skidInsert(tid);
545
546    dispatchStatus[tid] = Blocked;
547}
548
549template<class Impl>
550void
551DefaultIEW<Impl>::unblock(ThreadID tid)
552{
553    DPRINTF(IEW, "[tid:%i]: Reading instructions out of the skid "
554            "buffer %u.\n",tid, tid);
555
556    // If the skid bufffer is empty, signal back to previous stages to unblock.
557    // Also switch status to running.
558    if (skidBuffer[tid].empty()) {
559        toRename->iewUnblock[tid] = true;
560        wroteToTimeBuffer = true;
561        DPRINTF(IEW, "[tid:%i]: Done unblocking.\n",tid);
562        dispatchStatus[tid] = Running;
563    }
564}
565
566template<class Impl>
567void
568DefaultIEW<Impl>::wakeDependents(DynInstPtr &inst)
569{
570    instQueue.wakeDependents(inst);
571}
572
573template<class Impl>
574void
575DefaultIEW<Impl>::rescheduleMemInst(DynInstPtr &inst)
576{
577    instQueue.rescheduleMemInst(inst);
578}
579
580template<class Impl>
581void
582DefaultIEW<Impl>::replayMemInst(DynInstPtr &inst)
583{
584    instQueue.replayMemInst(inst);
585}
586
587template<class Impl>
588void
589DefaultIEW<Impl>::blockMemInst(DynInstPtr& inst)
590{
591    instQueue.blockMemInst(inst);
592}
593
594template<class Impl>
595void
596DefaultIEW<Impl>::cacheUnblocked()
597{
598    instQueue.cacheUnblocked();
599}
600
601template<class Impl>
602void
603DefaultIEW<Impl>::instToCommit(DynInstPtr &inst)
604{
605    // This function should not be called after writebackInsts in a
606    // single cycle.  That will cause problems with an instruction
607    // being added to the queue to commit without being processed by
608    // writebackInsts prior to being sent to commit.
609
610    // First check the time slot that this instruction will write
611    // to.  If there are free write ports at the time, then go ahead
612    // and write the instruction to that time.  If there are not,
613    // keep looking back to see where's the first time there's a
614    // free slot.
615    while ((*iewQueue)[wbCycle].insts[wbNumInst]) {
616        ++wbNumInst;
617        if (wbNumInst == wbWidth) {
618            ++wbCycle;
619            wbNumInst = 0;
620        }
621    }
622
623    DPRINTF(IEW, "Current wb cycle: %i, width: %i, numInst: %i\nwbActual:%i\n",
624            wbCycle, wbWidth, wbNumInst, wbCycle * wbWidth + wbNumInst);
625    // Add finished instruction to queue to commit.
626    (*iewQueue)[wbCycle].insts[wbNumInst] = inst;
627    (*iewQueue)[wbCycle].size++;
628}
629
630template <class Impl>
631unsigned
632DefaultIEW<Impl>::validInstsFromRename()
633{
634    unsigned inst_count = 0;
635
636    for (int i=0; i<fromRename->size; i++) {
637        if (!fromRename->insts[i]->isSquashed())
638            inst_count++;
639    }
640
641    return inst_count;
642}
643
644template<class Impl>
645void
646DefaultIEW<Impl>::skidInsert(ThreadID tid)
647{
648    DynInstPtr inst = NULL;
649
650    while (!insts[tid].empty()) {
651        inst = insts[tid].front();
652
653        insts[tid].pop();
654
655        DPRINTF(IEW,"[tid:%i]: Inserting [sn:%lli] PC:%s into "
656                "dispatch skidBuffer %i\n",tid, inst->seqNum,
657                inst->pcState(),tid);
658
659        skidBuffer[tid].push(inst);
660    }
661
662    assert(skidBuffer[tid].size() <= skidBufferMax &&
663           "Skidbuffer Exceeded Max Size");
664}
665
666template<class Impl>
667int
668DefaultIEW<Impl>::skidCount()
669{
670    int max=0;
671
672    list<ThreadID>::iterator threads = activeThreads->begin();
673    list<ThreadID>::iterator end = activeThreads->end();
674
675    while (threads != end) {
676        ThreadID tid = *threads++;
677        unsigned thread_count = skidBuffer[tid].size();
678        if (max < thread_count)
679            max = thread_count;
680    }
681
682    return max;
683}
684
685template<class Impl>
686bool
687DefaultIEW<Impl>::skidsEmpty()
688{
689    list<ThreadID>::iterator threads = activeThreads->begin();
690    list<ThreadID>::iterator end = activeThreads->end();
691
692    while (threads != end) {
693        ThreadID tid = *threads++;
694
695        if (!skidBuffer[tid].empty())
696            return false;
697    }
698
699    return true;
700}
701
702template <class Impl>
703void
704DefaultIEW<Impl>::updateStatus()
705{
706    bool any_unblocking = false;
707
708    list<ThreadID>::iterator threads = activeThreads->begin();
709    list<ThreadID>::iterator end = activeThreads->end();
710
711    while (threads != end) {
712        ThreadID tid = *threads++;
713
714        if (dispatchStatus[tid] == Unblocking) {
715            any_unblocking = true;
716            break;
717        }
718    }
719
720    // If there are no ready instructions waiting to be scheduled by the IQ,
721    // and there's no stores waiting to write back, and dispatch is not
722    // unblocking, then there is no internal activity for the IEW stage.
723    instQueue.intInstQueueReads++;
724    if (_status == Active && !instQueue.hasReadyInsts() &&
725        !ldstQueue.willWB() && !any_unblocking) {
726        DPRINTF(IEW, "IEW switching to idle\n");
727
728        deactivateStage();
729
730        _status = Inactive;
731    } else if (_status == Inactive && (instQueue.hasReadyInsts() ||
732                                       ldstQueue.willWB() ||
733                                       any_unblocking)) {
734        // Otherwise there is internal activity.  Set to active.
735        DPRINTF(IEW, "IEW switching to active\n");
736
737        activateStage();
738
739        _status = Active;
740    }
741}
742
743template <class Impl>
744void
745DefaultIEW<Impl>::resetEntries()
746{
747    instQueue.resetEntries();
748    ldstQueue.resetEntries();
749}
750
751template <class Impl>
752bool
753DefaultIEW<Impl>::checkStall(ThreadID tid)
754{
755    bool ret_val(false);
756
757    if (fromCommit->commitInfo[tid].robSquashing) {
758        DPRINTF(IEW,"[tid:%i]: Stall from Commit stage detected.\n",tid);
759        ret_val = true;
760    } else if (instQueue.isFull(tid)) {
761        DPRINTF(IEW,"[tid:%i]: Stall: IQ  is full.\n",tid);
762        ret_val = true;
763    }
764
765    return ret_val;
766}
767
768template <class Impl>
769void
770DefaultIEW<Impl>::checkSignalsAndUpdate(ThreadID tid)
771{
772    // Check if there's a squash signal, squash if there is
773    // Check stall signals, block if there is.
774    // If status was Blocked
775    //     if so then go to unblocking
776    // If status was Squashing
777    //     check if squashing is not high.  Switch to running this cycle.
778
779    if (fromCommit->commitInfo[tid].squash) {
780        squash(tid);
781
782        if (dispatchStatus[tid] == Blocked ||
783            dispatchStatus[tid] == Unblocking) {
784            toRename->iewUnblock[tid] = true;
785            wroteToTimeBuffer = true;
786        }
787
788        dispatchStatus[tid] = Squashing;
789        fetchRedirect[tid] = false;
790        return;
791    }
792
793    if (fromCommit->commitInfo[tid].robSquashing) {
794        DPRINTF(IEW, "[tid:%i]: ROB is still squashing.\n", tid);
795
796        dispatchStatus[tid] = Squashing;
797        emptyRenameInsts(tid);
798        wroteToTimeBuffer = true;
799    }
800
801    if (checkStall(tid)) {
802        block(tid);
803        dispatchStatus[tid] = Blocked;
804        return;
805    }
806
807    if (dispatchStatus[tid] == Blocked) {
808        // Status from previous cycle was blocked, but there are no more stall
809        // conditions.  Switch over to unblocking.
810        DPRINTF(IEW, "[tid:%i]: Done blocking, switching to unblocking.\n",
811                tid);
812
813        dispatchStatus[tid] = Unblocking;
814
815        unblock(tid);
816
817        return;
818    }
819
820    if (dispatchStatus[tid] == Squashing) {
821        // Switch status to running if rename isn't being told to block or
822        // squash this cycle.
823        DPRINTF(IEW, "[tid:%i]: Done squashing, switching to running.\n",
824                tid);
825
826        dispatchStatus[tid] = Running;
827
828        return;
829    }
830}
831
832template <class Impl>
833void
834DefaultIEW<Impl>::sortInsts()
835{
836    int insts_from_rename = fromRename->size;
837#ifdef DEBUG
838    for (ThreadID tid = 0; tid < numThreads; tid++)
839        assert(insts[tid].empty());
840#endif
841    for (int i = 0; i < insts_from_rename; ++i) {
842        insts[fromRename->insts[i]->threadNumber].push(fromRename->insts[i]);
843    }
844}
845
846template <class Impl>
847void
848DefaultIEW<Impl>::emptyRenameInsts(ThreadID tid)
849{
850    DPRINTF(IEW, "[tid:%i]: Removing incoming rename instructions\n", tid);
851
852    while (!insts[tid].empty()) {
853
854        if (insts[tid].front()->isLoad()) {
855            toRename->iewInfo[tid].dispatchedToLQ++;
856        }
857        if (insts[tid].front()->isStore()) {
858            toRename->iewInfo[tid].dispatchedToSQ++;
859        }
860
861        toRename->iewInfo[tid].dispatched++;
862
863        insts[tid].pop();
864    }
865}
866
867template <class Impl>
868void
869DefaultIEW<Impl>::wakeCPU()
870{
871    cpu->wakeCPU();
872}
873
874template <class Impl>
875void
876DefaultIEW<Impl>::activityThisCycle()
877{
878    DPRINTF(Activity, "Activity this cycle.\n");
879    cpu->activityThisCycle();
880}
881
882template <class Impl>
883inline void
884DefaultIEW<Impl>::activateStage()
885{
886    DPRINTF(Activity, "Activating stage.\n");
887    cpu->activateStage(O3CPU::IEWIdx);
888}
889
890template <class Impl>
891inline void
892DefaultIEW<Impl>::deactivateStage()
893{
894    DPRINTF(Activity, "Deactivating stage.\n");
895    cpu->deactivateStage(O3CPU::IEWIdx);
896}
897
898template<class Impl>
899void
900DefaultIEW<Impl>::dispatch(ThreadID tid)
901{
902    // If status is Running or idle,
903    //     call dispatchInsts()
904    // If status is Unblocking,
905    //     buffer any instructions coming from rename
906    //     continue trying to empty skid buffer
907    //     check if stall conditions have passed
908
909    if (dispatchStatus[tid] == Blocked) {
910        ++iewBlockCycles;
911
912    } else if (dispatchStatus[tid] == Squashing) {
913        ++iewSquashCycles;
914    }
915
916    // Dispatch should try to dispatch as many instructions as its bandwidth
917    // will allow, as long as it is not currently blocked.
918    if (dispatchStatus[tid] == Running ||
919        dispatchStatus[tid] == Idle) {
920        DPRINTF(IEW, "[tid:%i] Not blocked, so attempting to run "
921                "dispatch.\n", tid);
922
923        dispatchInsts(tid);
924    } else if (dispatchStatus[tid] == Unblocking) {
925        // Make sure that the skid buffer has something in it if the
926        // status is unblocking.
927        assert(!skidsEmpty());
928
929        // If the status was unblocking, then instructions from the skid
930        // buffer were used.  Remove those instructions and handle
931        // the rest of unblocking.
932        dispatchInsts(tid);
933
934        ++iewUnblockCycles;
935
936        if (validInstsFromRename()) {
937            // Add the current inputs to the skid buffer so they can be
938            // reprocessed when this stage unblocks.
939            skidInsert(tid);
940        }
941
942        unblock(tid);
943    }
944}
945
946template <class Impl>
947void
948DefaultIEW<Impl>::dispatchInsts(ThreadID tid)
949{
950    // Obtain instructions from skid buffer if unblocking, or queue from rename
951    // otherwise.
952    std::queue<DynInstPtr> &insts_to_dispatch =
953        dispatchStatus[tid] == Unblocking ?
954        skidBuffer[tid] : insts[tid];
955
956    int insts_to_add = insts_to_dispatch.size();
957
958    DynInstPtr inst;
959    bool add_to_iq = false;
960    int dis_num_inst = 0;
961
962    // Loop through the instructions, putting them in the instruction
963    // queue.
964    for ( ; dis_num_inst < insts_to_add &&
965              dis_num_inst < dispatchWidth;
966          ++dis_num_inst)
967    {
968        inst = insts_to_dispatch.front();
969
970        if (dispatchStatus[tid] == Unblocking) {
971            DPRINTF(IEW, "[tid:%i]: Issue: Examining instruction from skid "
972                    "buffer\n", tid);
973        }
974
975        // Make sure there's a valid instruction there.
976        assert(inst);
977
978        DPRINTF(IEW, "[tid:%i]: Issue: Adding PC %s [sn:%lli] [tid:%i] to "
979                "IQ.\n",
980                tid, inst->pcState(), inst->seqNum, inst->threadNumber);
981
982        // Be sure to mark these instructions as ready so that the
983        // commit stage can go ahead and execute them, and mark
984        // them as issued so the IQ doesn't reprocess them.
985
986        // Check for squashed instructions.
987        if (inst->isSquashed()) {
988            DPRINTF(IEW, "[tid:%i]: Issue: Squashed instruction encountered, "
989                    "not adding to IQ.\n", tid);
990
991            ++iewDispSquashedInsts;
992
993            insts_to_dispatch.pop();
994
995            //Tell Rename That An Instruction has been processed
996            if (inst->isLoad()) {
997                toRename->iewInfo[tid].dispatchedToLQ++;
998            }
999            if (inst->isStore()) {
1000                toRename->iewInfo[tid].dispatchedToSQ++;
1001            }
1002
1003            toRename->iewInfo[tid].dispatched++;
1004
1005            continue;
1006        }
1007
1008        // Check for full conditions.
1009        if (instQueue.isFull(tid)) {
1010            DPRINTF(IEW, "[tid:%i]: Issue: IQ has become full.\n", tid);
1011
1012            // Call function to start blocking.
1013            block(tid);
1014
1015            // Set unblock to false. Special case where we are using
1016            // skidbuffer (unblocking) instructions but then we still
1017            // get full in the IQ.
1018            toRename->iewUnblock[tid] = false;
1019
1020            ++iewIQFullEvents;
1021            break;
1022        }
1023
1024        // Check LSQ if inst is LD/ST
1025        if ((inst->isLoad() && ldstQueue.lqFull(tid)) ||
1026            (inst->isStore() && ldstQueue.sqFull(tid))) {
1027            DPRINTF(IEW, "[tid:%i]: Issue: %s has become full.\n",tid,
1028                    inst->isLoad() ? "LQ" : "SQ");
1029
1030            // Call function to start blocking.
1031            block(tid);
1032
1033            // Set unblock to false. Special case where we are using
1034            // skidbuffer (unblocking) instructions but then we still
1035            // get full in the IQ.
1036            toRename->iewUnblock[tid] = false;
1037
1038            ++iewLSQFullEvents;
1039            break;
1040        }
1041
1042        // Otherwise issue the instruction just fine.
1043        if (inst->isLoad()) {
1044            DPRINTF(IEW, "[tid:%i]: Issue: Memory instruction "
1045                    "encountered, adding to LSQ.\n", tid);
1046
1047            // Reserve a spot in the load store queue for this
1048            // memory access.
1049            ldstQueue.insertLoad(inst);
1050
1051            ++iewDispLoadInsts;
1052
1053            add_to_iq = true;
1054
1055            toRename->iewInfo[tid].dispatchedToLQ++;
1056        } else if (inst->isStore()) {
1057            DPRINTF(IEW, "[tid:%i]: Issue: Memory instruction "
1058                    "encountered, adding to LSQ.\n", tid);
1059
1060            ldstQueue.insertStore(inst);
1061
1062            ++iewDispStoreInsts;
1063
1064            if (inst->isStoreConditional()) {
1065                // Store conditionals need to be set as "canCommit()"
1066                // so that commit can process them when they reach the
1067                // head of commit.
1068                // @todo: This is somewhat specific to Alpha.
1069                inst->setCanCommit();
1070                instQueue.insertNonSpec(inst);
1071                add_to_iq = false;
1072
1073                ++iewDispNonSpecInsts;
1074            } else {
1075                add_to_iq = true;
1076            }
1077
1078            toRename->iewInfo[tid].dispatchedToSQ++;
1079        } else if (inst->isMemBarrier() || inst->isWriteBarrier()) {
1080            // Same as non-speculative stores.
1081            inst->setCanCommit();
1082            instQueue.insertBarrier(inst);
1083            add_to_iq = false;
1084        } else if (inst->isNop()) {
1085            DPRINTF(IEW, "[tid:%i]: Issue: Nop instruction encountered, "
1086                    "skipping.\n", tid);
1087
1088            inst->setIssued();
1089            inst->setExecuted();
1090            inst->setCanCommit();
1091
1092            instQueue.recordProducer(inst);
1093
1094            iewExecutedNop[tid]++;
1095
1096            add_to_iq = false;
1097        } else {
1098            assert(!inst->isExecuted());
1099            add_to_iq = true;
1100        }
1101
1102        if (inst->isNonSpeculative()) {
1103            DPRINTF(IEW, "[tid:%i]: Issue: Nonspeculative instruction "
1104                    "encountered, skipping.\n", tid);
1105
1106            // Same as non-speculative stores.
1107            inst->setCanCommit();
1108
1109            // Specifically insert it as nonspeculative.
1110            instQueue.insertNonSpec(inst);
1111
1112            ++iewDispNonSpecInsts;
1113
1114            add_to_iq = false;
1115        }
1116
1117        // If the instruction queue is not full, then add the
1118        // instruction.
1119        if (add_to_iq) {
1120            instQueue.insert(inst);
1121        }
1122
1123        insts_to_dispatch.pop();
1124
1125        toRename->iewInfo[tid].dispatched++;
1126
1127        ++iewDispatchedInsts;
1128
1129#if TRACING_ON
1130        inst->dispatchTick = curTick() - inst->fetchTick;
1131#endif
1132        ppDispatch->notify(inst);
1133    }
1134
1135    if (!insts_to_dispatch.empty()) {
1136        DPRINTF(IEW,"[tid:%i]: Issue: Bandwidth Full. Blocking.\n", tid);
1137        block(tid);
1138        toRename->iewUnblock[tid] = false;
1139    }
1140
1141    if (dispatchStatus[tid] == Idle && dis_num_inst) {
1142        dispatchStatus[tid] = Running;
1143
1144        updatedQueues = true;
1145    }
1146
1147    dis_num_inst = 0;
1148}
1149
1150template <class Impl>
1151void
1152DefaultIEW<Impl>::printAvailableInsts()
1153{
1154    int inst = 0;
1155
1156    std::cout << "Available Instructions: ";
1157
1158    while (fromIssue->insts[inst]) {
1159
1160        if (inst%3==0) std::cout << "\n\t";
1161
1162        std::cout << "PC: " << fromIssue->insts[inst]->pcState()
1163             << " TN: " << fromIssue->insts[inst]->threadNumber
1164             << " SN: " << fromIssue->insts[inst]->seqNum << " | ";
1165
1166        inst++;
1167
1168    }
1169
1170    std::cout << "\n";
1171}
1172
1173template <class Impl>
1174void
1175DefaultIEW<Impl>::executeInsts()
1176{
1177    wbNumInst = 0;
1178    wbCycle = 0;
1179
1180    list<ThreadID>::iterator threads = activeThreads->begin();
1181    list<ThreadID>::iterator end = activeThreads->end();
1182
1183    while (threads != end) {
1184        ThreadID tid = *threads++;
1185        fetchRedirect[tid] = false;
1186    }
1187
1188    // Uncomment this if you want to see all available instructions.
1189    // @todo This doesn't actually work anymore, we should fix it.
1190//    printAvailableInsts();
1191
1192    // Execute/writeback any instructions that are available.
1193    int insts_to_execute = fromIssue->size;
1194    int inst_num = 0;
1195    for (; inst_num < insts_to_execute;
1196          ++inst_num) {
1197
1198        DPRINTF(IEW, "Execute: Executing instructions from IQ.\n");
1199
1200        DynInstPtr inst = instQueue.getInstToExecute();
1201
1202        DPRINTF(IEW, "Execute: Processing PC %s, [tid:%i] [sn:%i].\n",
1203                inst->pcState(), inst->threadNumber,inst->seqNum);
1204
1205        // Notify potential listeners that this instruction has started
1206        // executing
1207        ppExecute->notify(inst);
1208
1209        // Check if the instruction is squashed; if so then skip it
1210        if (inst->isSquashed()) {
1211            DPRINTF(IEW, "Execute: Instruction was squashed. PC: %s, [tid:%i]"
1212                         " [sn:%i]\n", inst->pcState(), inst->threadNumber,
1213                         inst->seqNum);
1214
1215            // Consider this instruction executed so that commit can go
1216            // ahead and retire the instruction.
1217            inst->setExecuted();
1218
1219            // Not sure if I should set this here or just let commit try to
1220            // commit any squashed instructions.  I like the latter a bit more.
1221            inst->setCanCommit();
1222
1223            ++iewExecSquashedInsts;
1224
1225            continue;
1226        }
1227
1228        Fault fault = NoFault;
1229
1230        // Execute instruction.
1231        // Note that if the instruction faults, it will be handled
1232        // at the commit stage.
1233        if (inst->isMemRef()) {
1234            DPRINTF(IEW, "Execute: Calculating address for memory "
1235                    "reference.\n");
1236
1237            // Tell the LDSTQ to execute this instruction (if it is a load).
1238            if (inst->isLoad()) {
1239                // Loads will mark themselves as executed, and their writeback
1240                // event adds the instruction to the queue to commit
1241                fault = ldstQueue.executeLoad(inst);
1242
1243                if (inst->isTranslationDelayed() &&
1244                    fault == NoFault) {
1245                    // A hw page table walk is currently going on; the
1246                    // instruction must be deferred.
1247                    DPRINTF(IEW, "Execute: Delayed translation, deferring "
1248                            "load.\n");
1249                    instQueue.deferMemInst(inst);
1250                    continue;
1251                }
1252
1253                if (inst->isDataPrefetch() || inst->isInstPrefetch()) {
1254                    inst->fault = NoFault;
1255                }
1256            } else if (inst->isStore()) {
1257                fault = ldstQueue.executeStore(inst);
1258
1259                if (inst->isTranslationDelayed() &&
1260                    fault == NoFault) {
1261                    // A hw page table walk is currently going on; the
1262                    // instruction must be deferred.
1263                    DPRINTF(IEW, "Execute: Delayed translation, deferring "
1264                            "store.\n");
1265                    instQueue.deferMemInst(inst);
1266                    continue;
1267                }
1268
1269                // If the store had a fault then it may not have a mem req
1270                if (fault != NoFault || !inst->readPredicate() ||
1271                        !inst->isStoreConditional()) {
1272                    // If the instruction faulted, then we need to send it along
1273                    // to commit without the instruction completing.
1274                    // Send this instruction to commit, also make sure iew stage
1275                    // realizes there is activity.
1276                    inst->setExecuted();
1277                    instToCommit(inst);
1278                    activityThisCycle();
1279                }
1280
1281                // Store conditionals will mark themselves as
1282                // executed, and their writeback event will add the
1283                // instruction to the queue to commit.
1284            } else {
1285                panic("Unexpected memory type!\n");
1286            }
1287
1288        } else {
1289            // If the instruction has already faulted, then skip executing it.
1290            // Such case can happen when it faulted during ITLB translation.
1291            // If we execute the instruction (even if it's a nop) the fault
1292            // will be replaced and we will lose it.
1293            if (inst->getFault() == NoFault) {
1294                inst->execute();
1295                if (!inst->readPredicate())
1296                    inst->forwardOldRegs();
1297            }
1298
1299            inst->setExecuted();
1300
1301            instToCommit(inst);
1302        }
1303
1304        updateExeInstStats(inst);
1305
1306        // Check if branch prediction was correct, if not then we need
1307        // to tell commit to squash in flight instructions.  Only
1308        // handle this if there hasn't already been something that
1309        // redirects fetch in this group of instructions.
1310
1311        // This probably needs to prioritize the redirects if a different
1312        // scheduler is used.  Currently the scheduler schedules the oldest
1313        // instruction first, so the branch resolution order will be correct.
1314        ThreadID tid = inst->threadNumber;
1315
1316        if (!fetchRedirect[tid] ||
1317            !toCommit->squash[tid] ||
1318            toCommit->squashedSeqNum[tid] > inst->seqNum) {
1319
1320            // Prevent testing for misprediction on load instructions,
1321            // that have not been executed.
1322            bool loadNotExecuted = !inst->isExecuted() && inst->isLoad();
1323
1324            if (inst->mispredicted() && !loadNotExecuted) {
1325                fetchRedirect[tid] = true;
1326
1327                DPRINTF(IEW, "Execute: Branch mispredict detected.\n");
1328                DPRINTF(IEW, "Predicted target was PC: %s.\n",
1329                        inst->readPredTarg());
1330                DPRINTF(IEW, "Execute: Redirecting fetch to PC: %s.\n",
1331                        inst->pcState());
1332                // If incorrect, then signal the ROB that it must be squashed.
1333                squashDueToBranch(inst, tid);
1334
1335                ppMispredict->notify(inst);
1336
1337                if (inst->readPredTaken()) {
1338                    predictedTakenIncorrect++;
1339                } else {
1340                    predictedNotTakenIncorrect++;
1341                }
1342            } else if (ldstQueue.violation(tid)) {
1343                assert(inst->isMemRef());
1344                // If there was an ordering violation, then get the
1345                // DynInst that caused the violation.  Note that this
1346                // clears the violation signal.
1347                DynInstPtr violator;
1348                violator = ldstQueue.getMemDepViolator(tid);
1349
1350                DPRINTF(IEW, "LDSTQ detected a violation. Violator PC: %s "
1351                        "[sn:%lli], inst PC: %s [sn:%lli]. Addr is: %#x.\n",
1352                        violator->pcState(), violator->seqNum,
1353                        inst->pcState(), inst->seqNum, inst->physEffAddrLow);
1354
1355                fetchRedirect[tid] = true;
1356
1357                // Tell the instruction queue that a violation has occured.
1358                instQueue.violation(inst, violator);
1359
1360                // Squash.
1361                squashDueToMemOrder(violator, tid);
1362
1363                ++memOrderViolationEvents;
1364            }
1365        } else {
1366            // Reset any state associated with redirects that will not
1367            // be used.
1368            if (ldstQueue.violation(tid)) {
1369                assert(inst->isMemRef());
1370
1371                DynInstPtr violator = ldstQueue.getMemDepViolator(tid);
1372
1373                DPRINTF(IEW, "LDSTQ detected a violation.  Violator PC: "
1374                        "%s, inst PC: %s.  Addr is: %#x.\n",
1375                        violator->pcState(), inst->pcState(),
1376                        inst->physEffAddrLow);
1377                DPRINTF(IEW, "Violation will not be handled because "
1378                        "already squashing\n");
1379
1380                ++memOrderViolationEvents;
1381            }
1382        }
1383    }
1384
1385    // Update and record activity if we processed any instructions.
1386    if (inst_num) {
1387        if (exeStatus == Idle) {
1388            exeStatus = Running;
1389        }
1390
1391        updatedQueues = true;
1392
1393        cpu->activityThisCycle();
1394    }
1395
1396    // Need to reset this in case a writeback event needs to write into the
1397    // iew queue.  That way the writeback event will write into the correct
1398    // spot in the queue.
1399    wbNumInst = 0;
1400
1401}
1402
1403template <class Impl>
1404void
1405DefaultIEW<Impl>::writebackInsts()
1406{
1407    // Loop through the head of the time buffer and wake any
1408    // dependents.  These instructions are about to write back.  Also
1409    // mark scoreboard that this instruction is finally complete.
1410    // Either have IEW have direct access to scoreboard, or have this
1411    // as part of backwards communication.
1412    for (int inst_num = 0; inst_num < wbWidth &&
1413             toCommit->insts[inst_num]; inst_num++) {
1414        DynInstPtr inst = toCommit->insts[inst_num];
1415        ThreadID tid = inst->threadNumber;
1416
1417        DPRINTF(IEW, "Sending instructions to commit, [sn:%lli] PC %s.\n",
1418                inst->seqNum, inst->pcState());
1419
1420        iewInstsToCommit[tid]++;
1421        // Notify potential listeners that execution is complete for this
1422        // instruction.
1423        ppToCommit->notify(inst);
1424
1425        // Some instructions will be sent to commit without having
1426        // executed because they need commit to handle them.
1427        // E.g. Strictly ordered loads have not actually executed when they
1428        // are first sent to commit.  Instead commit must tell the LSQ
1429        // when it's ready to execute the strictly ordered load.
1430        if (!inst->isSquashed() && inst->isExecuted() && inst->getFault() == NoFault) {
1431            int dependents = instQueue.wakeDependents(inst);
1432
1433            for (int i = 0; i < inst->numDestRegs(); i++) {
1434                //mark as Ready
1435                DPRINTF(IEW,"Setting Destination Register %i\n",
1436                        inst->renamedDestRegIdx(i));
1437                scoreboard->setReg(inst->renamedDestRegIdx(i));
1438            }
1439
1440            if (dependents) {
1441                producerInst[tid]++;
1442                consumerInst[tid]+= dependents;
1443            }
1444            writebackCount[tid]++;
1445        }
1446    }
1447}
1448
1449template<class Impl>
1450void
1451DefaultIEW<Impl>::tick()
1452{
1453    wbNumInst = 0;
1454    wbCycle = 0;
1455
1456    wroteToTimeBuffer = false;
1457    updatedQueues = false;
1458
1459    sortInsts();
1460
1461    // Free function units marked as being freed this cycle.
1462    fuPool->processFreeUnits();
1463
1464    list<ThreadID>::iterator threads = activeThreads->begin();
1465    list<ThreadID>::iterator end = activeThreads->end();
1466
1467    // Check stall and squash signals, dispatch any instructions.
1468    while (threads != end) {
1469        ThreadID tid = *threads++;
1470
1471        DPRINTF(IEW,"Issue: Processing [tid:%i]\n",tid);
1472
1473        checkSignalsAndUpdate(tid);
1474        dispatch(tid);
1475    }
1476
1477    if (exeStatus != Squashing) {
1478        executeInsts();
1479
1480        writebackInsts();
1481
1482        // Have the instruction queue try to schedule any ready instructions.
1483        // (In actuality, this scheduling is for instructions that will
1484        // be executed next cycle.)
1485        instQueue.scheduleReadyInsts();
1486
1487        // Also should advance its own time buffers if the stage ran.
1488        // Not the best place for it, but this works (hopefully).
1489        issueToExecQueue.advance();
1490    }
1491
1492    bool broadcast_free_entries = false;
1493
1494    if (updatedQueues || exeStatus == Running || updateLSQNextCycle) {
1495        exeStatus = Idle;
1496        updateLSQNextCycle = false;
1497
1498        broadcast_free_entries = true;
1499    }
1500
1501    // Writeback any stores using any leftover bandwidth.
1502    ldstQueue.writebackStores();
1503
1504    // Check the committed load/store signals to see if there's a load
1505    // or store to commit.  Also check if it's being told to execute a
1506    // nonspeculative instruction.
1507    // This is pretty inefficient...
1508
1509    threads = activeThreads->begin();
1510    while (threads != end) {
1511        ThreadID tid = (*threads++);
1512
1513        DPRINTF(IEW,"Processing [tid:%i]\n",tid);
1514
1515        // Update structures based on instructions committed.
1516        if (fromCommit->commitInfo[tid].doneSeqNum != 0 &&
1517            !fromCommit->commitInfo[tid].squash &&
1518            !fromCommit->commitInfo[tid].robSquashing) {
1519
1520            ldstQueue.commitStores(fromCommit->commitInfo[tid].doneSeqNum,tid);
1521
1522            ldstQueue.commitLoads(fromCommit->commitInfo[tid].doneSeqNum,tid);
1523
1524            updateLSQNextCycle = true;
1525            instQueue.commit(fromCommit->commitInfo[tid].doneSeqNum,tid);
1526        }
1527
1528        if (fromCommit->commitInfo[tid].nonSpecSeqNum != 0) {
1529
1530            //DPRINTF(IEW,"NonspecInst from thread %i",tid);
1531            if (fromCommit->commitInfo[tid].strictlyOrdered) {
1532                instQueue.replayMemInst(
1533                    fromCommit->commitInfo[tid].strictlyOrderedLoad);
1534                fromCommit->commitInfo[tid].strictlyOrderedLoad->setAtCommit();
1535            } else {
1536                instQueue.scheduleNonSpec(
1537                    fromCommit->commitInfo[tid].nonSpecSeqNum);
1538            }
1539        }
1540
1541        if (broadcast_free_entries) {
1542            toFetch->iewInfo[tid].iqCount =
1543                instQueue.getCount(tid);
1544            toFetch->iewInfo[tid].ldstqCount =
1545                ldstQueue.getCount(tid);
1546
1547            toRename->iewInfo[tid].usedIQ = true;
1548            toRename->iewInfo[tid].freeIQEntries =
1549                instQueue.numFreeEntries(tid);
1550            toRename->iewInfo[tid].usedLSQ = true;
1551
1552            toRename->iewInfo[tid].freeLQEntries =
1553                ldstQueue.numFreeLoadEntries(tid);
1554            toRename->iewInfo[tid].freeSQEntries =
1555                ldstQueue.numFreeStoreEntries(tid);
1556
1557            wroteToTimeBuffer = true;
1558        }
1559
1560        DPRINTF(IEW, "[tid:%i], Dispatch dispatched %i instructions.\n",
1561                tid, toRename->iewInfo[tid].dispatched);
1562    }
1563
1564    DPRINTF(IEW, "IQ has %i free entries (Can schedule: %i).  "
1565            "LQ has %i free entries. SQ has %i free entries.\n",
1566            instQueue.numFreeEntries(), instQueue.hasReadyInsts(),
1567            ldstQueue.numFreeLoadEntries(), ldstQueue.numFreeStoreEntries());
1568
1569    updateStatus();
1570
1571    if (wroteToTimeBuffer) {
1572        DPRINTF(Activity, "Activity this cycle.\n");
1573        cpu->activityThisCycle();
1574    }
1575}
1576
1577template <class Impl>
1578void
1579DefaultIEW<Impl>::updateExeInstStats(DynInstPtr &inst)
1580{
1581    ThreadID tid = inst->threadNumber;
1582
1583    iewExecutedInsts++;
1584
1585#if TRACING_ON
1586    if (DTRACE(O3PipeView)) {
1587        inst->completeTick = curTick() - inst->fetchTick;
1588    }
1589#endif
1590
1591    //
1592    //  Control operations
1593    //
1594    if (inst->isControl())
1595        iewExecutedBranches[tid]++;
1596
1597    //
1598    //  Memory operations
1599    //
1600    if (inst->isMemRef()) {
1601        iewExecutedRefs[tid]++;
1602
1603        if (inst->isLoad()) {
1604            iewExecLoadInsts[tid]++;
1605        }
1606    }
1607}
1608
1609template <class Impl>
1610void
1611DefaultIEW<Impl>::checkMisprediction(DynInstPtr &inst)
1612{
1613    ThreadID tid = inst->threadNumber;
1614
1615    if (!fetchRedirect[tid] ||
1616        !toCommit->squash[tid] ||
1617        toCommit->squashedSeqNum[tid] > inst->seqNum) {
1618
1619        if (inst->mispredicted()) {
1620            fetchRedirect[tid] = true;
1621
1622            DPRINTF(IEW, "Execute: Branch mispredict detected.\n");
1623            DPRINTF(IEW, "Predicted target was PC:%#x, NPC:%#x.\n",
1624                    inst->predInstAddr(), inst->predNextInstAddr());
1625            DPRINTF(IEW, "Execute: Redirecting fetch to PC: %#x,"
1626                    " NPC: %#x.\n", inst->nextInstAddr(),
1627                    inst->nextInstAddr());
1628            // If incorrect, then signal the ROB that it must be squashed.
1629            squashDueToBranch(inst, tid);
1630
1631            if (inst->readPredTaken()) {
1632                predictedTakenIncorrect++;
1633            } else {
1634                predictedNotTakenIncorrect++;
1635            }
1636        }
1637    }
1638}
1639
1640#endif//__CPU_O3_IEW_IMPL_IMPL_HH__
1641