fetch_impl.hh revision 9644:07352f119e48
1/*
2 * Copyright (c) 2010-2012 ARM Limited
3 * All rights reserved.
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder.  You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2004-2006 The Regents of The University of Michigan
15 * All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions are
19 * met: redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer;
21 * redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution;
24 * neither the name of the copyright holders nor the names of its
25 * contributors may be used to endorse or promote products derived from
26 * this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 *
40 * Authors: Kevin Lim
41 *          Korey Sewell
42 */
43
44#include <algorithm>
45#include <cstring>
46#include <list>
47#include <map>
48#include <queue>
49
50#include "arch/isa_traits.hh"
51#include "arch/tlb.hh"
52#include "arch/utility.hh"
53#include "arch/vtophys.hh"
54#include "base/types.hh"
55#include "config/the_isa.hh"
56#include "cpu/base.hh"
57//#include "cpu/checker/cpu.hh"
58#include "cpu/o3/fetch.hh"
59#include "cpu/exetrace.hh"
60#include "debug/Activity.hh"
61#include "debug/Drain.hh"
62#include "debug/Fetch.hh"
63#include "debug/O3PipeView.hh"
64#include "mem/packet.hh"
65#include "params/DerivO3CPU.hh"
66#include "sim/byteswap.hh"
67#include "sim/core.hh"
68#include "sim/eventq.hh"
69#include "sim/full_system.hh"
70#include "sim/system.hh"
71
72using namespace std;
73
74template<class Impl>
75DefaultFetch<Impl>::DefaultFetch(O3CPU *_cpu, DerivO3CPUParams *params)
76    : cpu(_cpu),
77      decodeToFetchDelay(params->decodeToFetchDelay),
78      renameToFetchDelay(params->renameToFetchDelay),
79      iewToFetchDelay(params->iewToFetchDelay),
80      commitToFetchDelay(params->commitToFetchDelay),
81      fetchWidth(params->fetchWidth),
82      retryPkt(NULL),
83      retryTid(InvalidThreadID),
84      numThreads(params->numThreads),
85      numFetchingThreads(params->smtNumFetchingThreads),
86      finishTranslationEvent(this)
87{
88    if (numThreads > Impl::MaxThreads)
89        fatal("numThreads (%d) is larger than compiled limit (%d),\n"
90              "\tincrease MaxThreads in src/cpu/o3/impl.hh\n",
91              numThreads, static_cast<int>(Impl::MaxThreads));
92    if (fetchWidth > Impl::MaxWidth)
93        fatal("fetchWidth (%d) is larger than compiled limit (%d),\n"
94             "\tincrease MaxWidth in src/cpu/o3/impl.hh\n",
95             fetchWidth, static_cast<int>(Impl::MaxWidth));
96
97    std::string policy = params->smtFetchPolicy;
98
99    // Convert string to lowercase
100    std::transform(policy.begin(), policy.end(), policy.begin(),
101                   (int(*)(int)) tolower);
102
103    // Figure out fetch policy
104    if (policy == "singlethread") {
105        fetchPolicy = SingleThread;
106        if (numThreads > 1)
107            panic("Invalid Fetch Policy for a SMT workload.");
108    } else if (policy == "roundrobin") {
109        fetchPolicy = RoundRobin;
110        DPRINTF(Fetch, "Fetch policy set to Round Robin\n");
111    } else if (policy == "branch") {
112        fetchPolicy = Branch;
113        DPRINTF(Fetch, "Fetch policy set to Branch Count\n");
114    } else if (policy == "iqcount") {
115        fetchPolicy = IQ;
116        DPRINTF(Fetch, "Fetch policy set to IQ count\n");
117    } else if (policy == "lsqcount") {
118        fetchPolicy = LSQ;
119        DPRINTF(Fetch, "Fetch policy set to LSQ count\n");
120    } else {
121        fatal("Invalid Fetch Policy. Options Are: {SingleThread,"
122              " RoundRobin,LSQcount,IQcount}\n");
123    }
124
125    // Get the size of an instruction.
126    instSize = sizeof(TheISA::MachInst);
127
128    for (int i = 0; i < Impl::MaxThreads; i++) {
129        cacheData[i] = NULL;
130        decoder[i] = new TheISA::Decoder;
131    }
132
133    branchPred = params->branchPred;
134}
135
136template <class Impl>
137std::string
138DefaultFetch<Impl>::name() const
139{
140    return cpu->name() + ".fetch";
141}
142
143template <class Impl>
144void
145DefaultFetch<Impl>::regStats()
146{
147    icacheStallCycles
148        .name(name() + ".icacheStallCycles")
149        .desc("Number of cycles fetch is stalled on an Icache miss")
150        .prereq(icacheStallCycles);
151
152    fetchedInsts
153        .name(name() + ".Insts")
154        .desc("Number of instructions fetch has processed")
155        .prereq(fetchedInsts);
156
157    fetchedBranches
158        .name(name() + ".Branches")
159        .desc("Number of branches that fetch encountered")
160        .prereq(fetchedBranches);
161
162    predictedBranches
163        .name(name() + ".predictedBranches")
164        .desc("Number of branches that fetch has predicted taken")
165        .prereq(predictedBranches);
166
167    fetchCycles
168        .name(name() + ".Cycles")
169        .desc("Number of cycles fetch has run and was not squashing or"
170              " blocked")
171        .prereq(fetchCycles);
172
173    fetchSquashCycles
174        .name(name() + ".SquashCycles")
175        .desc("Number of cycles fetch has spent squashing")
176        .prereq(fetchSquashCycles);
177
178    fetchTlbCycles
179        .name(name() + ".TlbCycles")
180        .desc("Number of cycles fetch has spent waiting for tlb")
181        .prereq(fetchTlbCycles);
182
183    fetchIdleCycles
184        .name(name() + ".IdleCycles")
185        .desc("Number of cycles fetch was idle")
186        .prereq(fetchIdleCycles);
187
188    fetchBlockedCycles
189        .name(name() + ".BlockedCycles")
190        .desc("Number of cycles fetch has spent blocked")
191        .prereq(fetchBlockedCycles);
192
193    fetchedCacheLines
194        .name(name() + ".CacheLines")
195        .desc("Number of cache lines fetched")
196        .prereq(fetchedCacheLines);
197
198    fetchMiscStallCycles
199        .name(name() + ".MiscStallCycles")
200        .desc("Number of cycles fetch has spent waiting on interrupts, or "
201              "bad addresses, or out of MSHRs")
202        .prereq(fetchMiscStallCycles);
203
204    fetchPendingDrainCycles
205        .name(name() + ".PendingDrainCycles")
206        .desc("Number of cycles fetch has spent waiting on pipes to drain")
207        .prereq(fetchPendingDrainCycles);
208
209    fetchNoActiveThreadStallCycles
210        .name(name() + ".NoActiveThreadStallCycles")
211        .desc("Number of stall cycles due to no active thread to fetch from")
212        .prereq(fetchNoActiveThreadStallCycles);
213
214    fetchPendingTrapStallCycles
215        .name(name() + ".PendingTrapStallCycles")
216        .desc("Number of stall cycles due to pending traps")
217        .prereq(fetchPendingTrapStallCycles);
218
219    fetchPendingQuiesceStallCycles
220        .name(name() + ".PendingQuiesceStallCycles")
221        .desc("Number of stall cycles due to pending quiesce instructions")
222        .prereq(fetchPendingQuiesceStallCycles);
223
224    fetchIcacheWaitRetryStallCycles
225        .name(name() + ".IcacheWaitRetryStallCycles")
226        .desc("Number of stall cycles due to full MSHR")
227        .prereq(fetchIcacheWaitRetryStallCycles);
228
229    fetchIcacheSquashes
230        .name(name() + ".IcacheSquashes")
231        .desc("Number of outstanding Icache misses that were squashed")
232        .prereq(fetchIcacheSquashes);
233
234    fetchTlbSquashes
235        .name(name() + ".ItlbSquashes")
236        .desc("Number of outstanding ITLB misses that were squashed")
237        .prereq(fetchTlbSquashes);
238
239    fetchNisnDist
240        .init(/* base value */ 0,
241              /* last value */ fetchWidth,
242              /* bucket size */ 1)
243        .name(name() + ".rateDist")
244        .desc("Number of instructions fetched each cycle (Total)")
245        .flags(Stats::pdf);
246
247    idleRate
248        .name(name() + ".idleRate")
249        .desc("Percent of cycles fetch was idle")
250        .prereq(idleRate);
251    idleRate = fetchIdleCycles * 100 / cpu->numCycles;
252
253    branchRate
254        .name(name() + ".branchRate")
255        .desc("Number of branch fetches per cycle")
256        .flags(Stats::total);
257    branchRate = fetchedBranches / cpu->numCycles;
258
259    fetchRate
260        .name(name() + ".rate")
261        .desc("Number of inst fetches per cycle")
262        .flags(Stats::total);
263    fetchRate = fetchedInsts / cpu->numCycles;
264}
265
266template<class Impl>
267void
268DefaultFetch<Impl>::setTimeBuffer(TimeBuffer<TimeStruct> *time_buffer)
269{
270    timeBuffer = time_buffer;
271
272    // Create wires to get information from proper places in time buffer.
273    fromDecode = timeBuffer->getWire(-decodeToFetchDelay);
274    fromRename = timeBuffer->getWire(-renameToFetchDelay);
275    fromIEW = timeBuffer->getWire(-iewToFetchDelay);
276    fromCommit = timeBuffer->getWire(-commitToFetchDelay);
277}
278
279template<class Impl>
280void
281DefaultFetch<Impl>::setActiveThreads(std::list<ThreadID> *at_ptr)
282{
283    activeThreads = at_ptr;
284}
285
286template<class Impl>
287void
288DefaultFetch<Impl>::setFetchQueue(TimeBuffer<FetchStruct> *fq_ptr)
289{
290    fetchQueue = fq_ptr;
291
292    // Create wire to write information to proper place in fetch queue.
293    toDecode = fetchQueue->getWire(0);
294}
295
296template<class Impl>
297void
298DefaultFetch<Impl>::startupStage()
299{
300    assert(priorityList.empty());
301    resetStage();
302
303    // Fetch needs to start fetching instructions at the very beginning,
304    // so it must start up in active state.
305    switchToActive();
306}
307
308template<class Impl>
309void
310DefaultFetch<Impl>::resetStage()
311{
312    numInst = 0;
313    interruptPending = false;
314    cacheBlocked = false;
315
316    priorityList.clear();
317
318    // Setup PC and nextPC with initial state.
319    for (ThreadID tid = 0; tid < numThreads; tid++) {
320        fetchStatus[tid] = Running;
321        pc[tid] = cpu->pcState(tid);
322        fetchOffset[tid] = 0;
323        macroop[tid] = NULL;
324
325        delayedCommit[tid] = false;
326        memReq[tid] = NULL;
327
328        stalls[tid].decode = false;
329        stalls[tid].rename = false;
330        stalls[tid].iew = false;
331        stalls[tid].commit = false;
332        stalls[tid].drain = false;
333
334        priorityList.push_back(tid);
335    }
336
337    wroteToTimeBuffer = false;
338    _status = Inactive;
339
340    // this CPU could still be unconnected if we are restoring from a
341    // checkpoint and this CPU is to be switched in, thus we can only
342    // do this here if the instruction port is actually connected, if
343    // not we have to do it as part of takeOverFrom.
344    if (cpu->getInstPort().isConnected())
345        setIcache();
346}
347
348template<class Impl>
349void
350DefaultFetch<Impl>::setIcache()
351{
352    assert(cpu->getInstPort().isConnected());
353
354    // Size of cache block.
355    cacheBlkSize = cpu->getInstPort().peerBlockSize();
356
357    // Create mask to get rid of offset bits.
358    cacheBlkMask = (cacheBlkSize - 1);
359
360    for (ThreadID tid = 0; tid < numThreads; tid++) {
361        // Create space to store a cache line.
362        if (!cacheData[tid])
363            cacheData[tid] = new uint8_t[cacheBlkSize];
364        cacheDataPC[tid] = 0;
365        cacheDataValid[tid] = false;
366    }
367}
368
369template<class Impl>
370void
371DefaultFetch<Impl>::processCacheCompletion(PacketPtr pkt)
372{
373    ThreadID tid = pkt->req->threadId();
374
375    DPRINTF(Fetch, "[tid:%u] Waking up from cache miss.\n", tid);
376    assert(!cpu->switchedOut());
377
378    // Only change the status if it's still waiting on the icache access
379    // to return.
380    if (fetchStatus[tid] != IcacheWaitResponse ||
381        pkt->req != memReq[tid]) {
382        ++fetchIcacheSquashes;
383        delete pkt->req;
384        delete pkt;
385        return;
386    }
387
388    memcpy(cacheData[tid], pkt->getPtr<uint8_t>(), cacheBlkSize);
389    cacheDataValid[tid] = true;
390
391    // Wake up the CPU (if it went to sleep and was waiting on
392    // this completion event).
393    cpu->wakeCPU();
394
395    DPRINTF(Activity, "[tid:%u] Activating fetch due to cache completion\n",
396            tid);
397
398    switchToActive();
399
400    // Only switch to IcacheAccessComplete if we're not stalled as well.
401    if (checkStall(tid)) {
402        fetchStatus[tid] = Blocked;
403    } else {
404        fetchStatus[tid] = IcacheAccessComplete;
405    }
406
407    // Reset the mem req to NULL.
408    delete pkt->req;
409    delete pkt;
410    memReq[tid] = NULL;
411}
412
413template <class Impl>
414void
415DefaultFetch<Impl>::drainResume()
416{
417    for (ThreadID i = 0; i < Impl::MaxThreads; ++i)
418        stalls[i].drain = false;
419}
420
421template <class Impl>
422void
423DefaultFetch<Impl>::drainSanityCheck() const
424{
425    assert(isDrained());
426    assert(retryPkt == NULL);
427    assert(retryTid == InvalidThreadID);
428    assert(cacheBlocked == false);
429    assert(interruptPending == false);
430
431    for (ThreadID i = 0; i < numThreads; ++i) {
432        assert(!memReq[i]);
433        assert(!stalls[i].decode);
434        assert(!stalls[i].rename);
435        assert(!stalls[i].iew);
436        assert(!stalls[i].commit);
437        assert(fetchStatus[i] == Idle || stalls[i].drain);
438    }
439
440    branchPred->drainSanityCheck();
441}
442
443template <class Impl>
444bool
445DefaultFetch<Impl>::isDrained() const
446{
447    /* Make sure that threads are either idle of that the commit stage
448     * has signaled that draining has completed by setting the drain
449     * stall flag. This effectively forces the pipeline to be disabled
450     * until the whole system is drained (simulation may continue to
451     * drain other components).
452     */
453    for (ThreadID i = 0; i < numThreads; ++i) {
454        if (!(fetchStatus[i] == Idle ||
455              (fetchStatus[i] == Blocked && stalls[i].drain)))
456            return false;
457    }
458
459    /* The pipeline might start up again in the middle of the drain
460     * cycle if the finish translation event is scheduled, so make
461     * sure that's not the case.
462     */
463    return !finishTranslationEvent.scheduled();
464}
465
466template <class Impl>
467void
468DefaultFetch<Impl>::takeOverFrom()
469{
470    assert(cpu->getInstPort().isConnected());
471    resetStage();
472
473}
474
475template <class Impl>
476void
477DefaultFetch<Impl>::drainStall(ThreadID tid)
478{
479    assert(cpu->isDraining());
480    assert(!stalls[tid].drain);
481    DPRINTF(Drain, "%i: Thread drained.\n", tid);
482    stalls[tid].drain = true;
483}
484
485template <class Impl>
486void
487DefaultFetch<Impl>::wakeFromQuiesce()
488{
489    DPRINTF(Fetch, "Waking up from quiesce\n");
490    // Hopefully this is safe
491    // @todo: Allow other threads to wake from quiesce.
492    fetchStatus[0] = Running;
493}
494
495template <class Impl>
496inline void
497DefaultFetch<Impl>::switchToActive()
498{
499    if (_status == Inactive) {
500        DPRINTF(Activity, "Activating stage.\n");
501
502        cpu->activateStage(O3CPU::FetchIdx);
503
504        _status = Active;
505    }
506}
507
508template <class Impl>
509inline void
510DefaultFetch<Impl>::switchToInactive()
511{
512    if (_status == Active) {
513        DPRINTF(Activity, "Deactivating stage.\n");
514
515        cpu->deactivateStage(O3CPU::FetchIdx);
516
517        _status = Inactive;
518    }
519}
520
521template <class Impl>
522bool
523DefaultFetch<Impl>::lookupAndUpdateNextPC(
524        DynInstPtr &inst, TheISA::PCState &nextPC)
525{
526    // Do branch prediction check here.
527    // A bit of a misnomer...next_PC is actually the current PC until
528    // this function updates it.
529    bool predict_taken;
530
531    if (!inst->isControl()) {
532        TheISA::advancePC(nextPC, inst->staticInst);
533        inst->setPredTarg(nextPC);
534        inst->setPredTaken(false);
535        return false;
536    }
537
538    ThreadID tid = inst->threadNumber;
539    predict_taken = branchPred->predict(inst->staticInst, inst->seqNum,
540                                        nextPC, tid);
541
542    if (predict_taken) {
543        DPRINTF(Fetch, "[tid:%i]: [sn:%i]:  Branch predicted to be taken to %s.\n",
544                tid, inst->seqNum, nextPC);
545    } else {
546        DPRINTF(Fetch, "[tid:%i]: [sn:%i]:Branch predicted to be not taken.\n",
547                tid, inst->seqNum);
548    }
549
550    DPRINTF(Fetch, "[tid:%i]: [sn:%i] Branch predicted to go to %s.\n",
551            tid, inst->seqNum, nextPC);
552    inst->setPredTarg(nextPC);
553    inst->setPredTaken(predict_taken);
554
555    ++fetchedBranches;
556
557    if (predict_taken) {
558        ++predictedBranches;
559    }
560
561    return predict_taken;
562}
563
564template <class Impl>
565bool
566DefaultFetch<Impl>::fetchCacheLine(Addr vaddr, ThreadID tid, Addr pc)
567{
568    Fault fault = NoFault;
569
570    assert(!cpu->switchedOut());
571
572    // @todo: not sure if these should block translation.
573    //AlphaDep
574    if (cacheBlocked) {
575        DPRINTF(Fetch, "[tid:%i] Can't fetch cache line, cache blocked\n",
576                tid);
577        return false;
578    } else if (checkInterrupt(pc) && !delayedCommit[tid]) {
579        // Hold off fetch from getting new instructions when:
580        // Cache is blocked, or
581        // while an interrupt is pending and we're not in PAL mode, or
582        // fetch is switched out.
583        DPRINTF(Fetch, "[tid:%i] Can't fetch cache line, interrupt pending\n",
584                tid);
585        return false;
586    }
587
588    // Align the fetch address so it's at the start of a cache block.
589    Addr block_PC = icacheBlockAlignPC(vaddr);
590
591    DPRINTF(Fetch, "[tid:%i] Fetching cache line %#x for addr %#x\n",
592            tid, block_PC, vaddr);
593
594    // Setup the memReq to do a read of the first instruction's address.
595    // Set the appropriate read size and flags as well.
596    // Build request here.
597    RequestPtr mem_req =
598        new Request(tid, block_PC, cacheBlkSize, Request::INST_FETCH,
599                    cpu->instMasterId(), pc, cpu->thread[tid]->contextId(), tid);
600
601    memReq[tid] = mem_req;
602
603    // Initiate translation of the icache block
604    fetchStatus[tid] = ItlbWait;
605    FetchTranslation *trans = new FetchTranslation(this);
606    cpu->itb->translateTiming(mem_req, cpu->thread[tid]->getTC(),
607                              trans, BaseTLB::Execute);
608    return true;
609}
610
611template <class Impl>
612void
613DefaultFetch<Impl>::finishTranslation(Fault fault, RequestPtr mem_req)
614{
615    ThreadID tid = mem_req->threadId();
616    Addr block_PC = mem_req->getVaddr();
617
618    assert(!cpu->switchedOut());
619
620    // Wake up CPU if it was idle
621    cpu->wakeCPU();
622
623    if (fetchStatus[tid] != ItlbWait || mem_req != memReq[tid] ||
624        mem_req->getVaddr() != memReq[tid]->getVaddr()) {
625        DPRINTF(Fetch, "[tid:%i] Ignoring itlb completed after squash\n",
626                tid);
627        ++fetchTlbSquashes;
628        delete mem_req;
629        return;
630    }
631
632
633    // If translation was successful, attempt to read the icache block.
634    if (fault == NoFault) {
635        // Check that we're not going off into random memory
636        // If we have, just wait around for commit to squash something and put
637        // us on the right track
638        if (!cpu->system->isMemAddr(mem_req->getPaddr())) {
639            warn("Address %#x is outside of physical memory, stopping fetch\n",
640                    mem_req->getPaddr());
641            fetchStatus[tid] = NoGoodAddr;
642            delete mem_req;
643            memReq[tid] = NULL;
644            return;
645        }
646
647        // Build packet here.
648        PacketPtr data_pkt = new Packet(mem_req, MemCmd::ReadReq);
649        data_pkt->dataDynamicArray(new uint8_t[cacheBlkSize]);
650
651        cacheDataPC[tid] = block_PC;
652        cacheDataValid[tid] = false;
653        DPRINTF(Fetch, "Fetch: Doing instruction read.\n");
654
655        fetchedCacheLines++;
656
657        // Access the cache.
658        if (!cpu->getInstPort().sendTimingReq(data_pkt)) {
659            assert(retryPkt == NULL);
660            assert(retryTid == InvalidThreadID);
661            DPRINTF(Fetch, "[tid:%i] Out of MSHRs!\n", tid);
662
663            fetchStatus[tid] = IcacheWaitRetry;
664            retryPkt = data_pkt;
665            retryTid = tid;
666            cacheBlocked = true;
667        } else {
668            DPRINTF(Fetch, "[tid:%i]: Doing Icache access.\n", tid);
669            DPRINTF(Activity, "[tid:%i]: Activity: Waiting on I-cache "
670                    "response.\n", tid);
671
672            lastIcacheStall[tid] = curTick();
673            fetchStatus[tid] = IcacheWaitResponse;
674        }
675    } else {
676        if (!(numInst < fetchWidth)) {
677            assert(!finishTranslationEvent.scheduled());
678            finishTranslationEvent.setFault(fault);
679            finishTranslationEvent.setReq(mem_req);
680            cpu->schedule(finishTranslationEvent,
681                          cpu->clockEdge(Cycles(1)));
682            return;
683        }
684        DPRINTF(Fetch, "[tid:%i] Got back req with addr %#x but expected %#x\n",
685                tid, mem_req->getVaddr(), memReq[tid]->getVaddr());
686        // Translation faulted, icache request won't be sent.
687        delete mem_req;
688        memReq[tid] = NULL;
689
690        // Send the fault to commit.  This thread will not do anything
691        // until commit handles the fault.  The only other way it can
692        // wake up is if a squash comes along and changes the PC.
693        TheISA::PCState fetchPC = pc[tid];
694
695        DPRINTF(Fetch, "[tid:%i]: Translation faulted, building noop.\n", tid);
696        // We will use a nop in ordier to carry the fault.
697        DynInstPtr instruction = buildInst(tid,
698                decoder[tid]->decode(TheISA::NoopMachInst, fetchPC.instAddr()),
699                NULL, fetchPC, fetchPC, false);
700
701        instruction->setPredTarg(fetchPC);
702        instruction->fault = fault;
703        wroteToTimeBuffer = true;
704
705        DPRINTF(Activity, "Activity this cycle.\n");
706        cpu->activityThisCycle();
707
708        fetchStatus[tid] = TrapPending;
709
710        DPRINTF(Fetch, "[tid:%i]: Blocked, need to handle the trap.\n", tid);
711        DPRINTF(Fetch, "[tid:%i]: fault (%s) detected @ PC %s.\n",
712                tid, fault->name(), pc[tid]);
713    }
714    _status = updateFetchStatus();
715}
716
717template <class Impl>
718inline void
719DefaultFetch<Impl>::doSquash(const TheISA::PCState &newPC,
720                             const DynInstPtr squashInst, ThreadID tid)
721{
722    DPRINTF(Fetch, "[tid:%i]: Squashing, setting PC to: %s.\n",
723            tid, newPC);
724
725    pc[tid] = newPC;
726    fetchOffset[tid] = 0;
727    if (squashInst && squashInst->pcState().instAddr() == newPC.instAddr())
728        macroop[tid] = squashInst->macroop;
729    else
730        macroop[tid] = NULL;
731    decoder[tid]->reset();
732
733    // Clear the icache miss if it's outstanding.
734    if (fetchStatus[tid] == IcacheWaitResponse) {
735        DPRINTF(Fetch, "[tid:%i]: Squashing outstanding Icache miss.\n",
736                tid);
737        memReq[tid] = NULL;
738    } else if (fetchStatus[tid] == ItlbWait) {
739        DPRINTF(Fetch, "[tid:%i]: Squashing outstanding ITLB miss.\n",
740                tid);
741        memReq[tid] = NULL;
742    }
743
744    // Get rid of the retrying packet if it was from this thread.
745    if (retryTid == tid) {
746        assert(cacheBlocked);
747        if (retryPkt) {
748            delete retryPkt->req;
749            delete retryPkt;
750        }
751        retryPkt = NULL;
752        retryTid = InvalidThreadID;
753    }
754
755    fetchStatus[tid] = Squashing;
756
757    // microops are being squashed, it is not known wheather the
758    // youngest non-squashed microop was  marked delayed commit
759    // or not. Setting the flag to true ensures that the
760    // interrupts are not handled when they cannot be, though
761    // some opportunities to handle interrupts may be missed.
762    delayedCommit[tid] = true;
763
764    ++fetchSquashCycles;
765}
766
767template<class Impl>
768void
769DefaultFetch<Impl>::squashFromDecode(const TheISA::PCState &newPC,
770                                     const DynInstPtr squashInst,
771                                     const InstSeqNum seq_num, ThreadID tid)
772{
773    DPRINTF(Fetch, "[tid:%i]: Squashing from decode.\n", tid);
774
775    doSquash(newPC, squashInst, tid);
776
777    // Tell the CPU to remove any instructions that are in flight between
778    // fetch and decode.
779    cpu->removeInstsUntil(seq_num, tid);
780}
781
782template<class Impl>
783bool
784DefaultFetch<Impl>::checkStall(ThreadID tid) const
785{
786    bool ret_val = false;
787
788    if (cpu->contextSwitch) {
789        DPRINTF(Fetch,"[tid:%i]: Stalling for a context switch.\n",tid);
790        ret_val = true;
791    } else if (stalls[tid].drain) {
792        assert(cpu->isDraining());
793        DPRINTF(Fetch,"[tid:%i]: Drain stall detected.\n",tid);
794        ret_val = true;
795    } else if (stalls[tid].decode) {
796        DPRINTF(Fetch,"[tid:%i]: Stall from Decode stage detected.\n",tid);
797        ret_val = true;
798    } else if (stalls[tid].rename) {
799        DPRINTF(Fetch,"[tid:%i]: Stall from Rename stage detected.\n",tid);
800        ret_val = true;
801    } else if (stalls[tid].iew) {
802        DPRINTF(Fetch,"[tid:%i]: Stall from IEW stage detected.\n",tid);
803        ret_val = true;
804    } else if (stalls[tid].commit) {
805        DPRINTF(Fetch,"[tid:%i]: Stall from Commit stage detected.\n",tid);
806        ret_val = true;
807    }
808
809    return ret_val;
810}
811
812template<class Impl>
813typename DefaultFetch<Impl>::FetchStatus
814DefaultFetch<Impl>::updateFetchStatus()
815{
816    //Check Running
817    list<ThreadID>::iterator threads = activeThreads->begin();
818    list<ThreadID>::iterator end = activeThreads->end();
819
820    while (threads != end) {
821        ThreadID tid = *threads++;
822
823        if (fetchStatus[tid] == Running ||
824            fetchStatus[tid] == Squashing ||
825            fetchStatus[tid] == IcacheAccessComplete) {
826
827            if (_status == Inactive) {
828                DPRINTF(Activity, "[tid:%i]: Activating stage.\n",tid);
829
830                if (fetchStatus[tid] == IcacheAccessComplete) {
831                    DPRINTF(Activity, "[tid:%i]: Activating fetch due to cache"
832                            "completion\n",tid);
833                }
834
835                cpu->activateStage(O3CPU::FetchIdx);
836            }
837
838            return Active;
839        }
840    }
841
842    // Stage is switching from active to inactive, notify CPU of it.
843    if (_status == Active) {
844        DPRINTF(Activity, "Deactivating stage.\n");
845
846        cpu->deactivateStage(O3CPU::FetchIdx);
847    }
848
849    return Inactive;
850}
851
852template <class Impl>
853void
854DefaultFetch<Impl>::squash(const TheISA::PCState &newPC,
855                           const InstSeqNum seq_num, DynInstPtr squashInst,
856                           ThreadID tid)
857{
858    DPRINTF(Fetch, "[tid:%u]: Squash from commit.\n", tid);
859
860    doSquash(newPC, squashInst, tid);
861
862    // Tell the CPU to remove any instructions that are not in the ROB.
863    cpu->removeInstsNotInROB(tid);
864}
865
866template <class Impl>
867void
868DefaultFetch<Impl>::tick()
869{
870    list<ThreadID>::iterator threads = activeThreads->begin();
871    list<ThreadID>::iterator end = activeThreads->end();
872    bool status_change = false;
873
874    wroteToTimeBuffer = false;
875
876    for (ThreadID i = 0; i < Impl::MaxThreads; ++i) {
877        issuePipelinedIfetch[i] = false;
878    }
879
880    while (threads != end) {
881        ThreadID tid = *threads++;
882
883        // Check the signals for each thread to determine the proper status
884        // for each thread.
885        bool updated_status = checkSignalsAndUpdate(tid);
886        status_change =  status_change || updated_status;
887    }
888
889    DPRINTF(Fetch, "Running stage.\n");
890
891    if (FullSystem) {
892        if (fromCommit->commitInfo[0].interruptPending) {
893            interruptPending = true;
894        }
895
896        if (fromCommit->commitInfo[0].clearInterrupt) {
897            interruptPending = false;
898        }
899    }
900
901    for (threadFetched = 0; threadFetched < numFetchingThreads;
902         threadFetched++) {
903        // Fetch each of the actively fetching threads.
904        fetch(status_change);
905    }
906
907    // Record number of instructions fetched this cycle for distribution.
908    fetchNisnDist.sample(numInst);
909
910    if (status_change) {
911        // Change the fetch stage status if there was a status change.
912        _status = updateFetchStatus();
913    }
914
915    // If there was activity this cycle, inform the CPU of it.
916    if (wroteToTimeBuffer || cpu->contextSwitch) {
917        DPRINTF(Activity, "Activity this cycle.\n");
918
919        cpu->activityThisCycle();
920    }
921
922    // Issue the next I-cache request if possible.
923    for (ThreadID i = 0; i < Impl::MaxThreads; ++i) {
924        if (issuePipelinedIfetch[i]) {
925            pipelineIcacheAccesses(i);
926        }
927    }
928
929    // Reset the number of the instruction we've fetched.
930    numInst = 0;
931}
932
933template <class Impl>
934bool
935DefaultFetch<Impl>::checkSignalsAndUpdate(ThreadID tid)
936{
937    // Update the per thread stall statuses.
938    if (fromDecode->decodeBlock[tid]) {
939        stalls[tid].decode = true;
940    }
941
942    if (fromDecode->decodeUnblock[tid]) {
943        assert(stalls[tid].decode);
944        assert(!fromDecode->decodeBlock[tid]);
945        stalls[tid].decode = false;
946    }
947
948    if (fromRename->renameBlock[tid]) {
949        stalls[tid].rename = true;
950    }
951
952    if (fromRename->renameUnblock[tid]) {
953        assert(stalls[tid].rename);
954        assert(!fromRename->renameBlock[tid]);
955        stalls[tid].rename = false;
956    }
957
958    if (fromIEW->iewBlock[tid]) {
959        stalls[tid].iew = true;
960    }
961
962    if (fromIEW->iewUnblock[tid]) {
963        assert(stalls[tid].iew);
964        assert(!fromIEW->iewBlock[tid]);
965        stalls[tid].iew = false;
966    }
967
968    if (fromCommit->commitBlock[tid]) {
969        stalls[tid].commit = true;
970    }
971
972    if (fromCommit->commitUnblock[tid]) {
973        assert(stalls[tid].commit);
974        assert(!fromCommit->commitBlock[tid]);
975        stalls[tid].commit = false;
976    }
977
978    // Check squash signals from commit.
979    if (fromCommit->commitInfo[tid].squash) {
980
981        DPRINTF(Fetch, "[tid:%u]: Squashing instructions due to squash "
982                "from commit.\n",tid);
983        // In any case, squash.
984        squash(fromCommit->commitInfo[tid].pc,
985               fromCommit->commitInfo[tid].doneSeqNum,
986               fromCommit->commitInfo[tid].squashInst, tid);
987
988        // If it was a branch mispredict on a control instruction, update the
989        // branch predictor with that instruction, otherwise just kill the
990        // invalid state we generated in after sequence number
991        if (fromCommit->commitInfo[tid].mispredictInst &&
992            fromCommit->commitInfo[tid].mispredictInst->isControl()) {
993            branchPred->squash(fromCommit->commitInfo[tid].doneSeqNum,
994                              fromCommit->commitInfo[tid].pc,
995                              fromCommit->commitInfo[tid].branchTaken,
996                              tid);
997        } else {
998            branchPred->squash(fromCommit->commitInfo[tid].doneSeqNum,
999                              tid);
1000        }
1001
1002        return true;
1003    } else if (fromCommit->commitInfo[tid].doneSeqNum) {
1004        // Update the branch predictor if it wasn't a squashed instruction
1005        // that was broadcasted.
1006        branchPred->update(fromCommit->commitInfo[tid].doneSeqNum, tid);
1007    }
1008
1009    // Check ROB squash signals from commit.
1010    if (fromCommit->commitInfo[tid].robSquashing) {
1011        DPRINTF(Fetch, "[tid:%u]: ROB is still squashing.\n", tid);
1012
1013        // Continue to squash.
1014        fetchStatus[tid] = Squashing;
1015
1016        return true;
1017    }
1018
1019    // Check squash signals from decode.
1020    if (fromDecode->decodeInfo[tid].squash) {
1021        DPRINTF(Fetch, "[tid:%u]: Squashing instructions due to squash "
1022                "from decode.\n",tid);
1023
1024        // Update the branch predictor.
1025        if (fromDecode->decodeInfo[tid].branchMispredict) {
1026            branchPred->squash(fromDecode->decodeInfo[tid].doneSeqNum,
1027                              fromDecode->decodeInfo[tid].nextPC,
1028                              fromDecode->decodeInfo[tid].branchTaken,
1029                              tid);
1030        } else {
1031            branchPred->squash(fromDecode->decodeInfo[tid].doneSeqNum,
1032                              tid);
1033        }
1034
1035        if (fetchStatus[tid] != Squashing) {
1036
1037            DPRINTF(Fetch, "Squashing from decode with PC = %s\n",
1038                fromDecode->decodeInfo[tid].nextPC);
1039            // Squash unless we're already squashing
1040            squashFromDecode(fromDecode->decodeInfo[tid].nextPC,
1041                             fromDecode->decodeInfo[tid].squashInst,
1042                             fromDecode->decodeInfo[tid].doneSeqNum,
1043                             tid);
1044
1045            return true;
1046        }
1047    }
1048
1049    if (checkStall(tid) &&
1050        fetchStatus[tid] != IcacheWaitResponse &&
1051        fetchStatus[tid] != IcacheWaitRetry &&
1052        fetchStatus[tid] != ItlbWait &&
1053        fetchStatus[tid] != QuiescePending) {
1054        DPRINTF(Fetch, "[tid:%i]: Setting to blocked\n",tid);
1055
1056        fetchStatus[tid] = Blocked;
1057
1058        return true;
1059    }
1060
1061    if (fetchStatus[tid] == Blocked ||
1062        fetchStatus[tid] == Squashing) {
1063        // Switch status to running if fetch isn't being told to block or
1064        // squash this cycle.
1065        DPRINTF(Fetch, "[tid:%i]: Done squashing, switching to running.\n",
1066                tid);
1067
1068        fetchStatus[tid] = Running;
1069
1070        return true;
1071    }
1072
1073    // If we've reached this point, we have not gotten any signals that
1074    // cause fetch to change its status.  Fetch remains the same as before.
1075    return false;
1076}
1077
1078template<class Impl>
1079typename Impl::DynInstPtr
1080DefaultFetch<Impl>::buildInst(ThreadID tid, StaticInstPtr staticInst,
1081                              StaticInstPtr curMacroop, TheISA::PCState thisPC,
1082                              TheISA::PCState nextPC, bool trace)
1083{
1084    // Get a sequence number.
1085    InstSeqNum seq = cpu->getAndIncrementInstSeq();
1086
1087    // Create a new DynInst from the instruction fetched.
1088    DynInstPtr instruction =
1089        new DynInst(staticInst, curMacroop, thisPC, nextPC, seq, cpu);
1090    instruction->setTid(tid);
1091
1092    instruction->setASID(tid);
1093
1094    instruction->setThreadState(cpu->thread[tid]);
1095
1096    DPRINTF(Fetch, "[tid:%i]: Instruction PC %#x (%d) created "
1097            "[sn:%lli].\n", tid, thisPC.instAddr(),
1098            thisPC.microPC(), seq);
1099
1100    DPRINTF(Fetch, "[tid:%i]: Instruction is: %s\n", tid,
1101            instruction->staticInst->
1102            disassemble(thisPC.instAddr()));
1103
1104#if TRACING_ON
1105    if (trace) {
1106        instruction->traceData =
1107            cpu->getTracer()->getInstRecord(curTick(), cpu->tcBase(tid),
1108                    instruction->staticInst, thisPC, curMacroop);
1109    }
1110#else
1111    instruction->traceData = NULL;
1112#endif
1113
1114    // Add instruction to the CPU's list of instructions.
1115    instruction->setInstListIt(cpu->addInst(instruction));
1116
1117    // Write the instruction to the first slot in the queue
1118    // that heads to decode.
1119    assert(numInst < fetchWidth);
1120    toDecode->insts[toDecode->size++] = instruction;
1121
1122    // Keep track of if we can take an interrupt at this boundary
1123    delayedCommit[tid] = instruction->isDelayedCommit();
1124
1125    return instruction;
1126}
1127
1128template<class Impl>
1129void
1130DefaultFetch<Impl>::fetch(bool &status_change)
1131{
1132    //////////////////////////////////////////
1133    // Start actual fetch
1134    //////////////////////////////////////////
1135    ThreadID tid = getFetchingThread(fetchPolicy);
1136
1137    assert(!cpu->switchedOut());
1138
1139    if (tid == InvalidThreadID) {
1140        // Breaks looping condition in tick()
1141        threadFetched = numFetchingThreads;
1142
1143        if (numThreads == 1) {  // @todo Per-thread stats
1144            profileStall(0);
1145        }
1146
1147        return;
1148    }
1149
1150    DPRINTF(Fetch, "Attempting to fetch from [tid:%i]\n", tid);
1151
1152    // The current PC.
1153    TheISA::PCState thisPC = pc[tid];
1154
1155    Addr pcOffset = fetchOffset[tid];
1156    Addr fetchAddr = (thisPC.instAddr() + pcOffset) & BaseCPU::PCMask;
1157
1158    bool inRom = isRomMicroPC(thisPC.microPC());
1159
1160    // If returning from the delay of a cache miss, then update the status
1161    // to running, otherwise do the cache access.  Possibly move this up
1162    // to tick() function.
1163    if (fetchStatus[tid] == IcacheAccessComplete) {
1164        DPRINTF(Fetch, "[tid:%i]: Icache miss is complete.\n", tid);
1165
1166        fetchStatus[tid] = Running;
1167        status_change = true;
1168    } else if (fetchStatus[tid] == Running) {
1169        // Align the fetch PC so its at the start of a cache block.
1170        Addr block_PC = icacheBlockAlignPC(fetchAddr);
1171
1172        // If buffer is no longer valid or fetchAddr has moved to point
1173        // to the next cache block, AND we have no remaining ucode
1174        // from a macro-op, then start fetch from icache.
1175        if (!(cacheDataValid[tid] && block_PC == cacheDataPC[tid])
1176            && !inRom && !macroop[tid]) {
1177            DPRINTF(Fetch, "[tid:%i]: Attempting to translate and read "
1178                    "instruction, starting at PC %s.\n", tid, thisPC);
1179
1180            fetchCacheLine(fetchAddr, tid, thisPC.instAddr());
1181
1182            if (fetchStatus[tid] == IcacheWaitResponse)
1183                ++icacheStallCycles;
1184            else if (fetchStatus[tid] == ItlbWait)
1185                ++fetchTlbCycles;
1186            else
1187                ++fetchMiscStallCycles;
1188            return;
1189        } else if ((checkInterrupt(thisPC.instAddr()) && !delayedCommit[tid])) {
1190            // Stall CPU if an interrupt is posted and we're not issuing
1191            // an delayed commit micro-op currently (delayed commit instructions
1192            // are not interruptable by interrupts, only faults)
1193            ++fetchMiscStallCycles;
1194            DPRINTF(Fetch, "[tid:%i]: Fetch is stalled!\n", tid);
1195            return;
1196        }
1197    } else {
1198        if (fetchStatus[tid] == Idle) {
1199            ++fetchIdleCycles;
1200            DPRINTF(Fetch, "[tid:%i]: Fetch is idle!\n", tid);
1201        }
1202
1203        // Status is Idle, so fetch should do nothing.
1204        return;
1205    }
1206
1207    ++fetchCycles;
1208
1209    TheISA::PCState nextPC = thisPC;
1210
1211    StaticInstPtr staticInst = NULL;
1212    StaticInstPtr curMacroop = macroop[tid];
1213
1214    // If the read of the first instruction was successful, then grab the
1215    // instructions from the rest of the cache line and put them into the
1216    // queue heading to decode.
1217
1218    DPRINTF(Fetch, "[tid:%i]: Adding instructions to queue to "
1219            "decode.\n", tid);
1220
1221    // Need to keep track of whether or not a predicted branch
1222    // ended this fetch block.
1223    bool predictedBranch = false;
1224
1225    TheISA::MachInst *cacheInsts =
1226        reinterpret_cast<TheISA::MachInst *>(cacheData[tid]);
1227
1228    const unsigned numInsts = cacheBlkSize / instSize;
1229    unsigned blkOffset = (fetchAddr - cacheDataPC[tid]) / instSize;
1230
1231    // Loop through instruction memory from the cache.
1232    // Keep issuing while fetchWidth is available and branch is not
1233    // predicted taken
1234    while (numInst < fetchWidth && !predictedBranch) {
1235
1236        // We need to process more memory if we aren't going to get a
1237        // StaticInst from the rom, the current macroop, or what's already
1238        // in the decoder.
1239        bool needMem = !inRom && !curMacroop &&
1240            !decoder[tid]->instReady();
1241        fetchAddr = (thisPC.instAddr() + pcOffset) & BaseCPU::PCMask;
1242        Addr block_PC = icacheBlockAlignPC(fetchAddr);
1243
1244        if (needMem) {
1245            // If buffer is no longer valid or fetchAddr has moved to point
1246            // to the next cache block then start fetch from icache.
1247            if (!cacheDataValid[tid] || block_PC != cacheDataPC[tid])
1248                break;
1249
1250            if (blkOffset >= numInsts) {
1251                // We need to process more memory, but we've run out of the
1252                // current block.
1253                break;
1254            }
1255
1256            if (ISA_HAS_DELAY_SLOT && pcOffset == 0) {
1257                // Walk past any annulled delay slot instructions.
1258                Addr pcAddr = thisPC.instAddr() & BaseCPU::PCMask;
1259                while (fetchAddr != pcAddr && blkOffset < numInsts) {
1260                    blkOffset++;
1261                    fetchAddr += instSize;
1262                }
1263                if (blkOffset >= numInsts)
1264                    break;
1265            }
1266
1267            MachInst inst = TheISA::gtoh(cacheInsts[blkOffset]);
1268            decoder[tid]->moreBytes(thisPC, fetchAddr, inst);
1269
1270            if (decoder[tid]->needMoreBytes()) {
1271                blkOffset++;
1272                fetchAddr += instSize;
1273                pcOffset += instSize;
1274            }
1275        }
1276
1277        // Extract as many instructions and/or microops as we can from
1278        // the memory we've processed so far.
1279        do {
1280            if (!(curMacroop || inRom)) {
1281                if (decoder[tid]->instReady()) {
1282                    staticInst = decoder[tid]->decode(thisPC);
1283
1284                    // Increment stat of fetched instructions.
1285                    ++fetchedInsts;
1286
1287                    if (staticInst->isMacroop()) {
1288                        curMacroop = staticInst;
1289                    } else {
1290                        pcOffset = 0;
1291                    }
1292                } else {
1293                    // We need more bytes for this instruction so blkOffset and
1294                    // pcOffset will be updated
1295                    break;
1296                }
1297            }
1298            // Whether we're moving to a new macroop because we're at the
1299            // end of the current one, or the branch predictor incorrectly
1300            // thinks we are...
1301            bool newMacro = false;
1302            if (curMacroop || inRom) {
1303                if (inRom) {
1304                    staticInst = cpu->microcodeRom.fetchMicroop(
1305                            thisPC.microPC(), curMacroop);
1306                } else {
1307                    staticInst = curMacroop->fetchMicroop(thisPC.microPC());
1308                }
1309                newMacro |= staticInst->isLastMicroop();
1310            }
1311
1312            DynInstPtr instruction =
1313                buildInst(tid, staticInst, curMacroop,
1314                          thisPC, nextPC, true);
1315
1316            numInst++;
1317
1318#if TRACING_ON
1319            if (DTRACE(O3PipeView)) {
1320                instruction->fetchTick = curTick();
1321            }
1322#endif
1323
1324            nextPC = thisPC;
1325
1326            // If we're branching after this instruction, quite fetching
1327            // from the same block then.
1328            predictedBranch |= thisPC.branching();
1329            predictedBranch |=
1330                lookupAndUpdateNextPC(instruction, nextPC);
1331            if (predictedBranch) {
1332                DPRINTF(Fetch, "Branch detected with PC = %s\n", thisPC);
1333            }
1334
1335            newMacro |= thisPC.instAddr() != nextPC.instAddr();
1336
1337            // Move to the next instruction, unless we have a branch.
1338            thisPC = nextPC;
1339            inRom = isRomMicroPC(thisPC.microPC());
1340
1341            if (newMacro) {
1342                fetchAddr = thisPC.instAddr() & BaseCPU::PCMask;
1343                blkOffset = (fetchAddr - cacheDataPC[tid]) / instSize;
1344                pcOffset = 0;
1345                curMacroop = NULL;
1346            }
1347
1348            if (instruction->isQuiesce()) {
1349                DPRINTF(Fetch,
1350                        "Quiesce instruction encountered, halting fetch!");
1351                fetchStatus[tid] = QuiescePending;
1352                status_change = true;
1353                break;
1354            }
1355        } while ((curMacroop || decoder[tid]->instReady()) &&
1356                 numInst < fetchWidth);
1357    }
1358
1359    if (predictedBranch) {
1360        DPRINTF(Fetch, "[tid:%i]: Done fetching, predicted branch "
1361                "instruction encountered.\n", tid);
1362    } else if (numInst >= fetchWidth) {
1363        DPRINTF(Fetch, "[tid:%i]: Done fetching, reached fetch bandwidth "
1364                "for this cycle.\n", tid);
1365    } else if (blkOffset >= cacheBlkSize) {
1366        DPRINTF(Fetch, "[tid:%i]: Done fetching, reached the end of cache "
1367                "block.\n", tid);
1368    }
1369
1370    macroop[tid] = curMacroop;
1371    fetchOffset[tid] = pcOffset;
1372
1373    if (numInst > 0) {
1374        wroteToTimeBuffer = true;
1375    }
1376
1377    pc[tid] = thisPC;
1378
1379    // pipeline a fetch if we're crossing a cache boundary and not in
1380    // a state that would preclude fetching
1381    fetchAddr = (thisPC.instAddr() + pcOffset) & BaseCPU::PCMask;
1382    Addr block_PC = icacheBlockAlignPC(fetchAddr);
1383    issuePipelinedIfetch[tid] = block_PC != cacheDataPC[tid] &&
1384        fetchStatus[tid] != IcacheWaitResponse &&
1385        fetchStatus[tid] != ItlbWait &&
1386        fetchStatus[tid] != IcacheWaitRetry &&
1387        fetchStatus[tid] != QuiescePending &&
1388        !curMacroop;
1389}
1390
1391template<class Impl>
1392void
1393DefaultFetch<Impl>::recvRetry()
1394{
1395    if (retryPkt != NULL) {
1396        assert(cacheBlocked);
1397        assert(retryTid != InvalidThreadID);
1398        assert(fetchStatus[retryTid] == IcacheWaitRetry);
1399
1400        if (cpu->getInstPort().sendTimingReq(retryPkt)) {
1401            fetchStatus[retryTid] = IcacheWaitResponse;
1402            retryPkt = NULL;
1403            retryTid = InvalidThreadID;
1404            cacheBlocked = false;
1405        }
1406    } else {
1407        assert(retryTid == InvalidThreadID);
1408        // Access has been squashed since it was sent out.  Just clear
1409        // the cache being blocked.
1410        cacheBlocked = false;
1411    }
1412}
1413
1414///////////////////////////////////////
1415//                                   //
1416//  SMT FETCH POLICY MAINTAINED HERE //
1417//                                   //
1418///////////////////////////////////////
1419template<class Impl>
1420ThreadID
1421DefaultFetch<Impl>::getFetchingThread(FetchPriority &fetch_priority)
1422{
1423    if (numThreads > 1) {
1424        switch (fetch_priority) {
1425
1426          case SingleThread:
1427            return 0;
1428
1429          case RoundRobin:
1430            return roundRobin();
1431
1432          case IQ:
1433            return iqCount();
1434
1435          case LSQ:
1436            return lsqCount();
1437
1438          case Branch:
1439            return branchCount();
1440
1441          default:
1442            return InvalidThreadID;
1443        }
1444    } else {
1445        list<ThreadID>::iterator thread = activeThreads->begin();
1446        if (thread == activeThreads->end()) {
1447            return InvalidThreadID;
1448        }
1449
1450        ThreadID tid = *thread;
1451
1452        if (fetchStatus[tid] == Running ||
1453            fetchStatus[tid] == IcacheAccessComplete ||
1454            fetchStatus[tid] == Idle) {
1455            return tid;
1456        } else {
1457            return InvalidThreadID;
1458        }
1459    }
1460}
1461
1462
1463template<class Impl>
1464ThreadID
1465DefaultFetch<Impl>::roundRobin()
1466{
1467    list<ThreadID>::iterator pri_iter = priorityList.begin();
1468    list<ThreadID>::iterator end      = priorityList.end();
1469
1470    ThreadID high_pri;
1471
1472    while (pri_iter != end) {
1473        high_pri = *pri_iter;
1474
1475        assert(high_pri <= numThreads);
1476
1477        if (fetchStatus[high_pri] == Running ||
1478            fetchStatus[high_pri] == IcacheAccessComplete ||
1479            fetchStatus[high_pri] == Idle) {
1480
1481            priorityList.erase(pri_iter);
1482            priorityList.push_back(high_pri);
1483
1484            return high_pri;
1485        }
1486
1487        pri_iter++;
1488    }
1489
1490    return InvalidThreadID;
1491}
1492
1493template<class Impl>
1494ThreadID
1495DefaultFetch<Impl>::iqCount()
1496{
1497    std::priority_queue<unsigned> PQ;
1498    std::map<unsigned, ThreadID> threadMap;
1499
1500    list<ThreadID>::iterator threads = activeThreads->begin();
1501    list<ThreadID>::iterator end = activeThreads->end();
1502
1503    while (threads != end) {
1504        ThreadID tid = *threads++;
1505        unsigned iqCount = fromIEW->iewInfo[tid].iqCount;
1506
1507        PQ.push(iqCount);
1508        threadMap[iqCount] = tid;
1509    }
1510
1511    while (!PQ.empty()) {
1512        ThreadID high_pri = threadMap[PQ.top()];
1513
1514        if (fetchStatus[high_pri] == Running ||
1515            fetchStatus[high_pri] == IcacheAccessComplete ||
1516            fetchStatus[high_pri] == Idle)
1517            return high_pri;
1518        else
1519            PQ.pop();
1520
1521    }
1522
1523    return InvalidThreadID;
1524}
1525
1526template<class Impl>
1527ThreadID
1528DefaultFetch<Impl>::lsqCount()
1529{
1530    std::priority_queue<unsigned> PQ;
1531    std::map<unsigned, ThreadID> threadMap;
1532
1533    list<ThreadID>::iterator threads = activeThreads->begin();
1534    list<ThreadID>::iterator end = activeThreads->end();
1535
1536    while (threads != end) {
1537        ThreadID tid = *threads++;
1538        unsigned ldstqCount = fromIEW->iewInfo[tid].ldstqCount;
1539
1540        PQ.push(ldstqCount);
1541        threadMap[ldstqCount] = tid;
1542    }
1543
1544    while (!PQ.empty()) {
1545        ThreadID high_pri = threadMap[PQ.top()];
1546
1547        if (fetchStatus[high_pri] == Running ||
1548            fetchStatus[high_pri] == IcacheAccessComplete ||
1549            fetchStatus[high_pri] == Idle)
1550            return high_pri;
1551        else
1552            PQ.pop();
1553    }
1554
1555    return InvalidThreadID;
1556}
1557
1558template<class Impl>
1559ThreadID
1560DefaultFetch<Impl>::branchCount()
1561{
1562#if 0
1563    list<ThreadID>::iterator thread = activeThreads->begin();
1564    assert(thread != activeThreads->end());
1565    ThreadID tid = *thread;
1566#endif
1567
1568    panic("Branch Count Fetch policy unimplemented\n");
1569    return InvalidThreadID;
1570}
1571
1572template<class Impl>
1573void
1574DefaultFetch<Impl>::pipelineIcacheAccesses(ThreadID tid)
1575{
1576    if (!issuePipelinedIfetch[tid]) {
1577        return;
1578    }
1579
1580    // The next PC to access.
1581    TheISA::PCState thisPC = pc[tid];
1582
1583    if (isRomMicroPC(thisPC.microPC())) {
1584        return;
1585    }
1586
1587    Addr pcOffset = fetchOffset[tid];
1588    Addr fetchAddr = (thisPC.instAddr() + pcOffset) & BaseCPU::PCMask;
1589
1590    // Align the fetch PC so its at the start of a cache block.
1591    Addr block_PC = icacheBlockAlignPC(fetchAddr);
1592
1593    // Unless buffer already got the block, fetch it from icache.
1594    if (!(cacheDataValid[tid] && block_PC == cacheDataPC[tid])) {
1595        DPRINTF(Fetch, "[tid:%i]: Issuing a pipelined I-cache access, "
1596                "starting at PC %s.\n", tid, thisPC);
1597
1598        fetchCacheLine(fetchAddr, tid, thisPC.instAddr());
1599    }
1600}
1601
1602template<class Impl>
1603void
1604DefaultFetch<Impl>::profileStall(ThreadID tid) {
1605    DPRINTF(Fetch,"There are no more threads available to fetch from.\n");
1606
1607    // @todo Per-thread stats
1608
1609    if (stalls[tid].drain) {
1610        ++fetchPendingDrainCycles;
1611        DPRINTF(Fetch, "Fetch is waiting for a drain!\n");
1612    } else if (activeThreads->empty()) {
1613        ++fetchNoActiveThreadStallCycles;
1614        DPRINTF(Fetch, "Fetch has no active thread!\n");
1615    } else if (fetchStatus[tid] == Blocked) {
1616        ++fetchBlockedCycles;
1617        DPRINTF(Fetch, "[tid:%i]: Fetch is blocked!\n", tid);
1618    } else if (fetchStatus[tid] == Squashing) {
1619        ++fetchSquashCycles;
1620        DPRINTF(Fetch, "[tid:%i]: Fetch is squashing!\n", tid);
1621    } else if (fetchStatus[tid] == IcacheWaitResponse) {
1622        ++icacheStallCycles;
1623        DPRINTF(Fetch, "[tid:%i]: Fetch is waiting cache response!\n",
1624                tid);
1625    } else if (fetchStatus[tid] == ItlbWait) {
1626        ++fetchTlbCycles;
1627        DPRINTF(Fetch, "[tid:%i]: Fetch is waiting ITLB walk to "
1628                "finish!\n", tid);
1629    } else if (fetchStatus[tid] == TrapPending) {
1630        ++fetchPendingTrapStallCycles;
1631        DPRINTF(Fetch, "[tid:%i]: Fetch is waiting for a pending trap!\n",
1632                tid);
1633    } else if (fetchStatus[tid] == QuiescePending) {
1634        ++fetchPendingQuiesceStallCycles;
1635        DPRINTF(Fetch, "[tid:%i]: Fetch is waiting for a pending quiesce "
1636                "instruction!\n", tid);
1637    } else if (fetchStatus[tid] == IcacheWaitRetry) {
1638        ++fetchIcacheWaitRetryStallCycles;
1639        DPRINTF(Fetch, "[tid:%i]: Fetch is waiting for an I-cache retry!\n",
1640                tid);
1641    } else if (fetchStatus[tid] == NoGoodAddr) {
1642            DPRINTF(Fetch, "[tid:%i]: Fetch predicted non-executable address\n",
1643                    tid);
1644    } else {
1645        DPRINTF(Fetch, "[tid:%i]: Unexpected fetch stall reason (Status: %i).\n",
1646             tid, fetchStatus[tid]);
1647    }
1648}
1649