fetch_impl.hh revision 9180:ee8d7a51651d
1/*
2 * Copyright (c) 2010-2011 ARM Limited
3 * All rights reserved.
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder.  You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2004-2006 The Regents of The University of Michigan
15 * All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions are
19 * met: redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer;
21 * redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution;
24 * neither the name of the copyright holders nor the names of its
25 * contributors may be used to endorse or promote products derived from
26 * this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 *
40 * Authors: Kevin Lim
41 *          Korey Sewell
42 */
43
44#include <algorithm>
45#include <cstring>
46#include <list>
47#include <map>
48#include <queue>
49
50#include "arch/isa_traits.hh"
51#include "arch/tlb.hh"
52#include "arch/utility.hh"
53#include "arch/vtophys.hh"
54#include "base/types.hh"
55#include "config/the_isa.hh"
56#include "cpu/base.hh"
57//#include "cpu/checker/cpu.hh"
58#include "cpu/o3/fetch.hh"
59#include "cpu/exetrace.hh"
60#include "debug/Activity.hh"
61#include "debug/Fetch.hh"
62#include "mem/packet.hh"
63#include "params/DerivO3CPU.hh"
64#include "sim/byteswap.hh"
65#include "sim/core.hh"
66#include "sim/eventq.hh"
67#include "sim/full_system.hh"
68#include "sim/system.hh"
69
70using namespace std;
71
72template<class Impl>
73DefaultFetch<Impl>::DefaultFetch(O3CPU *_cpu, DerivO3CPUParams *params)
74    : cpu(_cpu),
75      branchPred(params),
76      numInst(0),
77      decodeToFetchDelay(params->decodeToFetchDelay),
78      renameToFetchDelay(params->renameToFetchDelay),
79      iewToFetchDelay(params->iewToFetchDelay),
80      commitToFetchDelay(params->commitToFetchDelay),
81      fetchWidth(params->fetchWidth),
82      cacheBlocked(false),
83      retryPkt(NULL),
84      retryTid(InvalidThreadID),
85      numThreads(params->numThreads),
86      numFetchingThreads(params->smtNumFetchingThreads),
87      interruptPending(false),
88      drainPending(false),
89      switchedOut(false),
90      finishTranslationEvent(this)
91{
92    if (numThreads > Impl::MaxThreads)
93        fatal("numThreads (%d) is larger than compiled limit (%d),\n"
94              "\tincrease MaxThreads in src/cpu/o3/impl.hh\n",
95              numThreads, static_cast<int>(Impl::MaxThreads));
96    if (fetchWidth > Impl::MaxWidth)
97        fatal("fetchWidth (%d) is larger than compiled limit (%d),\n"
98             "\tincrease MaxWidth in src/cpu/o3/impl.hh\n",
99             fetchWidth, static_cast<int>(Impl::MaxWidth));
100
101    // Set fetch stage's status to inactive.
102    _status = Inactive;
103
104    std::string policy = params->smtFetchPolicy;
105
106    // Convert string to lowercase
107    std::transform(policy.begin(), policy.end(), policy.begin(),
108                   (int(*)(int)) tolower);
109
110    // Figure out fetch policy
111    if (policy == "singlethread") {
112        fetchPolicy = SingleThread;
113        if (numThreads > 1)
114            panic("Invalid Fetch Policy for a SMT workload.");
115    } else if (policy == "roundrobin") {
116        fetchPolicy = RoundRobin;
117        DPRINTF(Fetch, "Fetch policy set to Round Robin\n");
118    } else if (policy == "branch") {
119        fetchPolicy = Branch;
120        DPRINTF(Fetch, "Fetch policy set to Branch Count\n");
121    } else if (policy == "iqcount") {
122        fetchPolicy = IQ;
123        DPRINTF(Fetch, "Fetch policy set to IQ count\n");
124    } else if (policy == "lsqcount") {
125        fetchPolicy = LSQ;
126        DPRINTF(Fetch, "Fetch policy set to LSQ count\n");
127    } else {
128        fatal("Invalid Fetch Policy. Options Are: {SingleThread,"
129              " RoundRobin,LSQcount,IQcount}\n");
130    }
131
132    // Get the size of an instruction.
133    instSize = sizeof(TheISA::MachInst);
134
135    for (int i = 0; i < Impl::MaxThreads; i++) {
136        cacheData[i] = NULL;
137        decoder[i] = new TheISA::Decoder(NULL);
138    }
139}
140
141template <class Impl>
142std::string
143DefaultFetch<Impl>::name() const
144{
145    return cpu->name() + ".fetch";
146}
147
148template <class Impl>
149void
150DefaultFetch<Impl>::regStats()
151{
152    icacheStallCycles
153        .name(name() + ".icacheStallCycles")
154        .desc("Number of cycles fetch is stalled on an Icache miss")
155        .prereq(icacheStallCycles);
156
157    fetchedInsts
158        .name(name() + ".Insts")
159        .desc("Number of instructions fetch has processed")
160        .prereq(fetchedInsts);
161
162    fetchedBranches
163        .name(name() + ".Branches")
164        .desc("Number of branches that fetch encountered")
165        .prereq(fetchedBranches);
166
167    predictedBranches
168        .name(name() + ".predictedBranches")
169        .desc("Number of branches that fetch has predicted taken")
170        .prereq(predictedBranches);
171
172    fetchCycles
173        .name(name() + ".Cycles")
174        .desc("Number of cycles fetch has run and was not squashing or"
175              " blocked")
176        .prereq(fetchCycles);
177
178    fetchSquashCycles
179        .name(name() + ".SquashCycles")
180        .desc("Number of cycles fetch has spent squashing")
181        .prereq(fetchSquashCycles);
182
183    fetchTlbCycles
184        .name(name() + ".TlbCycles")
185        .desc("Number of cycles fetch has spent waiting for tlb")
186        .prereq(fetchTlbCycles);
187
188    fetchIdleCycles
189        .name(name() + ".IdleCycles")
190        .desc("Number of cycles fetch was idle")
191        .prereq(fetchIdleCycles);
192
193    fetchBlockedCycles
194        .name(name() + ".BlockedCycles")
195        .desc("Number of cycles fetch has spent blocked")
196        .prereq(fetchBlockedCycles);
197
198    fetchedCacheLines
199        .name(name() + ".CacheLines")
200        .desc("Number of cache lines fetched")
201        .prereq(fetchedCacheLines);
202
203    fetchMiscStallCycles
204        .name(name() + ".MiscStallCycles")
205        .desc("Number of cycles fetch has spent waiting on interrupts, or "
206              "bad addresses, or out of MSHRs")
207        .prereq(fetchMiscStallCycles);
208
209    fetchPendingDrainCycles
210        .name(name() + ".PendingDrainCycles")
211        .desc("Number of cycles fetch has spent waiting on pipes to drain")
212        .prereq(fetchPendingDrainCycles);
213
214    fetchNoActiveThreadStallCycles
215        .name(name() + ".NoActiveThreadStallCycles")
216        .desc("Number of stall cycles due to no active thread to fetch from")
217        .prereq(fetchNoActiveThreadStallCycles);
218
219    fetchPendingTrapStallCycles
220        .name(name() + ".PendingTrapStallCycles")
221        .desc("Number of stall cycles due to pending traps")
222        .prereq(fetchPendingTrapStallCycles);
223
224    fetchPendingQuiesceStallCycles
225        .name(name() + ".PendingQuiesceStallCycles")
226        .desc("Number of stall cycles due to pending quiesce instructions")
227        .prereq(fetchPendingQuiesceStallCycles);
228
229    fetchIcacheWaitRetryStallCycles
230        .name(name() + ".IcacheWaitRetryStallCycles")
231        .desc("Number of stall cycles due to full MSHR")
232        .prereq(fetchIcacheWaitRetryStallCycles);
233
234    fetchIcacheSquashes
235        .name(name() + ".IcacheSquashes")
236        .desc("Number of outstanding Icache misses that were squashed")
237        .prereq(fetchIcacheSquashes);
238
239    fetchTlbSquashes
240        .name(name() + ".ItlbSquashes")
241        .desc("Number of outstanding ITLB misses that were squashed")
242        .prereq(fetchTlbSquashes);
243
244    fetchNisnDist
245        .init(/* base value */ 0,
246              /* last value */ fetchWidth,
247              /* bucket size */ 1)
248        .name(name() + ".rateDist")
249        .desc("Number of instructions fetched each cycle (Total)")
250        .flags(Stats::pdf);
251
252    idleRate
253        .name(name() + ".idleRate")
254        .desc("Percent of cycles fetch was idle")
255        .prereq(idleRate);
256    idleRate = fetchIdleCycles * 100 / cpu->numCycles;
257
258    branchRate
259        .name(name() + ".branchRate")
260        .desc("Number of branch fetches per cycle")
261        .flags(Stats::total);
262    branchRate = fetchedBranches / cpu->numCycles;
263
264    fetchRate
265        .name(name() + ".rate")
266        .desc("Number of inst fetches per cycle")
267        .flags(Stats::total);
268    fetchRate = fetchedInsts / cpu->numCycles;
269
270    branchPred.regStats();
271}
272
273template<class Impl>
274void
275DefaultFetch<Impl>::setTimeBuffer(TimeBuffer<TimeStruct> *time_buffer)
276{
277    timeBuffer = time_buffer;
278
279    // Create wires to get information from proper places in time buffer.
280    fromDecode = timeBuffer->getWire(-decodeToFetchDelay);
281    fromRename = timeBuffer->getWire(-renameToFetchDelay);
282    fromIEW = timeBuffer->getWire(-iewToFetchDelay);
283    fromCommit = timeBuffer->getWire(-commitToFetchDelay);
284}
285
286template<class Impl>
287void
288DefaultFetch<Impl>::setActiveThreads(std::list<ThreadID> *at_ptr)
289{
290    activeThreads = at_ptr;
291}
292
293template<class Impl>
294void
295DefaultFetch<Impl>::setFetchQueue(TimeBuffer<FetchStruct> *fq_ptr)
296{
297    fetchQueue = fq_ptr;
298
299    // Create wire to write information to proper place in fetch queue.
300    toDecode = fetchQueue->getWire(0);
301}
302
303template<class Impl>
304void
305DefaultFetch<Impl>::initStage()
306{
307    // Setup PC and nextPC with initial state.
308    for (ThreadID tid = 0; tid < numThreads; tid++) {
309        pc[tid] = cpu->pcState(tid);
310        fetchOffset[tid] = 0;
311        macroop[tid] = NULL;
312        delayedCommit[tid] = false;
313    }
314
315    for (ThreadID tid = 0; tid < numThreads; tid++) {
316
317        fetchStatus[tid] = Running;
318
319        priorityList.push_back(tid);
320
321        memReq[tid] = NULL;
322
323        stalls[tid].decode = false;
324        stalls[tid].rename = false;
325        stalls[tid].iew = false;
326        stalls[tid].commit = false;
327    }
328
329    // Schedule fetch to get the correct PC from the CPU
330    // scheduleFetchStartupEvent(1);
331
332    // Fetch needs to start fetching instructions at the very beginning,
333    // so it must start up in active state.
334    switchToActive();
335}
336
337template<class Impl>
338void
339DefaultFetch<Impl>::setIcache()
340{
341    assert(cpu->getInstPort().isConnected());
342
343    // Size of cache block.
344    cacheBlkSize = cpu->getInstPort().peerBlockSize();
345
346    // Create mask to get rid of offset bits.
347    cacheBlkMask = (cacheBlkSize - 1);
348
349    for (ThreadID tid = 0; tid < numThreads; tid++) {
350        // Create space to store a cache line.
351        if (!cacheData[tid])
352            cacheData[tid] = new uint8_t[cacheBlkSize];
353        cacheDataPC[tid] = 0;
354        cacheDataValid[tid] = false;
355    }
356}
357
358template<class Impl>
359void
360DefaultFetch<Impl>::processCacheCompletion(PacketPtr pkt)
361{
362    ThreadID tid = pkt->req->threadId();
363
364    DPRINTF(Fetch, "[tid:%u] Waking up from cache miss.\n", tid);
365
366    // Only change the status if it's still waiting on the icache access
367    // to return.
368    if (fetchStatus[tid] != IcacheWaitResponse ||
369        pkt->req != memReq[tid] ||
370        isSwitchedOut()) {
371        ++fetchIcacheSquashes;
372        delete pkt->req;
373        delete pkt;
374        return;
375    }
376
377    memcpy(cacheData[tid], pkt->getPtr<uint8_t>(), cacheBlkSize);
378    cacheDataValid[tid] = true;
379
380    if (!drainPending) {
381        // Wake up the CPU (if it went to sleep and was waiting on
382        // this completion event).
383        cpu->wakeCPU();
384
385        DPRINTF(Activity, "[tid:%u] Activating fetch due to cache completion\n",
386                tid);
387
388        switchToActive();
389    }
390
391    // Only switch to IcacheAccessComplete if we're not stalled as well.
392    if (checkStall(tid)) {
393        fetchStatus[tid] = Blocked;
394    } else {
395        fetchStatus[tid] = IcacheAccessComplete;
396    }
397
398    // Reset the mem req to NULL.
399    delete pkt->req;
400    delete pkt;
401    memReq[tid] = NULL;
402}
403
404template <class Impl>
405bool
406DefaultFetch<Impl>::drain()
407{
408    // Fetch is ready to drain at any time.
409    cpu->signalDrained();
410    drainPending = true;
411    return true;
412}
413
414template <class Impl>
415void
416DefaultFetch<Impl>::resume()
417{
418    drainPending = false;
419}
420
421template <class Impl>
422void
423DefaultFetch<Impl>::switchOut()
424{
425    switchedOut = true;
426    // Branch predictor needs to have its state cleared.
427    branchPred.switchOut();
428}
429
430template <class Impl>
431void
432DefaultFetch<Impl>::takeOverFrom()
433{
434    // the instruction port is now connected so we can get the block
435    // size
436    setIcache();
437
438    // Reset all state
439    for (ThreadID i = 0; i < Impl::MaxThreads; ++i) {
440        stalls[i].decode = 0;
441        stalls[i].rename = 0;
442        stalls[i].iew = 0;
443        stalls[i].commit = 0;
444        pc[i] = cpu->pcState(i);
445        fetchStatus[i] = Running;
446    }
447    numInst = 0;
448    wroteToTimeBuffer = false;
449    _status = Inactive;
450    switchedOut = false;
451    interruptPending = false;
452    branchPred.takeOverFrom();
453}
454
455template <class Impl>
456void
457DefaultFetch<Impl>::wakeFromQuiesce()
458{
459    DPRINTF(Fetch, "Waking up from quiesce\n");
460    // Hopefully this is safe
461    // @todo: Allow other threads to wake from quiesce.
462    fetchStatus[0] = Running;
463}
464
465template <class Impl>
466inline void
467DefaultFetch<Impl>::switchToActive()
468{
469    if (_status == Inactive) {
470        DPRINTF(Activity, "Activating stage.\n");
471
472        cpu->activateStage(O3CPU::FetchIdx);
473
474        _status = Active;
475    }
476}
477
478template <class Impl>
479inline void
480DefaultFetch<Impl>::switchToInactive()
481{
482    if (_status == Active) {
483        DPRINTF(Activity, "Deactivating stage.\n");
484
485        cpu->deactivateStage(O3CPU::FetchIdx);
486
487        _status = Inactive;
488    }
489}
490
491template <class Impl>
492bool
493DefaultFetch<Impl>::lookupAndUpdateNextPC(
494        DynInstPtr &inst, TheISA::PCState &nextPC)
495{
496    // Do branch prediction check here.
497    // A bit of a misnomer...next_PC is actually the current PC until
498    // this function updates it.
499    bool predict_taken;
500
501    if (!inst->isControl()) {
502        TheISA::advancePC(nextPC, inst->staticInst);
503        inst->setPredTarg(nextPC);
504        inst->setPredTaken(false);
505        return false;
506    }
507
508    ThreadID tid = inst->threadNumber;
509    predict_taken = branchPred.predict(inst, nextPC, tid);
510
511    if (predict_taken) {
512        DPRINTF(Fetch, "[tid:%i]: [sn:%i]:  Branch predicted to be taken to %s.\n",
513                tid, inst->seqNum, nextPC);
514    } else {
515        DPRINTF(Fetch, "[tid:%i]: [sn:%i]:Branch predicted to be not taken.\n",
516                tid, inst->seqNum);
517    }
518
519    DPRINTF(Fetch, "[tid:%i]: [sn:%i] Branch predicted to go to %s.\n",
520            tid, inst->seqNum, nextPC);
521    inst->setPredTarg(nextPC);
522    inst->setPredTaken(predict_taken);
523
524    ++fetchedBranches;
525
526    if (predict_taken) {
527        ++predictedBranches;
528    }
529
530    return predict_taken;
531}
532
533template <class Impl>
534bool
535DefaultFetch<Impl>::fetchCacheLine(Addr vaddr, ThreadID tid, Addr pc)
536{
537    Fault fault = NoFault;
538
539    // @todo: not sure if these should block translation.
540    //AlphaDep
541    if (cacheBlocked) {
542        DPRINTF(Fetch, "[tid:%i] Can't fetch cache line, cache blocked\n",
543                tid);
544        return false;
545    } else if (isSwitchedOut()) {
546        DPRINTF(Fetch, "[tid:%i] Can't fetch cache line, switched out\n",
547                tid);
548        return false;
549    } else if (checkInterrupt(pc) && !delayedCommit[tid]) {
550        // Hold off fetch from getting new instructions when:
551        // Cache is blocked, or
552        // while an interrupt is pending and we're not in PAL mode, or
553        // fetch is switched out.
554        DPRINTF(Fetch, "[tid:%i] Can't fetch cache line, interrupt pending\n",
555                tid);
556        return false;
557    }
558
559    // Align the fetch address so it's at the start of a cache block.
560    Addr block_PC = icacheBlockAlignPC(vaddr);
561
562    DPRINTF(Fetch, "[tid:%i] Fetching cache line %#x for addr %#x\n",
563            tid, block_PC, vaddr);
564
565    // Setup the memReq to do a read of the first instruction's address.
566    // Set the appropriate read size and flags as well.
567    // Build request here.
568    RequestPtr mem_req =
569        new Request(tid, block_PC, cacheBlkSize, Request::INST_FETCH,
570                    cpu->instMasterId(), pc, cpu->thread[tid]->contextId(), tid);
571
572    memReq[tid] = mem_req;
573
574    // Initiate translation of the icache block
575    fetchStatus[tid] = ItlbWait;
576    FetchTranslation *trans = new FetchTranslation(this);
577    cpu->itb->translateTiming(mem_req, cpu->thread[tid]->getTC(),
578                              trans, BaseTLB::Execute);
579    return true;
580}
581
582template <class Impl>
583void
584DefaultFetch<Impl>::finishTranslation(Fault fault, RequestPtr mem_req)
585{
586    ThreadID tid = mem_req->threadId();
587    Addr block_PC = mem_req->getVaddr();
588
589    // Wake up CPU if it was idle
590    cpu->wakeCPU();
591
592    if (fetchStatus[tid] != ItlbWait || mem_req != memReq[tid] ||
593        mem_req->getVaddr() != memReq[tid]->getVaddr() || isSwitchedOut()) {
594        DPRINTF(Fetch, "[tid:%i] Ignoring itlb completed after squash\n",
595                tid);
596        ++fetchTlbSquashes;
597        delete mem_req;
598        return;
599    }
600
601
602    // If translation was successful, attempt to read the icache block.
603    if (fault == NoFault) {
604        // Check that we're not going off into random memory
605        // If we have, just wait around for commit to squash something and put
606        // us on the right track
607        if (!cpu->system->isMemAddr(mem_req->getPaddr())) {
608            warn("Address %#x is outside of physical memory, stopping fetch\n",
609                    mem_req->getPaddr());
610            fetchStatus[tid] = NoGoodAddr;
611            delete mem_req;
612            memReq[tid] = NULL;
613            return;
614        }
615
616        // Build packet here.
617        PacketPtr data_pkt = new Packet(mem_req, MemCmd::ReadReq);
618        data_pkt->dataDynamicArray(new uint8_t[cacheBlkSize]);
619
620        cacheDataPC[tid] = block_PC;
621        cacheDataValid[tid] = false;
622        DPRINTF(Fetch, "Fetch: Doing instruction read.\n");
623
624        fetchedCacheLines++;
625
626        // Access the cache.
627        if (!cpu->getInstPort().sendTimingReq(data_pkt)) {
628            assert(retryPkt == NULL);
629            assert(retryTid == InvalidThreadID);
630            DPRINTF(Fetch, "[tid:%i] Out of MSHRs!\n", tid);
631
632            fetchStatus[tid] = IcacheWaitRetry;
633            retryPkt = data_pkt;
634            retryTid = tid;
635            cacheBlocked = true;
636        } else {
637            DPRINTF(Fetch, "[tid:%i]: Doing Icache access.\n", tid);
638            DPRINTF(Activity, "[tid:%i]: Activity: Waiting on I-cache "
639                    "response.\n", tid);
640
641            lastIcacheStall[tid] = curTick();
642            fetchStatus[tid] = IcacheWaitResponse;
643        }
644    } else {
645        if (!(numInst < fetchWidth)) {
646            assert(!finishTranslationEvent.scheduled());
647            finishTranslationEvent.setFault(fault);
648            finishTranslationEvent.setReq(mem_req);
649            cpu->schedule(finishTranslationEvent,
650                          cpu->clockEdge(Cycles(1)));
651            return;
652        }
653        DPRINTF(Fetch, "[tid:%i] Got back req with addr %#x but expected %#x\n",
654                tid, mem_req->getVaddr(), memReq[tid]->getVaddr());
655        // Translation faulted, icache request won't be sent.
656        delete mem_req;
657        memReq[tid] = NULL;
658
659        // Send the fault to commit.  This thread will not do anything
660        // until commit handles the fault.  The only other way it can
661        // wake up is if a squash comes along and changes the PC.
662        TheISA::PCState fetchPC = pc[tid];
663
664        DPRINTF(Fetch, "[tid:%i]: Translation faulted, building noop.\n", tid);
665        // We will use a nop in ordier to carry the fault.
666        DynInstPtr instruction = buildInst(tid,
667                decoder[tid]->decode(TheISA::NoopMachInst, fetchPC.instAddr()),
668                NULL, fetchPC, fetchPC, false);
669
670        instruction->setPredTarg(fetchPC);
671        instruction->fault = fault;
672        wroteToTimeBuffer = true;
673
674        DPRINTF(Activity, "Activity this cycle.\n");
675        cpu->activityThisCycle();
676
677        fetchStatus[tid] = TrapPending;
678
679        DPRINTF(Fetch, "[tid:%i]: Blocked, need to handle the trap.\n", tid);
680        DPRINTF(Fetch, "[tid:%i]: fault (%s) detected @ PC %s.\n",
681                tid, fault->name(), pc[tid]);
682    }
683    _status = updateFetchStatus();
684}
685
686template <class Impl>
687inline void
688DefaultFetch<Impl>::doSquash(const TheISA::PCState &newPC,
689                             const DynInstPtr squashInst, ThreadID tid)
690{
691    DPRINTF(Fetch, "[tid:%i]: Squashing, setting PC to: %s.\n",
692            tid, newPC);
693
694    pc[tid] = newPC;
695    fetchOffset[tid] = 0;
696    if (squashInst && squashInst->pcState().instAddr() == newPC.instAddr())
697        macroop[tid] = squashInst->macroop;
698    else
699        macroop[tid] = NULL;
700    decoder[tid]->reset();
701
702    // Clear the icache miss if it's outstanding.
703    if (fetchStatus[tid] == IcacheWaitResponse) {
704        DPRINTF(Fetch, "[tid:%i]: Squashing outstanding Icache miss.\n",
705                tid);
706        memReq[tid] = NULL;
707    } else if (fetchStatus[tid] == ItlbWait) {
708        DPRINTF(Fetch, "[tid:%i]: Squashing outstanding ITLB miss.\n",
709                tid);
710        memReq[tid] = NULL;
711    }
712
713    // Get rid of the retrying packet if it was from this thread.
714    if (retryTid == tid) {
715        assert(cacheBlocked);
716        if (retryPkt) {
717            delete retryPkt->req;
718            delete retryPkt;
719        }
720        retryPkt = NULL;
721        retryTid = InvalidThreadID;
722    }
723
724    fetchStatus[tid] = Squashing;
725
726    // microops are being squashed, it is not known wheather the
727    // youngest non-squashed microop was  marked delayed commit
728    // or not. Setting the flag to true ensures that the
729    // interrupts are not handled when they cannot be, though
730    // some opportunities to handle interrupts may be missed.
731    delayedCommit[tid] = true;
732
733    ++fetchSquashCycles;
734}
735
736template<class Impl>
737void
738DefaultFetch<Impl>::squashFromDecode(const TheISA::PCState &newPC,
739                                     const DynInstPtr squashInst,
740                                     const InstSeqNum seq_num, ThreadID tid)
741{
742    DPRINTF(Fetch, "[tid:%i]: Squashing from decode.\n", tid);
743
744    doSquash(newPC, squashInst, tid);
745
746    // Tell the CPU to remove any instructions that are in flight between
747    // fetch and decode.
748    cpu->removeInstsUntil(seq_num, tid);
749}
750
751template<class Impl>
752bool
753DefaultFetch<Impl>::checkStall(ThreadID tid) const
754{
755    bool ret_val = false;
756
757    if (cpu->contextSwitch) {
758        DPRINTF(Fetch,"[tid:%i]: Stalling for a context switch.\n",tid);
759        ret_val = true;
760    } else if (stalls[tid].decode) {
761        DPRINTF(Fetch,"[tid:%i]: Stall from Decode stage detected.\n",tid);
762        ret_val = true;
763    } else if (stalls[tid].rename) {
764        DPRINTF(Fetch,"[tid:%i]: Stall from Rename stage detected.\n",tid);
765        ret_val = true;
766    } else if (stalls[tid].iew) {
767        DPRINTF(Fetch,"[tid:%i]: Stall from IEW stage detected.\n",tid);
768        ret_val = true;
769    } else if (stalls[tid].commit) {
770        DPRINTF(Fetch,"[tid:%i]: Stall from Commit stage detected.\n",tid);
771        ret_val = true;
772    }
773
774    return ret_val;
775}
776
777template<class Impl>
778typename DefaultFetch<Impl>::FetchStatus
779DefaultFetch<Impl>::updateFetchStatus()
780{
781    //Check Running
782    list<ThreadID>::iterator threads = activeThreads->begin();
783    list<ThreadID>::iterator end = activeThreads->end();
784
785    while (threads != end) {
786        ThreadID tid = *threads++;
787
788        if (fetchStatus[tid] == Running ||
789            fetchStatus[tid] == Squashing ||
790            fetchStatus[tid] == IcacheAccessComplete) {
791
792            if (_status == Inactive) {
793                DPRINTF(Activity, "[tid:%i]: Activating stage.\n",tid);
794
795                if (fetchStatus[tid] == IcacheAccessComplete) {
796                    DPRINTF(Activity, "[tid:%i]: Activating fetch due to cache"
797                            "completion\n",tid);
798                }
799
800                cpu->activateStage(O3CPU::FetchIdx);
801            }
802
803            return Active;
804        }
805    }
806
807    // Stage is switching from active to inactive, notify CPU of it.
808    if (_status == Active) {
809        DPRINTF(Activity, "Deactivating stage.\n");
810
811        cpu->deactivateStage(O3CPU::FetchIdx);
812    }
813
814    return Inactive;
815}
816
817template <class Impl>
818void
819DefaultFetch<Impl>::squash(const TheISA::PCState &newPC,
820                           const InstSeqNum seq_num, DynInstPtr squashInst,
821                           ThreadID tid)
822{
823    DPRINTF(Fetch, "[tid:%u]: Squash from commit.\n", tid);
824
825    doSquash(newPC, squashInst, tid);
826
827    // Tell the CPU to remove any instructions that are not in the ROB.
828    cpu->removeInstsNotInROB(tid);
829}
830
831template <class Impl>
832void
833DefaultFetch<Impl>::tick()
834{
835    list<ThreadID>::iterator threads = activeThreads->begin();
836    list<ThreadID>::iterator end = activeThreads->end();
837    bool status_change = false;
838
839    wroteToTimeBuffer = false;
840
841    for (ThreadID i = 0; i < Impl::MaxThreads; ++i) {
842        issuePipelinedIfetch[i] = false;
843    }
844
845    while (threads != end) {
846        ThreadID tid = *threads++;
847
848        // Check the signals for each thread to determine the proper status
849        // for each thread.
850        bool updated_status = checkSignalsAndUpdate(tid);
851        status_change =  status_change || updated_status;
852    }
853
854    DPRINTF(Fetch, "Running stage.\n");
855
856    if (FullSystem) {
857        if (fromCommit->commitInfo[0].interruptPending) {
858            interruptPending = true;
859        }
860
861        if (fromCommit->commitInfo[0].clearInterrupt) {
862            interruptPending = false;
863        }
864    }
865
866    for (threadFetched = 0; threadFetched < numFetchingThreads;
867         threadFetched++) {
868        // Fetch each of the actively fetching threads.
869        fetch(status_change);
870    }
871
872    // Record number of instructions fetched this cycle for distribution.
873    fetchNisnDist.sample(numInst);
874
875    if (status_change) {
876        // Change the fetch stage status if there was a status change.
877        _status = updateFetchStatus();
878    }
879
880    // If there was activity this cycle, inform the CPU of it.
881    if (wroteToTimeBuffer || cpu->contextSwitch) {
882        DPRINTF(Activity, "Activity this cycle.\n");
883
884        cpu->activityThisCycle();
885    }
886
887    // Issue the next I-cache request if possible.
888    for (ThreadID i = 0; i < Impl::MaxThreads; ++i) {
889        if (issuePipelinedIfetch[i]) {
890            pipelineIcacheAccesses(i);
891        }
892    }
893
894    // Reset the number of the instruction we've fetched.
895    numInst = 0;
896}
897
898template <class Impl>
899bool
900DefaultFetch<Impl>::checkSignalsAndUpdate(ThreadID tid)
901{
902    // Update the per thread stall statuses.
903    if (fromDecode->decodeBlock[tid]) {
904        stalls[tid].decode = true;
905    }
906
907    if (fromDecode->decodeUnblock[tid]) {
908        assert(stalls[tid].decode);
909        assert(!fromDecode->decodeBlock[tid]);
910        stalls[tid].decode = false;
911    }
912
913    if (fromRename->renameBlock[tid]) {
914        stalls[tid].rename = true;
915    }
916
917    if (fromRename->renameUnblock[tid]) {
918        assert(stalls[tid].rename);
919        assert(!fromRename->renameBlock[tid]);
920        stalls[tid].rename = false;
921    }
922
923    if (fromIEW->iewBlock[tid]) {
924        stalls[tid].iew = true;
925    }
926
927    if (fromIEW->iewUnblock[tid]) {
928        assert(stalls[tid].iew);
929        assert(!fromIEW->iewBlock[tid]);
930        stalls[tid].iew = false;
931    }
932
933    if (fromCommit->commitBlock[tid]) {
934        stalls[tid].commit = true;
935    }
936
937    if (fromCommit->commitUnblock[tid]) {
938        assert(stalls[tid].commit);
939        assert(!fromCommit->commitBlock[tid]);
940        stalls[tid].commit = false;
941    }
942
943    // Check squash signals from commit.
944    if (fromCommit->commitInfo[tid].squash) {
945
946        DPRINTF(Fetch, "[tid:%u]: Squashing instructions due to squash "
947                "from commit.\n",tid);
948        // In any case, squash.
949        squash(fromCommit->commitInfo[tid].pc,
950               fromCommit->commitInfo[tid].doneSeqNum,
951               fromCommit->commitInfo[tid].squashInst, tid);
952
953        // If it was a branch mispredict on a control instruction, update the
954        // branch predictor with that instruction, otherwise just kill the
955        // invalid state we generated in after sequence number
956        if (fromCommit->commitInfo[tid].mispredictInst &&
957            fromCommit->commitInfo[tid].mispredictInst->isControl()) {
958            branchPred.squash(fromCommit->commitInfo[tid].doneSeqNum,
959                              fromCommit->commitInfo[tid].pc,
960                              fromCommit->commitInfo[tid].branchTaken,
961                              tid);
962        } else {
963            branchPred.squash(fromCommit->commitInfo[tid].doneSeqNum,
964                              tid);
965        }
966
967        return true;
968    } else if (fromCommit->commitInfo[tid].doneSeqNum) {
969        // Update the branch predictor if it wasn't a squashed instruction
970        // that was broadcasted.
971        branchPred.update(fromCommit->commitInfo[tid].doneSeqNum, tid);
972    }
973
974    // Check ROB squash signals from commit.
975    if (fromCommit->commitInfo[tid].robSquashing) {
976        DPRINTF(Fetch, "[tid:%u]: ROB is still squashing.\n", tid);
977
978        // Continue to squash.
979        fetchStatus[tid] = Squashing;
980
981        return true;
982    }
983
984    // Check squash signals from decode.
985    if (fromDecode->decodeInfo[tid].squash) {
986        DPRINTF(Fetch, "[tid:%u]: Squashing instructions due to squash "
987                "from decode.\n",tid);
988
989        // Update the branch predictor.
990        if (fromDecode->decodeInfo[tid].branchMispredict) {
991            branchPred.squash(fromDecode->decodeInfo[tid].doneSeqNum,
992                              fromDecode->decodeInfo[tid].nextPC,
993                              fromDecode->decodeInfo[tid].branchTaken,
994                              tid);
995        } else {
996            branchPred.squash(fromDecode->decodeInfo[tid].doneSeqNum,
997                              tid);
998        }
999
1000        if (fetchStatus[tid] != Squashing) {
1001
1002            DPRINTF(Fetch, "Squashing from decode with PC = %s\n",
1003                fromDecode->decodeInfo[tid].nextPC);
1004            // Squash unless we're already squashing
1005            squashFromDecode(fromDecode->decodeInfo[tid].nextPC,
1006                             fromDecode->decodeInfo[tid].squashInst,
1007                             fromDecode->decodeInfo[tid].doneSeqNum,
1008                             tid);
1009
1010            return true;
1011        }
1012    }
1013
1014    if (checkStall(tid) &&
1015        fetchStatus[tid] != IcacheWaitResponse &&
1016        fetchStatus[tid] != IcacheWaitRetry) {
1017        DPRINTF(Fetch, "[tid:%i]: Setting to blocked\n",tid);
1018
1019        fetchStatus[tid] = Blocked;
1020
1021        return true;
1022    }
1023
1024    if (fetchStatus[tid] == Blocked ||
1025        fetchStatus[tid] == Squashing) {
1026        // Switch status to running if fetch isn't being told to block or
1027        // squash this cycle.
1028        DPRINTF(Fetch, "[tid:%i]: Done squashing, switching to running.\n",
1029                tid);
1030
1031        fetchStatus[tid] = Running;
1032
1033        return true;
1034    }
1035
1036    // If we've reached this point, we have not gotten any signals that
1037    // cause fetch to change its status.  Fetch remains the same as before.
1038    return false;
1039}
1040
1041template<class Impl>
1042typename Impl::DynInstPtr
1043DefaultFetch<Impl>::buildInst(ThreadID tid, StaticInstPtr staticInst,
1044                              StaticInstPtr curMacroop, TheISA::PCState thisPC,
1045                              TheISA::PCState nextPC, bool trace)
1046{
1047    // Get a sequence number.
1048    InstSeqNum seq = cpu->getAndIncrementInstSeq();
1049
1050    // Create a new DynInst from the instruction fetched.
1051    DynInstPtr instruction =
1052        new DynInst(staticInst, curMacroop, thisPC, nextPC, seq, cpu);
1053    instruction->setTid(tid);
1054
1055    instruction->setASID(tid);
1056
1057    instruction->setThreadState(cpu->thread[tid]);
1058
1059    DPRINTF(Fetch, "[tid:%i]: Instruction PC %#x (%d) created "
1060            "[sn:%lli].\n", tid, thisPC.instAddr(),
1061            thisPC.microPC(), seq);
1062
1063    DPRINTF(Fetch, "[tid:%i]: Instruction is: %s\n", tid,
1064            instruction->staticInst->
1065            disassemble(thisPC.instAddr()));
1066
1067#if TRACING_ON
1068    if (trace) {
1069        instruction->traceData =
1070            cpu->getTracer()->getInstRecord(curTick(), cpu->tcBase(tid),
1071                    instruction->staticInst, thisPC, curMacroop);
1072    }
1073#else
1074    instruction->traceData = NULL;
1075#endif
1076
1077    // Add instruction to the CPU's list of instructions.
1078    instruction->setInstListIt(cpu->addInst(instruction));
1079
1080    // Write the instruction to the first slot in the queue
1081    // that heads to decode.
1082    assert(numInst < fetchWidth);
1083    toDecode->insts[toDecode->size++] = instruction;
1084
1085    // Keep track of if we can take an interrupt at this boundary
1086    delayedCommit[tid] = instruction->isDelayedCommit();
1087
1088    return instruction;
1089}
1090
1091template<class Impl>
1092void
1093DefaultFetch<Impl>::fetch(bool &status_change)
1094{
1095    //////////////////////////////////////////
1096    // Start actual fetch
1097    //////////////////////////////////////////
1098    ThreadID tid = getFetchingThread(fetchPolicy);
1099
1100    if (tid == InvalidThreadID || drainPending) {
1101        // Breaks looping condition in tick()
1102        threadFetched = numFetchingThreads;
1103
1104        if (numThreads == 1) {  // @todo Per-thread stats
1105            profileStall(0);
1106        }
1107
1108        return;
1109    }
1110
1111    DPRINTF(Fetch, "Attempting to fetch from [tid:%i]\n", tid);
1112
1113    // The current PC.
1114    TheISA::PCState thisPC = pc[tid];
1115
1116    Addr pcOffset = fetchOffset[tid];
1117    Addr fetchAddr = (thisPC.instAddr() + pcOffset) & BaseCPU::PCMask;
1118
1119    bool inRom = isRomMicroPC(thisPC.microPC());
1120
1121    // If returning from the delay of a cache miss, then update the status
1122    // to running, otherwise do the cache access.  Possibly move this up
1123    // to tick() function.
1124    if (fetchStatus[tid] == IcacheAccessComplete) {
1125        DPRINTF(Fetch, "[tid:%i]: Icache miss is complete.\n", tid);
1126
1127        fetchStatus[tid] = Running;
1128        status_change = true;
1129    } else if (fetchStatus[tid] == Running) {
1130        // Align the fetch PC so its at the start of a cache block.
1131        Addr block_PC = icacheBlockAlignPC(fetchAddr);
1132
1133        // If buffer is no longer valid or fetchAddr has moved to point
1134        // to the next cache block, AND we have no remaining ucode
1135        // from a macro-op, then start fetch from icache.
1136        if (!(cacheDataValid[tid] && block_PC == cacheDataPC[tid])
1137            && !inRom && !macroop[tid]) {
1138            DPRINTF(Fetch, "[tid:%i]: Attempting to translate and read "
1139                    "instruction, starting at PC %s.\n", tid, thisPC);
1140
1141            fetchCacheLine(fetchAddr, tid, thisPC.instAddr());
1142
1143            if (fetchStatus[tid] == IcacheWaitResponse)
1144                ++icacheStallCycles;
1145            else if (fetchStatus[tid] == ItlbWait)
1146                ++fetchTlbCycles;
1147            else
1148                ++fetchMiscStallCycles;
1149            return;
1150        } else if ((checkInterrupt(thisPC.instAddr()) && !delayedCommit[tid])
1151                   || isSwitchedOut()) {
1152            // Stall CPU if an interrupt is posted and we're not issuing
1153            // an delayed commit micro-op currently (delayed commit instructions
1154            // are not interruptable by interrupts, only faults)
1155            ++fetchMiscStallCycles;
1156            DPRINTF(Fetch, "[tid:%i]: Fetch is stalled!\n", tid);
1157            return;
1158        }
1159    } else {
1160        if (fetchStatus[tid] == Idle) {
1161            ++fetchIdleCycles;
1162            DPRINTF(Fetch, "[tid:%i]: Fetch is idle!\n", tid);
1163        }
1164
1165        // Status is Idle, so fetch should do nothing.
1166        return;
1167    }
1168
1169    ++fetchCycles;
1170
1171    TheISA::PCState nextPC = thisPC;
1172
1173    StaticInstPtr staticInst = NULL;
1174    StaticInstPtr curMacroop = macroop[tid];
1175
1176    // If the read of the first instruction was successful, then grab the
1177    // instructions from the rest of the cache line and put them into the
1178    // queue heading to decode.
1179
1180    DPRINTF(Fetch, "[tid:%i]: Adding instructions to queue to "
1181            "decode.\n", tid);
1182
1183    // Need to keep track of whether or not a predicted branch
1184    // ended this fetch block.
1185    bool predictedBranch = false;
1186
1187    TheISA::MachInst *cacheInsts =
1188        reinterpret_cast<TheISA::MachInst *>(cacheData[tid]);
1189
1190    const unsigned numInsts = cacheBlkSize / instSize;
1191    unsigned blkOffset = (fetchAddr - cacheDataPC[tid]) / instSize;
1192
1193    // Loop through instruction memory from the cache.
1194    // Keep issuing while fetchWidth is available and branch is not
1195    // predicted taken
1196    while (numInst < fetchWidth && !predictedBranch) {
1197
1198        // We need to process more memory if we aren't going to get a
1199        // StaticInst from the rom, the current macroop, or what's already
1200        // in the decoder.
1201        bool needMem = !inRom && !curMacroop &&
1202            !decoder[tid]->instReady();
1203        fetchAddr = (thisPC.instAddr() + pcOffset) & BaseCPU::PCMask;
1204        Addr block_PC = icacheBlockAlignPC(fetchAddr);
1205
1206        if (needMem) {
1207            // If buffer is no longer valid or fetchAddr has moved to point
1208            // to the next cache block then start fetch from icache.
1209            if (!cacheDataValid[tid] || block_PC != cacheDataPC[tid])
1210                break;
1211
1212            if (blkOffset >= numInsts) {
1213                // We need to process more memory, but we've run out of the
1214                // current block.
1215                break;
1216            }
1217
1218            if (ISA_HAS_DELAY_SLOT && pcOffset == 0) {
1219                // Walk past any annulled delay slot instructions.
1220                Addr pcAddr = thisPC.instAddr() & BaseCPU::PCMask;
1221                while (fetchAddr != pcAddr && blkOffset < numInsts) {
1222                    blkOffset++;
1223                    fetchAddr += instSize;
1224                }
1225                if (blkOffset >= numInsts)
1226                    break;
1227            }
1228            MachInst inst = TheISA::gtoh(cacheInsts[blkOffset]);
1229
1230            decoder[tid]->setTC(cpu->thread[tid]->getTC());
1231            decoder[tid]->moreBytes(thisPC, fetchAddr, inst);
1232
1233            if (decoder[tid]->needMoreBytes()) {
1234                blkOffset++;
1235                fetchAddr += instSize;
1236                pcOffset += instSize;
1237            }
1238        }
1239
1240        // Extract as many instructions and/or microops as we can from
1241        // the memory we've processed so far.
1242        do {
1243            if (!(curMacroop || inRom)) {
1244                if (decoder[tid]->instReady()) {
1245                    staticInst = decoder[tid]->decode(thisPC);
1246
1247                    // Increment stat of fetched instructions.
1248                    ++fetchedInsts;
1249
1250                    if (staticInst->isMacroop()) {
1251                        curMacroop = staticInst;
1252                    } else {
1253                        pcOffset = 0;
1254                    }
1255                } else {
1256                    // We need more bytes for this instruction so blkOffset and
1257                    // pcOffset will be updated
1258                    break;
1259                }
1260            }
1261            // Whether we're moving to a new macroop because we're at the
1262            // end of the current one, or the branch predictor incorrectly
1263            // thinks we are...
1264            bool newMacro = false;
1265            if (curMacroop || inRom) {
1266                if (inRom) {
1267                    staticInst = cpu->microcodeRom.fetchMicroop(
1268                            thisPC.microPC(), curMacroop);
1269                } else {
1270                    staticInst = curMacroop->fetchMicroop(thisPC.microPC());
1271                }
1272                newMacro |= staticInst->isLastMicroop();
1273            }
1274
1275            DynInstPtr instruction =
1276                buildInst(tid, staticInst, curMacroop,
1277                          thisPC, nextPC, true);
1278
1279            numInst++;
1280
1281#if TRACING_ON
1282            instruction->fetchTick = curTick();
1283#endif
1284
1285            nextPC = thisPC;
1286
1287            // If we're branching after this instruction, quite fetching
1288            // from the same block then.
1289            predictedBranch |= thisPC.branching();
1290            predictedBranch |=
1291                lookupAndUpdateNextPC(instruction, nextPC);
1292            if (predictedBranch) {
1293                DPRINTF(Fetch, "Branch detected with PC = %s\n", thisPC);
1294            }
1295
1296            newMacro |= thisPC.instAddr() != nextPC.instAddr();
1297
1298            // Move to the next instruction, unless we have a branch.
1299            thisPC = nextPC;
1300            inRom = isRomMicroPC(thisPC.microPC());
1301
1302            if (newMacro) {
1303                fetchAddr = thisPC.instAddr() & BaseCPU::PCMask;
1304                blkOffset = (fetchAddr - cacheDataPC[tid]) / instSize;
1305                pcOffset = 0;
1306                curMacroop = NULL;
1307            }
1308
1309            if (instruction->isQuiesce()) {
1310                DPRINTF(Fetch,
1311                        "Quiesce instruction encountered, halting fetch!");
1312                fetchStatus[tid] = QuiescePending;
1313                status_change = true;
1314                break;
1315            }
1316        } while ((curMacroop || decoder[tid]->instReady()) &&
1317                 numInst < fetchWidth);
1318    }
1319
1320    if (predictedBranch) {
1321        DPRINTF(Fetch, "[tid:%i]: Done fetching, predicted branch "
1322                "instruction encountered.\n", tid);
1323    } else if (numInst >= fetchWidth) {
1324        DPRINTF(Fetch, "[tid:%i]: Done fetching, reached fetch bandwidth "
1325                "for this cycle.\n", tid);
1326    } else if (blkOffset >= cacheBlkSize) {
1327        DPRINTF(Fetch, "[tid:%i]: Done fetching, reached the end of cache "
1328                "block.\n", tid);
1329    }
1330
1331    macroop[tid] = curMacroop;
1332    fetchOffset[tid] = pcOffset;
1333
1334    if (numInst > 0) {
1335        wroteToTimeBuffer = true;
1336    }
1337
1338    pc[tid] = thisPC;
1339
1340    // pipeline a fetch if we're crossing a cache boundary and not in
1341    // a state that would preclude fetching
1342    fetchAddr = (thisPC.instAddr() + pcOffset) & BaseCPU::PCMask;
1343    Addr block_PC = icacheBlockAlignPC(fetchAddr);
1344    issuePipelinedIfetch[tid] = block_PC != cacheDataPC[tid] &&
1345        fetchStatus[tid] != IcacheWaitResponse &&
1346        fetchStatus[tid] != ItlbWait &&
1347        fetchStatus[tid] != IcacheWaitRetry &&
1348        fetchStatus[tid] != QuiescePending &&
1349        !curMacroop;
1350}
1351
1352template<class Impl>
1353void
1354DefaultFetch<Impl>::recvRetry()
1355{
1356    if (retryPkt != NULL) {
1357        assert(cacheBlocked);
1358        assert(retryTid != InvalidThreadID);
1359        assert(fetchStatus[retryTid] == IcacheWaitRetry);
1360
1361        if (cpu->getInstPort().sendTimingReq(retryPkt)) {
1362            fetchStatus[retryTid] = IcacheWaitResponse;
1363            retryPkt = NULL;
1364            retryTid = InvalidThreadID;
1365            cacheBlocked = false;
1366        }
1367    } else {
1368        assert(retryTid == InvalidThreadID);
1369        // Access has been squashed since it was sent out.  Just clear
1370        // the cache being blocked.
1371        cacheBlocked = false;
1372    }
1373}
1374
1375///////////////////////////////////////
1376//                                   //
1377//  SMT FETCH POLICY MAINTAINED HERE //
1378//                                   //
1379///////////////////////////////////////
1380template<class Impl>
1381ThreadID
1382DefaultFetch<Impl>::getFetchingThread(FetchPriority &fetch_priority)
1383{
1384    if (numThreads > 1) {
1385        switch (fetch_priority) {
1386
1387          case SingleThread:
1388            return 0;
1389
1390          case RoundRobin:
1391            return roundRobin();
1392
1393          case IQ:
1394            return iqCount();
1395
1396          case LSQ:
1397            return lsqCount();
1398
1399          case Branch:
1400            return branchCount();
1401
1402          default:
1403            return InvalidThreadID;
1404        }
1405    } else {
1406        list<ThreadID>::iterator thread = activeThreads->begin();
1407        if (thread == activeThreads->end()) {
1408            return InvalidThreadID;
1409        }
1410
1411        ThreadID tid = *thread;
1412
1413        if (fetchStatus[tid] == Running ||
1414            fetchStatus[tid] == IcacheAccessComplete ||
1415            fetchStatus[tid] == Idle) {
1416            return tid;
1417        } else {
1418            return InvalidThreadID;
1419        }
1420    }
1421}
1422
1423
1424template<class Impl>
1425ThreadID
1426DefaultFetch<Impl>::roundRobin()
1427{
1428    list<ThreadID>::iterator pri_iter = priorityList.begin();
1429    list<ThreadID>::iterator end      = priorityList.end();
1430
1431    ThreadID high_pri;
1432
1433    while (pri_iter != end) {
1434        high_pri = *pri_iter;
1435
1436        assert(high_pri <= numThreads);
1437
1438        if (fetchStatus[high_pri] == Running ||
1439            fetchStatus[high_pri] == IcacheAccessComplete ||
1440            fetchStatus[high_pri] == Idle) {
1441
1442            priorityList.erase(pri_iter);
1443            priorityList.push_back(high_pri);
1444
1445            return high_pri;
1446        }
1447
1448        pri_iter++;
1449    }
1450
1451    return InvalidThreadID;
1452}
1453
1454template<class Impl>
1455ThreadID
1456DefaultFetch<Impl>::iqCount()
1457{
1458    std::priority_queue<unsigned> PQ;
1459    std::map<unsigned, ThreadID> threadMap;
1460
1461    list<ThreadID>::iterator threads = activeThreads->begin();
1462    list<ThreadID>::iterator end = activeThreads->end();
1463
1464    while (threads != end) {
1465        ThreadID tid = *threads++;
1466        unsigned iqCount = fromIEW->iewInfo[tid].iqCount;
1467
1468        PQ.push(iqCount);
1469        threadMap[iqCount] = tid;
1470    }
1471
1472    while (!PQ.empty()) {
1473        ThreadID high_pri = threadMap[PQ.top()];
1474
1475        if (fetchStatus[high_pri] == Running ||
1476            fetchStatus[high_pri] == IcacheAccessComplete ||
1477            fetchStatus[high_pri] == Idle)
1478            return high_pri;
1479        else
1480            PQ.pop();
1481
1482    }
1483
1484    return InvalidThreadID;
1485}
1486
1487template<class Impl>
1488ThreadID
1489DefaultFetch<Impl>::lsqCount()
1490{
1491    std::priority_queue<unsigned> PQ;
1492    std::map<unsigned, ThreadID> threadMap;
1493
1494    list<ThreadID>::iterator threads = activeThreads->begin();
1495    list<ThreadID>::iterator end = activeThreads->end();
1496
1497    while (threads != end) {
1498        ThreadID tid = *threads++;
1499        unsigned ldstqCount = fromIEW->iewInfo[tid].ldstqCount;
1500
1501        PQ.push(ldstqCount);
1502        threadMap[ldstqCount] = tid;
1503    }
1504
1505    while (!PQ.empty()) {
1506        ThreadID high_pri = threadMap[PQ.top()];
1507
1508        if (fetchStatus[high_pri] == Running ||
1509            fetchStatus[high_pri] == IcacheAccessComplete ||
1510            fetchStatus[high_pri] == Idle)
1511            return high_pri;
1512        else
1513            PQ.pop();
1514    }
1515
1516    return InvalidThreadID;
1517}
1518
1519template<class Impl>
1520ThreadID
1521DefaultFetch<Impl>::branchCount()
1522{
1523#if 0
1524    list<ThreadID>::iterator thread = activeThreads->begin();
1525    assert(thread != activeThreads->end());
1526    ThreadID tid = *thread;
1527#endif
1528
1529    panic("Branch Count Fetch policy unimplemented\n");
1530    return InvalidThreadID;
1531}
1532
1533template<class Impl>
1534void
1535DefaultFetch<Impl>::pipelineIcacheAccesses(ThreadID tid)
1536{
1537    if (!issuePipelinedIfetch[tid]) {
1538        return;
1539    }
1540
1541    // The next PC to access.
1542    TheISA::PCState thisPC = pc[tid];
1543
1544    if (isRomMicroPC(thisPC.microPC())) {
1545        return;
1546    }
1547
1548    Addr pcOffset = fetchOffset[tid];
1549    Addr fetchAddr = (thisPC.instAddr() + pcOffset) & BaseCPU::PCMask;
1550
1551    // Align the fetch PC so its at the start of a cache block.
1552    Addr block_PC = icacheBlockAlignPC(fetchAddr);
1553
1554    // Unless buffer already got the block, fetch it from icache.
1555    if (!(cacheDataValid[tid] && block_PC == cacheDataPC[tid])) {
1556        DPRINTF(Fetch, "[tid:%i]: Issuing a pipelined I-cache access, "
1557                "starting at PC %s.\n", tid, thisPC);
1558
1559        fetchCacheLine(fetchAddr, tid, thisPC.instAddr());
1560    }
1561}
1562
1563template<class Impl>
1564void
1565DefaultFetch<Impl>::profileStall(ThreadID tid) {
1566    DPRINTF(Fetch,"There are no more threads available to fetch from.\n");
1567
1568    // @todo Per-thread stats
1569
1570    if (drainPending) {
1571        ++fetchPendingDrainCycles;
1572        DPRINTF(Fetch, "Fetch is waiting for a drain!\n");
1573    } else if (activeThreads->empty()) {
1574        ++fetchNoActiveThreadStallCycles;
1575        DPRINTF(Fetch, "Fetch has no active thread!\n");
1576    } else if (fetchStatus[tid] == Blocked) {
1577        ++fetchBlockedCycles;
1578        DPRINTF(Fetch, "[tid:%i]: Fetch is blocked!\n", tid);
1579    } else if (fetchStatus[tid] == Squashing) {
1580        ++fetchSquashCycles;
1581        DPRINTF(Fetch, "[tid:%i]: Fetch is squashing!\n", tid);
1582    } else if (fetchStatus[tid] == IcacheWaitResponse) {
1583        ++icacheStallCycles;
1584        DPRINTF(Fetch, "[tid:%i]: Fetch is waiting cache response!\n",
1585                tid);
1586    } else if (fetchStatus[tid] == ItlbWait) {
1587        ++fetchTlbCycles;
1588        DPRINTF(Fetch, "[tid:%i]: Fetch is waiting ITLB walk to "
1589                "finish!\n", tid);
1590    } else if (fetchStatus[tid] == TrapPending) {
1591        ++fetchPendingTrapStallCycles;
1592        DPRINTF(Fetch, "[tid:%i]: Fetch is waiting for a pending trap!\n",
1593                tid);
1594    } else if (fetchStatus[tid] == QuiescePending) {
1595        ++fetchPendingQuiesceStallCycles;
1596        DPRINTF(Fetch, "[tid:%i]: Fetch is waiting for a pending quiesce "
1597                "instruction!\n", tid);
1598    } else if (fetchStatus[tid] == IcacheWaitRetry) {
1599        ++fetchIcacheWaitRetryStallCycles;
1600        DPRINTF(Fetch, "[tid:%i]: Fetch is waiting for an I-cache retry!\n",
1601                tid);
1602    } else if (fetchStatus[tid] == NoGoodAddr) {
1603            DPRINTF(Fetch, "[tid:%i]: Fetch predicted non-executable address\n",
1604                    tid);
1605    } else {
1606        DPRINTF(Fetch, "[tid:%i]: Unexpected fetch stall reason (Status: %i).\n",
1607             tid, fetchStatus[tid]);
1608    }
1609}
1610