fetch_impl.hh revision 8824:a42647b4a6b6
1/*
2 * Copyright (c) 2010-2011 ARM Limited
3 * All rights reserved.
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder.  You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2004-2006 The Regents of The University of Michigan
15 * All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions are
19 * met: redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer;
21 * redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution;
24 * neither the name of the copyright holders nor the names of its
25 * contributors may be used to endorse or promote products derived from
26 * this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 *
40 * Authors: Kevin Lim
41 *          Korey Sewell
42 */
43
44#include <algorithm>
45#include <cstring>
46#include <list>
47#include <map>
48#include <queue>
49
50#include "arch/isa_traits.hh"
51#include "arch/tlb.hh"
52#include "arch/utility.hh"
53#include "arch/vtophys.hh"
54#include "base/types.hh"
55#include "config/the_isa.hh"
56#include "config/use_checker.hh"
57#include "cpu/base.hh"
58#include "cpu/o3/fetch.hh"
59#include "cpu/exetrace.hh"
60#include "debug/Activity.hh"
61#include "debug/Fetch.hh"
62#include "mem/packet.hh"
63#include "mem/request.hh"
64#include "params/DerivO3CPU.hh"
65#include "sim/byteswap.hh"
66#include "sim/core.hh"
67#include "sim/eventq.hh"
68#include "sim/full_system.hh"
69#include "sim/system.hh"
70
71#if USE_CHECKER
72#include "cpu/checker/cpu.hh"
73#endif // USE_CHECKER
74
75using namespace std;
76
77template<class Impl>
78DefaultFetch<Impl>::DefaultFetch(O3CPU *_cpu, DerivO3CPUParams *params)
79    : cpu(_cpu),
80      branchPred(params),
81      predecoder(NULL),
82      numInst(0),
83      decodeToFetchDelay(params->decodeToFetchDelay),
84      renameToFetchDelay(params->renameToFetchDelay),
85      iewToFetchDelay(params->iewToFetchDelay),
86      commitToFetchDelay(params->commitToFetchDelay),
87      fetchWidth(params->fetchWidth),
88      cacheBlocked(false),
89      retryPkt(NULL),
90      retryTid(InvalidThreadID),
91      numThreads(params->numThreads),
92      numFetchingThreads(params->smtNumFetchingThreads),
93      interruptPending(false),
94      drainPending(false),
95      switchedOut(false),
96      finishTranslationEvent(this)
97{
98    if (numThreads > Impl::MaxThreads)
99        fatal("numThreads (%d) is larger than compiled limit (%d),\n"
100              "\tincrease MaxThreads in src/cpu/o3/impl.hh\n",
101              numThreads, static_cast<int>(Impl::MaxThreads));
102
103    // Set fetch stage's status to inactive.
104    _status = Inactive;
105
106    std::string policy = params->smtFetchPolicy;
107
108    // Convert string to lowercase
109    std::transform(policy.begin(), policy.end(), policy.begin(),
110                   (int(*)(int)) tolower);
111
112    // Figure out fetch policy
113    if (policy == "singlethread") {
114        fetchPolicy = SingleThread;
115        if (numThreads > 1)
116            panic("Invalid Fetch Policy for a SMT workload.");
117    } else if (policy == "roundrobin") {
118        fetchPolicy = RoundRobin;
119        DPRINTF(Fetch, "Fetch policy set to Round Robin\n");
120    } else if (policy == "branch") {
121        fetchPolicy = Branch;
122        DPRINTF(Fetch, "Fetch policy set to Branch Count\n");
123    } else if (policy == "iqcount") {
124        fetchPolicy = IQ;
125        DPRINTF(Fetch, "Fetch policy set to IQ count\n");
126    } else if (policy == "lsqcount") {
127        fetchPolicy = LSQ;
128        DPRINTF(Fetch, "Fetch policy set to LSQ count\n");
129    } else {
130        fatal("Invalid Fetch Policy. Options Are: {SingleThread,"
131              " RoundRobin,LSQcount,IQcount}\n");
132    }
133
134    // Get the size of an instruction.
135    instSize = sizeof(TheISA::MachInst);
136}
137
138template <class Impl>
139std::string
140DefaultFetch<Impl>::name() const
141{
142    return cpu->name() + ".fetch";
143}
144
145template <class Impl>
146void
147DefaultFetch<Impl>::regStats()
148{
149    icacheStallCycles
150        .name(name() + ".icacheStallCycles")
151        .desc("Number of cycles fetch is stalled on an Icache miss")
152        .prereq(icacheStallCycles);
153
154    fetchedInsts
155        .name(name() + ".Insts")
156        .desc("Number of instructions fetch has processed")
157        .prereq(fetchedInsts);
158
159    fetchedBranches
160        .name(name() + ".Branches")
161        .desc("Number of branches that fetch encountered")
162        .prereq(fetchedBranches);
163
164    predictedBranches
165        .name(name() + ".predictedBranches")
166        .desc("Number of branches that fetch has predicted taken")
167        .prereq(predictedBranches);
168
169    fetchCycles
170        .name(name() + ".Cycles")
171        .desc("Number of cycles fetch has run and was not squashing or"
172              " blocked")
173        .prereq(fetchCycles);
174
175    fetchSquashCycles
176        .name(name() + ".SquashCycles")
177        .desc("Number of cycles fetch has spent squashing")
178        .prereq(fetchSquashCycles);
179
180    fetchTlbCycles
181        .name(name() + ".TlbCycles")
182        .desc("Number of cycles fetch has spent waiting for tlb")
183        .prereq(fetchTlbCycles);
184
185    fetchIdleCycles
186        .name(name() + ".IdleCycles")
187        .desc("Number of cycles fetch was idle")
188        .prereq(fetchIdleCycles);
189
190    fetchBlockedCycles
191        .name(name() + ".BlockedCycles")
192        .desc("Number of cycles fetch has spent blocked")
193        .prereq(fetchBlockedCycles);
194
195    fetchedCacheLines
196        .name(name() + ".CacheLines")
197        .desc("Number of cache lines fetched")
198        .prereq(fetchedCacheLines);
199
200    fetchMiscStallCycles
201        .name(name() + ".MiscStallCycles")
202        .desc("Number of cycles fetch has spent waiting on interrupts, or "
203              "bad addresses, or out of MSHRs")
204        .prereq(fetchMiscStallCycles);
205
206    fetchPendingDrainCycles
207        .name(name() + ".PendingDrainCycles")
208        .desc("Number of cycles fetch has spent waiting on pipes to drain")
209        .prereq(fetchPendingDrainCycles);
210
211    fetchNoActiveThreadStallCycles
212        .name(name() + ".NoActiveThreadStallCycles")
213        .desc("Number of stall cycles due to no active thread to fetch from")
214        .prereq(fetchNoActiveThreadStallCycles);
215
216    fetchPendingTrapStallCycles
217        .name(name() + ".PendingTrapStallCycles")
218        .desc("Number of stall cycles due to pending traps")
219        .prereq(fetchPendingTrapStallCycles);
220
221    fetchPendingQuiesceStallCycles
222        .name(name() + ".PendingQuiesceStallCycles")
223        .desc("Number of stall cycles due to pending quiesce instructions")
224        .prereq(fetchPendingQuiesceStallCycles);
225
226    fetchIcacheWaitRetryStallCycles
227        .name(name() + ".IcacheWaitRetryStallCycles")
228        .desc("Number of stall cycles due to full MSHR")
229        .prereq(fetchIcacheWaitRetryStallCycles);
230
231    fetchIcacheSquashes
232        .name(name() + ".IcacheSquashes")
233        .desc("Number of outstanding Icache misses that were squashed")
234        .prereq(fetchIcacheSquashes);
235
236    fetchTlbSquashes
237        .name(name() + ".ItlbSquashes")
238        .desc("Number of outstanding ITLB misses that were squashed")
239        .prereq(fetchTlbSquashes);
240
241    fetchNisnDist
242        .init(/* base value */ 0,
243              /* last value */ fetchWidth,
244              /* bucket size */ 1)
245        .name(name() + ".rateDist")
246        .desc("Number of instructions fetched each cycle (Total)")
247        .flags(Stats::pdf);
248
249    idleRate
250        .name(name() + ".idleRate")
251        .desc("Percent of cycles fetch was idle")
252        .prereq(idleRate);
253    idleRate = fetchIdleCycles * 100 / cpu->numCycles;
254
255    branchRate
256        .name(name() + ".branchRate")
257        .desc("Number of branch fetches per cycle")
258        .flags(Stats::total);
259    branchRate = fetchedBranches / cpu->numCycles;
260
261    fetchRate
262        .name(name() + ".rate")
263        .desc("Number of inst fetches per cycle")
264        .flags(Stats::total);
265    fetchRate = fetchedInsts / cpu->numCycles;
266
267    branchPred.regStats();
268}
269
270template<class Impl>
271void
272DefaultFetch<Impl>::setTimeBuffer(TimeBuffer<TimeStruct> *time_buffer)
273{
274    timeBuffer = time_buffer;
275
276    // Create wires to get information from proper places in time buffer.
277    fromDecode = timeBuffer->getWire(-decodeToFetchDelay);
278    fromRename = timeBuffer->getWire(-renameToFetchDelay);
279    fromIEW = timeBuffer->getWire(-iewToFetchDelay);
280    fromCommit = timeBuffer->getWire(-commitToFetchDelay);
281}
282
283template<class Impl>
284void
285DefaultFetch<Impl>::setActiveThreads(std::list<ThreadID> *at_ptr)
286{
287    activeThreads = at_ptr;
288}
289
290template<class Impl>
291void
292DefaultFetch<Impl>::setFetchQueue(TimeBuffer<FetchStruct> *fq_ptr)
293{
294    fetchQueue = fq_ptr;
295
296    // Create wire to write information to proper place in fetch queue.
297    toDecode = fetchQueue->getWire(0);
298}
299
300template<class Impl>
301void
302DefaultFetch<Impl>::initStage()
303{
304    // Setup PC and nextPC with initial state.
305    for (ThreadID tid = 0; tid < numThreads; tid++) {
306        pc[tid] = cpu->pcState(tid);
307        fetchOffset[tid] = 0;
308        macroop[tid] = NULL;
309        delayedCommit[tid] = false;
310    }
311
312    for (ThreadID tid = 0; tid < numThreads; tid++) {
313
314        fetchStatus[tid] = Running;
315
316        priorityList.push_back(tid);
317
318        memReq[tid] = NULL;
319
320        stalls[tid].decode = false;
321        stalls[tid].rename = false;
322        stalls[tid].iew = false;
323        stalls[tid].commit = false;
324    }
325
326    // Schedule fetch to get the correct PC from the CPU
327    // scheduleFetchStartupEvent(1);
328
329    // Fetch needs to start fetching instructions at the very beginning,
330    // so it must start up in active state.
331    switchToActive();
332}
333
334template<class Impl>
335void
336DefaultFetch<Impl>::setIcache()
337{
338    assert(cpu->getIcachePort()->isConnected());
339
340    // Size of cache block.
341    cacheBlkSize = cpu->getIcachePort()->peerBlockSize();
342
343    // Create mask to get rid of offset bits.
344    cacheBlkMask = (cacheBlkSize - 1);
345
346    for (ThreadID tid = 0; tid < numThreads; tid++) {
347        // Create space to store a cache line.
348        cacheData[tid] = new uint8_t[cacheBlkSize];
349        cacheDataPC[tid] = 0;
350        cacheDataValid[tid] = false;
351    }
352}
353
354template<class Impl>
355void
356DefaultFetch<Impl>::processCacheCompletion(PacketPtr pkt)
357{
358    ThreadID tid = pkt->req->threadId();
359
360    DPRINTF(Fetch, "[tid:%u] Waking up from cache miss.\n", tid);
361
362    assert(!pkt->wasNacked());
363
364    // Only change the status if it's still waiting on the icache access
365    // to return.
366    if (fetchStatus[tid] != IcacheWaitResponse ||
367        pkt->req != memReq[tid] ||
368        isSwitchedOut()) {
369        ++fetchIcacheSquashes;
370        delete pkt->req;
371        delete pkt;
372        return;
373    }
374
375    memcpy(cacheData[tid], pkt->getPtr<uint8_t>(), cacheBlkSize);
376    cacheDataValid[tid] = true;
377
378    if (!drainPending) {
379        // Wake up the CPU (if it went to sleep and was waiting on
380        // this completion event).
381        cpu->wakeCPU();
382
383        DPRINTF(Activity, "[tid:%u] Activating fetch due to cache completion\n",
384                tid);
385
386        switchToActive();
387    }
388
389    // Only switch to IcacheAccessComplete if we're not stalled as well.
390    if (checkStall(tid)) {
391        fetchStatus[tid] = Blocked;
392    } else {
393        fetchStatus[tid] = IcacheAccessComplete;
394    }
395
396    // Reset the mem req to NULL.
397    delete pkt->req;
398    delete pkt;
399    memReq[tid] = NULL;
400}
401
402template <class Impl>
403bool
404DefaultFetch<Impl>::drain()
405{
406    // Fetch is ready to drain at any time.
407    cpu->signalDrained();
408    drainPending = true;
409    return true;
410}
411
412template <class Impl>
413void
414DefaultFetch<Impl>::resume()
415{
416    drainPending = false;
417}
418
419template <class Impl>
420void
421DefaultFetch<Impl>::switchOut()
422{
423    switchedOut = true;
424    // Branch predictor needs to have its state cleared.
425    branchPred.switchOut();
426}
427
428template <class Impl>
429void
430DefaultFetch<Impl>::takeOverFrom()
431{
432    // the instruction port is now connected so we can get the block
433    // size
434    setIcache();
435
436    // Reset all state
437    for (ThreadID i = 0; i < Impl::MaxThreads; ++i) {
438        stalls[i].decode = 0;
439        stalls[i].rename = 0;
440        stalls[i].iew = 0;
441        stalls[i].commit = 0;
442        pc[i] = cpu->pcState(i);
443        fetchStatus[i] = Running;
444    }
445    numInst = 0;
446    wroteToTimeBuffer = false;
447    _status = Inactive;
448    switchedOut = false;
449    interruptPending = false;
450    branchPred.takeOverFrom();
451}
452
453template <class Impl>
454void
455DefaultFetch<Impl>::wakeFromQuiesce()
456{
457    DPRINTF(Fetch, "Waking up from quiesce\n");
458    // Hopefully this is safe
459    // @todo: Allow other threads to wake from quiesce.
460    fetchStatus[0] = Running;
461}
462
463template <class Impl>
464inline void
465DefaultFetch<Impl>::switchToActive()
466{
467    if (_status == Inactive) {
468        DPRINTF(Activity, "Activating stage.\n");
469
470        cpu->activateStage(O3CPU::FetchIdx);
471
472        _status = Active;
473    }
474}
475
476template <class Impl>
477inline void
478DefaultFetch<Impl>::switchToInactive()
479{
480    if (_status == Active) {
481        DPRINTF(Activity, "Deactivating stage.\n");
482
483        cpu->deactivateStage(O3CPU::FetchIdx);
484
485        _status = Inactive;
486    }
487}
488
489template <class Impl>
490bool
491DefaultFetch<Impl>::lookupAndUpdateNextPC(
492        DynInstPtr &inst, TheISA::PCState &nextPC)
493{
494    // Do branch prediction check here.
495    // A bit of a misnomer...next_PC is actually the current PC until
496    // this function updates it.
497    bool predict_taken;
498
499    if (!inst->isControl()) {
500        TheISA::advancePC(nextPC, inst->staticInst);
501        inst->setPredTarg(nextPC);
502        inst->setPredTaken(false);
503        return false;
504    }
505
506    ThreadID tid = inst->threadNumber;
507    predict_taken = branchPred.predict(inst, nextPC, tid);
508
509    if (predict_taken) {
510        DPRINTF(Fetch, "[tid:%i]: [sn:%i]:  Branch predicted to be taken to %s.\n",
511                tid, inst->seqNum, nextPC);
512    } else {
513        DPRINTF(Fetch, "[tid:%i]: [sn:%i]:Branch predicted to be not taken.\n",
514                tid, inst->seqNum);
515    }
516
517    DPRINTF(Fetch, "[tid:%i]: [sn:%i] Branch predicted to go to %s.\n",
518            tid, inst->seqNum, nextPC);
519    inst->setPredTarg(nextPC);
520    inst->setPredTaken(predict_taken);
521
522    ++fetchedBranches;
523
524    if (predict_taken) {
525        ++predictedBranches;
526    }
527
528    return predict_taken;
529}
530
531template <class Impl>
532bool
533DefaultFetch<Impl>::fetchCacheLine(Addr vaddr, ThreadID tid, Addr pc)
534{
535    Fault fault = NoFault;
536
537    // @todo: not sure if these should block translation.
538    //AlphaDep
539    if (cacheBlocked) {
540        DPRINTF(Fetch, "[tid:%i] Can't fetch cache line, cache blocked\n",
541                tid);
542        return false;
543    } else if (isSwitchedOut()) {
544        DPRINTF(Fetch, "[tid:%i] Can't fetch cache line, switched out\n",
545                tid);
546        return false;
547    } else if (checkInterrupt(pc) && !delayedCommit[tid]) {
548        // Hold off fetch from getting new instructions when:
549        // Cache is blocked, or
550        // while an interrupt is pending and we're not in PAL mode, or
551        // fetch is switched out.
552        DPRINTF(Fetch, "[tid:%i] Can't fetch cache line, interrupt pending\n",
553                tid);
554        return false;
555    }
556
557    // Align the fetch address so it's at the start of a cache block.
558    Addr block_PC = icacheBlockAlignPC(vaddr);
559
560    DPRINTF(Fetch, "[tid:%i] Fetching cache line %#x for addr %#x\n",
561            tid, block_PC, vaddr);
562
563    // Setup the memReq to do a read of the first instruction's address.
564    // Set the appropriate read size and flags as well.
565    // Build request here.
566    RequestPtr mem_req =
567        new Request(tid, block_PC, cacheBlkSize, Request::INST_FETCH,
568                    pc, cpu->thread[tid]->contextId(), tid);
569
570    memReq[tid] = mem_req;
571
572    // Initiate translation of the icache block
573    fetchStatus[tid] = ItlbWait;
574    FetchTranslation *trans = new FetchTranslation(this);
575    cpu->itb->translateTiming(mem_req, cpu->thread[tid]->getTC(),
576                              trans, BaseTLB::Execute);
577    return true;
578}
579
580template <class Impl>
581void
582DefaultFetch<Impl>::finishTranslation(Fault fault, RequestPtr mem_req)
583{
584    ThreadID tid = mem_req->threadId();
585    Addr block_PC = mem_req->getVaddr();
586
587    // Wake up CPU if it was idle
588    cpu->wakeCPU();
589
590    if (fetchStatus[tid] != ItlbWait || mem_req != memReq[tid] ||
591        mem_req->getVaddr() != memReq[tid]->getVaddr() || isSwitchedOut()) {
592        DPRINTF(Fetch, "[tid:%i] Ignoring itlb completed after squash\n",
593                tid);
594        ++fetchTlbSquashes;
595        delete mem_req;
596        return;
597    }
598
599
600    // If translation was successful, attempt to read the icache block.
601    if (fault == NoFault) {
602        // Check that we're not going off into random memory
603        // If we have, just wait around for commit to squash something and put
604        // us on the right track
605        if (!cpu->system->isMemory(mem_req->getPaddr())) {
606            warn("Address %#x is outside of physical memory, stopping fetch\n",
607                    mem_req->getPaddr());
608            fetchStatus[tid] = NoGoodAddr;
609            delete mem_req;
610            memReq[tid] = NULL;
611            return;
612        }
613
614        // Build packet here.
615        PacketPtr data_pkt = new Packet(mem_req,
616                                        MemCmd::ReadReq, Packet::Broadcast);
617        data_pkt->dataDynamicArray(new uint8_t[cacheBlkSize]);
618
619        cacheDataPC[tid] = block_PC;
620        cacheDataValid[tid] = false;
621        DPRINTF(Fetch, "Fetch: Doing instruction read.\n");
622
623        fetchedCacheLines++;
624
625        // Access the cache.
626        if (!cpu->getIcachePort()->sendTiming(data_pkt)) {
627            assert(retryPkt == NULL);
628            assert(retryTid == InvalidThreadID);
629            DPRINTF(Fetch, "[tid:%i] Out of MSHRs!\n", tid);
630
631            fetchStatus[tid] = IcacheWaitRetry;
632            retryPkt = data_pkt;
633            retryTid = tid;
634            cacheBlocked = true;
635        } else {
636            DPRINTF(Fetch, "[tid:%i]: Doing Icache access.\n", tid);
637            DPRINTF(Activity, "[tid:%i]: Activity: Waiting on I-cache "
638                    "response.\n", tid);
639
640            lastIcacheStall[tid] = curTick();
641            fetchStatus[tid] = IcacheWaitResponse;
642        }
643    } else {
644        if (!(numInst < fetchWidth)) {
645            assert(!finishTranslationEvent.scheduled());
646            finishTranslationEvent.setFault(fault);
647            finishTranslationEvent.setReq(mem_req);
648            cpu->schedule(finishTranslationEvent, cpu->nextCycle(curTick() + cpu->ticks(1)));
649            return;
650        }
651        DPRINTF(Fetch, "[tid:%i] Got back req with addr %#x but expected %#x\n",
652                tid, mem_req->getVaddr(), memReq[tid]->getVaddr());
653        // Translation faulted, icache request won't be sent.
654        delete mem_req;
655        memReq[tid] = NULL;
656
657        // Send the fault to commit.  This thread will not do anything
658        // until commit handles the fault.  The only other way it can
659        // wake up is if a squash comes along and changes the PC.
660        TheISA::PCState fetchPC = pc[tid];
661
662        DPRINTF(Fetch, "[tid:%i]: Translation faulted, building noop.\n", tid);
663        // We will use a nop in ordier to carry the fault.
664        DynInstPtr instruction = buildInst(tid,
665                decoder.decode(TheISA::NoopMachInst, fetchPC.instAddr()),
666                NULL, fetchPC, fetchPC, false);
667
668        instruction->setPredTarg(fetchPC);
669        instruction->fault = fault;
670        wroteToTimeBuffer = true;
671
672        DPRINTF(Activity, "Activity this cycle.\n");
673        cpu->activityThisCycle();
674
675        fetchStatus[tid] = TrapPending;
676
677        DPRINTF(Fetch, "[tid:%i]: Blocked, need to handle the trap.\n", tid);
678        DPRINTF(Fetch, "[tid:%i]: fault (%s) detected @ PC %s.\n",
679                tid, fault->name(), pc[tid]);
680    }
681    _status = updateFetchStatus();
682}
683
684template <class Impl>
685inline void
686DefaultFetch<Impl>::doSquash(const TheISA::PCState &newPC,
687                             const DynInstPtr squashInst, ThreadID tid)
688{
689    DPRINTF(Fetch, "[tid:%i]: Squashing, setting PC to: %s.\n",
690            tid, newPC);
691
692    pc[tid] = newPC;
693    fetchOffset[tid] = 0;
694    if (squashInst && squashInst->pcState().instAddr() == newPC.instAddr())
695        macroop[tid] = squashInst->macroop;
696    else
697        macroop[tid] = NULL;
698    predecoder.reset();
699
700    // Clear the icache miss if it's outstanding.
701    if (fetchStatus[tid] == IcacheWaitResponse) {
702        DPRINTF(Fetch, "[tid:%i]: Squashing outstanding Icache miss.\n",
703                tid);
704        memReq[tid] = NULL;
705    } else if (fetchStatus[tid] == ItlbWait) {
706        DPRINTF(Fetch, "[tid:%i]: Squashing outstanding ITLB miss.\n",
707                tid);
708        memReq[tid] = NULL;
709    }
710
711    // Get rid of the retrying packet if it was from this thread.
712    if (retryTid == tid) {
713        assert(cacheBlocked);
714        if (retryPkt) {
715            delete retryPkt->req;
716            delete retryPkt;
717        }
718        retryPkt = NULL;
719        retryTid = InvalidThreadID;
720    }
721
722    fetchStatus[tid] = Squashing;
723
724    // microops are being squashed, it is not known wheather the
725    // youngest non-squashed microop was  marked delayed commit
726    // or not. Setting the flag to true ensures that the
727    // interrupts are not handled when they cannot be, though
728    // some opportunities to handle interrupts may be missed.
729    delayedCommit[tid] = true;
730
731    ++fetchSquashCycles;
732}
733
734template<class Impl>
735void
736DefaultFetch<Impl>::squashFromDecode(const TheISA::PCState &newPC,
737                                     const DynInstPtr squashInst,
738                                     const InstSeqNum seq_num, ThreadID tid)
739{
740    DPRINTF(Fetch, "[tid:%i]: Squashing from decode.\n", tid);
741
742    doSquash(newPC, squashInst, tid);
743
744    // Tell the CPU to remove any instructions that are in flight between
745    // fetch and decode.
746    cpu->removeInstsUntil(seq_num, tid);
747}
748
749template<class Impl>
750bool
751DefaultFetch<Impl>::checkStall(ThreadID tid) const
752{
753    bool ret_val = false;
754
755    if (cpu->contextSwitch) {
756        DPRINTF(Fetch,"[tid:%i]: Stalling for a context switch.\n",tid);
757        ret_val = true;
758    } else if (stalls[tid].decode) {
759        DPRINTF(Fetch,"[tid:%i]: Stall from Decode stage detected.\n",tid);
760        ret_val = true;
761    } else if (stalls[tid].rename) {
762        DPRINTF(Fetch,"[tid:%i]: Stall from Rename stage detected.\n",tid);
763        ret_val = true;
764    } else if (stalls[tid].iew) {
765        DPRINTF(Fetch,"[tid:%i]: Stall from IEW stage detected.\n",tid);
766        ret_val = true;
767    } else if (stalls[tid].commit) {
768        DPRINTF(Fetch,"[tid:%i]: Stall from Commit stage detected.\n",tid);
769        ret_val = true;
770    }
771
772    return ret_val;
773}
774
775template<class Impl>
776typename DefaultFetch<Impl>::FetchStatus
777DefaultFetch<Impl>::updateFetchStatus()
778{
779    //Check Running
780    list<ThreadID>::iterator threads = activeThreads->begin();
781    list<ThreadID>::iterator end = activeThreads->end();
782
783    while (threads != end) {
784        ThreadID tid = *threads++;
785
786        if (fetchStatus[tid] == Running ||
787            fetchStatus[tid] == Squashing ||
788            fetchStatus[tid] == IcacheAccessComplete) {
789
790            if (_status == Inactive) {
791                DPRINTF(Activity, "[tid:%i]: Activating stage.\n",tid);
792
793                if (fetchStatus[tid] == IcacheAccessComplete) {
794                    DPRINTF(Activity, "[tid:%i]: Activating fetch due to cache"
795                            "completion\n",tid);
796                }
797
798                cpu->activateStage(O3CPU::FetchIdx);
799            }
800
801            return Active;
802        }
803    }
804
805    // Stage is switching from active to inactive, notify CPU of it.
806    if (_status == Active) {
807        DPRINTF(Activity, "Deactivating stage.\n");
808
809        cpu->deactivateStage(O3CPU::FetchIdx);
810    }
811
812    return Inactive;
813}
814
815template <class Impl>
816void
817DefaultFetch<Impl>::squash(const TheISA::PCState &newPC,
818                           const InstSeqNum seq_num, DynInstPtr squashInst,
819                           ThreadID tid)
820{
821    DPRINTF(Fetch, "[tid:%u]: Squash from commit.\n", tid);
822
823    doSquash(newPC, squashInst, tid);
824
825    // Tell the CPU to remove any instructions that are not in the ROB.
826    cpu->removeInstsNotInROB(tid);
827}
828
829template <class Impl>
830void
831DefaultFetch<Impl>::tick()
832{
833    list<ThreadID>::iterator threads = activeThreads->begin();
834    list<ThreadID>::iterator end = activeThreads->end();
835    bool status_change = false;
836
837    wroteToTimeBuffer = false;
838
839    for (ThreadID i = 0; i < Impl::MaxThreads; ++i) {
840        issuePipelinedIfetch[i] = false;
841    }
842
843    while (threads != end) {
844        ThreadID tid = *threads++;
845
846        // Check the signals for each thread to determine the proper status
847        // for each thread.
848        bool updated_status = checkSignalsAndUpdate(tid);
849        status_change =  status_change || updated_status;
850    }
851
852    DPRINTF(Fetch, "Running stage.\n");
853
854    if (FullSystem) {
855        if (fromCommit->commitInfo[0].interruptPending) {
856            interruptPending = true;
857        }
858
859        if (fromCommit->commitInfo[0].clearInterrupt) {
860            interruptPending = false;
861        }
862    }
863
864    for (threadFetched = 0; threadFetched < numFetchingThreads;
865         threadFetched++) {
866        // Fetch each of the actively fetching threads.
867        fetch(status_change);
868    }
869
870    // Record number of instructions fetched this cycle for distribution.
871    fetchNisnDist.sample(numInst);
872
873    if (status_change) {
874        // Change the fetch stage status if there was a status change.
875        _status = updateFetchStatus();
876    }
877
878    // If there was activity this cycle, inform the CPU of it.
879    if (wroteToTimeBuffer || cpu->contextSwitch) {
880        DPRINTF(Activity, "Activity this cycle.\n");
881
882        cpu->activityThisCycle();
883    }
884
885    // Issue the next I-cache request if possible.
886    for (ThreadID i = 0; i < Impl::MaxThreads; ++i) {
887        if (issuePipelinedIfetch[i]) {
888            pipelineIcacheAccesses(i);
889        }
890    }
891
892    // Reset the number of the instruction we've fetched.
893    numInst = 0;
894}
895
896template <class Impl>
897bool
898DefaultFetch<Impl>::checkSignalsAndUpdate(ThreadID tid)
899{
900    // Update the per thread stall statuses.
901    if (fromDecode->decodeBlock[tid]) {
902        stalls[tid].decode = true;
903    }
904
905    if (fromDecode->decodeUnblock[tid]) {
906        assert(stalls[tid].decode);
907        assert(!fromDecode->decodeBlock[tid]);
908        stalls[tid].decode = false;
909    }
910
911    if (fromRename->renameBlock[tid]) {
912        stalls[tid].rename = true;
913    }
914
915    if (fromRename->renameUnblock[tid]) {
916        assert(stalls[tid].rename);
917        assert(!fromRename->renameBlock[tid]);
918        stalls[tid].rename = false;
919    }
920
921    if (fromIEW->iewBlock[tid]) {
922        stalls[tid].iew = true;
923    }
924
925    if (fromIEW->iewUnblock[tid]) {
926        assert(stalls[tid].iew);
927        assert(!fromIEW->iewBlock[tid]);
928        stalls[tid].iew = false;
929    }
930
931    if (fromCommit->commitBlock[tid]) {
932        stalls[tid].commit = true;
933    }
934
935    if (fromCommit->commitUnblock[tid]) {
936        assert(stalls[tid].commit);
937        assert(!fromCommit->commitBlock[tid]);
938        stalls[tid].commit = false;
939    }
940
941    // Check squash signals from commit.
942    if (fromCommit->commitInfo[tid].squash) {
943
944        DPRINTF(Fetch, "[tid:%u]: Squashing instructions due to squash "
945                "from commit.\n",tid);
946        // In any case, squash.
947        squash(fromCommit->commitInfo[tid].pc,
948               fromCommit->commitInfo[tid].doneSeqNum,
949               fromCommit->commitInfo[tid].squashInst, tid);
950
951        // If it was a branch mispredict on a control instruction, update the
952        // branch predictor with that instruction, otherwise just kill the
953        // invalid state we generated in after sequence number
954        if (fromCommit->commitInfo[tid].mispredictInst &&
955            fromCommit->commitInfo[tid].mispredictInst->isControl()) {
956            branchPred.squash(fromCommit->commitInfo[tid].doneSeqNum,
957                              fromCommit->commitInfo[tid].pc,
958                              fromCommit->commitInfo[tid].branchTaken,
959                              tid);
960        } else {
961            branchPred.squash(fromCommit->commitInfo[tid].doneSeqNum,
962                              tid);
963        }
964
965        return true;
966    } else if (fromCommit->commitInfo[tid].doneSeqNum) {
967        // Update the branch predictor if it wasn't a squashed instruction
968        // that was broadcasted.
969        branchPred.update(fromCommit->commitInfo[tid].doneSeqNum, tid);
970    }
971
972    // Check ROB squash signals from commit.
973    if (fromCommit->commitInfo[tid].robSquashing) {
974        DPRINTF(Fetch, "[tid:%u]: ROB is still squashing.\n", tid);
975
976        // Continue to squash.
977        fetchStatus[tid] = Squashing;
978
979        return true;
980    }
981
982    // Check squash signals from decode.
983    if (fromDecode->decodeInfo[tid].squash) {
984        DPRINTF(Fetch, "[tid:%u]: Squashing instructions due to squash "
985                "from decode.\n",tid);
986
987        // Update the branch predictor.
988        if (fromDecode->decodeInfo[tid].branchMispredict) {
989            branchPred.squash(fromDecode->decodeInfo[tid].doneSeqNum,
990                              fromDecode->decodeInfo[tid].nextPC,
991                              fromDecode->decodeInfo[tid].branchTaken,
992                              tid);
993        } else {
994            branchPred.squash(fromDecode->decodeInfo[tid].doneSeqNum,
995                              tid);
996        }
997
998        if (fetchStatus[tid] != Squashing) {
999
1000            DPRINTF(Fetch, "Squashing from decode with PC = %s\n",
1001                fromDecode->decodeInfo[tid].nextPC);
1002            // Squash unless we're already squashing
1003            squashFromDecode(fromDecode->decodeInfo[tid].nextPC,
1004                             fromDecode->decodeInfo[tid].squashInst,
1005                             fromDecode->decodeInfo[tid].doneSeqNum,
1006                             tid);
1007
1008            return true;
1009        }
1010    }
1011
1012    if (checkStall(tid) &&
1013        fetchStatus[tid] != IcacheWaitResponse &&
1014        fetchStatus[tid] != IcacheWaitRetry) {
1015        DPRINTF(Fetch, "[tid:%i]: Setting to blocked\n",tid);
1016
1017        fetchStatus[tid] = Blocked;
1018
1019        return true;
1020    }
1021
1022    if (fetchStatus[tid] == Blocked ||
1023        fetchStatus[tid] == Squashing) {
1024        // Switch status to running if fetch isn't being told to block or
1025        // squash this cycle.
1026        DPRINTF(Fetch, "[tid:%i]: Done squashing, switching to running.\n",
1027                tid);
1028
1029        fetchStatus[tid] = Running;
1030
1031        return true;
1032    }
1033
1034    // If we've reached this point, we have not gotten any signals that
1035    // cause fetch to change its status.  Fetch remains the same as before.
1036    return false;
1037}
1038
1039template<class Impl>
1040typename Impl::DynInstPtr
1041DefaultFetch<Impl>::buildInst(ThreadID tid, StaticInstPtr staticInst,
1042                              StaticInstPtr curMacroop, TheISA::PCState thisPC,
1043                              TheISA::PCState nextPC, bool trace)
1044{
1045    // Get a sequence number.
1046    InstSeqNum seq = cpu->getAndIncrementInstSeq();
1047
1048    // Create a new DynInst from the instruction fetched.
1049    DynInstPtr instruction =
1050        new DynInst(staticInst, curMacroop, thisPC, nextPC, seq, cpu);
1051    instruction->setTid(tid);
1052
1053    instruction->setASID(tid);
1054
1055    instruction->setThreadState(cpu->thread[tid]);
1056
1057    DPRINTF(Fetch, "[tid:%i]: Instruction PC %#x (%d) created "
1058            "[sn:%lli].\n", tid, thisPC.instAddr(),
1059            thisPC.microPC(), seq);
1060
1061    DPRINTF(Fetch, "[tid:%i]: Instruction is: %s\n", tid,
1062            instruction->staticInst->
1063            disassemble(thisPC.instAddr()));
1064
1065#if TRACING_ON
1066    if (trace) {
1067        instruction->traceData =
1068            cpu->getTracer()->getInstRecord(curTick(), cpu->tcBase(tid),
1069                    instruction->staticInst, thisPC, curMacroop);
1070    }
1071#else
1072    instruction->traceData = NULL;
1073#endif
1074
1075    // Add instruction to the CPU's list of instructions.
1076    instruction->setInstListIt(cpu->addInst(instruction));
1077
1078    // Write the instruction to the first slot in the queue
1079    // that heads to decode.
1080    assert(numInst < fetchWidth);
1081    toDecode->insts[toDecode->size++] = instruction;
1082
1083    // Keep track of if we can take an interrupt at this boundary
1084    delayedCommit[tid] = instruction->isDelayedCommit();
1085
1086    return instruction;
1087}
1088
1089template<class Impl>
1090void
1091DefaultFetch<Impl>::fetch(bool &status_change)
1092{
1093    //////////////////////////////////////////
1094    // Start actual fetch
1095    //////////////////////////////////////////
1096    ThreadID tid = getFetchingThread(fetchPolicy);
1097
1098    if (tid == InvalidThreadID || drainPending) {
1099        // Breaks looping condition in tick()
1100        threadFetched = numFetchingThreads;
1101
1102        if (numThreads == 1) {  // @todo Per-thread stats
1103            profileStall(0);
1104        }
1105
1106        return;
1107    }
1108
1109    DPRINTF(Fetch, "Attempting to fetch from [tid:%i]\n", tid);
1110
1111    // The current PC.
1112    TheISA::PCState thisPC = pc[tid];
1113
1114    Addr pcOffset = fetchOffset[tid];
1115    Addr fetchAddr = (thisPC.instAddr() + pcOffset) & BaseCPU::PCMask;
1116
1117    bool inRom = isRomMicroPC(thisPC.microPC());
1118
1119    // If returning from the delay of a cache miss, then update the status
1120    // to running, otherwise do the cache access.  Possibly move this up
1121    // to tick() function.
1122    if (fetchStatus[tid] == IcacheAccessComplete) {
1123        DPRINTF(Fetch, "[tid:%i]: Icache miss is complete.\n", tid);
1124
1125        fetchStatus[tid] = Running;
1126        status_change = true;
1127    } else if (fetchStatus[tid] == Running) {
1128        // Align the fetch PC so its at the start of a cache block.
1129        Addr block_PC = icacheBlockAlignPC(fetchAddr);
1130
1131        // If buffer is no longer valid or fetchAddr has moved to point
1132        // to the next cache block, AND we have no remaining ucode
1133        // from a macro-op, then start fetch from icache.
1134        if (!(cacheDataValid[tid] && block_PC == cacheDataPC[tid])
1135            && !inRom && !macroop[tid]) {
1136            DPRINTF(Fetch, "[tid:%i]: Attempting to translate and read "
1137                    "instruction, starting at PC %s.\n", tid, thisPC);
1138
1139            fetchCacheLine(fetchAddr, tid, thisPC.instAddr());
1140
1141            if (fetchStatus[tid] == IcacheWaitResponse)
1142                ++icacheStallCycles;
1143            else if (fetchStatus[tid] == ItlbWait)
1144                ++fetchTlbCycles;
1145            else
1146                ++fetchMiscStallCycles;
1147            return;
1148        } else if ((checkInterrupt(thisPC.instAddr()) && !delayedCommit[tid])
1149                   || isSwitchedOut()) {
1150            // Stall CPU if an interrupt is posted and we're not issuing
1151            // an delayed commit micro-op currently (delayed commit instructions
1152            // are not interruptable by interrupts, only faults)
1153            ++fetchMiscStallCycles;
1154            DPRINTF(Fetch, "[tid:%i]: Fetch is stalled!\n", tid);
1155            return;
1156        }
1157    } else {
1158        if (fetchStatus[tid] == Idle) {
1159            ++fetchIdleCycles;
1160            DPRINTF(Fetch, "[tid:%i]: Fetch is idle!\n", tid);
1161        }
1162
1163        // Status is Idle, so fetch should do nothing.
1164        return;
1165    }
1166
1167    ++fetchCycles;
1168
1169    TheISA::PCState nextPC = thisPC;
1170
1171    StaticInstPtr staticInst = NULL;
1172    StaticInstPtr curMacroop = macroop[tid];
1173
1174    // If the read of the first instruction was successful, then grab the
1175    // instructions from the rest of the cache line and put them into the
1176    // queue heading to decode.
1177
1178    DPRINTF(Fetch, "[tid:%i]: Adding instructions to queue to "
1179            "decode.\n", tid);
1180
1181    // Need to keep track of whether or not a predicted branch
1182    // ended this fetch block.
1183    bool predictedBranch = false;
1184
1185    TheISA::MachInst *cacheInsts =
1186        reinterpret_cast<TheISA::MachInst *>(cacheData[tid]);
1187
1188    const unsigned numInsts = cacheBlkSize / instSize;
1189    unsigned blkOffset = (fetchAddr - cacheDataPC[tid]) / instSize;
1190
1191    // Loop through instruction memory from the cache.
1192    // Keep issuing while fetchWidth is available and branch is not
1193    // predicted taken
1194    while (numInst < fetchWidth && !predictedBranch) {
1195
1196        // We need to process more memory if we aren't going to get a
1197        // StaticInst from the rom, the current macroop, or what's already
1198        // in the predecoder.
1199        bool needMem = !inRom && !curMacroop && !predecoder.extMachInstReady();
1200        fetchAddr = (thisPC.instAddr() + pcOffset) & BaseCPU::PCMask;
1201        Addr block_PC = icacheBlockAlignPC(fetchAddr);
1202
1203        if (needMem) {
1204            // If buffer is no longer valid or fetchAddr has moved to point
1205            // to the next cache block then start fetch from icache.
1206            if (!cacheDataValid[tid] || block_PC != cacheDataPC[tid])
1207                break;
1208
1209            if (blkOffset >= numInsts) {
1210                // We need to process more memory, but we've run out of the
1211                // current block.
1212                break;
1213            }
1214
1215            if (ISA_HAS_DELAY_SLOT && pcOffset == 0) {
1216                // Walk past any annulled delay slot instructions.
1217                Addr pcAddr = thisPC.instAddr() & BaseCPU::PCMask;
1218                while (fetchAddr != pcAddr && blkOffset < numInsts) {
1219                    blkOffset++;
1220                    fetchAddr += instSize;
1221                }
1222                if (blkOffset >= numInsts)
1223                    break;
1224            }
1225            MachInst inst = TheISA::gtoh(cacheInsts[blkOffset]);
1226
1227            predecoder.setTC(cpu->thread[tid]->getTC());
1228            predecoder.moreBytes(thisPC, fetchAddr, inst);
1229
1230            if (predecoder.needMoreBytes()) {
1231                blkOffset++;
1232                fetchAddr += instSize;
1233                pcOffset += instSize;
1234            }
1235        }
1236
1237        // Extract as many instructions and/or microops as we can from
1238        // the memory we've processed so far.
1239        do {
1240            if (!(curMacroop || inRom)) {
1241                if (predecoder.extMachInstReady()) {
1242                    ExtMachInst extMachInst =
1243                        predecoder.getExtMachInst(thisPC);
1244                    staticInst =
1245                        decoder.decode(extMachInst, thisPC.instAddr());
1246
1247                    // Increment stat of fetched instructions.
1248                    ++fetchedInsts;
1249
1250                    if (staticInst->isMacroop()) {
1251                        curMacroop = staticInst;
1252                    } else {
1253                        pcOffset = 0;
1254                    }
1255                } else {
1256                    // We need more bytes for this instruction so blkOffset and
1257                    // pcOffset will be updated
1258                    break;
1259                }
1260            }
1261            // Whether we're moving to a new macroop because we're at the
1262            // end of the current one, or the branch predictor incorrectly
1263            // thinks we are...
1264            bool newMacro = false;
1265            if (curMacroop || inRom) {
1266                if (inRom) {
1267                    staticInst = cpu->microcodeRom.fetchMicroop(
1268                            thisPC.microPC(), curMacroop);
1269                } else {
1270                    staticInst = curMacroop->fetchMicroop(thisPC.microPC());
1271                }
1272                newMacro |= staticInst->isLastMicroop();
1273            }
1274
1275            DynInstPtr instruction =
1276                buildInst(tid, staticInst, curMacroop,
1277                          thisPC, nextPC, true);
1278
1279            numInst++;
1280
1281#if TRACING_ON
1282            instruction->fetchTick = curTick();
1283#endif
1284
1285            nextPC = thisPC;
1286
1287            // If we're branching after this instruction, quite fetching
1288            // from the same block then.
1289            predictedBranch |= thisPC.branching();
1290            predictedBranch |=
1291                lookupAndUpdateNextPC(instruction, nextPC);
1292            if (predictedBranch) {
1293                DPRINTF(Fetch, "Branch detected with PC = %s\n", thisPC);
1294            }
1295
1296            newMacro |= thisPC.instAddr() != nextPC.instAddr();
1297
1298            // Move to the next instruction, unless we have a branch.
1299            thisPC = nextPC;
1300            inRom = isRomMicroPC(thisPC.microPC());
1301
1302            if (newMacro) {
1303                fetchAddr = thisPC.instAddr() & BaseCPU::PCMask;
1304                blkOffset = (fetchAddr - cacheDataPC[tid]) / instSize;
1305                pcOffset = 0;
1306                curMacroop = NULL;
1307            }
1308
1309            if (instruction->isQuiesce()) {
1310                DPRINTF(Fetch,
1311                        "Quiesce instruction encountered, halting fetch!");
1312                fetchStatus[tid] = QuiescePending;
1313                status_change = true;
1314                break;
1315            }
1316        } while ((curMacroop || predecoder.extMachInstReady()) &&
1317                 numInst < fetchWidth);
1318    }
1319
1320    if (predictedBranch) {
1321        DPRINTF(Fetch, "[tid:%i]: Done fetching, predicted branch "
1322                "instruction encountered.\n", tid);
1323    } else if (numInst >= fetchWidth) {
1324        DPRINTF(Fetch, "[tid:%i]: Done fetching, reached fetch bandwidth "
1325                "for this cycle.\n", tid);
1326    } else if (blkOffset >= cacheBlkSize) {
1327        DPRINTF(Fetch, "[tid:%i]: Done fetching, reached the end of cache "
1328                "block.\n", tid);
1329    }
1330
1331    macroop[tid] = curMacroop;
1332    fetchOffset[tid] = pcOffset;
1333
1334    if (numInst > 0) {
1335        wroteToTimeBuffer = true;
1336    }
1337
1338    pc[tid] = thisPC;
1339
1340    // pipeline a fetch if we're crossing a cache boundary and not in
1341    // a state that would preclude fetching
1342    fetchAddr = (thisPC.instAddr() + pcOffset) & BaseCPU::PCMask;
1343    Addr block_PC = icacheBlockAlignPC(fetchAddr);
1344    issuePipelinedIfetch[tid] = block_PC != cacheDataPC[tid] &&
1345        fetchStatus[tid] != IcacheWaitResponse &&
1346        fetchStatus[tid] != ItlbWait &&
1347        fetchStatus[tid] != IcacheWaitRetry &&
1348        fetchStatus[tid] != QuiescePending &&
1349        !curMacroop;
1350}
1351
1352template<class Impl>
1353void
1354DefaultFetch<Impl>::recvRetry()
1355{
1356    if (retryPkt != NULL) {
1357        assert(cacheBlocked);
1358        assert(retryTid != InvalidThreadID);
1359        assert(fetchStatus[retryTid] == IcacheWaitRetry);
1360
1361        if (cpu->getIcachePort()->sendTiming(retryPkt)) {
1362            fetchStatus[retryTid] = IcacheWaitResponse;
1363            retryPkt = NULL;
1364            retryTid = InvalidThreadID;
1365            cacheBlocked = false;
1366        }
1367    } else {
1368        assert(retryTid == InvalidThreadID);
1369        // Access has been squashed since it was sent out.  Just clear
1370        // the cache being blocked.
1371        cacheBlocked = false;
1372    }
1373}
1374
1375///////////////////////////////////////
1376//                                   //
1377//  SMT FETCH POLICY MAINTAINED HERE //
1378//                                   //
1379///////////////////////////////////////
1380template<class Impl>
1381ThreadID
1382DefaultFetch<Impl>::getFetchingThread(FetchPriority &fetch_priority)
1383{
1384    if (numThreads > 1) {
1385        switch (fetch_priority) {
1386
1387          case SingleThread:
1388            return 0;
1389
1390          case RoundRobin:
1391            return roundRobin();
1392
1393          case IQ:
1394            return iqCount();
1395
1396          case LSQ:
1397            return lsqCount();
1398
1399          case Branch:
1400            return branchCount();
1401
1402          default:
1403            return InvalidThreadID;
1404        }
1405    } else {
1406        list<ThreadID>::iterator thread = activeThreads->begin();
1407        if (thread == activeThreads->end()) {
1408            return InvalidThreadID;
1409        }
1410
1411        ThreadID tid = *thread;
1412
1413        if (fetchStatus[tid] == Running ||
1414            fetchStatus[tid] == IcacheAccessComplete ||
1415            fetchStatus[tid] == Idle) {
1416            return tid;
1417        } else {
1418            return InvalidThreadID;
1419        }
1420    }
1421}
1422
1423
1424template<class Impl>
1425ThreadID
1426DefaultFetch<Impl>::roundRobin()
1427{
1428    list<ThreadID>::iterator pri_iter = priorityList.begin();
1429    list<ThreadID>::iterator end      = priorityList.end();
1430
1431    ThreadID high_pri;
1432
1433    while (pri_iter != end) {
1434        high_pri = *pri_iter;
1435
1436        assert(high_pri <= numThreads);
1437
1438        if (fetchStatus[high_pri] == Running ||
1439            fetchStatus[high_pri] == IcacheAccessComplete ||
1440            fetchStatus[high_pri] == Idle) {
1441
1442            priorityList.erase(pri_iter);
1443            priorityList.push_back(high_pri);
1444
1445            return high_pri;
1446        }
1447
1448        pri_iter++;
1449    }
1450
1451    return InvalidThreadID;
1452}
1453
1454template<class Impl>
1455ThreadID
1456DefaultFetch<Impl>::iqCount()
1457{
1458    std::priority_queue<unsigned> PQ;
1459    std::map<unsigned, ThreadID> threadMap;
1460
1461    list<ThreadID>::iterator threads = activeThreads->begin();
1462    list<ThreadID>::iterator end = activeThreads->end();
1463
1464    while (threads != end) {
1465        ThreadID tid = *threads++;
1466        unsigned iqCount = fromIEW->iewInfo[tid].iqCount;
1467
1468        PQ.push(iqCount);
1469        threadMap[iqCount] = tid;
1470    }
1471
1472    while (!PQ.empty()) {
1473        ThreadID high_pri = threadMap[PQ.top()];
1474
1475        if (fetchStatus[high_pri] == Running ||
1476            fetchStatus[high_pri] == IcacheAccessComplete ||
1477            fetchStatus[high_pri] == Idle)
1478            return high_pri;
1479        else
1480            PQ.pop();
1481
1482    }
1483
1484    return InvalidThreadID;
1485}
1486
1487template<class Impl>
1488ThreadID
1489DefaultFetch<Impl>::lsqCount()
1490{
1491    std::priority_queue<unsigned> PQ;
1492    std::map<unsigned, ThreadID> threadMap;
1493
1494    list<ThreadID>::iterator threads = activeThreads->begin();
1495    list<ThreadID>::iterator end = activeThreads->end();
1496
1497    while (threads != end) {
1498        ThreadID tid = *threads++;
1499        unsigned ldstqCount = fromIEW->iewInfo[tid].ldstqCount;
1500
1501        PQ.push(ldstqCount);
1502        threadMap[ldstqCount] = tid;
1503    }
1504
1505    while (!PQ.empty()) {
1506        ThreadID high_pri = threadMap[PQ.top()];
1507
1508        if (fetchStatus[high_pri] == Running ||
1509            fetchStatus[high_pri] == IcacheAccessComplete ||
1510            fetchStatus[high_pri] == Idle)
1511            return high_pri;
1512        else
1513            PQ.pop();
1514    }
1515
1516    return InvalidThreadID;
1517}
1518
1519template<class Impl>
1520ThreadID
1521DefaultFetch<Impl>::branchCount()
1522{
1523#if 0
1524    list<ThreadID>::iterator thread = activeThreads->begin();
1525    assert(thread != activeThreads->end());
1526    ThreadID tid = *thread;
1527#endif
1528
1529    panic("Branch Count Fetch policy unimplemented\n");
1530    return InvalidThreadID;
1531}
1532
1533template<class Impl>
1534void
1535DefaultFetch<Impl>::pipelineIcacheAccesses(ThreadID tid)
1536{
1537    if (!issuePipelinedIfetch[tid]) {
1538        return;
1539    }
1540
1541    // The next PC to access.
1542    TheISA::PCState thisPC = pc[tid];
1543
1544    if (isRomMicroPC(thisPC.microPC())) {
1545        return;
1546    }
1547
1548    Addr pcOffset = fetchOffset[tid];
1549    Addr fetchAddr = (thisPC.instAddr() + pcOffset) & BaseCPU::PCMask;
1550
1551    // Align the fetch PC so its at the start of a cache block.
1552    Addr block_PC = icacheBlockAlignPC(fetchAddr);
1553
1554    // Unless buffer already got the block, fetch it from icache.
1555    if (!(cacheDataValid[tid] && block_PC == cacheDataPC[tid])) {
1556        DPRINTF(Fetch, "[tid:%i]: Issuing a pipelined I-cache access, "
1557                "starting at PC %s.\n", tid, thisPC);
1558
1559        fetchCacheLine(fetchAddr, tid, thisPC.instAddr());
1560    }
1561}
1562
1563template<class Impl>
1564void
1565DefaultFetch<Impl>::profileStall(ThreadID tid) {
1566    DPRINTF(Fetch,"There are no more threads available to fetch from.\n");
1567
1568    // @todo Per-thread stats
1569
1570    if (drainPending) {
1571        ++fetchPendingDrainCycles;
1572        DPRINTF(Fetch, "Fetch is waiting for a drain!\n");
1573    } else if (activeThreads->empty()) {
1574        ++fetchNoActiveThreadStallCycles;
1575        DPRINTF(Fetch, "Fetch has no active thread!\n");
1576    } else if (fetchStatus[tid] == Blocked) {
1577        ++fetchBlockedCycles;
1578        DPRINTF(Fetch, "[tid:%i]: Fetch is blocked!\n", tid);
1579    } else if (fetchStatus[tid] == Squashing) {
1580        ++fetchSquashCycles;
1581        DPRINTF(Fetch, "[tid:%i]: Fetch is squashing!\n", tid);
1582    } else if (fetchStatus[tid] == IcacheWaitResponse) {
1583        ++icacheStallCycles;
1584        DPRINTF(Fetch, "[tid:%i]: Fetch is waiting cache response!\n",
1585                tid);
1586    } else if (fetchStatus[tid] == ItlbWait) {
1587        ++fetchTlbCycles;
1588        DPRINTF(Fetch, "[tid:%i]: Fetch is waiting ITLB walk to "
1589                "finish!\n", tid);
1590    } else if (fetchStatus[tid] == TrapPending) {
1591        ++fetchPendingTrapStallCycles;
1592        DPRINTF(Fetch, "[tid:%i]: Fetch is waiting for a pending trap!\n",
1593                tid);
1594    } else if (fetchStatus[tid] == QuiescePending) {
1595        ++fetchPendingQuiesceStallCycles;
1596        DPRINTF(Fetch, "[tid:%i]: Fetch is waiting for a pending quiesce "
1597                "instruction!\n", tid);
1598    } else if (fetchStatus[tid] == IcacheWaitRetry) {
1599        ++fetchIcacheWaitRetryStallCycles;
1600        DPRINTF(Fetch, "[tid:%i]: Fetch is waiting for an I-cache retry!\n",
1601                tid);
1602    } else if (fetchStatus[tid] == NoGoodAddr) {
1603            DPRINTF(Fetch, "[tid:%i]: Fetch predicted non-executable address\n",
1604                    tid);
1605    } else {
1606        DPRINTF(Fetch, "[tid:%i]: Unexpected fetch stall reason (Status: %i).\n",
1607             tid, fetchStatus[tid]);
1608    }
1609}
1610