iew_impl.hh revision 2307
1/*
2 * Copyright (c) 2004-2005 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29// @todo: Fix the instantaneous communication among all the stages within
30// iew.  There's a clear delay between issue and execute, yet backwards
31// communication happens simultaneously.
32
33#include <queue>
34
35#include "base/timebuf.hh"
36#include "cpu/o3/fu_pool.hh"
37#include "cpu/o3/iew.hh"
38
39using namespace std;
40
41template<class Impl>
42DefaultIEW<Impl>::LdWritebackEvent::LdWritebackEvent(DynInstPtr &_inst,
43                                                     DefaultIEW<Impl> *_iew)
44    : Event(&mainEventQueue), inst(_inst), iewStage(_iew)
45{
46    this->setFlags(Event::AutoDelete);
47}
48
49template<class Impl>
50void
51DefaultIEW<Impl>::LdWritebackEvent::process()
52{
53    DPRINTF(IEW, "Load writeback event [sn:%lli]\n", inst->seqNum);
54    DPRINTF(Activity, "Activity: Ld Writeback event [sn:%lli]\n", inst->seqNum);
55
56    //iewStage->ldstQueue.removeMSHR(inst->threadNumber,inst->seqNum);
57
58    if (inst->isSquashed() || iewStage->isSwitchedOut()) {
59        inst = NULL;
60        return;
61    }
62
63    iewStage->wakeCPU();
64
65    if (!inst->isExecuted()) {
66        inst->setExecuted();
67
68        // Execute again to copy data to proper place.
69        if (inst->isStore()) {
70            inst->completeAcc();
71        }
72    }
73
74    // Need to insert instruction into queue to commit
75    iewStage->instToCommit(inst);
76
77    //wroteToTimeBuffer = true;
78    iewStage->activityThisCycle();
79
80    inst = NULL;
81}
82
83template<class Impl>
84const char *
85DefaultIEW<Impl>::LdWritebackEvent::description()
86{
87    return "Load writeback event";
88}
89
90template<class Impl>
91DefaultIEW<Impl>::DefaultIEW(Params *params)
92    : // Just make this time buffer really big for now
93    // @todo: Make this into a parameter.
94      issueToExecQueue(5, 5),
95      instQueue(params),
96      ldstQueue(params),
97      fuPool(params->fuPool),
98      commitToIEWDelay(params->commitToIEWDelay),
99      renameToIEWDelay(params->renameToIEWDelay),
100      issueToExecuteDelay(params->issueToExecuteDelay),
101      issueReadWidth(params->issueWidth),
102      issueWidth(params->issueWidth),
103      executeWidth(params->executeWidth),
104      numThreads(params->numberOfThreads),
105      switchedOut(false)
106{
107    DPRINTF(IEW, "executeIntWidth: %i.\n", params->executeIntWidth);
108    _status = Active;
109    exeStatus = Running;
110    wbStatus = Idle;
111
112    // Setup wire to read instructions coming from issue.
113    fromIssue = issueToExecQueue.getWire(-issueToExecuteDelay);
114
115    // Instruction queue needs the queue between issue and execute.
116    instQueue.setIssueToExecuteQueue(&issueToExecQueue);
117
118    instQueue.setIEW(this);
119    ldstQueue.setIEW(this);
120
121    for (int i=0; i < numThreads; i++) {
122        dispatchStatus[i] = Running;
123        stalls[i].commit = false;
124        fetchRedirect[i] = false;
125    }
126
127    updateLSQNextCycle = false;
128
129    // @todo: Make into a parameter
130    skidBufferMax = (3 * (renameToIEWDelay * params->renameWidth)) + issueWidth;
131}
132
133template <class Impl>
134std::string
135DefaultIEW<Impl>::name() const
136{
137    return cpu->name() + ".iew";
138}
139
140template <class Impl>
141void
142DefaultIEW<Impl>::regStats()
143{
144    using namespace Stats;
145
146    instQueue.regStats();
147
148    //ldstQueue.regStats();
149
150    iewIdleCycles
151        .name(name() + ".iewIdleCycles")
152        .desc("Number of cycles IEW is idle");
153
154    iewSquashCycles
155        .name(name() + ".iewSquashCycles")
156        .desc("Number of cycles IEW is squashing");
157
158    iewBlockCycles
159        .name(name() + ".iewBlockCycles")
160        .desc("Number of cycles IEW is blocking");
161
162    iewUnblockCycles
163        .name(name() + ".iewUnblockCycles")
164        .desc("Number of cycles IEW is unblocking");
165
166//    iewWBInsts;
167
168    iewDispatchedInsts
169        .name(name() + ".iewDispatchedInsts")
170        .desc("Number of instructions dispatched to IQ");
171
172    iewDispSquashedInsts
173        .name(name() + ".iewDispSquashedInsts")
174        .desc("Number of squashed instructions skipped by dispatch");
175
176    iewDispLoadInsts
177        .name(name() + ".iewDispLoadInsts")
178        .desc("Number of dispatched load instructions");
179
180    iewDispStoreInsts
181        .name(name() + ".iewDispStoreInsts")
182        .desc("Number of dispatched store instructions");
183
184    iewDispNonSpecInsts
185        .name(name() + ".iewDispNonSpecInsts")
186        .desc("Number of dispatched non-speculative instructions");
187
188    iewIQFullEvents
189        .name(name() + ".iewIQFullEvents")
190        .desc("Number of times the IQ has become full, causing a stall");
191
192    iewLSQFullEvents
193        .name(name() + ".iewLSQFullEvents")
194        .desc("Number of times the LSQ has become full, causing a stall");
195
196    iewExecutedInsts
197        .name(name() + ".iewExecutedInsts")
198        .desc("Number of executed instructions");
199
200    iewExecLoadInsts
201        .init(cpu->number_of_threads)
202        .name(name() + ".iewExecLoadInsts")
203        .desc("Number of load instructions executed")
204        .flags(total);
205/*
206    iewExecStoreInsts
207        .name(name() + ".iewExecStoreInsts")
208        .desc("Number of store instructions executed");
209*/
210    iewExecSquashedInsts
211        .name(name() + ".iewExecSquashedInsts")
212        .desc("Number of squashed instructions skipped in execute");
213
214    memOrderViolationEvents
215        .name(name() + ".memOrderViolationEvents")
216        .desc("Number of memory order violations");
217
218    predictedTakenIncorrect
219        .name(name() + ".predictedTakenIncorrect")
220        .desc("Number of branches that were predicted taken incorrectly");
221
222    predictedNotTakenIncorrect
223        .name(name() + ".predictedNotTakenIncorrect")
224        .desc("Number of branches that were predicted not taken incorrectly");
225
226    branchMispredicts
227        .name(name() + ".branchMispredicts")
228        .desc("Number of branch mispredicts detected at execute");
229
230    branchMispredicts = predictedTakenIncorrect + predictedNotTakenIncorrect;
231
232    exe_swp
233        .init(cpu->number_of_threads)
234        .name(name() + ".EXEC:swp")
235        .desc("number of swp insts executed")
236        .flags(total)
237        ;
238
239    exe_nop
240        .init(cpu->number_of_threads)
241        .name(name() + ".EXEC:nop")
242        .desc("number of nop insts executed")
243        .flags(total)
244        ;
245
246    exe_refs
247        .init(cpu->number_of_threads)
248        .name(name() + ".EXEC:refs")
249        .desc("number of memory reference insts executed")
250        .flags(total)
251        ;
252
253    exe_branches
254        .init(cpu->number_of_threads)
255        .name(name() + ".EXEC:branches")
256        .desc("Number of branches executed")
257        .flags(total)
258        ;
259
260    issue_rate
261        .name(name() + ".EXEC:rate")
262        .desc("Inst execution rate")
263        .flags(total)
264        ;
265    issue_rate = iewExecutedInsts / cpu->numCycles;
266
267    iewExecStoreInsts
268        .name(name() + ".EXEC:stores")
269        .desc("Number of stores executed")
270        .flags(total)
271        ;
272    iewExecStoreInsts = exe_refs - iewExecLoadInsts;
273/*
274    for (int i=0; i<Num_OpClasses; ++i) {
275        stringstream subname;
276        subname << opClassStrings[i] << "_delay";
277        issue_delay_dist.subname(i, subname.str());
278    }
279*/
280    //
281    //  Other stats
282    //
283
284    iewInstsToCommit
285        .init(cpu->number_of_threads)
286        .name(name() + ".WB:sent")
287        .desc("cumulative count of insts sent to commit")
288        .flags(total)
289        ;
290
291    writeback_count
292        .init(cpu->number_of_threads)
293        .name(name() + ".WB:count")
294        .desc("cumulative count of insts written-back")
295        .flags(total)
296        ;
297
298    producer_inst
299        .init(cpu->number_of_threads)
300        .name(name() + ".WB:producers")
301        .desc("num instructions producing a value")
302        .flags(total)
303        ;
304
305    consumer_inst
306        .init(cpu->number_of_threads)
307        .name(name() + ".WB:consumers")
308        .desc("num instructions consuming a value")
309        .flags(total)
310        ;
311
312    wb_penalized
313        .init(cpu->number_of_threads)
314        .name(name() + ".WB:penalized")
315        .desc("number of instrctions required to write to 'other' IQ")
316        .flags(total)
317        ;
318
319    wb_penalized_rate
320        .name(name() + ".WB:penalized_rate")
321        .desc ("fraction of instructions written-back that wrote to 'other' IQ")
322        .flags(total)
323        ;
324
325    wb_penalized_rate = wb_penalized / writeback_count;
326
327    wb_fanout
328        .name(name() + ".WB:fanout")
329        .desc("average fanout of values written-back")
330        .flags(total)
331        ;
332
333    wb_fanout = producer_inst / consumer_inst;
334
335    wb_rate
336        .name(name() + ".WB:rate")
337        .desc("insts written-back per cycle")
338        .flags(total)
339        ;
340    wb_rate = writeback_count / cpu->numCycles;
341}
342
343template<class Impl>
344void
345DefaultIEW<Impl>::initStage()
346{
347    for (int tid=0; tid < numThreads; tid++) {
348        toRename->iewInfo[tid].usedIQ = true;
349        toRename->iewInfo[tid].freeIQEntries =
350            instQueue.numFreeEntries(tid);
351
352        toRename->iewInfo[tid].usedLSQ = true;
353        toRename->iewInfo[tid].freeLSQEntries =
354            ldstQueue.numFreeEntries(tid);
355    }
356}
357
358template<class Impl>
359void
360DefaultIEW<Impl>::setCPU(FullCPU *cpu_ptr)
361{
362    DPRINTF(IEW, "Setting CPU pointer.\n");
363    cpu = cpu_ptr;
364
365    instQueue.setCPU(cpu_ptr);
366    ldstQueue.setCPU(cpu_ptr);
367
368    cpu->activateStage(FullCPU::IEWIdx);
369}
370
371template<class Impl>
372void
373DefaultIEW<Impl>::setTimeBuffer(TimeBuffer<TimeStruct> *tb_ptr)
374{
375    DPRINTF(IEW, "Setting time buffer pointer.\n");
376    timeBuffer = tb_ptr;
377
378    // Setup wire to read information from time buffer, from commit.
379    fromCommit = timeBuffer->getWire(-commitToIEWDelay);
380
381    // Setup wire to write information back to previous stages.
382    toRename = timeBuffer->getWire(0);
383
384    toFetch = timeBuffer->getWire(0);
385
386    // Instruction queue also needs main time buffer.
387    instQueue.setTimeBuffer(tb_ptr);
388}
389
390template<class Impl>
391void
392DefaultIEW<Impl>::setRenameQueue(TimeBuffer<RenameStruct> *rq_ptr)
393{
394    DPRINTF(IEW, "Setting rename queue pointer.\n");
395    renameQueue = rq_ptr;
396
397    // Setup wire to read information from rename queue.
398    fromRename = renameQueue->getWire(-renameToIEWDelay);
399}
400
401template<class Impl>
402void
403DefaultIEW<Impl>::setIEWQueue(TimeBuffer<IEWStruct> *iq_ptr)
404{
405    DPRINTF(IEW, "Setting IEW queue pointer.\n");
406    iewQueue = iq_ptr;
407
408    // Setup wire to write instructions to commit.
409    toCommit = iewQueue->getWire(0);
410}
411
412template<class Impl>
413void
414DefaultIEW<Impl>::setActiveThreads(list<unsigned> *at_ptr)
415{
416    DPRINTF(IEW, "Setting active threads list pointer.\n");
417    activeThreads = at_ptr;
418
419    ldstQueue.setActiveThreads(at_ptr);
420    instQueue.setActiveThreads(at_ptr);
421}
422
423template<class Impl>
424void
425DefaultIEW<Impl>::setScoreboard(Scoreboard *sb_ptr)
426{
427    DPRINTF(IEW, "Setting scoreboard pointer.\n");
428    scoreboard = sb_ptr;
429}
430
431#if 0
432template<class Impl>
433void
434DefaultIEW<Impl>::setPageTable(PageTable *pt_ptr)
435{
436    ldstQueue.setPageTable(pt_ptr);
437}
438#endif
439
440template <class Impl>
441void
442DefaultIEW<Impl>::switchOut()
443{
444    switchedOut = true;
445    instQueue.switchOut();
446    ldstQueue.switchOut();
447    fuPool->switchOut();
448
449    for (int i = 0; i < numThreads; i++) {
450        while (!insts[i].empty())
451            insts[i].pop();
452        while (!skidBuffer[i].empty())
453            skidBuffer[i].pop();
454    }
455}
456
457template <class Impl>
458void
459DefaultIEW<Impl>::takeOverFrom()
460{
461    _status = Active;
462    exeStatus = Running;
463    wbStatus = Idle;
464    switchedOut = false;
465
466    instQueue.takeOverFrom();
467    ldstQueue.takeOverFrom();
468    fuPool->takeOverFrom();
469
470    initStage();
471    cpu->activityThisCycle();
472
473    for (int i=0; i < numThreads; i++) {
474        dispatchStatus[i] = Running;
475        stalls[i].commit = false;
476        fetchRedirect[i] = false;
477    }
478
479    updateLSQNextCycle = false;
480
481    // @todo: Fix hardcoded number
482    for (int i = 0; i < 6; ++i) {
483        issueToExecQueue.advance();
484    }
485}
486
487template<class Impl>
488void
489DefaultIEW<Impl>::squash(unsigned tid)
490{
491    DPRINTF(IEW, "[tid:%i]: Squashing all instructions.\n",
492            tid);
493
494    // Tell the IQ to start squashing.
495    instQueue.squash(tid);
496
497    // Tell the LDSTQ to start squashing.
498    ldstQueue.squash(fromCommit->commitInfo[tid].doneSeqNum,tid);
499
500    updatedQueues = true;
501
502    // Clear the skid buffer in case it has any data in it.
503    while (!skidBuffer[tid].empty()) {
504
505        if (skidBuffer[tid].front()->isLoad() ||
506            skidBuffer[tid].front()->isStore() ) {
507            toRename->iewInfo[tid].dispatchedToLSQ++;
508        }
509
510        toRename->iewInfo[tid].dispatched++;
511
512        skidBuffer[tid].pop();
513    }
514
515    while (!insts[tid].empty()) {
516        if (insts[tid].front()->isLoad() ||
517            insts[tid].front()->isStore() ) {
518            toRename->iewInfo[tid].dispatchedToLSQ++;
519        }
520
521        toRename->iewInfo[tid].dispatched++;
522
523        insts[tid].pop();
524    }
525}
526
527template<class Impl>
528void
529DefaultIEW<Impl>::squashDueToBranch(DynInstPtr &inst, unsigned tid)
530{
531    DPRINTF(IEW, "[tid:%i]: Squashing from a specific instruction, PC: %#x "
532            "[sn:%i].\n", tid, inst->readPC(), inst->seqNum);
533
534    // Tell rename to squash through the time buffer.
535    toCommit->squash[tid] = true;
536    toCommit->squashedSeqNum[tid] = inst->seqNum;
537    toCommit->mispredPC[tid] = inst->readPC();
538    toCommit->nextPC[tid] = inst->readNextPC();
539    toCommit->branchMispredict[tid] = true;
540    // Prediction was incorrect, so send back inverse.
541    toCommit->branchTaken[tid] = inst->readNextPC() !=
542        (inst->readPC() + sizeof(TheISA::MachInst));
543
544    toCommit->includeSquashInst[tid] = false;
545    //toCommit->iewSquashNum[tid] = inst->seqNum;
546
547    wroteToTimeBuffer = true;
548}
549
550template<class Impl>
551void
552DefaultIEW<Impl>::squashDueToMemOrder(DynInstPtr &inst, unsigned tid)
553{
554    DPRINTF(IEW, "[tid:%i]: Squashing from a specific instruction, "
555            "PC: %#x [sn:%i].\n", tid, inst->readPC(), inst->seqNum);
556
557    // Tell rename to squash through the time buffer.
558    toCommit->squash[tid] = true;
559    toCommit->squashedSeqNum[tid] = inst->seqNum;
560    toCommit->nextPC[tid] = inst->readNextPC();
561
562    toCommit->includeSquashInst[tid] = false;
563    //toCommit->iewSquashNum[tid] = inst->seqNum;
564
565    wroteToTimeBuffer = true;
566}
567
568template<class Impl>
569void
570DefaultIEW<Impl>::squashDueToMemBlocked(DynInstPtr &inst, unsigned tid)
571{
572    DPRINTF(IEW, "[tid:%i]: Memory blocked, squashing load and younger insts, "
573            "PC: %#x [sn:%i].\n", tid, inst->readPC(), inst->seqNum);
574
575    toCommit->squash[tid] = true;
576    toCommit->squashedSeqNum[tid] = inst->seqNum;
577    toCommit->nextPC[tid] = inst->readPC();
578
579    toCommit->includeSquashInst[tid] = true;
580
581    ldstQueue.setLoadBlockedHandled(tid);
582
583    wroteToTimeBuffer = true;
584}
585
586template<class Impl>
587void
588DefaultIEW<Impl>::block(unsigned tid)
589{
590    DPRINTF(IEW, "[tid:%u]: Blocking.\n", tid);
591
592    if (dispatchStatus[tid] != Blocked &&
593        dispatchStatus[tid] != Unblocking) {
594        toRename->iewBlock[tid] = true;
595        wroteToTimeBuffer = true;
596    }
597
598    // Add the current inputs to the skid buffer so they can be
599    // reprocessed when this stage unblocks.
600    skidInsert(tid);
601
602    // Set the status to Blocked.
603    dispatchStatus[tid] = Blocked;
604}
605
606template<class Impl>
607void
608DefaultIEW<Impl>::unblock(unsigned tid)
609{
610    DPRINTF(IEW, "[tid:%i]: Reading instructions out of the skid "
611            "buffer %u.\n",tid, tid);
612
613    // If the skid bufffer is empty, signal back to previous stages to unblock.
614    // Also switch status to running.
615    if (skidBuffer[tid].empty()) {
616        toRename->iewUnblock[tid] = true;
617        wroteToTimeBuffer = true;
618        DPRINTF(IEW, "[tid:%i]: Done unblocking.\n",tid);
619        dispatchStatus[tid] = Running;
620    }
621}
622
623template<class Impl>
624void
625DefaultIEW<Impl>::wakeDependents(DynInstPtr &inst)
626{
627    instQueue.wakeDependents(inst);
628}
629
630template<class Impl>
631void
632DefaultIEW<Impl>::rescheduleMemInst(DynInstPtr &inst)
633{
634    instQueue.rescheduleMemInst(inst);
635}
636
637template<class Impl>
638void
639DefaultIEW<Impl>::replayMemInst(DynInstPtr &inst)
640{
641    instQueue.replayMemInst(inst);
642}
643
644template<class Impl>
645void
646DefaultIEW<Impl>::instToCommit(DynInstPtr &inst)
647{
648    // First check the time slot that this instruction will write
649    // to.  If there are free write ports at the time, then go ahead
650    // and write the instruction to that time.  If there are not,
651    // keep looking back to see where's the first time there's a
652    // free slot.  What happens if you run out of free spaces?
653    // For now naively assume that all instructions take one cycle.
654    // Otherwise would have to look into the time buffer based on the
655    // latency of the instruction.
656    while ((*iewQueue)[wbCycle].insts[wbNumInst]) {
657        ++wbNumInst;
658        if (wbNumInst == issueWidth) {
659            ++wbCycle;
660            wbNumInst = 0;
661        }
662
663        assert(wbCycle < 5);
664    }
665
666    // Add finished instruction to queue to commit.
667    (*iewQueue)[wbCycle].insts[wbNumInst] = inst;
668    (*iewQueue)[wbCycle].size++;
669}
670
671template <class Impl>
672unsigned
673DefaultIEW<Impl>::validInstsFromRename()
674{
675    unsigned inst_count = 0;
676
677    for (int i=0; i<fromRename->size; i++) {
678        if (!fromRename->insts[i]->squashed)
679            inst_count++;
680    }
681
682    return inst_count;
683}
684
685template<class Impl>
686void
687DefaultIEW<Impl>::skidInsert(unsigned tid)
688{
689    DynInstPtr inst = NULL;
690
691    while (!insts[tid].empty()) {
692        inst = insts[tid].front();
693
694        insts[tid].pop();
695
696        DPRINTF(Decode,"[tid:%i]: Inserting [sn:%lli] PC:%#x into "
697                "dispatch skidBuffer %i\n",tid, inst->seqNum,
698                inst->readPC(),tid);
699
700        skidBuffer[tid].push(inst);
701    }
702
703    assert(skidBuffer[tid].size() <= skidBufferMax &&
704           "Skidbuffer Exceeded Max Size");
705}
706
707template<class Impl>
708int
709DefaultIEW<Impl>::skidCount()
710{
711    int max=0;
712
713    list<unsigned>::iterator threads = (*activeThreads).begin();
714
715    while (threads != (*activeThreads).end()) {
716        unsigned thread_count = skidBuffer[*threads++].size();
717        if (max < thread_count)
718            max = thread_count;
719    }
720
721    return max;
722}
723
724template<class Impl>
725bool
726DefaultIEW<Impl>::skidsEmpty()
727{
728    list<unsigned>::iterator threads = (*activeThreads).begin();
729
730    while (threads != (*activeThreads).end()) {
731        if (!skidBuffer[*threads++].empty())
732            return false;
733    }
734
735    return true;
736}
737
738template <class Impl>
739void
740DefaultIEW<Impl>::updateStatus()
741{
742    bool any_unblocking = false;
743
744    list<unsigned>::iterator threads = (*activeThreads).begin();
745
746    threads = (*activeThreads).begin();
747
748    while (threads != (*activeThreads).end()) {
749        unsigned tid = *threads++;
750
751        if (dispatchStatus[tid] == Unblocking) {
752            any_unblocking = true;
753            break;
754        }
755    }
756
757    // If there are no ready instructions waiting to be scheduled by the IQ,
758    // and there's no stores waiting to write back, and dispatch is not
759    // unblocking, then there is no internal activity for the IEW stage.
760    if (_status == Active && !instQueue.hasReadyInsts() &&
761        !ldstQueue.willWB() && !any_unblocking) {
762        DPRINTF(IEW, "IEW switching to idle\n");
763
764        deactivateStage();
765
766        _status = Inactive;
767    } else if (_status == Inactive && (instQueue.hasReadyInsts() ||
768                                       ldstQueue.willWB() ||
769                                       any_unblocking)) {
770        // Otherwise there is internal activity.  Set to active.
771        DPRINTF(IEW, "IEW switching to active\n");
772
773        activateStage();
774
775        _status = Active;
776    }
777}
778
779template <class Impl>
780void
781DefaultIEW<Impl>::resetEntries()
782{
783    instQueue.resetEntries();
784    ldstQueue.resetEntries();
785}
786
787template <class Impl>
788void
789DefaultIEW<Impl>::readStallSignals(unsigned tid)
790{
791    if (fromCommit->commitBlock[tid]) {
792        stalls[tid].commit = true;
793    }
794
795    if (fromCommit->commitUnblock[tid]) {
796        assert(stalls[tid].commit);
797        stalls[tid].commit = false;
798    }
799}
800
801template <class Impl>
802bool
803DefaultIEW<Impl>::checkStall(unsigned tid)
804{
805    bool ret_val(false);
806
807    if (stalls[tid].commit) {
808        DPRINTF(IEW,"[tid:%i]: Stall from Commit stage detected.\n",tid);
809        ret_val = true;
810    } else if (instQueue.isFull(tid)) {
811        DPRINTF(IEW,"[tid:%i]: Stall: IQ  is full.\n",tid);
812        ret_val = true;
813    } else if (ldstQueue.isFull(tid)) {
814        DPRINTF(IEW,"[tid:%i]: Stall: LSQ is full\n",tid);
815
816        if (ldstQueue.numLoads(tid) > 0 ) {
817
818            DPRINTF(IEW,"[tid:%i]: LSQ oldest load: [sn:%i] \n",
819                    tid,ldstQueue.getLoadHeadSeqNum(tid));
820        }
821
822        if (ldstQueue.numStores(tid) > 0) {
823
824            DPRINTF(IEW,"[tid:%i]: LSQ oldest store: [sn:%i] \n",
825                    tid,ldstQueue.getStoreHeadSeqNum(tid));
826        }
827
828        ret_val = true;
829    } else if (ldstQueue.isStalled(tid)) {
830        DPRINTF(IEW,"[tid:%i]: Stall: LSQ stall detected.\n",tid);
831        ret_val = true;
832    }
833
834    return ret_val;
835}
836
837template <class Impl>
838void
839DefaultIEW<Impl>::checkSignalsAndUpdate(unsigned tid)
840{
841    // Check if there's a squash signal, squash if there is
842    // Check stall signals, block if there is.
843    // If status was Blocked
844    //     if so then go to unblocking
845    // If status was Squashing
846    //     check if squashing is not high.  Switch to running this cycle.
847
848    readStallSignals(tid);
849
850    if (fromCommit->commitInfo[tid].squash) {
851        squash(tid);
852
853        if (dispatchStatus[tid] == Blocked ||
854            dispatchStatus[tid] == Unblocking) {
855            toRename->iewUnblock[tid] = true;
856            wroteToTimeBuffer = true;
857        }
858
859        dispatchStatus[tid] = Squashing;
860
861        fetchRedirect[tid] = false;
862        return;
863    }
864
865    if (fromCommit->commitInfo[tid].robSquashing) {
866        DPRINTF(IEW, "[tid:%i]: ROB is still squashing.\n");
867
868        dispatchStatus[tid] = Squashing;
869
870        return;
871    }
872
873    if (checkStall(tid)) {
874        block(tid);
875        dispatchStatus[tid] = Blocked;
876        return;
877    }
878
879    if (dispatchStatus[tid] == Blocked) {
880        // Status from previous cycle was blocked, but there are no more stall
881        // conditions.  Switch over to unblocking.
882        DPRINTF(IEW, "[tid:%i]: Done blocking, switching to unblocking.\n",
883                tid);
884
885        dispatchStatus[tid] = Unblocking;
886
887        unblock(tid);
888
889        return;
890    }
891
892    if (dispatchStatus[tid] == Squashing) {
893        // Switch status to running if rename isn't being told to block or
894        // squash this cycle.
895        DPRINTF(IEW, "[tid:%i]: Done squashing, switching to running.\n",
896                tid);
897
898        dispatchStatus[tid] = Running;
899
900        return;
901    }
902}
903
904template <class Impl>
905void
906DefaultIEW<Impl>::sortInsts()
907{
908    int insts_from_rename = fromRename->size;
909
910    for (int i = 0; i < numThreads; i++)
911        assert(insts[i].empty());
912
913    for (int i = 0; i < insts_from_rename; ++i) {
914        insts[fromRename->insts[i]->threadNumber].push(fromRename->insts[i]);
915    }
916}
917
918template <class Impl>
919void
920DefaultIEW<Impl>::wakeCPU()
921{
922    cpu->wakeCPU();
923}
924
925template <class Impl>
926void
927DefaultIEW<Impl>::activityThisCycle()
928{
929    DPRINTF(Activity, "Activity this cycle.\n");
930    cpu->activityThisCycle();
931}
932
933template <class Impl>
934inline void
935DefaultIEW<Impl>::activateStage()
936{
937    DPRINTF(Activity, "Activating stage.\n");
938    cpu->activateStage(FullCPU::IEWIdx);
939}
940
941template <class Impl>
942inline void
943DefaultIEW<Impl>::deactivateStage()
944{
945    DPRINTF(Activity, "Deactivating stage.\n");
946    cpu->deactivateStage(FullCPU::IEWIdx);
947}
948
949template<class Impl>
950void
951DefaultIEW<Impl>::dispatch(unsigned tid)
952{
953    // If status is Running or idle,
954    //     call dispatchInsts()
955    // If status is Unblocking,
956    //     buffer any instructions coming from rename
957    //     continue trying to empty skid buffer
958    //     check if stall conditions have passed
959
960    if (dispatchStatus[tid] == Blocked) {
961        ++iewBlockCycles;
962
963    } else if (dispatchStatus[tid] == Squashing) {
964        ++iewSquashCycles;
965    }
966
967    // Dispatch should try to dispatch as many instructions as its bandwidth
968    // will allow, as long as it is not currently blocked.
969    if (dispatchStatus[tid] == Running ||
970        dispatchStatus[tid] == Idle) {
971        DPRINTF(IEW, "[tid:%i] Not blocked, so attempting to run "
972                "dispatch.\n", tid);
973
974        dispatchInsts(tid);
975    } else if (dispatchStatus[tid] == Unblocking) {
976        // Make sure that the skid buffer has something in it if the
977        // status is unblocking.
978        assert(!skidsEmpty());
979
980        // If the status was unblocking, then instructions from the skid
981        // buffer were used.  Remove those instructions and handle
982        // the rest of unblocking.
983        dispatchInsts(tid);
984
985        ++iewUnblockCycles;
986
987        if (validInstsFromRename() && dispatchedAllInsts) {
988            // Add the current inputs to the skid buffer so they can be
989            // reprocessed when this stage unblocks.
990            skidInsert(tid);
991        }
992
993        unblock(tid);
994    }
995}
996
997template <class Impl>
998void
999DefaultIEW<Impl>::dispatchInsts(unsigned tid)
1000{
1001    dispatchedAllInsts = true;
1002
1003    // Obtain instructions from skid buffer if unblocking, or queue from rename
1004    // otherwise.
1005    std::queue<DynInstPtr> &insts_to_dispatch =
1006        dispatchStatus[tid] == Unblocking ?
1007        skidBuffer[tid] : insts[tid];
1008
1009    int insts_to_add = insts_to_dispatch.size();
1010
1011    DynInstPtr inst;
1012    bool add_to_iq = false;
1013    int dis_num_inst = 0;
1014
1015    // Loop through the instructions, putting them in the instruction
1016    // queue.
1017    for ( ; dis_num_inst < insts_to_add &&
1018              dis_num_inst < issueReadWidth;
1019          ++dis_num_inst)
1020    {
1021        inst = insts_to_dispatch.front();
1022
1023        if (dispatchStatus[tid] == Unblocking) {
1024            DPRINTF(IEW, "[tid:%i]: Issue: Examining instruction from skid "
1025                    "buffer\n", tid);
1026        }
1027
1028        // Make sure there's a valid instruction there.
1029        assert(inst);
1030
1031        DPRINTF(IEW, "[tid:%i]: Issue: Adding PC %#x [sn:%lli] [tid:%i] to "
1032                "IQ.\n",
1033                tid, inst->readPC(), inst->seqNum, inst->threadNumber);
1034
1035        // Be sure to mark these instructions as ready so that the
1036        // commit stage can go ahead and execute them, and mark
1037        // them as issued so the IQ doesn't reprocess them.
1038        // -------------
1039        // @TODO: What happens if the ldstqueue is full?
1040        //        Do we process the other instructions?
1041
1042        // Check for squashed instructions.
1043        if (inst->isSquashed()) {
1044            DPRINTF(IEW, "[tid:%i]: Issue: Squashed instruction encountered, "
1045                    "not adding to IQ.\n", tid);
1046
1047            ++iewDispSquashedInsts;
1048
1049            insts_to_dispatch.pop();
1050
1051            //Tell Rename That An Instruction has been processed
1052            if (inst->isLoad() || inst->isStore()) {
1053                toRename->iewInfo[tid].dispatchedToLSQ++;
1054            }
1055            toRename->iewInfo[tid].dispatched++;
1056
1057            continue;
1058        }
1059
1060        // Check for full conditions.
1061        if (instQueue.isFull(tid)) {
1062            DPRINTF(IEW, "[tid:%i]: Issue: IQ has become full.\n", tid);
1063
1064            // Call function to start blocking.
1065            block(tid);
1066
1067            // Set unblock to false. Special case where we are using
1068            // skidbuffer (unblocking) instructions but then we still
1069            // get full in the IQ.
1070            toRename->iewUnblock[tid] = false;
1071
1072            dispatchedAllInsts = false;
1073
1074            ++iewIQFullEvents;
1075            break;
1076        } else if (ldstQueue.isFull(tid)) {
1077            DPRINTF(IEW, "[tid:%i]: Issue: LSQ has become full.\n",tid);
1078
1079            // Call function to start blocking.
1080            block(tid);
1081
1082            // Set unblock to false. Special case where we are using
1083            // skidbuffer (unblocking) instructions but then we still
1084            // get full in the IQ.
1085            toRename->iewUnblock[tid] = false;
1086
1087            dispatchedAllInsts = false;
1088
1089            ++iewLSQFullEvents;
1090            break;
1091        }
1092
1093        // Otherwise issue the instruction just fine.
1094        if (inst->isLoad()) {
1095            DPRINTF(IEW, "[tid:%i]: Issue: Memory instruction "
1096                    "encountered, adding to LSQ.\n", tid);
1097
1098            // Reserve a spot in the load store queue for this
1099            // memory access.
1100            ldstQueue.insertLoad(inst);
1101
1102            ++iewDispLoadInsts;
1103
1104            add_to_iq = true;
1105
1106            toRename->iewInfo[tid].dispatchedToLSQ++;
1107        } else if (inst->isStore()) {
1108            DPRINTF(IEW, "[tid:%i]: Issue: Memory instruction "
1109                    "encountered, adding to LSQ.\n", tid);
1110
1111            ldstQueue.insertStore(inst);
1112
1113            ++iewDispStoreInsts;
1114
1115            if (inst->isNonSpeculative()) {
1116                inst->setCanCommit();
1117                instQueue.insertNonSpec(inst);
1118                add_to_iq = false;
1119
1120                ++iewDispNonSpecInsts;
1121            } else {
1122                add_to_iq = true;
1123            }
1124
1125            toRename->iewInfo[tid].dispatchedToLSQ++;
1126#if FULL_SYSTEM
1127        } else if (inst->isMemBarrier() || inst->isWriteBarrier()) {
1128            inst->setCanCommit();
1129            instQueue.insertBarrier(inst);
1130            add_to_iq = false;
1131#endif
1132        } else if (inst->isNonSpeculative()) {
1133            DPRINTF(IEW, "[tid:%i]: Issue: Nonspeculative instruction "
1134                    "encountered, skipping.\n", tid);
1135
1136            // Same hack as with stores.
1137            inst->setCanCommit();
1138
1139            // Specifically insert it as nonspeculative.
1140            instQueue.insertNonSpec(inst);
1141
1142            ++iewDispNonSpecInsts;
1143
1144            add_to_iq = false;
1145        } else if (inst->isNop()) {
1146            DPRINTF(IEW, "[tid:%i]: Issue: Nop instruction encountered, "
1147                    "skipping.\n", tid);
1148
1149            inst->setIssued();
1150            inst->setExecuted();
1151            inst->setCanCommit();
1152
1153            instQueue.advanceTail(inst);
1154
1155            exe_nop[tid]++;
1156
1157            add_to_iq = false;
1158        } else if (inst->isExecuted()) {
1159            assert(0 && "Instruction shouldn't be executed.\n");
1160            DPRINTF(IEW, "Issue: Executed branch encountered, "
1161                    "skipping.\n");
1162
1163            inst->setIssued();
1164            inst->setCanCommit();
1165
1166            instQueue.advanceTail(inst);
1167
1168            add_to_iq = false;
1169        } else {
1170            add_to_iq = true;
1171        }
1172
1173        // If the instruction queue is not full, then add the
1174        // instruction.
1175        if (add_to_iq) {
1176            instQueue.insert(inst);
1177        }
1178
1179        insts_to_dispatch.pop();
1180
1181        toRename->iewInfo[tid].dispatched++;
1182
1183        ++iewDispatchedInsts;
1184    }
1185
1186    if (!insts_to_dispatch.empty()) {
1187        DPRINTF(IEW,"[tid:%i]: Issue: Bandwidth Full. Blocking.\n");
1188        block(tid);
1189        toRename->iewUnblock[tid] = false;
1190    }
1191
1192    if (dispatchStatus[tid] == Idle && dis_num_inst) {
1193        dispatchStatus[tid] = Running;
1194
1195        updatedQueues = true;
1196    }
1197
1198    dis_num_inst = 0;
1199}
1200
1201template <class Impl>
1202void
1203DefaultIEW<Impl>::printAvailableInsts()
1204{
1205    int inst = 0;
1206
1207    cout << "Available Instructions: ";
1208
1209    while (fromIssue->insts[inst]) {
1210
1211        if (inst%3==0) cout << "\n\t";
1212
1213        cout << "PC: " << fromIssue->insts[inst]->readPC()
1214             << " TN: " << fromIssue->insts[inst]->threadNumber
1215             << " SN: " << fromIssue->insts[inst]->seqNum << " | ";
1216
1217        inst++;
1218
1219    }
1220
1221    cout << "\n";
1222}
1223
1224template <class Impl>
1225void
1226DefaultIEW<Impl>::executeInsts()
1227{
1228    //bool fetch_redirect[(*activeThreads).size()];
1229    wbNumInst = 0;
1230    wbCycle = 0;
1231
1232    list<unsigned>::iterator threads = (*activeThreads).begin();
1233
1234    while (threads != (*activeThreads).end()) {
1235        unsigned tid = *threads++;
1236        fetchRedirect[tid] = false;
1237    }
1238
1239#if 0
1240    printAvailableInsts();
1241#endif
1242
1243    // Execute/writeback any instructions that are available.
1244    int inst_num = 0;
1245    for ( ; inst_num < issueWidth &&  /* Haven't exceeded issue bandwidth */
1246              fromIssue->insts[inst_num];
1247         ++inst_num) {
1248
1249        DPRINTF(IEW, "Execute: Executing instructions from IQ.\n");
1250
1251        // Get instruction from issue's queue.
1252        DynInstPtr inst = fromIssue->insts[inst_num];
1253
1254        DPRINTF(IEW, "Execute: Processing PC %#x, [tid:%i] [sn:%i].\n",
1255                inst->readPC(), inst->threadNumber,inst->seqNum);
1256
1257        // Check if the instruction is squashed; if so then skip it
1258        // and don't count it towards the FU usage.
1259        if (inst->isSquashed()) {
1260            DPRINTF(IEW, "Execute: Instruction was squashed.\n");
1261
1262            // Consider this instruction executed so that commit can go
1263            // ahead and retire the instruction.
1264            inst->setExecuted();
1265
1266            // Not sure if I should set this here or just let commit try to
1267            // commit any squashed instructions.  I like the latter a bit more.
1268            inst->setCanCommit();
1269
1270            ++iewExecSquashedInsts;
1271
1272            continue;
1273        }
1274
1275        Fault fault = NoFault;
1276
1277        // Execute instruction.
1278        // Note that if the instruction faults, it will be handled
1279        // at the commit stage.
1280        if (inst->isMemRef() &&
1281            (!inst->isDataPrefetch() && !inst->isInstPrefetch())) {
1282            DPRINTF(IEW, "Execute: Calculating address for memory "
1283                    "reference.\n");
1284
1285            // Tell the LDSTQ to execute this instruction (if it is a load).
1286            if (inst->isLoad()) {
1287                // Loads will mark themselves as executed, and their writeback
1288                // event adds the instruction to the queue to commit
1289                fault = ldstQueue.executeLoad(inst);
1290
1291//                ++iewExecLoadInsts;
1292            } else if (inst->isStore()) {
1293                ldstQueue.executeStore(inst);
1294
1295//                ++iewExecStoreInsts;
1296
1297                // If the store had a fault then it may not have a mem req
1298                if (inst->req && !(inst->req->flags & LOCKED)) {
1299                    inst->setExecuted();
1300
1301                    instToCommit(inst);
1302                }
1303                // Store conditionals will mark themselves as executed, and
1304                // their writeback event will add the instruction to the queue
1305                // to commit.
1306            } else {
1307                panic("Unexpected memory type!\n");
1308            }
1309
1310        } else {
1311            inst->execute();
1312
1313            inst->setExecuted();
1314
1315            instToCommit(inst);
1316        }
1317
1318        updateExeInstStats(inst);
1319
1320        // Check if branch was correct.  This check happens after the
1321        // instruction is added to the queue because even if the branch
1322        // is mispredicted, the branch instruction itself is still valid.
1323        // Only handle this if there hasn't already been something that
1324        // redirects fetch in this group of instructions.
1325
1326        // This probably needs to prioritize the redirects if a different
1327        // scheduler is used.  Currently the scheduler schedules the oldest
1328        // instruction first, so the branch resolution order will be correct.
1329        unsigned tid = inst->threadNumber;
1330
1331        if (!fetchRedirect[tid]) {
1332
1333            if (inst->mispredicted()) {
1334                fetchRedirect[tid] = true;
1335
1336                DPRINTF(IEW, "Execute: Branch mispredict detected.\n");
1337                DPRINTF(IEW, "Execute: Redirecting fetch to PC: %#x.\n",
1338                        inst->nextPC);
1339
1340                // If incorrect, then signal the ROB that it must be squashed.
1341                squashDueToBranch(inst, tid);
1342
1343                if (inst->predTaken()) {
1344                    predictedTakenIncorrect++;
1345                } else {
1346                    predictedNotTakenIncorrect++;
1347                }
1348            } else if (ldstQueue.violation(tid)) {
1349                fetchRedirect[tid] = true;
1350
1351                // Get the DynInst that caused the violation.  Note that this
1352                // clears the violation signal.
1353                DynInstPtr violator;
1354                violator = ldstQueue.getMemDepViolator(tid);
1355
1356                DPRINTF(IEW, "LDSTQ detected a violation.  Violator PC: "
1357                        "%#x, inst PC: %#x.  Addr is: %#x.\n",
1358                        violator->readPC(), inst->readPC(), inst->physEffAddr);
1359
1360                // Tell the instruction queue that a violation has occured.
1361                instQueue.violation(inst, violator);
1362
1363                // Squash.
1364                squashDueToMemOrder(inst,tid);
1365
1366                ++memOrderViolationEvents;
1367            } else if (ldstQueue.loadBlocked(tid) &&
1368                       !ldstQueue.isLoadBlockedHandled(tid)) {
1369                fetchRedirect[tid] = true;
1370
1371                DPRINTF(IEW, "Load operation couldn't execute because the "
1372                        "memory system is blocked.  PC: %#x [sn:%lli]\n",
1373                        inst->readPC(), inst->seqNum);
1374
1375                squashDueToMemBlocked(inst, tid);
1376            }
1377        }
1378    }
1379
1380    if (inst_num) {
1381        if (exeStatus == Idle) {
1382            exeStatus = Running;
1383        }
1384
1385        updatedQueues = true;
1386
1387        cpu->activityThisCycle();
1388    }
1389
1390    // Need to reset this in case a writeback event needs to write into the
1391    // iew queue.  That way the writeback event will write into the correct
1392    // spot in the queue.
1393    wbNumInst = 0;
1394}
1395
1396template <class Impl>
1397void
1398DefaultIEW<Impl>::writebackInsts()
1399{
1400    // Loop through the head of the time buffer and wake any dependents.
1401    // These instructions are about to write back.  In the simple model
1402    // this loop can really happen within the previous loop, but when
1403    // instructions have actual latencies, this loop must be separate.
1404    // Also mark scoreboard that this instruction is finally complete.
1405    // Either have IEW have direct access to rename map, or have this as
1406    // part of backwards communication.
1407    for (int inst_num = 0; inst_num < issueWidth &&
1408             toCommit->insts[inst_num]; inst_num++) {
1409        DynInstPtr inst = toCommit->insts[inst_num];
1410        int tid = inst->threadNumber;
1411
1412        DPRINTF(IEW, "Sending instructions to commit, PC %#x.\n",
1413                inst->readPC());
1414
1415        iewInstsToCommit[tid]++;
1416
1417        // Some instructions will be sent to commit without having
1418        // executed because they need commit to handle them.
1419        // E.g. Uncached loads have not actually executed when they
1420        // are first sent to commit.  Instead commit must tell the LSQ
1421        // when it's ready to execute the uncached load.
1422        if (!inst->isSquashed() && inst->isExecuted()) {
1423            int dependents = instQueue.wakeDependents(inst);
1424
1425            for (int i = 0; i < inst->numDestRegs(); i++) {
1426                //mark as Ready
1427                DPRINTF(IEW,"Setting Destination Register %i\n",
1428                        inst->renamedDestRegIdx(i));
1429                scoreboard->setReg(inst->renamedDestRegIdx(i));
1430            }
1431
1432            producer_inst[tid]++;
1433            consumer_inst[tid]+= dependents;
1434            writeback_count[tid]++;
1435        }
1436    }
1437}
1438
1439template<class Impl>
1440void
1441DefaultIEW<Impl>::tick()
1442{
1443    // Try to fill up issue queue with as many instructions as bandwidth
1444    // allows.
1445    wbNumInst = 0;
1446    wbCycle = 0;
1447
1448    wroteToTimeBuffer = false;
1449    updatedQueues = false;
1450
1451    sortInsts();
1452
1453    list<unsigned>::iterator threads = (*activeThreads).begin();
1454
1455    // Check stall and squash signals.
1456    while (threads != (*activeThreads).end()) {
1457           unsigned tid = *threads++;
1458
1459        DPRINTF(IEW,"Issue: Processing [tid:%i]\n",tid);
1460
1461        checkSignalsAndUpdate(tid);
1462        dispatch(tid);
1463
1464    }
1465
1466    if (exeStatus != Squashing) {
1467        executeInsts();
1468
1469        writebackInsts();
1470
1471        // Have the instruction queue try to schedule any ready instructions.
1472        // (In actuality, this scheduling is for instructions that will
1473        // be executed next cycle.)
1474        instQueue.scheduleReadyInsts();
1475
1476        // Also should advance its own time buffers if the stage ran.
1477        // Not the best place for it, but this works (hopefully).
1478        issueToExecQueue.advance();
1479    }
1480
1481    bool broadcast_free_entries = false;
1482
1483    if (updatedQueues || exeStatus == Running || updateLSQNextCycle) {
1484        exeStatus = Idle;
1485        updateLSQNextCycle = false;
1486
1487        broadcast_free_entries = true;
1488    }
1489
1490    // Writeback any stores using any leftover bandwidth.
1491    ldstQueue.writebackStores();
1492
1493    // Free function units marked as being freed this cycle.
1494    fuPool->processFreeUnits();
1495
1496    // Check the committed load/store signals to see if there's a load
1497    // or store to commit.  Also check if it's being told to execute a
1498    // nonspeculative instruction.
1499    // This is pretty inefficient...
1500
1501    threads = (*activeThreads).begin();
1502    while (threads != (*activeThreads).end()) {
1503        unsigned tid = (*threads++);
1504
1505        DPRINTF(IEW,"Processing [tid:%i]\n",tid);
1506
1507        if (fromCommit->commitInfo[tid].doneSeqNum != 0 &&
1508            !fromCommit->commitInfo[tid].squash &&
1509            !fromCommit->commitInfo[tid].robSquashing) {
1510
1511            ldstQueue.commitStores(fromCommit->commitInfo[tid].doneSeqNum,tid);
1512
1513            ldstQueue.commitLoads(fromCommit->commitInfo[tid].doneSeqNum,tid);
1514
1515            updateLSQNextCycle = true;
1516            instQueue.commit(fromCommit->commitInfo[tid].doneSeqNum,tid);
1517        }
1518
1519        if (fromCommit->commitInfo[tid].nonSpecSeqNum != 0) {
1520
1521            //DPRINTF(IEW,"NonspecInst from thread %i",tid);
1522            if (fromCommit->commitInfo[tid].uncached) {
1523                instQueue.replayMemInst(fromCommit->commitInfo[tid].uncachedLoad);
1524            } else {
1525                instQueue.scheduleNonSpec(
1526                    fromCommit->commitInfo[tid].nonSpecSeqNum);
1527            }
1528        }
1529
1530        if (broadcast_free_entries) {
1531            toFetch->iewInfo[tid].iqCount =
1532                instQueue.getCount(tid);
1533            toFetch->iewInfo[tid].ldstqCount =
1534                ldstQueue.getCount(tid);
1535
1536            toRename->iewInfo[tid].usedIQ = true;
1537            toRename->iewInfo[tid].freeIQEntries =
1538                instQueue.numFreeEntries();
1539            toRename->iewInfo[tid].usedLSQ = true;
1540            toRename->iewInfo[tid].freeLSQEntries =
1541                ldstQueue.numFreeEntries(tid);
1542
1543            wroteToTimeBuffer = true;
1544        }
1545
1546        DPRINTF(IEW, "[tid:%i], Dispatch dispatched %i instructions.\n",
1547                tid, toRename->iewInfo[tid].dispatched);
1548
1549        //thread_queue.pop();
1550    }
1551
1552    DPRINTF(IEW, "IQ has %i free entries (Can schedule: %i).  "
1553            "LSQ has %i free entries.\n",
1554            instQueue.numFreeEntries(), instQueue.hasReadyInsts(),
1555            ldstQueue.numFreeEntries());
1556
1557    updateStatus();
1558
1559    if (wroteToTimeBuffer) {
1560        DPRINTF(Activity, "Activity this cycle.\n");
1561        cpu->activityThisCycle();
1562    }
1563}
1564
1565template <class Impl>
1566void
1567DefaultIEW<Impl>::updateExeInstStats(DynInstPtr &inst)
1568{
1569    int thread_number = inst->threadNumber;
1570
1571    //
1572    //  Pick off the software prefetches
1573    //
1574#ifdef TARGET_ALPHA
1575    if (inst->isDataPrefetch())
1576        exe_swp[thread_number]++;
1577    else
1578        iewExecutedInsts++;
1579#else
1580    iewExecutedInsts[thread_number]++;
1581#endif
1582
1583    //
1584    //  Control operations
1585    //
1586    if (inst->isControl())
1587        exe_branches[thread_number]++;
1588
1589    //
1590    //  Memory operations
1591    //
1592    if (inst->isMemRef()) {
1593        exe_refs[thread_number]++;
1594
1595        if (inst->isLoad()) {
1596            iewExecLoadInsts[thread_number]++;
1597        }
1598    }
1599}
1600