fetch_impl.hh revision 8822:e7ae13867098
1/*
2 * Copyright (c) 2010-2011 ARM Limited
3 * All rights reserved.
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder.  You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2004-2006 The Regents of The University of Michigan
15 * All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions are
19 * met: redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer;
21 * redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution;
24 * neither the name of the copyright holders nor the names of its
25 * contributors may be used to endorse or promote products derived from
26 * this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 *
40 * Authors: Kevin Lim
41 *          Korey Sewell
42 */
43
44#include <algorithm>
45#include <cstring>
46#include <list>
47#include <map>
48#include <queue>
49
50#include "arch/isa_traits.hh"
51#include "arch/tlb.hh"
52#include "arch/utility.hh"
53#include "arch/vtophys.hh"
54#include "base/types.hh"
55#include "config/the_isa.hh"
56#include "config/use_checker.hh"
57#include "cpu/base.hh"
58#include "cpu/o3/fetch.hh"
59#include "cpu/exetrace.hh"
60#include "debug/Activity.hh"
61#include "debug/Fetch.hh"
62#include "mem/packet.hh"
63#include "mem/request.hh"
64#include "params/DerivO3CPU.hh"
65#include "sim/byteswap.hh"
66#include "sim/core.hh"
67#include "sim/eventq.hh"
68#include "sim/full_system.hh"
69#include "sim/system.hh"
70
71#if USE_CHECKER
72#include "cpu/checker/cpu.hh"
73#endif // USE_CHECKER
74
75using namespace std;
76
77template<class Impl>
78DefaultFetch<Impl>::DefaultFetch(O3CPU *_cpu, DerivO3CPUParams *params)
79    : cpu(_cpu),
80      branchPred(params),
81      predecoder(NULL),
82      numInst(0),
83      decodeToFetchDelay(params->decodeToFetchDelay),
84      renameToFetchDelay(params->renameToFetchDelay),
85      iewToFetchDelay(params->iewToFetchDelay),
86      commitToFetchDelay(params->commitToFetchDelay),
87      fetchWidth(params->fetchWidth),
88      cacheBlocked(false),
89      retryPkt(NULL),
90      retryTid(InvalidThreadID),
91      numThreads(params->numThreads),
92      numFetchingThreads(params->smtNumFetchingThreads),
93      interruptPending(false),
94      drainPending(false),
95      switchedOut(false),
96      finishTranslationEvent(this)
97{
98    if (numThreads > Impl::MaxThreads)
99        fatal("numThreads (%d) is larger than compiled limit (%d),\n"
100              "\tincrease MaxThreads in src/cpu/o3/impl.hh\n",
101              numThreads, static_cast<int>(Impl::MaxThreads));
102
103    // Set fetch stage's status to inactive.
104    _status = Inactive;
105
106    std::string policy = params->smtFetchPolicy;
107
108    // Convert string to lowercase
109    std::transform(policy.begin(), policy.end(), policy.begin(),
110                   (int(*)(int)) tolower);
111
112    // Figure out fetch policy
113    if (policy == "singlethread") {
114        fetchPolicy = SingleThread;
115        if (numThreads > 1)
116            panic("Invalid Fetch Policy for a SMT workload.");
117    } else if (policy == "roundrobin") {
118        fetchPolicy = RoundRobin;
119        DPRINTF(Fetch, "Fetch policy set to Round Robin\n");
120    } else if (policy == "branch") {
121        fetchPolicy = Branch;
122        DPRINTF(Fetch, "Fetch policy set to Branch Count\n");
123    } else if (policy == "iqcount") {
124        fetchPolicy = IQ;
125        DPRINTF(Fetch, "Fetch policy set to IQ count\n");
126    } else if (policy == "lsqcount") {
127        fetchPolicy = LSQ;
128        DPRINTF(Fetch, "Fetch policy set to LSQ count\n");
129    } else {
130        fatal("Invalid Fetch Policy. Options Are: {SingleThread,"
131              " RoundRobin,LSQcount,IQcount}\n");
132    }
133
134    // Get the size of an instruction.
135    instSize = sizeof(TheISA::MachInst);
136}
137
138template <class Impl>
139std::string
140DefaultFetch<Impl>::name() const
141{
142    return cpu->name() + ".fetch";
143}
144
145template <class Impl>
146void
147DefaultFetch<Impl>::regStats()
148{
149    icacheStallCycles
150        .name(name() + ".icacheStallCycles")
151        .desc("Number of cycles fetch is stalled on an Icache miss")
152        .prereq(icacheStallCycles);
153
154    fetchedInsts
155        .name(name() + ".Insts")
156        .desc("Number of instructions fetch has processed")
157        .prereq(fetchedInsts);
158
159    fetchedBranches
160        .name(name() + ".Branches")
161        .desc("Number of branches that fetch encountered")
162        .prereq(fetchedBranches);
163
164    predictedBranches
165        .name(name() + ".predictedBranches")
166        .desc("Number of branches that fetch has predicted taken")
167        .prereq(predictedBranches);
168
169    fetchCycles
170        .name(name() + ".Cycles")
171        .desc("Number of cycles fetch has run and was not squashing or"
172              " blocked")
173        .prereq(fetchCycles);
174
175    fetchSquashCycles
176        .name(name() + ".SquashCycles")
177        .desc("Number of cycles fetch has spent squashing")
178        .prereq(fetchSquashCycles);
179
180    fetchTlbCycles
181        .name(name() + ".TlbCycles")
182        .desc("Number of cycles fetch has spent waiting for tlb")
183        .prereq(fetchTlbCycles);
184
185    fetchIdleCycles
186        .name(name() + ".IdleCycles")
187        .desc("Number of cycles fetch was idle")
188        .prereq(fetchIdleCycles);
189
190    fetchBlockedCycles
191        .name(name() + ".BlockedCycles")
192        .desc("Number of cycles fetch has spent blocked")
193        .prereq(fetchBlockedCycles);
194
195    fetchedCacheLines
196        .name(name() + ".CacheLines")
197        .desc("Number of cache lines fetched")
198        .prereq(fetchedCacheLines);
199
200    fetchMiscStallCycles
201        .name(name() + ".MiscStallCycles")
202        .desc("Number of cycles fetch has spent waiting on interrupts, or "
203              "bad addresses, or out of MSHRs")
204        .prereq(fetchMiscStallCycles);
205
206    fetchPendingDrainCycles
207        .name(name() + ".PendingDrainCycles")
208        .desc("Number of cycles fetch has spent waiting on pipes to drain")
209        .prereq(fetchPendingDrainCycles);
210
211    fetchNoActiveThreadStallCycles
212        .name(name() + ".NoActiveThreadStallCycles")
213        .desc("Number of stall cycles due to no active thread to fetch from")
214        .prereq(fetchNoActiveThreadStallCycles);
215
216    fetchPendingTrapStallCycles
217        .name(name() + ".PendingTrapStallCycles")
218        .desc("Number of stall cycles due to pending traps")
219        .prereq(fetchPendingTrapStallCycles);
220
221    fetchPendingQuiesceStallCycles
222        .name(name() + ".PendingQuiesceStallCycles")
223        .desc("Number of stall cycles due to pending quiesce instructions")
224        .prereq(fetchPendingQuiesceStallCycles);
225
226    fetchIcacheWaitRetryStallCycles
227        .name(name() + ".IcacheWaitRetryStallCycles")
228        .desc("Number of stall cycles due to full MSHR")
229        .prereq(fetchIcacheWaitRetryStallCycles);
230
231    fetchIcacheSquashes
232        .name(name() + ".IcacheSquashes")
233        .desc("Number of outstanding Icache misses that were squashed")
234        .prereq(fetchIcacheSquashes);
235
236    fetchTlbSquashes
237        .name(name() + ".ItlbSquashes")
238        .desc("Number of outstanding ITLB misses that were squashed")
239        .prereq(fetchTlbSquashes);
240
241    fetchNisnDist
242        .init(/* base value */ 0,
243              /* last value */ fetchWidth,
244              /* bucket size */ 1)
245        .name(name() + ".rateDist")
246        .desc("Number of instructions fetched each cycle (Total)")
247        .flags(Stats::pdf);
248
249    idleRate
250        .name(name() + ".idleRate")
251        .desc("Percent of cycles fetch was idle")
252        .prereq(idleRate);
253    idleRate = fetchIdleCycles * 100 / cpu->numCycles;
254
255    branchRate
256        .name(name() + ".branchRate")
257        .desc("Number of branch fetches per cycle")
258        .flags(Stats::total);
259    branchRate = fetchedBranches / cpu->numCycles;
260
261    fetchRate
262        .name(name() + ".rate")
263        .desc("Number of inst fetches per cycle")
264        .flags(Stats::total);
265    fetchRate = fetchedInsts / cpu->numCycles;
266
267    branchPred.regStats();
268}
269
270template<class Impl>
271void
272DefaultFetch<Impl>::setTimeBuffer(TimeBuffer<TimeStruct> *time_buffer)
273{
274    timeBuffer = time_buffer;
275
276    // Create wires to get information from proper places in time buffer.
277    fromDecode = timeBuffer->getWire(-decodeToFetchDelay);
278    fromRename = timeBuffer->getWire(-renameToFetchDelay);
279    fromIEW = timeBuffer->getWire(-iewToFetchDelay);
280    fromCommit = timeBuffer->getWire(-commitToFetchDelay);
281}
282
283template<class Impl>
284void
285DefaultFetch<Impl>::setActiveThreads(std::list<ThreadID> *at_ptr)
286{
287    activeThreads = at_ptr;
288}
289
290template<class Impl>
291void
292DefaultFetch<Impl>::setFetchQueue(TimeBuffer<FetchStruct> *fq_ptr)
293{
294    fetchQueue = fq_ptr;
295
296    // Create wire to write information to proper place in fetch queue.
297    toDecode = fetchQueue->getWire(0);
298}
299
300template<class Impl>
301void
302DefaultFetch<Impl>::initStage()
303{
304    // Setup PC and nextPC with initial state.
305    for (ThreadID tid = 0; tid < numThreads; tid++) {
306        pc[tid] = cpu->pcState(tid);
307        fetchOffset[tid] = 0;
308        macroop[tid] = NULL;
309        delayedCommit[tid] = false;
310    }
311
312    for (ThreadID tid = 0; tid < numThreads; tid++) {
313
314        fetchStatus[tid] = Running;
315
316        priorityList.push_back(tid);
317
318        memReq[tid] = NULL;
319
320        stalls[tid].decode = false;
321        stalls[tid].rename = false;
322        stalls[tid].iew = false;
323        stalls[tid].commit = false;
324    }
325
326    // Schedule fetch to get the correct PC from the CPU
327    // scheduleFetchStartupEvent(1);
328
329    // Fetch needs to start fetching instructions at the very beginning,
330    // so it must start up in active state.
331    switchToActive();
332}
333
334template<class Impl>
335void
336DefaultFetch<Impl>::setIcache()
337{
338    assert(cpu->getIcachePort()->isConnected());
339
340    // Size of cache block.
341    cacheBlkSize = cpu->getIcachePort()->peerBlockSize();
342
343    // Create mask to get rid of offset bits.
344    cacheBlkMask = (cacheBlkSize - 1);
345
346    for (ThreadID tid = 0; tid < numThreads; tid++) {
347        // Create space to store a cache line.
348        cacheData[tid] = new uint8_t[cacheBlkSize];
349        cacheDataPC[tid] = 0;
350        cacheDataValid[tid] = false;
351    }
352}
353
354template<class Impl>
355void
356DefaultFetch<Impl>::processCacheCompletion(PacketPtr pkt)
357{
358    ThreadID tid = pkt->req->threadId();
359
360    DPRINTF(Fetch, "[tid:%u] Waking up from cache miss.\n", tid);
361
362    assert(!pkt->wasNacked());
363
364    // Only change the status if it's still waiting on the icache access
365    // to return.
366    if (fetchStatus[tid] != IcacheWaitResponse ||
367        pkt->req != memReq[tid] ||
368        isSwitchedOut()) {
369        ++fetchIcacheSquashes;
370        delete pkt->req;
371        delete pkt;
372        return;
373    }
374
375    memcpy(cacheData[tid], pkt->getPtr<uint8_t>(), cacheBlkSize);
376    cacheDataValid[tid] = true;
377
378    if (!drainPending) {
379        // Wake up the CPU (if it went to sleep and was waiting on
380        // this completion event).
381        cpu->wakeCPU();
382
383        DPRINTF(Activity, "[tid:%u] Activating fetch due to cache completion\n",
384                tid);
385
386        switchToActive();
387    }
388
389    // Only switch to IcacheAccessComplete if we're not stalled as well.
390    if (checkStall(tid)) {
391        fetchStatus[tid] = Blocked;
392    } else {
393        fetchStatus[tid] = IcacheAccessComplete;
394    }
395
396    // Reset the mem req to NULL.
397    delete pkt->req;
398    delete pkt;
399    memReq[tid] = NULL;
400}
401
402template <class Impl>
403bool
404DefaultFetch<Impl>::drain()
405{
406    // Fetch is ready to drain at any time.
407    cpu->signalDrained();
408    drainPending = true;
409    return true;
410}
411
412template <class Impl>
413void
414DefaultFetch<Impl>::resume()
415{
416    drainPending = false;
417}
418
419template <class Impl>
420void
421DefaultFetch<Impl>::switchOut()
422{
423    switchedOut = true;
424    // Branch predictor needs to have its state cleared.
425    branchPred.switchOut();
426}
427
428template <class Impl>
429void
430DefaultFetch<Impl>::takeOverFrom()
431{
432    // the instruction port is now connected so we can get the block
433    // size
434    setIcache();
435
436    // Reset all state
437    for (ThreadID i = 0; i < Impl::MaxThreads; ++i) {
438        stalls[i].decode = 0;
439        stalls[i].rename = 0;
440        stalls[i].iew = 0;
441        stalls[i].commit = 0;
442        pc[i] = cpu->pcState(i);
443        fetchStatus[i] = Running;
444    }
445    numInst = 0;
446    wroteToTimeBuffer = false;
447    _status = Inactive;
448    switchedOut = false;
449    interruptPending = false;
450    branchPred.takeOverFrom();
451}
452
453template <class Impl>
454void
455DefaultFetch<Impl>::wakeFromQuiesce()
456{
457    DPRINTF(Fetch, "Waking up from quiesce\n");
458    // Hopefully this is safe
459    // @todo: Allow other threads to wake from quiesce.
460    fetchStatus[0] = Running;
461}
462
463template <class Impl>
464inline void
465DefaultFetch<Impl>::switchToActive()
466{
467    if (_status == Inactive) {
468        DPRINTF(Activity, "Activating stage.\n");
469
470        cpu->activateStage(O3CPU::FetchIdx);
471
472        _status = Active;
473    }
474}
475
476template <class Impl>
477inline void
478DefaultFetch<Impl>::switchToInactive()
479{
480    if (_status == Active) {
481        DPRINTF(Activity, "Deactivating stage.\n");
482
483        cpu->deactivateStage(O3CPU::FetchIdx);
484
485        _status = Inactive;
486    }
487}
488
489template <class Impl>
490bool
491DefaultFetch<Impl>::lookupAndUpdateNextPC(
492        DynInstPtr &inst, TheISA::PCState &nextPC)
493{
494    // Do branch prediction check here.
495    // A bit of a misnomer...next_PC is actually the current PC until
496    // this function updates it.
497    bool predict_taken;
498
499    if (!inst->isControl()) {
500        TheISA::advancePC(nextPC, inst->staticInst);
501        inst->setPredTarg(nextPC);
502        inst->setPredTaken(false);
503        return false;
504    }
505
506    ThreadID tid = inst->threadNumber;
507    predict_taken = branchPred.predict(inst, nextPC, tid);
508
509    if (predict_taken) {
510        DPRINTF(Fetch, "[tid:%i]: [sn:%i]:  Branch predicted to be taken to %s.\n",
511                tid, inst->seqNum, nextPC);
512    } else {
513        DPRINTF(Fetch, "[tid:%i]: [sn:%i]:Branch predicted to be not taken.\n",
514                tid, inst->seqNum);
515    }
516
517    DPRINTF(Fetch, "[tid:%i]: [sn:%i] Branch predicted to go to %s.\n",
518            tid, inst->seqNum, nextPC);
519    inst->setPredTarg(nextPC);
520    inst->setPredTaken(predict_taken);
521
522    ++fetchedBranches;
523
524    if (predict_taken) {
525        ++predictedBranches;
526    }
527
528    return predict_taken;
529}
530
531template <class Impl>
532bool
533DefaultFetch<Impl>::fetchCacheLine(Addr vaddr, ThreadID tid, Addr pc)
534{
535    Fault fault = NoFault;
536
537    // @todo: not sure if these should block translation.
538    //AlphaDep
539    if (cacheBlocked) {
540        DPRINTF(Fetch, "[tid:%i] Can't fetch cache line, cache blocked\n",
541                tid);
542        return false;
543    } else if (isSwitchedOut()) {
544        DPRINTF(Fetch, "[tid:%i] Can't fetch cache line, switched out\n",
545                tid);
546        return false;
547    } else if (checkInterrupt(pc)) {
548        // Hold off fetch from getting new instructions when:
549        // Cache is blocked, or
550        // while an interrupt is pending and we're not in PAL mode, or
551        // fetch is switched out.
552        DPRINTF(Fetch, "[tid:%i] Can't fetch cache line, interrupt pending\n",
553                tid);
554        return false;
555    }
556
557    // Align the fetch address so it's at the start of a cache block.
558    Addr block_PC = icacheBlockAlignPC(vaddr);
559
560    DPRINTF(Fetch, "[tid:%i] Fetching cache line %#x for addr %#x\n",
561            tid, block_PC, vaddr);
562
563    // Setup the memReq to do a read of the first instruction's address.
564    // Set the appropriate read size and flags as well.
565    // Build request here.
566    RequestPtr mem_req =
567        new Request(tid, block_PC, cacheBlkSize, Request::INST_FETCH,
568                    pc, cpu->thread[tid]->contextId(), tid);
569
570    memReq[tid] = mem_req;
571
572    // Initiate translation of the icache block
573    fetchStatus[tid] = ItlbWait;
574    FetchTranslation *trans = new FetchTranslation(this);
575    cpu->itb->translateTiming(mem_req, cpu->thread[tid]->getTC(),
576                              trans, BaseTLB::Execute);
577    return true;
578}
579
580template <class Impl>
581void
582DefaultFetch<Impl>::finishTranslation(Fault fault, RequestPtr mem_req)
583{
584    ThreadID tid = mem_req->threadId();
585    Addr block_PC = mem_req->getVaddr();
586
587    // Wake up CPU if it was idle
588    cpu->wakeCPU();
589
590    if (fetchStatus[tid] != ItlbWait || mem_req != memReq[tid] ||
591        mem_req->getVaddr() != memReq[tid]->getVaddr() || isSwitchedOut()) {
592        DPRINTF(Fetch, "[tid:%i] Ignoring itlb completed after squash\n",
593                tid);
594        ++fetchTlbSquashes;
595        delete mem_req;
596        return;
597    }
598
599
600    // If translation was successful, attempt to read the icache block.
601    if (fault == NoFault) {
602        // Check that we're not going off into random memory
603        // If we have, just wait around for commit to squash something and put
604        // us on the right track
605        if (!cpu->system->isMemory(mem_req->getPaddr())) {
606            warn("Address %#x is outside of physical memory, stopping fetch\n",
607                    mem_req->getPaddr());
608            fetchStatus[tid] = NoGoodAddr;
609            delete mem_req;
610            memReq[tid] = NULL;
611            return;
612        }
613
614        // Build packet here.
615        PacketPtr data_pkt = new Packet(mem_req,
616                                        MemCmd::ReadReq, Packet::Broadcast);
617        data_pkt->dataDynamicArray(new uint8_t[cacheBlkSize]);
618
619        cacheDataPC[tid] = block_PC;
620        cacheDataValid[tid] = false;
621        DPRINTF(Fetch, "Fetch: Doing instruction read.\n");
622
623        fetchedCacheLines++;
624
625        // Access the cache.
626        if (!cpu->getIcachePort()->sendTiming(data_pkt)) {
627            assert(retryPkt == NULL);
628            assert(retryTid == InvalidThreadID);
629            DPRINTF(Fetch, "[tid:%i] Out of MSHRs!\n", tid);
630
631            fetchStatus[tid] = IcacheWaitRetry;
632            retryPkt = data_pkt;
633            retryTid = tid;
634            cacheBlocked = true;
635        } else {
636            DPRINTF(Fetch, "[tid:%i]: Doing Icache access.\n", tid);
637            DPRINTF(Activity, "[tid:%i]: Activity: Waiting on I-cache "
638                    "response.\n", tid);
639
640            lastIcacheStall[tid] = curTick();
641            fetchStatus[tid] = IcacheWaitResponse;
642        }
643    } else {
644        if (!(numInst < fetchWidth)) {
645            assert(!finishTranslationEvent.scheduled());
646            finishTranslationEvent.setFault(fault);
647            finishTranslationEvent.setReq(mem_req);
648            cpu->schedule(finishTranslationEvent, cpu->nextCycle(curTick() + cpu->ticks(1)));
649            return;
650        }
651        DPRINTF(Fetch, "[tid:%i] Got back req with addr %#x but expected %#x\n",
652                tid, mem_req->getVaddr(), memReq[tid]->getVaddr());
653        // Translation faulted, icache request won't be sent.
654        delete mem_req;
655        memReq[tid] = NULL;
656
657        // Send the fault to commit.  This thread will not do anything
658        // until commit handles the fault.  The only other way it can
659        // wake up is if a squash comes along and changes the PC.
660        TheISA::PCState fetchPC = pc[tid];
661
662        DPRINTF(Fetch, "[tid:%i]: Translation faulted, building noop.\n", tid);
663        // We will use a nop in ordier to carry the fault.
664        DynInstPtr instruction = buildInst(tid,
665                decoder.decode(TheISA::NoopMachInst, fetchPC.instAddr()),
666                NULL, fetchPC, fetchPC, false);
667
668        instruction->setPredTarg(fetchPC);
669        instruction->fault = fault;
670        wroteToTimeBuffer = true;
671
672        DPRINTF(Activity, "Activity this cycle.\n");
673        cpu->activityThisCycle();
674
675        fetchStatus[tid] = TrapPending;
676
677        DPRINTF(Fetch, "[tid:%i]: Blocked, need to handle the trap.\n", tid);
678        DPRINTF(Fetch, "[tid:%i]: fault (%s) detected @ PC %s.\n",
679                tid, fault->name(), pc[tid]);
680    }
681    _status = updateFetchStatus();
682}
683
684template <class Impl>
685inline void
686DefaultFetch<Impl>::doSquash(const TheISA::PCState &newPC,
687                             const DynInstPtr squashInst, ThreadID tid)
688{
689    DPRINTF(Fetch, "[tid:%i]: Squashing, setting PC to: %s.\n",
690            tid, newPC);
691
692    pc[tid] = newPC;
693    fetchOffset[tid] = 0;
694    if (squashInst && squashInst->pcState().instAddr() == newPC.instAddr())
695        macroop[tid] = squashInst->macroop;
696    else
697        macroop[tid] = NULL;
698    predecoder.reset();
699
700    // Clear the icache miss if it's outstanding.
701    if (fetchStatus[tid] == IcacheWaitResponse) {
702        DPRINTF(Fetch, "[tid:%i]: Squashing outstanding Icache miss.\n",
703                tid);
704        memReq[tid] = NULL;
705    } else if (fetchStatus[tid] == ItlbWait) {
706        DPRINTF(Fetch, "[tid:%i]: Squashing outstanding ITLB miss.\n",
707                tid);
708        memReq[tid] = NULL;
709    }
710
711    // Get rid of the retrying packet if it was from this thread.
712    if (retryTid == tid) {
713        assert(cacheBlocked);
714        if (retryPkt) {
715            delete retryPkt->req;
716            delete retryPkt;
717        }
718        retryPkt = NULL;
719        retryTid = InvalidThreadID;
720    }
721
722    fetchStatus[tid] = Squashing;
723
724    ++fetchSquashCycles;
725}
726
727template<class Impl>
728void
729DefaultFetch<Impl>::squashFromDecode(const TheISA::PCState &newPC,
730                                     const DynInstPtr squashInst,
731                                     const InstSeqNum seq_num, ThreadID tid)
732{
733    DPRINTF(Fetch, "[tid:%i]: Squashing from decode.\n", tid);
734
735    doSquash(newPC, squashInst, tid);
736
737    // Tell the CPU to remove any instructions that are in flight between
738    // fetch and decode.
739    cpu->removeInstsUntil(seq_num, tid);
740}
741
742template<class Impl>
743bool
744DefaultFetch<Impl>::checkStall(ThreadID tid) const
745{
746    bool ret_val = false;
747
748    if (cpu->contextSwitch) {
749        DPRINTF(Fetch,"[tid:%i]: Stalling for a context switch.\n",tid);
750        ret_val = true;
751    } else if (stalls[tid].decode) {
752        DPRINTF(Fetch,"[tid:%i]: Stall from Decode stage detected.\n",tid);
753        ret_val = true;
754    } else if (stalls[tid].rename) {
755        DPRINTF(Fetch,"[tid:%i]: Stall from Rename stage detected.\n",tid);
756        ret_val = true;
757    } else if (stalls[tid].iew) {
758        DPRINTF(Fetch,"[tid:%i]: Stall from IEW stage detected.\n",tid);
759        ret_val = true;
760    } else if (stalls[tid].commit) {
761        DPRINTF(Fetch,"[tid:%i]: Stall from Commit stage detected.\n",tid);
762        ret_val = true;
763    }
764
765    return ret_val;
766}
767
768template<class Impl>
769typename DefaultFetch<Impl>::FetchStatus
770DefaultFetch<Impl>::updateFetchStatus()
771{
772    //Check Running
773    list<ThreadID>::iterator threads = activeThreads->begin();
774    list<ThreadID>::iterator end = activeThreads->end();
775
776    while (threads != end) {
777        ThreadID tid = *threads++;
778
779        if (fetchStatus[tid] == Running ||
780            fetchStatus[tid] == Squashing ||
781            fetchStatus[tid] == IcacheAccessComplete) {
782
783            if (_status == Inactive) {
784                DPRINTF(Activity, "[tid:%i]: Activating stage.\n",tid);
785
786                if (fetchStatus[tid] == IcacheAccessComplete) {
787                    DPRINTF(Activity, "[tid:%i]: Activating fetch due to cache"
788                            "completion\n",tid);
789                }
790
791                cpu->activateStage(O3CPU::FetchIdx);
792            }
793
794            return Active;
795        }
796    }
797
798    // Stage is switching from active to inactive, notify CPU of it.
799    if (_status == Active) {
800        DPRINTF(Activity, "Deactivating stage.\n");
801
802        cpu->deactivateStage(O3CPU::FetchIdx);
803    }
804
805    return Inactive;
806}
807
808template <class Impl>
809void
810DefaultFetch<Impl>::squash(const TheISA::PCState &newPC,
811                           const InstSeqNum seq_num, DynInstPtr squashInst,
812                           ThreadID tid)
813{
814    DPRINTF(Fetch, "[tid:%u]: Squash from commit.\n", tid);
815
816    doSquash(newPC, squashInst, tid);
817
818    // Tell the CPU to remove any instructions that are not in the ROB.
819    cpu->removeInstsNotInROB(tid);
820}
821
822template <class Impl>
823void
824DefaultFetch<Impl>::tick()
825{
826    list<ThreadID>::iterator threads = activeThreads->begin();
827    list<ThreadID>::iterator end = activeThreads->end();
828    bool status_change = false;
829
830    wroteToTimeBuffer = false;
831
832    for (ThreadID i = 0; i < Impl::MaxThreads; ++i) {
833        issuePipelinedIfetch[i] = false;
834    }
835
836    while (threads != end) {
837        ThreadID tid = *threads++;
838
839        // Check the signals for each thread to determine the proper status
840        // for each thread.
841        bool updated_status = checkSignalsAndUpdate(tid);
842        status_change =  status_change || updated_status;
843    }
844
845    DPRINTF(Fetch, "Running stage.\n");
846
847    if (FullSystem) {
848        if (fromCommit->commitInfo[0].interruptPending) {
849            interruptPending = true;
850        }
851
852        if (fromCommit->commitInfo[0].clearInterrupt) {
853            interruptPending = false;
854        }
855    }
856
857    for (threadFetched = 0; threadFetched < numFetchingThreads;
858         threadFetched++) {
859        // Fetch each of the actively fetching threads.
860        fetch(status_change);
861    }
862
863    // Record number of instructions fetched this cycle for distribution.
864    fetchNisnDist.sample(numInst);
865
866    if (status_change) {
867        // Change the fetch stage status if there was a status change.
868        _status = updateFetchStatus();
869    }
870
871    // If there was activity this cycle, inform the CPU of it.
872    if (wroteToTimeBuffer || cpu->contextSwitch) {
873        DPRINTF(Activity, "Activity this cycle.\n");
874
875        cpu->activityThisCycle();
876    }
877
878    // Issue the next I-cache request if possible.
879    for (ThreadID i = 0; i < Impl::MaxThreads; ++i) {
880        if (issuePipelinedIfetch[i]) {
881            pipelineIcacheAccesses(i);
882        }
883    }
884
885    // Reset the number of the instruction we've fetched.
886    numInst = 0;
887}
888
889template <class Impl>
890bool
891DefaultFetch<Impl>::checkSignalsAndUpdate(ThreadID tid)
892{
893    // Update the per thread stall statuses.
894    if (fromDecode->decodeBlock[tid]) {
895        stalls[tid].decode = true;
896    }
897
898    if (fromDecode->decodeUnblock[tid]) {
899        assert(stalls[tid].decode);
900        assert(!fromDecode->decodeBlock[tid]);
901        stalls[tid].decode = false;
902    }
903
904    if (fromRename->renameBlock[tid]) {
905        stalls[tid].rename = true;
906    }
907
908    if (fromRename->renameUnblock[tid]) {
909        assert(stalls[tid].rename);
910        assert(!fromRename->renameBlock[tid]);
911        stalls[tid].rename = false;
912    }
913
914    if (fromIEW->iewBlock[tid]) {
915        stalls[tid].iew = true;
916    }
917
918    if (fromIEW->iewUnblock[tid]) {
919        assert(stalls[tid].iew);
920        assert(!fromIEW->iewBlock[tid]);
921        stalls[tid].iew = false;
922    }
923
924    if (fromCommit->commitBlock[tid]) {
925        stalls[tid].commit = true;
926    }
927
928    if (fromCommit->commitUnblock[tid]) {
929        assert(stalls[tid].commit);
930        assert(!fromCommit->commitBlock[tid]);
931        stalls[tid].commit = false;
932    }
933
934    // Check squash signals from commit.
935    if (fromCommit->commitInfo[tid].squash) {
936
937        DPRINTF(Fetch, "[tid:%u]: Squashing instructions due to squash "
938                "from commit.\n",tid);
939        // In any case, squash.
940        squash(fromCommit->commitInfo[tid].pc,
941               fromCommit->commitInfo[tid].doneSeqNum,
942               fromCommit->commitInfo[tid].squashInst, tid);
943
944        // If it was a branch mispredict on a control instruction, update the
945        // branch predictor with that instruction, otherwise just kill the
946        // invalid state we generated in after sequence number
947        if (fromCommit->commitInfo[tid].mispredictInst &&
948            fromCommit->commitInfo[tid].mispredictInst->isControl()) {
949            branchPred.squash(fromCommit->commitInfo[tid].doneSeqNum,
950                              fromCommit->commitInfo[tid].pc,
951                              fromCommit->commitInfo[tid].branchTaken,
952                              tid);
953        } else {
954            branchPred.squash(fromCommit->commitInfo[tid].doneSeqNum,
955                              tid);
956        }
957
958        return true;
959    } else if (fromCommit->commitInfo[tid].doneSeqNum) {
960        // Update the branch predictor if it wasn't a squashed instruction
961        // that was broadcasted.
962        branchPred.update(fromCommit->commitInfo[tid].doneSeqNum, tid);
963    }
964
965    // Check ROB squash signals from commit.
966    if (fromCommit->commitInfo[tid].robSquashing) {
967        DPRINTF(Fetch, "[tid:%u]: ROB is still squashing.\n", tid);
968
969        // Continue to squash.
970        fetchStatus[tid] = Squashing;
971
972        return true;
973    }
974
975    // Check squash signals from decode.
976    if (fromDecode->decodeInfo[tid].squash) {
977        DPRINTF(Fetch, "[tid:%u]: Squashing instructions due to squash "
978                "from decode.\n",tid);
979
980        // Update the branch predictor.
981        if (fromDecode->decodeInfo[tid].branchMispredict) {
982            branchPred.squash(fromDecode->decodeInfo[tid].doneSeqNum,
983                              fromDecode->decodeInfo[tid].nextPC,
984                              fromDecode->decodeInfo[tid].branchTaken,
985                              tid);
986        } else {
987            branchPred.squash(fromDecode->decodeInfo[tid].doneSeqNum,
988                              tid);
989        }
990
991        if (fetchStatus[tid] != Squashing) {
992
993            DPRINTF(Fetch, "Squashing from decode with PC = %s\n",
994                fromDecode->decodeInfo[tid].nextPC);
995            // Squash unless we're already squashing
996            squashFromDecode(fromDecode->decodeInfo[tid].nextPC,
997                             fromDecode->decodeInfo[tid].squashInst,
998                             fromDecode->decodeInfo[tid].doneSeqNum,
999                             tid);
1000
1001            return true;
1002        }
1003    }
1004
1005    if (checkStall(tid) &&
1006        fetchStatus[tid] != IcacheWaitResponse &&
1007        fetchStatus[tid] != IcacheWaitRetry) {
1008        DPRINTF(Fetch, "[tid:%i]: Setting to blocked\n",tid);
1009
1010        fetchStatus[tid] = Blocked;
1011
1012        return true;
1013    }
1014
1015    if (fetchStatus[tid] == Blocked ||
1016        fetchStatus[tid] == Squashing) {
1017        // Switch status to running if fetch isn't being told to block or
1018        // squash this cycle.
1019        DPRINTF(Fetch, "[tid:%i]: Done squashing, switching to running.\n",
1020                tid);
1021
1022        fetchStatus[tid] = Running;
1023
1024        return true;
1025    }
1026
1027    // If we've reached this point, we have not gotten any signals that
1028    // cause fetch to change its status.  Fetch remains the same as before.
1029    return false;
1030}
1031
1032template<class Impl>
1033typename Impl::DynInstPtr
1034DefaultFetch<Impl>::buildInst(ThreadID tid, StaticInstPtr staticInst,
1035                              StaticInstPtr curMacroop, TheISA::PCState thisPC,
1036                              TheISA::PCState nextPC, bool trace)
1037{
1038    // Get a sequence number.
1039    InstSeqNum seq = cpu->getAndIncrementInstSeq();
1040
1041    // Create a new DynInst from the instruction fetched.
1042    DynInstPtr instruction =
1043        new DynInst(staticInst, curMacroop, thisPC, nextPC, seq, cpu);
1044    instruction->setTid(tid);
1045
1046    instruction->setASID(tid);
1047
1048    instruction->setThreadState(cpu->thread[tid]);
1049
1050    DPRINTF(Fetch, "[tid:%i]: Instruction PC %#x (%d) created "
1051            "[sn:%lli].\n", tid, thisPC.instAddr(),
1052            thisPC.microPC(), seq);
1053
1054    DPRINTF(Fetch, "[tid:%i]: Instruction is: %s\n", tid,
1055            instruction->staticInst->
1056            disassemble(thisPC.instAddr()));
1057
1058#if TRACING_ON
1059    if (trace) {
1060        instruction->traceData =
1061            cpu->getTracer()->getInstRecord(curTick(), cpu->tcBase(tid),
1062                    instruction->staticInst, thisPC, curMacroop);
1063    }
1064#else
1065    instruction->traceData = NULL;
1066#endif
1067
1068    // Add instruction to the CPU's list of instructions.
1069    instruction->setInstListIt(cpu->addInst(instruction));
1070
1071    // Write the instruction to the first slot in the queue
1072    // that heads to decode.
1073    assert(numInst < fetchWidth);
1074    toDecode->insts[toDecode->size++] = instruction;
1075
1076    // Keep track of if we can take an interrupt at this boundary
1077    delayedCommit[tid] = instruction->isDelayedCommit();
1078
1079    return instruction;
1080}
1081
1082template<class Impl>
1083void
1084DefaultFetch<Impl>::fetch(bool &status_change)
1085{
1086    //////////////////////////////////////////
1087    // Start actual fetch
1088    //////////////////////////////////////////
1089    ThreadID tid = getFetchingThread(fetchPolicy);
1090
1091    if (tid == InvalidThreadID || drainPending) {
1092        // Breaks looping condition in tick()
1093        threadFetched = numFetchingThreads;
1094
1095        if (numThreads == 1) {  // @todo Per-thread stats
1096            profileStall(0);
1097        }
1098
1099        return;
1100    }
1101
1102    DPRINTF(Fetch, "Attempting to fetch from [tid:%i]\n", tid);
1103
1104    // The current PC.
1105    TheISA::PCState thisPC = pc[tid];
1106
1107    Addr pcOffset = fetchOffset[tid];
1108    Addr fetchAddr = (thisPC.instAddr() + pcOffset) & BaseCPU::PCMask;
1109
1110    bool inRom = isRomMicroPC(thisPC.microPC());
1111
1112    // If returning from the delay of a cache miss, then update the status
1113    // to running, otherwise do the cache access.  Possibly move this up
1114    // to tick() function.
1115    if (fetchStatus[tid] == IcacheAccessComplete) {
1116        DPRINTF(Fetch, "[tid:%i]: Icache miss is complete.\n", tid);
1117
1118        fetchStatus[tid] = Running;
1119        status_change = true;
1120    } else if (fetchStatus[tid] == Running) {
1121        // Align the fetch PC so its at the start of a cache block.
1122        Addr block_PC = icacheBlockAlignPC(fetchAddr);
1123
1124        // If buffer is no longer valid or fetchAddr has moved to point
1125        // to the next cache block, AND we have no remaining ucode
1126        // from a macro-op, then start fetch from icache.
1127        if (!(cacheDataValid[tid] && block_PC == cacheDataPC[tid])
1128            && !inRom && !macroop[tid]) {
1129            DPRINTF(Fetch, "[tid:%i]: Attempting to translate and read "
1130                    "instruction, starting at PC %s.\n", tid, thisPC);
1131
1132            fetchCacheLine(fetchAddr, tid, thisPC.instAddr());
1133
1134            if (fetchStatus[tid] == IcacheWaitResponse)
1135                ++icacheStallCycles;
1136            else if (fetchStatus[tid] == ItlbWait)
1137                ++fetchTlbCycles;
1138            else
1139                ++fetchMiscStallCycles;
1140            return;
1141        } else if ((checkInterrupt(thisPC.instAddr()) && !delayedCommit[tid])
1142                   || isSwitchedOut()) {
1143            // Stall CPU if an interrupt is posted and we're not issuing
1144            // an delayed commit micro-op currently (delayed commit instructions
1145            // are not interruptable by interrupts, only faults)
1146            ++fetchMiscStallCycles;
1147            return;
1148        }
1149    } else {
1150        if (fetchStatus[tid] == Idle) {
1151            ++fetchIdleCycles;
1152            DPRINTF(Fetch, "[tid:%i]: Fetch is idle!\n", tid);
1153        }
1154
1155        // Status is Idle, so fetch should do nothing.
1156        return;
1157    }
1158
1159    ++fetchCycles;
1160
1161    TheISA::PCState nextPC = thisPC;
1162
1163    StaticInstPtr staticInst = NULL;
1164    StaticInstPtr curMacroop = macroop[tid];
1165
1166    // If the read of the first instruction was successful, then grab the
1167    // instructions from the rest of the cache line and put them into the
1168    // queue heading to decode.
1169
1170    DPRINTF(Fetch, "[tid:%i]: Adding instructions to queue to "
1171            "decode.\n", tid);
1172
1173    // Need to keep track of whether or not a predicted branch
1174    // ended this fetch block.
1175    bool predictedBranch = false;
1176
1177    TheISA::MachInst *cacheInsts =
1178        reinterpret_cast<TheISA::MachInst *>(cacheData[tid]);
1179
1180    const unsigned numInsts = cacheBlkSize / instSize;
1181    unsigned blkOffset = (fetchAddr - cacheDataPC[tid]) / instSize;
1182
1183    // Loop through instruction memory from the cache.
1184    // Keep issuing while fetchWidth is available and branch is not
1185    // predicted taken
1186    while (numInst < fetchWidth && !predictedBranch) {
1187
1188        // We need to process more memory if we aren't going to get a
1189        // StaticInst from the rom, the current macroop, or what's already
1190        // in the predecoder.
1191        bool needMem = !inRom && !curMacroop && !predecoder.extMachInstReady();
1192        fetchAddr = (thisPC.instAddr() + pcOffset) & BaseCPU::PCMask;
1193        Addr block_PC = icacheBlockAlignPC(fetchAddr);
1194
1195        if (needMem) {
1196            // If buffer is no longer valid or fetchAddr has moved to point
1197            // to the next cache block then start fetch from icache.
1198            if (!cacheDataValid[tid] || block_PC != cacheDataPC[tid])
1199                break;
1200
1201            if (blkOffset >= numInsts) {
1202                // We need to process more memory, but we've run out of the
1203                // current block.
1204                break;
1205            }
1206
1207            if (ISA_HAS_DELAY_SLOT && pcOffset == 0) {
1208                // Walk past any annulled delay slot instructions.
1209                Addr pcAddr = thisPC.instAddr() & BaseCPU::PCMask;
1210                while (fetchAddr != pcAddr && blkOffset < numInsts) {
1211                    blkOffset++;
1212                    fetchAddr += instSize;
1213                }
1214                if (blkOffset >= numInsts)
1215                    break;
1216            }
1217            MachInst inst = TheISA::gtoh(cacheInsts[blkOffset]);
1218
1219            predecoder.setTC(cpu->thread[tid]->getTC());
1220            predecoder.moreBytes(thisPC, fetchAddr, inst);
1221
1222            if (predecoder.needMoreBytes()) {
1223                blkOffset++;
1224                fetchAddr += instSize;
1225                pcOffset += instSize;
1226            }
1227        }
1228
1229        // Extract as many instructions and/or microops as we can from
1230        // the memory we've processed so far.
1231        do {
1232            if (!(curMacroop || inRom)) {
1233                if (predecoder.extMachInstReady()) {
1234                    ExtMachInst extMachInst =
1235                        predecoder.getExtMachInst(thisPC);
1236                    staticInst =
1237                        decoder.decode(extMachInst, thisPC.instAddr());
1238
1239                    // Increment stat of fetched instructions.
1240                    ++fetchedInsts;
1241
1242                    if (staticInst->isMacroop()) {
1243                        curMacroop = staticInst;
1244                    } else {
1245                        pcOffset = 0;
1246                    }
1247                } else {
1248                    // We need more bytes for this instruction so blkOffset and
1249                    // pcOffset will be updated
1250                    break;
1251                }
1252            }
1253            // Whether we're moving to a new macroop because we're at the
1254            // end of the current one, or the branch predictor incorrectly
1255            // thinks we are...
1256            bool newMacro = false;
1257            if (curMacroop || inRom) {
1258                if (inRom) {
1259                    staticInst = cpu->microcodeRom.fetchMicroop(
1260                            thisPC.microPC(), curMacroop);
1261                } else {
1262                    staticInst = curMacroop->fetchMicroop(thisPC.microPC());
1263                }
1264                newMacro |= staticInst->isLastMicroop();
1265            }
1266
1267            DynInstPtr instruction =
1268                buildInst(tid, staticInst, curMacroop,
1269                          thisPC, nextPC, true);
1270
1271            numInst++;
1272
1273#if TRACING_ON
1274            instruction->fetchTick = curTick();
1275#endif
1276
1277            nextPC = thisPC;
1278
1279            // If we're branching after this instruction, quite fetching
1280            // from the same block then.
1281            predictedBranch |= thisPC.branching();
1282            predictedBranch |=
1283                lookupAndUpdateNextPC(instruction, nextPC);
1284            if (predictedBranch) {
1285                DPRINTF(Fetch, "Branch detected with PC = %s\n", thisPC);
1286            }
1287
1288            newMacro |= thisPC.instAddr() != nextPC.instAddr();
1289
1290            // Move to the next instruction, unless we have a branch.
1291            thisPC = nextPC;
1292            inRom = isRomMicroPC(thisPC.microPC());
1293
1294            if (newMacro) {
1295                fetchAddr = thisPC.instAddr() & BaseCPU::PCMask;
1296                blkOffset = (fetchAddr - cacheDataPC[tid]) / instSize;
1297                pcOffset = 0;
1298                curMacroop = NULL;
1299            }
1300
1301            if (instruction->isQuiesce()) {
1302                DPRINTF(Fetch,
1303                        "Quiesce instruction encountered, halting fetch!");
1304                fetchStatus[tid] = QuiescePending;
1305                status_change = true;
1306                break;
1307            }
1308        } while ((curMacroop || predecoder.extMachInstReady()) &&
1309                 numInst < fetchWidth);
1310    }
1311
1312    if (predictedBranch) {
1313        DPRINTF(Fetch, "[tid:%i]: Done fetching, predicted branch "
1314                "instruction encountered.\n", tid);
1315    } else if (numInst >= fetchWidth) {
1316        DPRINTF(Fetch, "[tid:%i]: Done fetching, reached fetch bandwidth "
1317                "for this cycle.\n", tid);
1318    } else if (blkOffset >= cacheBlkSize) {
1319        DPRINTF(Fetch, "[tid:%i]: Done fetching, reached the end of cache "
1320                "block.\n", tid);
1321    }
1322
1323    macroop[tid] = curMacroop;
1324    fetchOffset[tid] = pcOffset;
1325
1326    if (numInst > 0) {
1327        wroteToTimeBuffer = true;
1328    }
1329
1330    pc[tid] = thisPC;
1331
1332    // pipeline a fetch if we're crossing a cache boundary and not in
1333    // a state that would preclude fetching
1334    fetchAddr = (thisPC.instAddr() + pcOffset) & BaseCPU::PCMask;
1335    Addr block_PC = icacheBlockAlignPC(fetchAddr);
1336    issuePipelinedIfetch[tid] = block_PC != cacheDataPC[tid] &&
1337        fetchStatus[tid] != IcacheWaitResponse &&
1338        fetchStatus[tid] != ItlbWait &&
1339        fetchStatus[tid] != IcacheWaitRetry &&
1340        fetchStatus[tid] != QuiescePending &&
1341        !curMacroop;
1342}
1343
1344template<class Impl>
1345void
1346DefaultFetch<Impl>::recvRetry()
1347{
1348    if (retryPkt != NULL) {
1349        assert(cacheBlocked);
1350        assert(retryTid != InvalidThreadID);
1351        assert(fetchStatus[retryTid] == IcacheWaitRetry);
1352
1353        if (cpu->getIcachePort()->sendTiming(retryPkt)) {
1354            fetchStatus[retryTid] = IcacheWaitResponse;
1355            retryPkt = NULL;
1356            retryTid = InvalidThreadID;
1357            cacheBlocked = false;
1358        }
1359    } else {
1360        assert(retryTid == InvalidThreadID);
1361        // Access has been squashed since it was sent out.  Just clear
1362        // the cache being blocked.
1363        cacheBlocked = false;
1364    }
1365}
1366
1367///////////////////////////////////////
1368//                                   //
1369//  SMT FETCH POLICY MAINTAINED HERE //
1370//                                   //
1371///////////////////////////////////////
1372template<class Impl>
1373ThreadID
1374DefaultFetch<Impl>::getFetchingThread(FetchPriority &fetch_priority)
1375{
1376    if (numThreads > 1) {
1377        switch (fetch_priority) {
1378
1379          case SingleThread:
1380            return 0;
1381
1382          case RoundRobin:
1383            return roundRobin();
1384
1385          case IQ:
1386            return iqCount();
1387
1388          case LSQ:
1389            return lsqCount();
1390
1391          case Branch:
1392            return branchCount();
1393
1394          default:
1395            return InvalidThreadID;
1396        }
1397    } else {
1398        list<ThreadID>::iterator thread = activeThreads->begin();
1399        if (thread == activeThreads->end()) {
1400            return InvalidThreadID;
1401        }
1402
1403        ThreadID tid = *thread;
1404
1405        if (fetchStatus[tid] == Running ||
1406            fetchStatus[tid] == IcacheAccessComplete ||
1407            fetchStatus[tid] == Idle) {
1408            return tid;
1409        } else {
1410            return InvalidThreadID;
1411        }
1412    }
1413}
1414
1415
1416template<class Impl>
1417ThreadID
1418DefaultFetch<Impl>::roundRobin()
1419{
1420    list<ThreadID>::iterator pri_iter = priorityList.begin();
1421    list<ThreadID>::iterator end      = priorityList.end();
1422
1423    ThreadID high_pri;
1424
1425    while (pri_iter != end) {
1426        high_pri = *pri_iter;
1427
1428        assert(high_pri <= numThreads);
1429
1430        if (fetchStatus[high_pri] == Running ||
1431            fetchStatus[high_pri] == IcacheAccessComplete ||
1432            fetchStatus[high_pri] == Idle) {
1433
1434            priorityList.erase(pri_iter);
1435            priorityList.push_back(high_pri);
1436
1437            return high_pri;
1438        }
1439
1440        pri_iter++;
1441    }
1442
1443    return InvalidThreadID;
1444}
1445
1446template<class Impl>
1447ThreadID
1448DefaultFetch<Impl>::iqCount()
1449{
1450    std::priority_queue<unsigned> PQ;
1451    std::map<unsigned, ThreadID> threadMap;
1452
1453    list<ThreadID>::iterator threads = activeThreads->begin();
1454    list<ThreadID>::iterator end = activeThreads->end();
1455
1456    while (threads != end) {
1457        ThreadID tid = *threads++;
1458        unsigned iqCount = fromIEW->iewInfo[tid].iqCount;
1459
1460        PQ.push(iqCount);
1461        threadMap[iqCount] = tid;
1462    }
1463
1464    while (!PQ.empty()) {
1465        ThreadID high_pri = threadMap[PQ.top()];
1466
1467        if (fetchStatus[high_pri] == Running ||
1468            fetchStatus[high_pri] == IcacheAccessComplete ||
1469            fetchStatus[high_pri] == Idle)
1470            return high_pri;
1471        else
1472            PQ.pop();
1473
1474    }
1475
1476    return InvalidThreadID;
1477}
1478
1479template<class Impl>
1480ThreadID
1481DefaultFetch<Impl>::lsqCount()
1482{
1483    std::priority_queue<unsigned> PQ;
1484    std::map<unsigned, ThreadID> threadMap;
1485
1486    list<ThreadID>::iterator threads = activeThreads->begin();
1487    list<ThreadID>::iterator end = activeThreads->end();
1488
1489    while (threads != end) {
1490        ThreadID tid = *threads++;
1491        unsigned ldstqCount = fromIEW->iewInfo[tid].ldstqCount;
1492
1493        PQ.push(ldstqCount);
1494        threadMap[ldstqCount] = tid;
1495    }
1496
1497    while (!PQ.empty()) {
1498        ThreadID high_pri = threadMap[PQ.top()];
1499
1500        if (fetchStatus[high_pri] == Running ||
1501            fetchStatus[high_pri] == IcacheAccessComplete ||
1502            fetchStatus[high_pri] == Idle)
1503            return high_pri;
1504        else
1505            PQ.pop();
1506    }
1507
1508    return InvalidThreadID;
1509}
1510
1511template<class Impl>
1512ThreadID
1513DefaultFetch<Impl>::branchCount()
1514{
1515#if 0
1516    list<ThreadID>::iterator thread = activeThreads->begin();
1517    assert(thread != activeThreads->end());
1518    ThreadID tid = *thread;
1519#endif
1520
1521    panic("Branch Count Fetch policy unimplemented\n");
1522    return InvalidThreadID;
1523}
1524
1525template<class Impl>
1526void
1527DefaultFetch<Impl>::pipelineIcacheAccesses(ThreadID tid)
1528{
1529    if (!issuePipelinedIfetch[tid]) {
1530        return;
1531    }
1532
1533    // The next PC to access.
1534    TheISA::PCState thisPC = pc[tid];
1535
1536    if (isRomMicroPC(thisPC.microPC())) {
1537        return;
1538    }
1539
1540    Addr pcOffset = fetchOffset[tid];
1541    Addr fetchAddr = (thisPC.instAddr() + pcOffset) & BaseCPU::PCMask;
1542
1543    // Align the fetch PC so its at the start of a cache block.
1544    Addr block_PC = icacheBlockAlignPC(fetchAddr);
1545
1546    // Unless buffer already got the block, fetch it from icache.
1547    if (!(cacheDataValid[tid] && block_PC == cacheDataPC[tid])) {
1548        DPRINTF(Fetch, "[tid:%i]: Issuing a pipelined I-cache access, "
1549                "starting at PC %s.\n", tid, thisPC);
1550
1551        fetchCacheLine(fetchAddr, tid, thisPC.instAddr());
1552    }
1553}
1554
1555template<class Impl>
1556void
1557DefaultFetch<Impl>::profileStall(ThreadID tid) {
1558    DPRINTF(Fetch,"There are no more threads available to fetch from.\n");
1559
1560    // @todo Per-thread stats
1561
1562    if (drainPending) {
1563        ++fetchPendingDrainCycles;
1564        DPRINTF(Fetch, "Fetch is waiting for a drain!\n");
1565    } else if (activeThreads->empty()) {
1566        ++fetchNoActiveThreadStallCycles;
1567        DPRINTF(Fetch, "Fetch has no active thread!\n");
1568    } else if (fetchStatus[tid] == Blocked) {
1569        ++fetchBlockedCycles;
1570        DPRINTF(Fetch, "[tid:%i]: Fetch is blocked!\n", tid);
1571    } else if (fetchStatus[tid] == Squashing) {
1572        ++fetchSquashCycles;
1573        DPRINTF(Fetch, "[tid:%i]: Fetch is squashing!\n", tid);
1574    } else if (fetchStatus[tid] == IcacheWaitResponse) {
1575        ++icacheStallCycles;
1576        DPRINTF(Fetch, "[tid:%i]: Fetch is waiting cache response!\n",
1577                tid);
1578    } else if (fetchStatus[tid] == ItlbWait) {
1579        ++fetchTlbCycles;
1580        DPRINTF(Fetch, "[tid:%i]: Fetch is waiting ITLB walk to "
1581                "finish!\n", tid);
1582    } else if (fetchStatus[tid] == TrapPending) {
1583        ++fetchPendingTrapStallCycles;
1584        DPRINTF(Fetch, "[tid:%i]: Fetch is waiting for a pending trap!\n",
1585                tid);
1586    } else if (fetchStatus[tid] == QuiescePending) {
1587        ++fetchPendingQuiesceStallCycles;
1588        DPRINTF(Fetch, "[tid:%i]: Fetch is waiting for a pending quiesce "
1589                "instruction!\n", tid);
1590    } else if (fetchStatus[tid] == IcacheWaitRetry) {
1591        ++fetchIcacheWaitRetryStallCycles;
1592        DPRINTF(Fetch, "[tid:%i]: Fetch is waiting for an I-cache retry!\n",
1593                tid);
1594    } else if (fetchStatus[tid] == NoGoodAddr) {
1595            DPRINTF(Fetch, "[tid:%i]: Fetch predicted non-executable address\n",
1596                    tid);
1597    } else {
1598        DPRINTF(Fetch, "[tid:%i]: Unexpected fetch stall reason (Status: %i).\n",
1599             tid, fetchStatus[tid]);
1600    }
1601}
1602