iew_impl.hh revision 2301
1/*
2 * Copyright (c) 2004-2005 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29// @todo: Fix the instantaneous communication among all the stages within
30// iew.  There's a clear delay between issue and execute, yet backwards
31// communication happens simultaneously.
32
33#include <queue>
34
35#include "base/timebuf.hh"
36#include "cpu/o3/fu_pool.hh"
37#include "cpu/o3/iew.hh"
38
39using namespace std;
40
41template<class Impl>
42DefaultIEW<Impl>::LdWritebackEvent::LdWritebackEvent(DynInstPtr &_inst,
43                                                     DefaultIEW<Impl> *_iew)
44    : Event(&mainEventQueue), inst(_inst), iewStage(_iew)
45{
46    this->setFlags(Event::AutoDelete);
47}
48
49template<class Impl>
50void
51DefaultIEW<Impl>::LdWritebackEvent::process()
52{
53    DPRINTF(IEW, "Load writeback event [sn:%lli]\n", inst->seqNum);
54    DPRINTF(Activity, "Activity: Ld Writeback event [sn:%lli]\n", inst->seqNum);
55
56    //iewStage->ldstQueue.removeMSHR(inst->threadNumber,inst->seqNum);
57
58    iewStage->wakeCPU();
59
60    if (inst->isSquashed()) {
61        inst = NULL;
62        return;
63    }
64
65    if (!inst->isExecuted()) {
66        inst->setExecuted();
67
68        // Execute again to copy data to proper place.
69        if (inst->isStore()) {
70            inst->completeAcc();
71        }
72    }
73
74    // Need to insert instruction into queue to commit
75    iewStage->instToCommit(inst);
76
77    //wroteToTimeBuffer = true;
78    iewStage->activityThisCycle();
79
80    inst = NULL;
81}
82
83template<class Impl>
84const char *
85DefaultIEW<Impl>::LdWritebackEvent::description()
86{
87    return "Load writeback event";
88}
89
90template<class Impl>
91DefaultIEW<Impl>::DefaultIEW(Params *params)
92    : // Just make this time buffer really big for now
93    // @todo: Make this into a parameter.
94      issueToExecQueue(5, 5),
95      instQueue(params),
96      ldstQueue(params),
97      fuPool(params->fuPool),
98      commitToIEWDelay(params->commitToIEWDelay),
99      renameToIEWDelay(params->renameToIEWDelay),
100      issueToExecuteDelay(params->issueToExecuteDelay),
101      issueReadWidth(params->issueWidth),
102      issueWidth(params->issueWidth),
103      executeWidth(params->executeWidth),
104      numThreads(params->numberOfThreads)
105{
106    DPRINTF(IEW, "executeIntWidth: %i.\n", params->executeIntWidth);
107    _status = Active;
108    exeStatus = Running;
109    wbStatus = Idle;
110
111    // Setup wire to read instructions coming from issue.
112    fromIssue = issueToExecQueue.getWire(-issueToExecuteDelay);
113
114    // Instruction queue needs the queue between issue and execute.
115    instQueue.setIssueToExecuteQueue(&issueToExecQueue);
116
117    instQueue.setIEW(this);
118    ldstQueue.setIEW(this);
119
120    for (int i=0; i < numThreads; i++) {
121        dispatchStatus[i] = Running;
122        stalls[i].commit = false;
123        fetchRedirect[i] = false;
124    }
125
126    updateLSQNextCycle = false;
127
128    // @todo: Make into a parameter
129    skidBufferMax = (3 * (renameToIEWDelay * params->renameWidth)) + issueWidth;
130}
131
132template <class Impl>
133std::string
134DefaultIEW<Impl>::name() const
135{
136    return cpu->name() + ".iew";
137}
138
139template <class Impl>
140void
141DefaultIEW<Impl>::regStats()
142{
143    using namespace Stats;
144
145    instQueue.regStats();
146
147    //ldstQueue.regStats();
148
149    iewIdleCycles
150        .name(name() + ".iewIdleCycles")
151        .desc("Number of cycles IEW is idle");
152
153    iewSquashCycles
154        .name(name() + ".iewSquashCycles")
155        .desc("Number of cycles IEW is squashing");
156
157    iewBlockCycles
158        .name(name() + ".iewBlockCycles")
159        .desc("Number of cycles IEW is blocking");
160
161    iewUnblockCycles
162        .name(name() + ".iewUnblockCycles")
163        .desc("Number of cycles IEW is unblocking");
164
165//    iewWBInsts;
166
167    iewDispatchedInsts
168        .name(name() + ".iewDispatchedInsts")
169        .desc("Number of instructions dispatched to IQ");
170
171    iewDispSquashedInsts
172        .name(name() + ".iewDispSquashedInsts")
173        .desc("Number of squashed instructions skipped by dispatch");
174
175    iewDispLoadInsts
176        .name(name() + ".iewDispLoadInsts")
177        .desc("Number of dispatched load instructions");
178
179    iewDispStoreInsts
180        .name(name() + ".iewDispStoreInsts")
181        .desc("Number of dispatched store instructions");
182
183    iewDispNonSpecInsts
184        .name(name() + ".iewDispNonSpecInsts")
185        .desc("Number of dispatched non-speculative instructions");
186
187    iewIQFullEvents
188        .name(name() + ".iewIQFullEvents")
189        .desc("Number of times the IQ has become full, causing a stall");
190
191    iewLSQFullEvents
192        .name(name() + ".iewLSQFullEvents")
193        .desc("Number of times the LSQ has become full, causing a stall");
194
195    iewExecutedInsts
196        .name(name() + ".iewExecutedInsts")
197        .desc("Number of executed instructions");
198
199    iewExecLoadInsts
200        .init(cpu->number_of_threads)
201        .name(name() + ".iewExecLoadInsts")
202        .desc("Number of load instructions executed")
203        .flags(total);
204/*
205    iewExecStoreInsts
206        .name(name() + ".iewExecStoreInsts")
207        .desc("Number of store instructions executed");
208*/
209    iewExecSquashedInsts
210        .name(name() + ".iewExecSquashedInsts")
211        .desc("Number of squashed instructions skipped in execute");
212
213    memOrderViolationEvents
214        .name(name() + ".memOrderViolationEvents")
215        .desc("Number of memory order violations");
216
217    predictedTakenIncorrect
218        .name(name() + ".predictedTakenIncorrect")
219        .desc("Number of branches that were predicted taken incorrectly");
220
221    predictedNotTakenIncorrect
222        .name(name() + ".predictedNotTakenIncorrect")
223        .desc("Number of branches that were predicted not taken incorrectly");
224
225    branchMispredicts
226        .name(name() + ".branchMispredicts")
227        .desc("Number of branch mispredicts detected at execute");
228
229    branchMispredicts = predictedTakenIncorrect + predictedNotTakenIncorrect;
230
231    exe_swp
232        .init(cpu->number_of_threads)
233        .name(name() + ".EXEC:swp")
234        .desc("number of swp insts executed")
235        .flags(total)
236        ;
237
238    exe_nop
239        .init(cpu->number_of_threads)
240        .name(name() + ".EXEC:nop")
241        .desc("number of nop insts executed")
242        .flags(total)
243        ;
244
245    exe_refs
246        .init(cpu->number_of_threads)
247        .name(name() + ".EXEC:refs")
248        .desc("number of memory reference insts executed")
249        .flags(total)
250        ;
251
252    exe_branches
253        .init(cpu->number_of_threads)
254        .name(name() + ".EXEC:branches")
255        .desc("Number of branches executed")
256        .flags(total)
257        ;
258
259    issue_rate
260        .name(name() + ".EXEC:rate")
261        .desc("Inst execution rate")
262        .flags(total)
263        ;
264    issue_rate = iewExecutedInsts / cpu->numCycles;
265
266    iewExecStoreInsts
267        .name(name() + ".EXEC:stores")
268        .desc("Number of stores executed")
269        .flags(total)
270        ;
271    iewExecStoreInsts = exe_refs - iewExecLoadInsts;
272/*
273    for (int i=0; i<Num_OpClasses; ++i) {
274        stringstream subname;
275        subname << opClassStrings[i] << "_delay";
276        issue_delay_dist.subname(i, subname.str());
277    }
278*/
279    //
280    //  Other stats
281    //
282
283    iewInstsToCommit
284        .init(cpu->number_of_threads)
285        .name(name() + ".WB:sent")
286        .desc("cumulative count of insts sent to commit")
287        .flags(total)
288        ;
289
290    writeback_count
291        .init(cpu->number_of_threads)
292        .name(name() + ".WB:count")
293        .desc("cumulative count of insts written-back")
294        .flags(total)
295        ;
296
297    producer_inst
298        .init(cpu->number_of_threads)
299        .name(name() + ".WB:producers")
300        .desc("num instructions producing a value")
301        .flags(total)
302        ;
303
304    consumer_inst
305        .init(cpu->number_of_threads)
306        .name(name() + ".WB:consumers")
307        .desc("num instructions consuming a value")
308        .flags(total)
309        ;
310
311    wb_penalized
312        .init(cpu->number_of_threads)
313        .name(name() + ".WB:penalized")
314        .desc("number of instrctions required to write to 'other' IQ")
315        .flags(total)
316        ;
317
318    wb_penalized_rate
319        .name(name() + ".WB:penalized_rate")
320        .desc ("fraction of instructions written-back that wrote to 'other' IQ")
321        .flags(total)
322        ;
323
324    wb_penalized_rate = wb_penalized / writeback_count;
325
326    wb_fanout
327        .name(name() + ".WB:fanout")
328        .desc("average fanout of values written-back")
329        .flags(total)
330        ;
331
332    wb_fanout = producer_inst / consumer_inst;
333
334    wb_rate
335        .name(name() + ".WB:rate")
336        .desc("insts written-back per cycle")
337        .flags(total)
338        ;
339    wb_rate = writeback_count / cpu->numCycles;
340}
341
342template<class Impl>
343void
344DefaultIEW<Impl>::initStage()
345{
346    for (int tid=0; tid < numThreads; tid++) {
347        toRename->iewInfo[tid].usedIQ = true;
348        toRename->iewInfo[tid].freeIQEntries =
349            instQueue.numFreeEntries(tid);
350
351        toRename->iewInfo[tid].usedLSQ = true;
352        toRename->iewInfo[tid].freeLSQEntries =
353            ldstQueue.numFreeEntries(tid);
354    }
355}
356
357template<class Impl>
358void
359DefaultIEW<Impl>::setCPU(FullCPU *cpu_ptr)
360{
361    DPRINTF(IEW, "Setting CPU pointer.\n");
362    cpu = cpu_ptr;
363
364    instQueue.setCPU(cpu_ptr);
365    ldstQueue.setCPU(cpu_ptr);
366
367    cpu->activateStage(FullCPU::IEWIdx);
368}
369
370template<class Impl>
371void
372DefaultIEW<Impl>::setTimeBuffer(TimeBuffer<TimeStruct> *tb_ptr)
373{
374    DPRINTF(IEW, "Setting time buffer pointer.\n");
375    timeBuffer = tb_ptr;
376
377    // Setup wire to read information from time buffer, from commit.
378    fromCommit = timeBuffer->getWire(-commitToIEWDelay);
379
380    // Setup wire to write information back to previous stages.
381    toRename = timeBuffer->getWire(0);
382
383    toFetch = timeBuffer->getWire(0);
384
385    // Instruction queue also needs main time buffer.
386    instQueue.setTimeBuffer(tb_ptr);
387}
388
389template<class Impl>
390void
391DefaultIEW<Impl>::setRenameQueue(TimeBuffer<RenameStruct> *rq_ptr)
392{
393    DPRINTF(IEW, "Setting rename queue pointer.\n");
394    renameQueue = rq_ptr;
395
396    // Setup wire to read information from rename queue.
397    fromRename = renameQueue->getWire(-renameToIEWDelay);
398}
399
400template<class Impl>
401void
402DefaultIEW<Impl>::setIEWQueue(TimeBuffer<IEWStruct> *iq_ptr)
403{
404    DPRINTF(IEW, "Setting IEW queue pointer.\n");
405    iewQueue = iq_ptr;
406
407    // Setup wire to write instructions to commit.
408    toCommit = iewQueue->getWire(0);
409}
410
411template<class Impl>
412void
413DefaultIEW<Impl>::setActiveThreads(list<unsigned> *at_ptr)
414{
415    DPRINTF(IEW, "Setting active threads list pointer.\n");
416    activeThreads = at_ptr;
417
418    ldstQueue.setActiveThreads(at_ptr);
419    instQueue.setActiveThreads(at_ptr);
420}
421
422template<class Impl>
423void
424DefaultIEW<Impl>::setScoreboard(Scoreboard *sb_ptr)
425{
426    DPRINTF(IEW, "Setting scoreboard pointer.\n");
427    scoreboard = sb_ptr;
428}
429
430#if 0
431template<class Impl>
432void
433DefaultIEW<Impl>::setPageTable(PageTable *pt_ptr)
434{
435    ldstQueue.setPageTable(pt_ptr);
436}
437#endif
438
439template<class Impl>
440void
441DefaultIEW<Impl>::squash(unsigned tid)
442{
443    DPRINTF(IEW, "[tid:%i]: Squashing all instructions.\n",
444            tid);
445
446    // Tell the IQ to start squashing.
447    instQueue.squash(tid);
448
449    // Tell the LDSTQ to start squashing.
450    ldstQueue.squash(fromCommit->commitInfo[tid].doneSeqNum,tid);
451
452    updatedQueues = true;
453
454    // Clear the skid buffer in case it has any data in it.
455    while (!skidBuffer[tid].empty()) {
456
457        if (skidBuffer[tid].front()->isLoad() ||
458            skidBuffer[tid].front()->isStore() ) {
459            toRename->iewInfo[tid].dispatchedToLSQ++;
460        }
461
462        toRename->iewInfo[tid].dispatched++;
463
464        skidBuffer[tid].pop();
465    }
466
467    while (!insts[tid].empty()) {
468        if (insts[tid].front()->isLoad() ||
469            insts[tid].front()->isStore() ) {
470            toRename->iewInfo[tid].dispatchedToLSQ++;
471        }
472
473        toRename->iewInfo[tid].dispatched++;
474
475        insts[tid].pop();
476    }
477}
478
479template<class Impl>
480void
481DefaultIEW<Impl>::squashDueToBranch(DynInstPtr &inst, unsigned tid)
482{
483    DPRINTF(IEW, "[tid:%i]: Squashing from a specific instruction, PC: %#x "
484            "[sn:%i].\n", tid, inst->readPC(), inst->seqNum);
485
486    // Tell rename to squash through the time buffer.
487    toCommit->squash[tid] = true;
488    toCommit->squashedSeqNum[tid] = inst->seqNum;
489    toCommit->mispredPC[tid] = inst->readPC();
490    toCommit->nextPC[tid] = inst->readNextPC();
491    toCommit->branchMispredict[tid] = true;
492    // Prediction was incorrect, so send back inverse.
493    toCommit->branchTaken[tid] = inst->readNextPC() !=
494        (inst->readPC() + sizeof(TheISA::MachInst));
495
496    toCommit->includeSquashInst[tid] = false;
497    //toCommit->iewSquashNum[tid] = inst->seqNum;
498
499    wroteToTimeBuffer = true;
500}
501
502template<class Impl>
503void
504DefaultIEW<Impl>::squashDueToMemOrder(DynInstPtr &inst, unsigned tid)
505{
506    DPRINTF(IEW, "[tid:%i]: Squashing from a specific instruction, "
507            "PC: %#x [sn:%i].\n", tid, inst->readPC(), inst->seqNum);
508
509    // Tell rename to squash through the time buffer.
510    toCommit->squash[tid] = true;
511    toCommit->squashedSeqNum[tid] = inst->seqNum;
512    toCommit->nextPC[tid] = inst->readNextPC();
513
514    toCommit->includeSquashInst[tid] = false;
515    //toCommit->iewSquashNum[tid] = inst->seqNum;
516
517    wroteToTimeBuffer = true;
518}
519
520template<class Impl>
521void
522DefaultIEW<Impl>::squashDueToMemBlocked(DynInstPtr &inst, unsigned tid)
523{
524    DPRINTF(IEW, "[tid:%i]: Memory blocked, squashing load and younger insts, "
525            "PC: %#x [sn:%i].\n", tid, inst->readPC(), inst->seqNum);
526
527    toCommit->squash[tid] = true;
528    toCommit->squashedSeqNum[tid] = inst->seqNum;
529    toCommit->nextPC[tid] = inst->readPC();
530
531    toCommit->includeSquashInst[tid] = true;
532
533    ldstQueue.setLoadBlockedHandled(tid);
534
535    wroteToTimeBuffer = true;
536}
537
538template<class Impl>
539void
540DefaultIEW<Impl>::block(unsigned tid)
541{
542    DPRINTF(IEW, "[tid:%u]: Blocking.\n", tid);
543
544    if (dispatchStatus[tid] != Blocked &&
545        dispatchStatus[tid] != Unblocking) {
546        toRename->iewBlock[tid] = true;
547        wroteToTimeBuffer = true;
548    }
549
550    // Add the current inputs to the skid buffer so they can be
551    // reprocessed when this stage unblocks.
552    skidInsert(tid);
553
554    // Set the status to Blocked.
555    dispatchStatus[tid] = Blocked;
556}
557
558template<class Impl>
559void
560DefaultIEW<Impl>::unblock(unsigned tid)
561{
562    DPRINTF(IEW, "[tid:%i]: Reading instructions out of the skid "
563            "buffer %u.\n",tid, tid);
564
565    // If the skid bufffer is empty, signal back to previous stages to unblock.
566    // Also switch status to running.
567    if (skidBuffer[tid].empty()) {
568        toRename->iewUnblock[tid] = true;
569        wroteToTimeBuffer = true;
570        DPRINTF(IEW, "[tid:%i]: Done unblocking.\n",tid);
571        dispatchStatus[tid] = Running;
572    }
573}
574
575template<class Impl>
576void
577DefaultIEW<Impl>::wakeDependents(DynInstPtr &inst)
578{
579    instQueue.wakeDependents(inst);
580}
581
582template<class Impl>
583void
584DefaultIEW<Impl>::rescheduleMemInst(DynInstPtr &inst)
585{
586    instQueue.rescheduleMemInst(inst);
587}
588
589template<class Impl>
590void
591DefaultIEW<Impl>::replayMemInst(DynInstPtr &inst)
592{
593    instQueue.replayMemInst(inst);
594}
595
596template<class Impl>
597void
598DefaultIEW<Impl>::instToCommit(DynInstPtr &inst)
599{
600    // First check the time slot that this instruction will write
601    // to.  If there are free write ports at the time, then go ahead
602    // and write the instruction to that time.  If there are not,
603    // keep looking back to see where's the first time there's a
604    // free slot.  What happens if you run out of free spaces?
605    // For now naively assume that all instructions take one cycle.
606    // Otherwise would have to look into the time buffer based on the
607    // latency of the instruction.
608    while ((*iewQueue)[wbCycle].insts[wbNumInst]) {
609        ++wbNumInst;
610        if (wbNumInst == issueWidth) {
611            ++wbCycle;
612            wbNumInst = 0;
613        }
614
615        assert(wbCycle < 5);
616    }
617
618    // Add finished instruction to queue to commit.
619    (*iewQueue)[wbCycle].insts[wbNumInst] = inst;
620    (*iewQueue)[wbCycle].size++;
621}
622
623template <class Impl>
624unsigned
625DefaultIEW<Impl>::validInstsFromRename()
626{
627    unsigned inst_count = 0;
628
629    for (int i=0; i<fromRename->size; i++) {
630        if (!fromRename->insts[i]->squashed)
631            inst_count++;
632    }
633
634    return inst_count;
635}
636
637template<class Impl>
638void
639DefaultIEW<Impl>::skidInsert(unsigned tid)
640{
641    DynInstPtr inst = NULL;
642
643    while (!insts[tid].empty()) {
644        inst = insts[tid].front();
645
646        insts[tid].pop();
647
648        DPRINTF(Decode,"[tid:%i]: Inserting [sn:%lli] PC:%#x into "
649                "dispatch skidBuffer %i\n",tid, inst->seqNum,
650                inst->readPC(),tid);
651
652        skidBuffer[tid].push(inst);
653    }
654
655    assert(skidBuffer[tid].size() <= skidBufferMax &&
656           "Skidbuffer Exceeded Max Size");
657}
658
659template<class Impl>
660int
661DefaultIEW<Impl>::skidCount()
662{
663    int max=0;
664
665    list<unsigned>::iterator threads = (*activeThreads).begin();
666
667    while (threads != (*activeThreads).end()) {
668        unsigned thread_count = skidBuffer[*threads++].size();
669        if (max < thread_count)
670            max = thread_count;
671    }
672
673    return max;
674}
675
676template<class Impl>
677bool
678DefaultIEW<Impl>::skidsEmpty()
679{
680    list<unsigned>::iterator threads = (*activeThreads).begin();
681
682    while (threads != (*activeThreads).end()) {
683        if (!skidBuffer[*threads++].empty())
684            return false;
685    }
686
687    return true;
688}
689
690template <class Impl>
691void
692DefaultIEW<Impl>::updateStatus()
693{
694    bool any_unblocking = false;
695
696    list<unsigned>::iterator threads = (*activeThreads).begin();
697
698    threads = (*activeThreads).begin();
699
700    while (threads != (*activeThreads).end()) {
701        unsigned tid = *threads++;
702
703        if (dispatchStatus[tid] == Unblocking) {
704            any_unblocking = true;
705            break;
706        }
707    }
708
709    // If there are no ready instructions waiting to be scheduled by the IQ,
710    // and there's no stores waiting to write back, and dispatch is not
711    // unblocking, then there is no internal activity for the IEW stage.
712    if (_status == Active && !instQueue.hasReadyInsts() &&
713        !ldstQueue.willWB() && !any_unblocking) {
714        DPRINTF(IEW, "IEW switching to idle\n");
715
716        deactivateStage();
717
718        _status = Inactive;
719    } else if (_status == Inactive && (instQueue.hasReadyInsts() ||
720                                       ldstQueue.willWB() ||
721                                       any_unblocking)) {
722        // Otherwise there is internal activity.  Set to active.
723        DPRINTF(IEW, "IEW switching to active\n");
724
725        activateStage();
726
727        _status = Active;
728    }
729}
730
731template <class Impl>
732void
733DefaultIEW<Impl>::resetEntries()
734{
735    instQueue.resetEntries();
736    ldstQueue.resetEntries();
737}
738
739template <class Impl>
740void
741DefaultIEW<Impl>::readStallSignals(unsigned tid)
742{
743    if (fromCommit->commitBlock[tid]) {
744        stalls[tid].commit = true;
745    }
746
747    if (fromCommit->commitUnblock[tid]) {
748        assert(stalls[tid].commit);
749        stalls[tid].commit = false;
750    }
751}
752
753template <class Impl>
754bool
755DefaultIEW<Impl>::checkStall(unsigned tid)
756{
757    bool ret_val(false);
758
759    if (stalls[tid].commit) {
760        DPRINTF(IEW,"[tid:%i]: Stall from Commit stage detected.\n",tid);
761        ret_val = true;
762    } else if (instQueue.isFull(tid)) {
763        DPRINTF(IEW,"[tid:%i]: Stall: IQ  is full.\n",tid);
764        ret_val = true;
765    } else if (ldstQueue.isFull(tid)) {
766        DPRINTF(IEW,"[tid:%i]: Stall: LSQ is full\n",tid);
767
768        if (ldstQueue.numLoads(tid) > 0 ) {
769
770            DPRINTF(IEW,"[tid:%i]: LSQ oldest load: [sn:%i] \n",
771                    tid,ldstQueue.getLoadHeadSeqNum(tid));
772        }
773
774        if (ldstQueue.numStores(tid) > 0) {
775
776            DPRINTF(IEW,"[tid:%i]: LSQ oldest store: [sn:%i] \n",
777                    tid,ldstQueue.getStoreHeadSeqNum(tid));
778        }
779
780        ret_val = true;
781    } else if (ldstQueue.isStalled(tid)) {
782        DPRINTF(IEW,"[tid:%i]: Stall: LSQ stall detected.\n",tid);
783        ret_val = true;
784    }
785
786    return ret_val;
787}
788
789template <class Impl>
790void
791DefaultIEW<Impl>::checkSignalsAndUpdate(unsigned tid)
792{
793    // Check if there's a squash signal, squash if there is
794    // Check stall signals, block if there is.
795    // If status was Blocked
796    //     if so then go to unblocking
797    // If status was Squashing
798    //     check if squashing is not high.  Switch to running this cycle.
799
800    readStallSignals(tid);
801
802    if (fromCommit->commitInfo[tid].squash) {
803        squash(tid);
804
805        if (dispatchStatus[tid] == Blocked ||
806            dispatchStatus[tid] == Unblocking) {
807            toRename->iewUnblock[tid] = true;
808            wroteToTimeBuffer = true;
809        }
810
811        dispatchStatus[tid] = Squashing;
812
813        fetchRedirect[tid] = false;
814        return;
815    }
816
817    if (fromCommit->commitInfo[tid].robSquashing) {
818        DPRINTF(IEW, "[tid:%i]: ROB is still squashing.\n");
819
820        dispatchStatus[tid] = Squashing;
821
822        return;
823    }
824
825    if (checkStall(tid)) {
826        block(tid);
827        dispatchStatus[tid] = Blocked;
828        return;
829    }
830
831    if (dispatchStatus[tid] == Blocked) {
832        // Status from previous cycle was blocked, but there are no more stall
833        // conditions.  Switch over to unblocking.
834        DPRINTF(IEW, "[tid:%i]: Done blocking, switching to unblocking.\n",
835                tid);
836
837        dispatchStatus[tid] = Unblocking;
838
839        unblock(tid);
840
841        return;
842    }
843
844    if (dispatchStatus[tid] == Squashing) {
845        // Switch status to running if rename isn't being told to block or
846        // squash this cycle.
847        DPRINTF(IEW, "[tid:%i]: Done squashing, switching to running.\n",
848                tid);
849
850        dispatchStatus[tid] = Running;
851
852        return;
853    }
854}
855
856template <class Impl>
857void
858DefaultIEW<Impl>::sortInsts()
859{
860    int insts_from_rename = fromRename->size;
861
862    for (int i = 0; i < numThreads; i++)
863        assert(insts[i].empty());
864
865    for (int i = 0; i < insts_from_rename; ++i) {
866        insts[fromRename->insts[i]->threadNumber].push(fromRename->insts[i]);
867    }
868}
869
870template <class Impl>
871void
872DefaultIEW<Impl>::wakeCPU()
873{
874    cpu->wakeCPU();
875}
876
877template <class Impl>
878void
879DefaultIEW<Impl>::activityThisCycle()
880{
881    DPRINTF(Activity, "Activity this cycle.\n");
882    cpu->activityThisCycle();
883}
884
885template <class Impl>
886inline void
887DefaultIEW<Impl>::activateStage()
888{
889    DPRINTF(Activity, "Activating stage.\n");
890    cpu->activateStage(FullCPU::IEWIdx);
891}
892
893template <class Impl>
894inline void
895DefaultIEW<Impl>::deactivateStage()
896{
897    DPRINTF(Activity, "Deactivating stage.\n");
898    cpu->deactivateStage(FullCPU::IEWIdx);
899}
900
901template<class Impl>
902void
903DefaultIEW<Impl>::dispatch(unsigned tid)
904{
905    // If status is Running or idle,
906    //     call dispatchInsts()
907    // If status is Unblocking,
908    //     buffer any instructions coming from rename
909    //     continue trying to empty skid buffer
910    //     check if stall conditions have passed
911
912    if (dispatchStatus[tid] == Blocked) {
913        ++iewBlockCycles;
914
915    } else if (dispatchStatus[tid] == Squashing) {
916        ++iewSquashCycles;
917    }
918
919    // Dispatch should try to dispatch as many instructions as its bandwidth
920    // will allow, as long as it is not currently blocked.
921    if (dispatchStatus[tid] == Running ||
922        dispatchStatus[tid] == Idle) {
923        DPRINTF(IEW, "[tid:%i] Not blocked, so attempting to run "
924                "dispatch.\n", tid);
925
926        dispatchInsts(tid);
927    } else if (dispatchStatus[tid] == Unblocking) {
928        // Make sure that the skid buffer has something in it if the
929        // status is unblocking.
930        assert(!skidsEmpty());
931
932        // If the status was unblocking, then instructions from the skid
933        // buffer were used.  Remove those instructions and handle
934        // the rest of unblocking.
935        dispatchInsts(tid);
936
937        ++iewUnblockCycles;
938
939        if (validInstsFromRename() && dispatchedAllInsts) {
940            // Add the current inputs to the skid buffer so they can be
941            // reprocessed when this stage unblocks.
942            skidInsert(tid);
943        }
944
945        unblock(tid);
946    }
947}
948
949template <class Impl>
950void
951DefaultIEW<Impl>::dispatchInsts(unsigned tid)
952{
953    dispatchedAllInsts = true;
954
955    // Obtain instructions from skid buffer if unblocking, or queue from rename
956    // otherwise.
957    std::queue<DynInstPtr> &insts_to_dispatch =
958        dispatchStatus[tid] == Unblocking ?
959        skidBuffer[tid] : insts[tid];
960
961    int insts_to_add = insts_to_dispatch.size();
962
963    DynInstPtr inst;
964    bool add_to_iq = false;
965    int dis_num_inst = 0;
966
967    // Loop through the instructions, putting them in the instruction
968    // queue.
969    for ( ; dis_num_inst < insts_to_add &&
970              dis_num_inst < issueReadWidth;
971          ++dis_num_inst)
972    {
973        inst = insts_to_dispatch.front();
974
975        if (dispatchStatus[tid] == Unblocking) {
976            DPRINTF(IEW, "[tid:%i]: Issue: Examining instruction from skid "
977                    "buffer\n", tid);
978        }
979
980        // Make sure there's a valid instruction there.
981        assert(inst);
982
983        DPRINTF(IEW, "[tid:%i]: Issue: Adding PC %#x [sn:%lli] [tid:%i] to "
984                "IQ.\n",
985                tid, inst->readPC(), inst->seqNum, inst->threadNumber);
986
987        // Be sure to mark these instructions as ready so that the
988        // commit stage can go ahead and execute them, and mark
989        // them as issued so the IQ doesn't reprocess them.
990        // -------------
991        // @TODO: What happens if the ldstqueue is full?
992        //        Do we process the other instructions?
993
994        // Check for squashed instructions.
995        if (inst->isSquashed()) {
996            DPRINTF(IEW, "[tid:%i]: Issue: Squashed instruction encountered, "
997                    "not adding to IQ.\n", tid);
998
999            ++iewDispSquashedInsts;
1000
1001            insts_to_dispatch.pop();
1002
1003            //Tell Rename That An Instruction has been processed
1004            if (inst->isLoad() || inst->isStore()) {
1005                toRename->iewInfo[tid].dispatchedToLSQ++;
1006            }
1007            toRename->iewInfo[tid].dispatched++;
1008
1009            continue;
1010        }
1011
1012        // Check for full conditions.
1013        if (instQueue.isFull(tid)) {
1014            DPRINTF(IEW, "[tid:%i]: Issue: IQ has become full.\n", tid);
1015
1016            // Call function to start blocking.
1017            block(tid);
1018
1019            // Set unblock to false. Special case where we are using
1020            // skidbuffer (unblocking) instructions but then we still
1021            // get full in the IQ.
1022            toRename->iewUnblock[tid] = false;
1023
1024            dispatchedAllInsts = false;
1025
1026            ++iewIQFullEvents;
1027            break;
1028        } else if (ldstQueue.isFull(tid)) {
1029            DPRINTF(IEW, "[tid:%i]: Issue: LSQ has become full.\n",tid);
1030
1031            // Call function to start blocking.
1032            block(tid);
1033
1034            // Set unblock to false. Special case where we are using
1035            // skidbuffer (unblocking) instructions but then we still
1036            // get full in the IQ.
1037            toRename->iewUnblock[tid] = false;
1038
1039            dispatchedAllInsts = false;
1040
1041            ++iewLSQFullEvents;
1042            break;
1043        }
1044
1045        // Otherwise issue the instruction just fine.
1046        if (inst->isLoad()) {
1047            DPRINTF(IEW, "[tid:%i]: Issue: Memory instruction "
1048                    "encountered, adding to LSQ.\n", tid);
1049
1050            // Reserve a spot in the load store queue for this
1051            // memory access.
1052            ldstQueue.insertLoad(inst);
1053
1054            ++iewDispLoadInsts;
1055
1056            add_to_iq = true;
1057
1058            toRename->iewInfo[tid].dispatchedToLSQ++;
1059        } else if (inst->isStore()) {
1060            DPRINTF(IEW, "[tid:%i]: Issue: Memory instruction "
1061                    "encountered, adding to LSQ.\n", tid);
1062
1063            ldstQueue.insertStore(inst);
1064
1065            ++iewDispStoreInsts;
1066
1067            if (inst->isNonSpeculative()) {
1068                inst->setCanCommit();
1069                instQueue.insertNonSpec(inst);
1070                add_to_iq = false;
1071
1072                ++iewDispNonSpecInsts;
1073            } else {
1074                add_to_iq = true;
1075            }
1076
1077            toRename->iewInfo[tid].dispatchedToLSQ++;
1078#if FULL_SYSTEM
1079        } else if (inst->isMemBarrier() || inst->isWriteBarrier()) {
1080            inst->setCanCommit();
1081            instQueue.insertBarrier(inst);
1082            add_to_iq = false;
1083#endif
1084        } else if (inst->isNonSpeculative()) {
1085            DPRINTF(IEW, "[tid:%i]: Issue: Nonspeculative instruction "
1086                    "encountered, skipping.\n", tid);
1087
1088            // Same hack as with stores.
1089            inst->setCanCommit();
1090
1091            // Specifically insert it as nonspeculative.
1092            instQueue.insertNonSpec(inst);
1093
1094            ++iewDispNonSpecInsts;
1095
1096            add_to_iq = false;
1097        } else if (inst->isNop()) {
1098            DPRINTF(IEW, "[tid:%i]: Issue: Nop instruction encountered, "
1099                    "skipping.\n", tid);
1100
1101            inst->setIssued();
1102            inst->setExecuted();
1103            inst->setCanCommit();
1104
1105            instQueue.advanceTail(inst);
1106
1107            exe_nop[tid]++;
1108
1109            add_to_iq = false;
1110        } else if (inst->isExecuted()) {
1111            assert(0 && "Instruction shouldn't be executed.\n");
1112            DPRINTF(IEW, "Issue: Executed branch encountered, "
1113                    "skipping.\n");
1114
1115            inst->setIssued();
1116            inst->setCanCommit();
1117
1118            instQueue.advanceTail(inst);
1119
1120            add_to_iq = false;
1121        } else {
1122            add_to_iq = true;
1123        }
1124
1125        // If the instruction queue is not full, then add the
1126        // instruction.
1127        if (add_to_iq) {
1128            instQueue.insert(inst);
1129        }
1130
1131        insts_to_dispatch.pop();
1132
1133        toRename->iewInfo[tid].dispatched++;
1134
1135        ++iewDispatchedInsts;
1136    }
1137
1138    if (!insts_to_dispatch.empty()) {
1139        DPRINTF(IEW,"[tid:%i]: Issue: Bandwidth Full. Blocking.\n");
1140        block(tid);
1141        toRename->iewUnblock[tid] = false;
1142    }
1143
1144    if (dispatchStatus[tid] == Idle && dis_num_inst) {
1145        dispatchStatus[tid] = Running;
1146
1147        updatedQueues = true;
1148    }
1149
1150    dis_num_inst = 0;
1151}
1152
1153template <class Impl>
1154void
1155DefaultIEW<Impl>::printAvailableInsts()
1156{
1157    int inst = 0;
1158
1159    cout << "Available Instructions: ";
1160
1161    while (fromIssue->insts[inst]) {
1162
1163        if (inst%3==0) cout << "\n\t";
1164
1165        cout << "PC: " << fromIssue->insts[inst]->readPC()
1166             << " TN: " << fromIssue->insts[inst]->threadNumber
1167             << " SN: " << fromIssue->insts[inst]->seqNum << " | ";
1168
1169        inst++;
1170
1171    }
1172
1173    cout << "\n";
1174}
1175
1176template <class Impl>
1177void
1178DefaultIEW<Impl>::executeInsts()
1179{
1180    //bool fetch_redirect[(*activeThreads).size()];
1181    wbNumInst = 0;
1182    wbCycle = 0;
1183
1184    list<unsigned>::iterator threads = (*activeThreads).begin();
1185
1186    while (threads != (*activeThreads).end()) {
1187        unsigned tid = *threads++;
1188        fetchRedirect[tid] = false;
1189    }
1190
1191#if 0
1192    printAvailableInsts();
1193#endif
1194
1195    // Execute/writeback any instructions that are available.
1196    int inst_num = 0;
1197    for ( ; inst_num < issueWidth &&  /* Haven't exceeded issue bandwidth */
1198              fromIssue->insts[inst_num];
1199         ++inst_num) {
1200
1201        DPRINTF(IEW, "Execute: Executing instructions from IQ.\n");
1202
1203        // Get instruction from issue's queue.
1204        DynInstPtr inst = fromIssue->insts[inst_num];
1205
1206        DPRINTF(IEW, "Execute: Processing PC %#x, [tid:%i] [sn:%i].\n",
1207                inst->readPC(), inst->threadNumber,inst->seqNum);
1208
1209        // Check if the instruction is squashed; if so then skip it
1210        // and don't count it towards the FU usage.
1211        if (inst->isSquashed()) {
1212            DPRINTF(IEW, "Execute: Instruction was squashed.\n");
1213
1214            // Consider this instruction executed so that commit can go
1215            // ahead and retire the instruction.
1216            inst->setExecuted();
1217
1218            // Not sure if I should set this here or just let commit try to
1219            // commit any squashed instructions.  I like the latter a bit more.
1220            inst->setCanCommit();
1221
1222            ++iewExecSquashedInsts;
1223
1224            continue;
1225        }
1226
1227        Fault fault = NoFault;
1228
1229        // Execute instruction.
1230        // Note that if the instruction faults, it will be handled
1231        // at the commit stage.
1232        if (inst->isMemRef() &&
1233            (!inst->isDataPrefetch() && !inst->isInstPrefetch())) {
1234            DPRINTF(IEW, "Execute: Calculating address for memory "
1235                    "reference.\n");
1236
1237            // Tell the LDSTQ to execute this instruction (if it is a load).
1238            if (inst->isLoad()) {
1239                // Loads will mark themselves as executed, and their writeback
1240                // event adds the instruction to the queue to commit
1241                fault = ldstQueue.executeLoad(inst);
1242
1243//                ++iewExecLoadInsts;
1244            } else if (inst->isStore()) {
1245                ldstQueue.executeStore(inst);
1246
1247//                ++iewExecStoreInsts;
1248
1249                // If the store had a fault then it may not have a mem req
1250                if (inst->req && !(inst->req->flags & LOCKED)) {
1251                    inst->setExecuted();
1252
1253                    instToCommit(inst);
1254                }
1255                // Store conditionals will mark themselves as executed, and
1256                // their writeback event will add the instruction to the queue
1257                // to commit.
1258            } else {
1259                panic("Unexpected memory type!\n");
1260            }
1261
1262        } else {
1263            inst->execute();
1264
1265            inst->setExecuted();
1266
1267            instToCommit(inst);
1268        }
1269
1270        updateExeInstStats(inst);
1271
1272        // Check if branch was correct.  This check happens after the
1273        // instruction is added to the queue because even if the branch
1274        // is mispredicted, the branch instruction itself is still valid.
1275        // Only handle this if there hasn't already been something that
1276        // redirects fetch in this group of instructions.
1277
1278        // This probably needs to prioritize the redirects if a different
1279        // scheduler is used.  Currently the scheduler schedules the oldest
1280        // instruction first, so the branch resolution order will be correct.
1281        unsigned tid = inst->threadNumber;
1282
1283        if (!fetchRedirect[tid]) {
1284
1285            if (inst->mispredicted()) {
1286                fetchRedirect[tid] = true;
1287
1288                DPRINTF(IEW, "Execute: Branch mispredict detected.\n");
1289                DPRINTF(IEW, "Execute: Redirecting fetch to PC: %#x.\n",
1290                        inst->nextPC);
1291
1292                // If incorrect, then signal the ROB that it must be squashed.
1293                squashDueToBranch(inst, tid);
1294
1295                if (inst->predTaken()) {
1296                    predictedTakenIncorrect++;
1297                } else {
1298                    predictedNotTakenIncorrect++;
1299                }
1300            } else if (ldstQueue.violation(tid)) {
1301                fetchRedirect[tid] = true;
1302
1303                // Get the DynInst that caused the violation.  Note that this
1304                // clears the violation signal.
1305                DynInstPtr violator;
1306                violator = ldstQueue.getMemDepViolator(tid);
1307
1308                DPRINTF(IEW, "LDSTQ detected a violation.  Violator PC: "
1309                        "%#x, inst PC: %#x.  Addr is: %#x.\n",
1310                        violator->readPC(), inst->readPC(), inst->physEffAddr);
1311
1312                // Tell the instruction queue that a violation has occured.
1313                instQueue.violation(inst, violator);
1314
1315                // Squash.
1316                squashDueToMemOrder(inst,tid);
1317
1318                ++memOrderViolationEvents;
1319            } else if (ldstQueue.loadBlocked(tid) &&
1320                       !ldstQueue.isLoadBlockedHandled(tid)) {
1321                fetchRedirect[tid] = true;
1322
1323                DPRINTF(IEW, "Load operation couldn't execute because the "
1324                        "memory system is blocked.  PC: %#x [sn:%lli]\n",
1325                        inst->readPC(), inst->seqNum);
1326
1327                squashDueToMemBlocked(inst, tid);
1328            }
1329        }
1330    }
1331
1332    if (inst_num) {
1333        if (exeStatus == Idle) {
1334            exeStatus = Running;
1335        }
1336
1337        updatedQueues = true;
1338
1339        cpu->activityThisCycle();
1340    }
1341
1342    // Need to reset this in case a writeback event needs to write into the
1343    // iew queue.  That way the writeback event will write into the correct
1344    // spot in the queue.
1345    wbNumInst = 0;
1346}
1347
1348template <class Impl>
1349void
1350DefaultIEW<Impl>::writebackInsts()
1351{
1352    // Loop through the head of the time buffer and wake any dependents.
1353    // These instructions are about to write back.  In the simple model
1354    // this loop can really happen within the previous loop, but when
1355    // instructions have actual latencies, this loop must be separate.
1356    // Also mark scoreboard that this instruction is finally complete.
1357    // Either have IEW have direct access to rename map, or have this as
1358    // part of backwards communication.
1359    for (int inst_num = 0; inst_num < issueWidth &&
1360             toCommit->insts[inst_num]; inst_num++) {
1361        DynInstPtr inst = toCommit->insts[inst_num];
1362        int tid = inst->threadNumber;
1363
1364        DPRINTF(IEW, "Sending instructions to commit, PC %#x.\n",
1365                inst->readPC());
1366
1367        iewInstsToCommit[tid]++;
1368
1369        // Some instructions will be sent to commit without having
1370        // executed because they need commit to handle them.
1371        // E.g. Uncached loads have not actually executed when they
1372        // are first sent to commit.  Instead commit must tell the LSQ
1373        // when it's ready to execute the uncached load.
1374        if (!inst->isSquashed() && inst->isExecuted()) {
1375            int dependents = instQueue.wakeDependents(inst);
1376
1377            for (int i = 0; i < inst->numDestRegs(); i++) {
1378                //mark as Ready
1379                DPRINTF(IEW,"Setting Destination Register %i\n",
1380                        inst->renamedDestRegIdx(i));
1381                scoreboard->setReg(inst->renamedDestRegIdx(i));
1382            }
1383
1384            producer_inst[tid]++;
1385            consumer_inst[tid]+= dependents;
1386            writeback_count[tid]++;
1387        }
1388    }
1389}
1390
1391template<class Impl>
1392void
1393DefaultIEW<Impl>::tick()
1394{
1395    // Try to fill up issue queue with as many instructions as bandwidth
1396    // allows.
1397    wbNumInst = 0;
1398    wbCycle = 0;
1399
1400    wroteToTimeBuffer = false;
1401    updatedQueues = false;
1402
1403    sortInsts();
1404
1405    list<unsigned>::iterator threads = (*activeThreads).begin();
1406
1407    // Check stall and squash signals.
1408    while (threads != (*activeThreads).end()) {
1409           unsigned tid = *threads++;
1410
1411        DPRINTF(IEW,"Issue: Processing [tid:%i]\n",tid);
1412
1413        checkSignalsAndUpdate(tid);
1414        dispatch(tid);
1415
1416    }
1417
1418    if (exeStatus != Squashing) {
1419        executeInsts();
1420
1421        writebackInsts();
1422
1423        // Have the instruction queue try to schedule any ready instructions.
1424        // (In actuality, this scheduling is for instructions that will
1425        // be executed next cycle.)
1426        instQueue.scheduleReadyInsts();
1427
1428        // Also should advance its own time buffers if the stage ran.
1429        // Not the best place for it, but this works (hopefully).
1430        issueToExecQueue.advance();
1431    }
1432
1433    bool broadcast_free_entries = false;
1434
1435    if (updatedQueues || exeStatus == Running || updateLSQNextCycle) {
1436        exeStatus = Idle;
1437        updateLSQNextCycle = false;
1438
1439        broadcast_free_entries = true;
1440    }
1441
1442    // Writeback any stores using any leftover bandwidth.
1443    ldstQueue.writebackStores();
1444
1445    // Free function units marked as being freed this cycle.
1446    fuPool->processFreeUnits();
1447
1448    // Check the committed load/store signals to see if there's a load
1449    // or store to commit.  Also check if it's being told to execute a
1450    // nonspeculative instruction.
1451    // This is pretty inefficient...
1452
1453    threads = (*activeThreads).begin();
1454    while (threads != (*activeThreads).end()) {
1455        unsigned tid = (*threads++);
1456
1457        DPRINTF(IEW,"Processing [tid:%i]\n",tid);
1458
1459        if (fromCommit->commitInfo[tid].doneSeqNum != 0 &&
1460            !fromCommit->commitInfo[tid].squash &&
1461            !fromCommit->commitInfo[tid].robSquashing) {
1462
1463            ldstQueue.commitStores(fromCommit->commitInfo[tid].doneSeqNum,tid);
1464
1465            ldstQueue.commitLoads(fromCommit->commitInfo[tid].doneSeqNum,tid);
1466
1467            updateLSQNextCycle = true;
1468            instQueue.commit(fromCommit->commitInfo[tid].doneSeqNum,tid);
1469        }
1470
1471        if (fromCommit->commitInfo[tid].nonSpecSeqNum != 0) {
1472
1473            //DPRINTF(IEW,"NonspecInst from thread %i",tid);
1474            if (fromCommit->commitInfo[tid].uncached) {
1475                instQueue.replayMemInst(fromCommit->commitInfo[tid].uncachedLoad);
1476            } else {
1477                instQueue.scheduleNonSpec(
1478                    fromCommit->commitInfo[tid].nonSpecSeqNum);
1479            }
1480        }
1481
1482        if (broadcast_free_entries) {
1483            toFetch->iewInfo[tid].iqCount =
1484                instQueue.getCount(tid);
1485            toFetch->iewInfo[tid].ldstqCount =
1486                ldstQueue.getCount(tid);
1487
1488            toRename->iewInfo[tid].usedIQ = true;
1489            toRename->iewInfo[tid].freeIQEntries =
1490                instQueue.numFreeEntries();
1491            toRename->iewInfo[tid].usedLSQ = true;
1492            toRename->iewInfo[tid].freeLSQEntries =
1493                ldstQueue.numFreeEntries(tid);
1494
1495            wroteToTimeBuffer = true;
1496        }
1497
1498        DPRINTF(IEW, "[tid:%i], Dispatch dispatched %i instructions.\n",
1499                tid, toRename->iewInfo[tid].dispatched);
1500
1501        //thread_queue.pop();
1502    }
1503
1504    DPRINTF(IEW, "IQ has %i free entries (Can schedule: %i).  "
1505            "LSQ has %i free entries.\n",
1506            instQueue.numFreeEntries(), instQueue.hasReadyInsts(),
1507            ldstQueue.numFreeEntries());
1508
1509    updateStatus();
1510
1511    if (wroteToTimeBuffer) {
1512        DPRINTF(Activity, "Activity this cycle.\n");
1513        cpu->activityThisCycle();
1514    }
1515}
1516
1517template <class Impl>
1518void
1519DefaultIEW<Impl>::updateExeInstStats(DynInstPtr &inst)
1520{
1521    int thread_number = inst->threadNumber;
1522
1523    //
1524    //  Pick off the software prefetches
1525    //
1526#ifdef TARGET_ALPHA
1527    if (inst->isDataPrefetch())
1528        exe_swp[thread_number]++;
1529    else
1530        iewExecutedInsts++;
1531#else
1532    iewExecutedInsts[thread_number]++;
1533#endif
1534
1535    //
1536    //  Control operations
1537    //
1538    if (inst->isControl())
1539        exe_branches[thread_number]++;
1540
1541    //
1542    //  Memory operations
1543    //
1544    if (inst->isMemRef()) {
1545        exe_refs[thread_number]++;
1546
1547        if (inst->isLoad()) {
1548            iewExecLoadInsts[thread_number]++;
1549        }
1550    }
1551}
1552