fetch_impl.hh revision 8793:5f25086326ac
1/*
2 * Copyright (c) 2010 ARM Limited
3 * All rights reserved.
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder.  You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2004-2006 The Regents of The University of Michigan
15 * All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions are
19 * met: redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer;
21 * redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution;
24 * neither the name of the copyright holders nor the names of its
25 * contributors may be used to endorse or promote products derived from
26 * this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 *
40 * Authors: Kevin Lim
41 *          Korey Sewell
42 */
43
44#include <algorithm>
45#include <cstring>
46
47#include "arch/isa_traits.hh"
48#include "arch/tlb.hh"
49#include "arch/utility.hh"
50#include "arch/vtophys.hh"
51#include "base/types.hh"
52#include "config/the_isa.hh"
53#include "config/use_checker.hh"
54#include "cpu/base.hh"
55#include "cpu/checker/cpu.hh"
56#include "cpu/o3/fetch.hh"
57#include "cpu/exetrace.hh"
58#include "debug/Activity.hh"
59#include "debug/Fetch.hh"
60#include "mem/packet.hh"
61#include "mem/request.hh"
62#include "params/DerivO3CPU.hh"
63#include "sim/byteswap.hh"
64#include "sim/core.hh"
65#include "sim/eventq.hh"
66#include "sim/full_system.hh"
67#include "sim/system.hh"
68
69using namespace std;
70
71template<class Impl>
72void
73DefaultFetch<Impl>::IcachePort::setPeer(Port *port)
74{
75    Port::setPeer(port);
76
77    fetch->setIcache();
78}
79
80template<class Impl>
81Tick
82DefaultFetch<Impl>::IcachePort::recvAtomic(PacketPtr pkt)
83{
84    panic("DefaultFetch doesn't expect recvAtomic callback!");
85    return curTick();
86}
87
88template<class Impl>
89void
90DefaultFetch<Impl>::IcachePort::recvFunctional(PacketPtr pkt)
91{
92    DPRINTF(Fetch, "DefaultFetch doesn't update its state from a "
93            "functional call.\n");
94}
95
96template<class Impl>
97void
98DefaultFetch<Impl>::IcachePort::recvStatusChange(Status status)
99{
100    if (status == RangeChange) {
101        if (!snoopRangeSent) {
102            snoopRangeSent = true;
103            sendStatusChange(Port::RangeChange);
104        }
105        return;
106    }
107
108    panic("DefaultFetch doesn't expect recvStatusChange callback!");
109}
110
111template<class Impl>
112bool
113DefaultFetch<Impl>::IcachePort::recvTiming(PacketPtr pkt)
114{
115    DPRINTF(Fetch, "Received timing\n");
116    if (pkt->isResponse()) {
117        // We shouldn't ever get a block in ownership state
118        assert(!(pkt->memInhibitAsserted() && !pkt->sharedAsserted()));
119
120        fetch->processCacheCompletion(pkt);
121    }
122    //else Snooped a coherence request, just return
123    return true;
124}
125
126template<class Impl>
127void
128DefaultFetch<Impl>::IcachePort::recvRetry()
129{
130    fetch->recvRetry();
131}
132
133template<class Impl>
134DefaultFetch<Impl>::DefaultFetch(O3CPU *_cpu, DerivO3CPUParams *params)
135    : cpu(_cpu),
136      branchPred(params),
137      predecoder(NULL),
138      numInst(0),
139      decodeToFetchDelay(params->decodeToFetchDelay),
140      renameToFetchDelay(params->renameToFetchDelay),
141      iewToFetchDelay(params->iewToFetchDelay),
142      commitToFetchDelay(params->commitToFetchDelay),
143      fetchWidth(params->fetchWidth),
144      cacheBlocked(false),
145      retryPkt(NULL),
146      retryTid(InvalidThreadID),
147      numThreads(params->numThreads),
148      numFetchingThreads(params->smtNumFetchingThreads),
149      interruptPending(false),
150      drainPending(false),
151      switchedOut(false),
152      finishTranslationEvent(this)
153{
154    if (numThreads > Impl::MaxThreads)
155        fatal("numThreads (%d) is larger than compiled limit (%d),\n"
156              "\tincrease MaxThreads in src/cpu/o3/impl.hh\n",
157              numThreads, static_cast<int>(Impl::MaxThreads));
158
159    // Set fetch stage's status to inactive.
160    _status = Inactive;
161
162    std::string policy = params->smtFetchPolicy;
163
164    // Convert string to lowercase
165    std::transform(policy.begin(), policy.end(), policy.begin(),
166                   (int(*)(int)) tolower);
167
168    // Figure out fetch policy
169    if (policy == "singlethread") {
170        fetchPolicy = SingleThread;
171        if (numThreads > 1)
172            panic("Invalid Fetch Policy for a SMT workload.");
173    } else if (policy == "roundrobin") {
174        fetchPolicy = RoundRobin;
175        DPRINTF(Fetch, "Fetch policy set to Round Robin\n");
176    } else if (policy == "branch") {
177        fetchPolicy = Branch;
178        DPRINTF(Fetch, "Fetch policy set to Branch Count\n");
179    } else if (policy == "iqcount") {
180        fetchPolicy = IQ;
181        DPRINTF(Fetch, "Fetch policy set to IQ count\n");
182    } else if (policy == "lsqcount") {
183        fetchPolicy = LSQ;
184        DPRINTF(Fetch, "Fetch policy set to LSQ count\n");
185    } else {
186        fatal("Invalid Fetch Policy. Options Are: {SingleThread,"
187              " RoundRobin,LSQcount,IQcount}\n");
188    }
189
190    // Get the size of an instruction.
191    instSize = sizeof(TheISA::MachInst);
192
193    // Name is finally available, so create the port.
194    icachePort = new IcachePort(this);
195
196    icachePort->snoopRangeSent = false;
197
198#if USE_CHECKER
199    if (cpu->checker) {
200        cpu->checker->setIcachePort(icachePort);
201    }
202#endif
203}
204
205template <class Impl>
206std::string
207DefaultFetch<Impl>::name() const
208{
209    return cpu->name() + ".fetch";
210}
211
212template <class Impl>
213void
214DefaultFetch<Impl>::regStats()
215{
216    icacheStallCycles
217        .name(name() + ".icacheStallCycles")
218        .desc("Number of cycles fetch is stalled on an Icache miss")
219        .prereq(icacheStallCycles);
220
221    fetchedInsts
222        .name(name() + ".Insts")
223        .desc("Number of instructions fetch has processed")
224        .prereq(fetchedInsts);
225
226    fetchedBranches
227        .name(name() + ".Branches")
228        .desc("Number of branches that fetch encountered")
229        .prereq(fetchedBranches);
230
231    predictedBranches
232        .name(name() + ".predictedBranches")
233        .desc("Number of branches that fetch has predicted taken")
234        .prereq(predictedBranches);
235
236    fetchCycles
237        .name(name() + ".Cycles")
238        .desc("Number of cycles fetch has run and was not squashing or"
239              " blocked")
240        .prereq(fetchCycles);
241
242    fetchSquashCycles
243        .name(name() + ".SquashCycles")
244        .desc("Number of cycles fetch has spent squashing")
245        .prereq(fetchSquashCycles);
246
247    fetchTlbCycles
248        .name(name() + ".TlbCycles")
249        .desc("Number of cycles fetch has spent waiting for tlb")
250        .prereq(fetchTlbCycles);
251
252    fetchIdleCycles
253        .name(name() + ".IdleCycles")
254        .desc("Number of cycles fetch was idle")
255        .prereq(fetchIdleCycles);
256
257    fetchBlockedCycles
258        .name(name() + ".BlockedCycles")
259        .desc("Number of cycles fetch has spent blocked")
260        .prereq(fetchBlockedCycles);
261
262    fetchedCacheLines
263        .name(name() + ".CacheLines")
264        .desc("Number of cache lines fetched")
265        .prereq(fetchedCacheLines);
266
267    fetchMiscStallCycles
268        .name(name() + ".MiscStallCycles")
269        .desc("Number of cycles fetch has spent waiting on interrupts, or "
270              "bad addresses, or out of MSHRs")
271        .prereq(fetchMiscStallCycles);
272
273    fetchPendingDrainCycles
274        .name(name() + ".PendingDrainCycles")
275        .desc("Number of cycles fetch has spent waiting on pipes to drain")
276        .prereq(fetchPendingDrainCycles);
277
278    fetchNoActiveThreadStallCycles
279        .name(name() + ".NoActiveThreadStallCycles")
280        .desc("Number of stall cycles due to no active thread to fetch from")
281        .prereq(fetchNoActiveThreadStallCycles);
282
283    fetchPendingTrapStallCycles
284        .name(name() + ".PendingTrapStallCycles")
285        .desc("Number of stall cycles due to pending traps")
286        .prereq(fetchPendingTrapStallCycles);
287
288    fetchPendingQuiesceStallCycles
289        .name(name() + ".PendingQuiesceStallCycles")
290        .desc("Number of stall cycles due to pending quiesce instructions")
291        .prereq(fetchPendingQuiesceStallCycles);
292
293    fetchIcacheWaitRetryStallCycles
294        .name(name() + ".IcacheWaitRetryStallCycles")
295        .desc("Number of stall cycles due to full MSHR")
296        .prereq(fetchIcacheWaitRetryStallCycles);
297
298    fetchIcacheSquashes
299        .name(name() + ".IcacheSquashes")
300        .desc("Number of outstanding Icache misses that were squashed")
301        .prereq(fetchIcacheSquashes);
302
303    fetchTlbSquashes
304        .name(name() + ".ItlbSquashes")
305        .desc("Number of outstanding ITLB misses that were squashed")
306        .prereq(fetchTlbSquashes);
307
308    fetchNisnDist
309        .init(/* base value */ 0,
310              /* last value */ fetchWidth,
311              /* bucket size */ 1)
312        .name(name() + ".rateDist")
313        .desc("Number of instructions fetched each cycle (Total)")
314        .flags(Stats::pdf);
315
316    idleRate
317        .name(name() + ".idleRate")
318        .desc("Percent of cycles fetch was idle")
319        .prereq(idleRate);
320    idleRate = fetchIdleCycles * 100 / cpu->numCycles;
321
322    branchRate
323        .name(name() + ".branchRate")
324        .desc("Number of branch fetches per cycle")
325        .flags(Stats::total);
326    branchRate = fetchedBranches / cpu->numCycles;
327
328    fetchRate
329        .name(name() + ".rate")
330        .desc("Number of inst fetches per cycle")
331        .flags(Stats::total);
332    fetchRate = fetchedInsts / cpu->numCycles;
333
334    branchPred.regStats();
335}
336
337template<class Impl>
338void
339DefaultFetch<Impl>::setTimeBuffer(TimeBuffer<TimeStruct> *time_buffer)
340{
341    timeBuffer = time_buffer;
342
343    // Create wires to get information from proper places in time buffer.
344    fromDecode = timeBuffer->getWire(-decodeToFetchDelay);
345    fromRename = timeBuffer->getWire(-renameToFetchDelay);
346    fromIEW = timeBuffer->getWire(-iewToFetchDelay);
347    fromCommit = timeBuffer->getWire(-commitToFetchDelay);
348}
349
350template<class Impl>
351void
352DefaultFetch<Impl>::setActiveThreads(std::list<ThreadID> *at_ptr)
353{
354    activeThreads = at_ptr;
355}
356
357template<class Impl>
358void
359DefaultFetch<Impl>::setFetchQueue(TimeBuffer<FetchStruct> *fq_ptr)
360{
361    fetchQueue = fq_ptr;
362
363    // Create wire to write information to proper place in fetch queue.
364    toDecode = fetchQueue->getWire(0);
365}
366
367template<class Impl>
368void
369DefaultFetch<Impl>::initStage()
370{
371    // Setup PC and nextPC with initial state.
372    for (ThreadID tid = 0; tid < numThreads; tid++) {
373        pc[tid] = cpu->pcState(tid);
374        fetchOffset[tid] = 0;
375        macroop[tid] = NULL;
376        delayedCommit[tid] = false;
377    }
378
379    for (ThreadID tid = 0; tid < numThreads; tid++) {
380
381        fetchStatus[tid] = Running;
382
383        priorityList.push_back(tid);
384
385        memReq[tid] = NULL;
386
387        stalls[tid].decode = false;
388        stalls[tid].rename = false;
389        stalls[tid].iew = false;
390        stalls[tid].commit = false;
391    }
392
393    // Schedule fetch to get the correct PC from the CPU
394    // scheduleFetchStartupEvent(1);
395
396    // Fetch needs to start fetching instructions at the very beginning,
397    // so it must start up in active state.
398    switchToActive();
399}
400
401template<class Impl>
402void
403DefaultFetch<Impl>::setIcache()
404{
405    // Size of cache block.
406    cacheBlkSize = icachePort->peerBlockSize();
407
408    // Create mask to get rid of offset bits.
409    cacheBlkMask = (cacheBlkSize - 1);
410
411    for (ThreadID tid = 0; tid < numThreads; tid++) {
412        // Create space to store a cache line.
413        cacheData[tid] = new uint8_t[cacheBlkSize];
414        cacheDataPC[tid] = 0;
415        cacheDataValid[tid] = false;
416    }
417}
418
419template<class Impl>
420void
421DefaultFetch<Impl>::processCacheCompletion(PacketPtr pkt)
422{
423    ThreadID tid = pkt->req->threadId();
424
425    DPRINTF(Fetch, "[tid:%u] Waking up from cache miss.\n", tid);
426
427    assert(!pkt->wasNacked());
428
429    // Only change the status if it's still waiting on the icache access
430    // to return.
431    if (fetchStatus[tid] != IcacheWaitResponse ||
432        pkt->req != memReq[tid] ||
433        isSwitchedOut()) {
434        ++fetchIcacheSquashes;
435        delete pkt->req;
436        delete pkt;
437        return;
438    }
439
440    memcpy(cacheData[tid], pkt->getPtr<uint8_t>(), cacheBlkSize);
441    cacheDataValid[tid] = true;
442
443    if (!drainPending) {
444        // Wake up the CPU (if it went to sleep and was waiting on
445        // this completion event).
446        cpu->wakeCPU();
447
448        DPRINTF(Activity, "[tid:%u] Activating fetch due to cache completion\n",
449                tid);
450
451        switchToActive();
452    }
453
454    // Only switch to IcacheAccessComplete if we're not stalled as well.
455    if (checkStall(tid)) {
456        fetchStatus[tid] = Blocked;
457    } else {
458        fetchStatus[tid] = IcacheAccessComplete;
459    }
460
461    // Reset the mem req to NULL.
462    delete pkt->req;
463    delete pkt;
464    memReq[tid] = NULL;
465}
466
467template <class Impl>
468bool
469DefaultFetch<Impl>::drain()
470{
471    // Fetch is ready to drain at any time.
472    cpu->signalDrained();
473    drainPending = true;
474    return true;
475}
476
477template <class Impl>
478void
479DefaultFetch<Impl>::resume()
480{
481    drainPending = false;
482}
483
484template <class Impl>
485void
486DefaultFetch<Impl>::switchOut()
487{
488    switchedOut = true;
489    // Branch predictor needs to have its state cleared.
490    branchPred.switchOut();
491}
492
493template <class Impl>
494void
495DefaultFetch<Impl>::takeOverFrom()
496{
497    // Reset all state
498    for (ThreadID i = 0; i < Impl::MaxThreads; ++i) {
499        stalls[i].decode = 0;
500        stalls[i].rename = 0;
501        stalls[i].iew = 0;
502        stalls[i].commit = 0;
503        pc[i] = cpu->pcState(i);
504        fetchStatus[i] = Running;
505    }
506    numInst = 0;
507    wroteToTimeBuffer = false;
508    _status = Inactive;
509    switchedOut = false;
510    interruptPending = false;
511    branchPred.takeOverFrom();
512}
513
514template <class Impl>
515void
516DefaultFetch<Impl>::wakeFromQuiesce()
517{
518    DPRINTF(Fetch, "Waking up from quiesce\n");
519    // Hopefully this is safe
520    // @todo: Allow other threads to wake from quiesce.
521    fetchStatus[0] = Running;
522}
523
524template <class Impl>
525inline void
526DefaultFetch<Impl>::switchToActive()
527{
528    if (_status == Inactive) {
529        DPRINTF(Activity, "Activating stage.\n");
530
531        cpu->activateStage(O3CPU::FetchIdx);
532
533        _status = Active;
534    }
535}
536
537template <class Impl>
538inline void
539DefaultFetch<Impl>::switchToInactive()
540{
541    if (_status == Active) {
542        DPRINTF(Activity, "Deactivating stage.\n");
543
544        cpu->deactivateStage(O3CPU::FetchIdx);
545
546        _status = Inactive;
547    }
548}
549
550template <class Impl>
551bool
552DefaultFetch<Impl>::lookupAndUpdateNextPC(
553        DynInstPtr &inst, TheISA::PCState &nextPC)
554{
555    // Do branch prediction check here.
556    // A bit of a misnomer...next_PC is actually the current PC until
557    // this function updates it.
558    bool predict_taken;
559
560    if (!inst->isControl()) {
561        TheISA::advancePC(nextPC, inst->staticInst);
562        inst->setPredTarg(nextPC);
563        inst->setPredTaken(false);
564        return false;
565    }
566
567    ThreadID tid = inst->threadNumber;
568    predict_taken = branchPred.predict(inst, nextPC, tid);
569
570    if (predict_taken) {
571        DPRINTF(Fetch, "[tid:%i]: [sn:%i]:  Branch predicted to be taken to %s.\n",
572                tid, inst->seqNum, nextPC);
573    } else {
574        DPRINTF(Fetch, "[tid:%i]: [sn:%i]:Branch predicted to be not taken.\n",
575                tid, inst->seqNum);
576    }
577
578    DPRINTF(Fetch, "[tid:%i]: [sn:%i] Branch predicted to go to %s.\n",
579            tid, inst->seqNum, nextPC);
580    inst->setPredTarg(nextPC);
581    inst->setPredTaken(predict_taken);
582
583    ++fetchedBranches;
584
585    if (predict_taken) {
586        ++predictedBranches;
587    }
588
589    return predict_taken;
590}
591
592template <class Impl>
593bool
594DefaultFetch<Impl>::fetchCacheLine(Addr vaddr, ThreadID tid, Addr pc)
595{
596    Fault fault = NoFault;
597
598    // @todo: not sure if these should block translation.
599    //AlphaDep
600    if (cacheBlocked) {
601        DPRINTF(Fetch, "[tid:%i] Can't fetch cache line, cache blocked\n",
602                tid);
603        return false;
604    } else if (isSwitchedOut()) {
605        DPRINTF(Fetch, "[tid:%i] Can't fetch cache line, switched out\n",
606                tid);
607        return false;
608    } else if (checkInterrupt(pc)) {
609        // Hold off fetch from getting new instructions when:
610        // Cache is blocked, or
611        // while an interrupt is pending and we're not in PAL mode, or
612        // fetch is switched out.
613        DPRINTF(Fetch, "[tid:%i] Can't fetch cache line, interrupt pending\n",
614                tid);
615        return false;
616    }
617
618    // Align the fetch address so it's at the start of a cache block.
619    Addr block_PC = icacheBlockAlignPC(vaddr);
620
621    DPRINTF(Fetch, "[tid:%i] Fetching cache line %#x for addr %#x\n",
622            tid, block_PC, vaddr);
623
624    // Setup the memReq to do a read of the first instruction's address.
625    // Set the appropriate read size and flags as well.
626    // Build request here.
627    RequestPtr mem_req =
628        new Request(tid, block_PC, cacheBlkSize, Request::INST_FETCH,
629                    pc, cpu->thread[tid]->contextId(), tid);
630
631    memReq[tid] = mem_req;
632
633    // Initiate translation of the icache block
634    fetchStatus[tid] = ItlbWait;
635    FetchTranslation *trans = new FetchTranslation(this);
636    cpu->itb->translateTiming(mem_req, cpu->thread[tid]->getTC(),
637                              trans, BaseTLB::Execute);
638    return true;
639}
640
641template <class Impl>
642void
643DefaultFetch<Impl>::finishTranslation(Fault fault, RequestPtr mem_req)
644{
645    ThreadID tid = mem_req->threadId();
646    Addr block_PC = mem_req->getVaddr();
647
648    // Wake up CPU if it was idle
649    cpu->wakeCPU();
650
651    if (fetchStatus[tid] != ItlbWait || mem_req != memReq[tid] ||
652        mem_req->getVaddr() != memReq[tid]->getVaddr() || isSwitchedOut()) {
653        DPRINTF(Fetch, "[tid:%i] Ignoring itlb completed after squash\n",
654                tid);
655        ++fetchTlbSquashes;
656        delete mem_req;
657        return;
658    }
659
660
661    // If translation was successful, attempt to read the icache block.
662    if (fault == NoFault) {
663        // Check that we're not going off into random memory
664        // If we have, just wait around for commit to squash something and put
665        // us on the right track
666        if (!cpu->system->isMemory(mem_req->getPaddr())) {
667            warn("Address %#x is outside of physical memory, stopping fetch\n",
668                    mem_req->getPaddr());
669            fetchStatus[tid] = NoGoodAddr;
670            delete mem_req;
671            memReq[tid] = NULL;
672            return;
673        }
674
675        // Build packet here.
676        PacketPtr data_pkt = new Packet(mem_req,
677                                        MemCmd::ReadReq, Packet::Broadcast);
678        data_pkt->dataDynamicArray(new uint8_t[cacheBlkSize]);
679
680        cacheDataPC[tid] = block_PC;
681        cacheDataValid[tid] = false;
682        DPRINTF(Fetch, "Fetch: Doing instruction read.\n");
683
684        fetchedCacheLines++;
685
686        // Access the cache.
687        if (!icachePort->sendTiming(data_pkt)) {
688            assert(retryPkt == NULL);
689            assert(retryTid == InvalidThreadID);
690            DPRINTF(Fetch, "[tid:%i] Out of MSHRs!\n", tid);
691
692            fetchStatus[tid] = IcacheWaitRetry;
693            retryPkt = data_pkt;
694            retryTid = tid;
695            cacheBlocked = true;
696        } else {
697            DPRINTF(Fetch, "[tid:%i]: Doing Icache access.\n", tid);
698            DPRINTF(Activity, "[tid:%i]: Activity: Waiting on I-cache "
699                    "response.\n", tid);
700
701            lastIcacheStall[tid] = curTick();
702            fetchStatus[tid] = IcacheWaitResponse;
703        }
704    } else {
705        if (!(numInst < fetchWidth)) {
706            assert(!finishTranslationEvent.scheduled());
707            finishTranslationEvent.setFault(fault);
708            finishTranslationEvent.setReq(mem_req);
709            cpu->schedule(finishTranslationEvent, cpu->nextCycle(curTick() + cpu->ticks(1)));
710            return;
711        }
712        DPRINTF(Fetch, "[tid:%i] Got back req with addr %#x but expected %#x\n",
713                tid, mem_req->getVaddr(), memReq[tid]->getVaddr());
714        // Translation faulted, icache request won't be sent.
715        delete mem_req;
716        memReq[tid] = NULL;
717
718        // Send the fault to commit.  This thread will not do anything
719        // until commit handles the fault.  The only other way it can
720        // wake up is if a squash comes along and changes the PC.
721        TheISA::PCState fetchPC = pc[tid];
722
723        DPRINTF(Fetch, "[tid:%i]: Translation faulted, building noop.\n", tid);
724        // We will use a nop in ordier to carry the fault.
725        DynInstPtr instruction = buildInst(tid,
726                decoder.decode(TheISA::NoopMachInst, fetchPC.instAddr()),
727                NULL, fetchPC, fetchPC, false);
728
729        instruction->setPredTarg(fetchPC);
730        instruction->fault = fault;
731        wroteToTimeBuffer = true;
732
733        DPRINTF(Activity, "Activity this cycle.\n");
734        cpu->activityThisCycle();
735
736        fetchStatus[tid] = TrapPending;
737
738        DPRINTF(Fetch, "[tid:%i]: Blocked, need to handle the trap.\n", tid);
739        DPRINTF(Fetch, "[tid:%i]: fault (%s) detected @ PC %s.\n",
740                tid, fault->name(), pc[tid]);
741    }
742    _status = updateFetchStatus();
743}
744
745template <class Impl>
746inline void
747DefaultFetch<Impl>::doSquash(const TheISA::PCState &newPC,
748                             const DynInstPtr squashInst, ThreadID tid)
749{
750    DPRINTF(Fetch, "[tid:%i]: Squashing, setting PC to: %s.\n",
751            tid, newPC);
752
753    pc[tid] = newPC;
754    fetchOffset[tid] = 0;
755    if (squashInst && squashInst->pcState().instAddr() == newPC.instAddr())
756        macroop[tid] = squashInst->macroop;
757    else
758        macroop[tid] = NULL;
759    predecoder.reset();
760
761    // Clear the icache miss if it's outstanding.
762    if (fetchStatus[tid] == IcacheWaitResponse) {
763        DPRINTF(Fetch, "[tid:%i]: Squashing outstanding Icache miss.\n",
764                tid);
765        memReq[tid] = NULL;
766    } else if (fetchStatus[tid] == ItlbWait) {
767        DPRINTF(Fetch, "[tid:%i]: Squashing outstanding ITLB miss.\n",
768                tid);
769        memReq[tid] = NULL;
770    }
771
772    // Get rid of the retrying packet if it was from this thread.
773    if (retryTid == tid) {
774        assert(cacheBlocked);
775        if (retryPkt) {
776            delete retryPkt->req;
777            delete retryPkt;
778        }
779        retryPkt = NULL;
780        retryTid = InvalidThreadID;
781    }
782
783    fetchStatus[tid] = Squashing;
784
785    ++fetchSquashCycles;
786}
787
788template<class Impl>
789void
790DefaultFetch<Impl>::squashFromDecode(const TheISA::PCState &newPC,
791                                     const DynInstPtr squashInst,
792                                     const InstSeqNum seq_num, ThreadID tid)
793{
794    DPRINTF(Fetch, "[tid:%i]: Squashing from decode.\n", tid);
795
796    doSquash(newPC, squashInst, tid);
797
798    // Tell the CPU to remove any instructions that are in flight between
799    // fetch and decode.
800    cpu->removeInstsUntil(seq_num, tid);
801}
802
803template<class Impl>
804bool
805DefaultFetch<Impl>::checkStall(ThreadID tid) const
806{
807    bool ret_val = false;
808
809    if (cpu->contextSwitch) {
810        DPRINTF(Fetch,"[tid:%i]: Stalling for a context switch.\n",tid);
811        ret_val = true;
812    } else if (stalls[tid].decode) {
813        DPRINTF(Fetch,"[tid:%i]: Stall from Decode stage detected.\n",tid);
814        ret_val = true;
815    } else if (stalls[tid].rename) {
816        DPRINTF(Fetch,"[tid:%i]: Stall from Rename stage detected.\n",tid);
817        ret_val = true;
818    } else if (stalls[tid].iew) {
819        DPRINTF(Fetch,"[tid:%i]: Stall from IEW stage detected.\n",tid);
820        ret_val = true;
821    } else if (stalls[tid].commit) {
822        DPRINTF(Fetch,"[tid:%i]: Stall from Commit stage detected.\n",tid);
823        ret_val = true;
824    }
825
826    return ret_val;
827}
828
829template<class Impl>
830typename DefaultFetch<Impl>::FetchStatus
831DefaultFetch<Impl>::updateFetchStatus()
832{
833    //Check Running
834    list<ThreadID>::iterator threads = activeThreads->begin();
835    list<ThreadID>::iterator end = activeThreads->end();
836
837    while (threads != end) {
838        ThreadID tid = *threads++;
839
840        if (fetchStatus[tid] == Running ||
841            fetchStatus[tid] == Squashing ||
842            fetchStatus[tid] == IcacheAccessComplete) {
843
844            if (_status == Inactive) {
845                DPRINTF(Activity, "[tid:%i]: Activating stage.\n",tid);
846
847                if (fetchStatus[tid] == IcacheAccessComplete) {
848                    DPRINTF(Activity, "[tid:%i]: Activating fetch due to cache"
849                            "completion\n",tid);
850                }
851
852                cpu->activateStage(O3CPU::FetchIdx);
853            }
854
855            return Active;
856        }
857    }
858
859    // Stage is switching from active to inactive, notify CPU of it.
860    if (_status == Active) {
861        DPRINTF(Activity, "Deactivating stage.\n");
862
863        cpu->deactivateStage(O3CPU::FetchIdx);
864    }
865
866    return Inactive;
867}
868
869template <class Impl>
870void
871DefaultFetch<Impl>::squash(const TheISA::PCState &newPC,
872                           const InstSeqNum seq_num, DynInstPtr squashInst,
873                           ThreadID tid)
874{
875    DPRINTF(Fetch, "[tid:%u]: Squash from commit.\n", tid);
876
877    doSquash(newPC, squashInst, tid);
878
879    // Tell the CPU to remove any instructions that are not in the ROB.
880    cpu->removeInstsNotInROB(tid);
881}
882
883template <class Impl>
884void
885DefaultFetch<Impl>::tick()
886{
887    list<ThreadID>::iterator threads = activeThreads->begin();
888    list<ThreadID>::iterator end = activeThreads->end();
889    bool status_change = false;
890
891    wroteToTimeBuffer = false;
892
893    for (ThreadID i = 0; i < Impl::MaxThreads; ++i) {
894        issuePipelinedIfetch[i] = false;
895    }
896
897    while (threads != end) {
898        ThreadID tid = *threads++;
899
900        // Check the signals for each thread to determine the proper status
901        // for each thread.
902        bool updated_status = checkSignalsAndUpdate(tid);
903        status_change =  status_change || updated_status;
904    }
905
906    DPRINTF(Fetch, "Running stage.\n");
907
908    if (FullSystem) {
909        if (fromCommit->commitInfo[0].interruptPending) {
910            interruptPending = true;
911        }
912
913        if (fromCommit->commitInfo[0].clearInterrupt) {
914            interruptPending = false;
915        }
916    }
917
918    for (threadFetched = 0; threadFetched < numFetchingThreads;
919         threadFetched++) {
920        // Fetch each of the actively fetching threads.
921        fetch(status_change);
922    }
923
924    // Record number of instructions fetched this cycle for distribution.
925    fetchNisnDist.sample(numInst);
926
927    if (status_change) {
928        // Change the fetch stage status if there was a status change.
929        _status = updateFetchStatus();
930    }
931
932    // If there was activity this cycle, inform the CPU of it.
933    if (wroteToTimeBuffer || cpu->contextSwitch) {
934        DPRINTF(Activity, "Activity this cycle.\n");
935
936        cpu->activityThisCycle();
937    }
938
939    // Issue the next I-cache request if possible.
940    for (ThreadID i = 0; i < Impl::MaxThreads; ++i) {
941        if (issuePipelinedIfetch[i]) {
942            pipelineIcacheAccesses(i);
943        }
944    }
945
946    // Reset the number of the instruction we've fetched.
947    numInst = 0;
948}
949
950template <class Impl>
951bool
952DefaultFetch<Impl>::checkSignalsAndUpdate(ThreadID tid)
953{
954    // Update the per thread stall statuses.
955    if (fromDecode->decodeBlock[tid]) {
956        stalls[tid].decode = true;
957    }
958
959    if (fromDecode->decodeUnblock[tid]) {
960        assert(stalls[tid].decode);
961        assert(!fromDecode->decodeBlock[tid]);
962        stalls[tid].decode = false;
963    }
964
965    if (fromRename->renameBlock[tid]) {
966        stalls[tid].rename = true;
967    }
968
969    if (fromRename->renameUnblock[tid]) {
970        assert(stalls[tid].rename);
971        assert(!fromRename->renameBlock[tid]);
972        stalls[tid].rename = false;
973    }
974
975    if (fromIEW->iewBlock[tid]) {
976        stalls[tid].iew = true;
977    }
978
979    if (fromIEW->iewUnblock[tid]) {
980        assert(stalls[tid].iew);
981        assert(!fromIEW->iewBlock[tid]);
982        stalls[tid].iew = false;
983    }
984
985    if (fromCommit->commitBlock[tid]) {
986        stalls[tid].commit = true;
987    }
988
989    if (fromCommit->commitUnblock[tid]) {
990        assert(stalls[tid].commit);
991        assert(!fromCommit->commitBlock[tid]);
992        stalls[tid].commit = false;
993    }
994
995    // Check squash signals from commit.
996    if (fromCommit->commitInfo[tid].squash) {
997
998        DPRINTF(Fetch, "[tid:%u]: Squashing instructions due to squash "
999                "from commit.\n",tid);
1000        // In any case, squash.
1001        squash(fromCommit->commitInfo[tid].pc,
1002               fromCommit->commitInfo[tid].doneSeqNum,
1003               fromCommit->commitInfo[tid].squashInst, tid);
1004
1005        // If it was a branch mispredict on a control instruction, update the
1006        // branch predictor with that instruction, otherwise just kill the
1007        // invalid state we generated in after sequence number
1008        if (fromCommit->commitInfo[tid].mispredictInst &&
1009            fromCommit->commitInfo[tid].mispredictInst->isControl()) {
1010            branchPred.squash(fromCommit->commitInfo[tid].doneSeqNum,
1011                              fromCommit->commitInfo[tid].pc,
1012                              fromCommit->commitInfo[tid].branchTaken,
1013                              tid);
1014        } else {
1015            branchPred.squash(fromCommit->commitInfo[tid].doneSeqNum,
1016                              tid);
1017        }
1018
1019        return true;
1020    } else if (fromCommit->commitInfo[tid].doneSeqNum) {
1021        // Update the branch predictor if it wasn't a squashed instruction
1022        // that was broadcasted.
1023        branchPred.update(fromCommit->commitInfo[tid].doneSeqNum, tid);
1024    }
1025
1026    // Check ROB squash signals from commit.
1027    if (fromCommit->commitInfo[tid].robSquashing) {
1028        DPRINTF(Fetch, "[tid:%u]: ROB is still squashing.\n", tid);
1029
1030        // Continue to squash.
1031        fetchStatus[tid] = Squashing;
1032
1033        return true;
1034    }
1035
1036    // Check squash signals from decode.
1037    if (fromDecode->decodeInfo[tid].squash) {
1038        DPRINTF(Fetch, "[tid:%u]: Squashing instructions due to squash "
1039                "from decode.\n",tid);
1040
1041        // Update the branch predictor.
1042        if (fromDecode->decodeInfo[tid].branchMispredict) {
1043            branchPred.squash(fromDecode->decodeInfo[tid].doneSeqNum,
1044                              fromDecode->decodeInfo[tid].nextPC,
1045                              fromDecode->decodeInfo[tid].branchTaken,
1046                              tid);
1047        } else {
1048            branchPred.squash(fromDecode->decodeInfo[tid].doneSeqNum,
1049                              tid);
1050        }
1051
1052        if (fetchStatus[tid] != Squashing) {
1053
1054            TheISA::PCState nextPC = fromDecode->decodeInfo[tid].nextPC;
1055            DPRINTF(Fetch, "Squashing from decode with PC = %s\n", nextPC);
1056            // Squash unless we're already squashing
1057            squashFromDecode(fromDecode->decodeInfo[tid].nextPC,
1058                             fromDecode->decodeInfo[tid].squashInst,
1059                             fromDecode->decodeInfo[tid].doneSeqNum,
1060                             tid);
1061
1062            return true;
1063        }
1064    }
1065
1066    if (checkStall(tid) &&
1067        fetchStatus[tid] != IcacheWaitResponse &&
1068        fetchStatus[tid] != IcacheWaitRetry) {
1069        DPRINTF(Fetch, "[tid:%i]: Setting to blocked\n",tid);
1070
1071        fetchStatus[tid] = Blocked;
1072
1073        return true;
1074    }
1075
1076    if (fetchStatus[tid] == Blocked ||
1077        fetchStatus[tid] == Squashing) {
1078        // Switch status to running if fetch isn't being told to block or
1079        // squash this cycle.
1080        DPRINTF(Fetch, "[tid:%i]: Done squashing, switching to running.\n",
1081                tid);
1082
1083        fetchStatus[tid] = Running;
1084
1085        return true;
1086    }
1087
1088    // If we've reached this point, we have not gotten any signals that
1089    // cause fetch to change its status.  Fetch remains the same as before.
1090    return false;
1091}
1092
1093template<class Impl>
1094typename Impl::DynInstPtr
1095DefaultFetch<Impl>::buildInst(ThreadID tid, StaticInstPtr staticInst,
1096                              StaticInstPtr curMacroop, TheISA::PCState thisPC,
1097                              TheISA::PCState nextPC, bool trace)
1098{
1099    // Get a sequence number.
1100    InstSeqNum seq = cpu->getAndIncrementInstSeq();
1101
1102    // Create a new DynInst from the instruction fetched.
1103    DynInstPtr instruction =
1104        new DynInst(staticInst, curMacroop, thisPC, nextPC, seq, cpu);
1105    instruction->setTid(tid);
1106
1107    instruction->setASID(tid);
1108
1109    instruction->setThreadState(cpu->thread[tid]);
1110
1111    DPRINTF(Fetch, "[tid:%i]: Instruction PC %#x (%d) created "
1112            "[sn:%lli].\n", tid, thisPC.instAddr(),
1113            thisPC.microPC(), seq);
1114
1115    DPRINTF(Fetch, "[tid:%i]: Instruction is: %s\n", tid,
1116            instruction->staticInst->
1117            disassemble(thisPC.instAddr()));
1118
1119#if TRACING_ON
1120    if (trace) {
1121        instruction->traceData =
1122            cpu->getTracer()->getInstRecord(curTick(), cpu->tcBase(tid),
1123                    instruction->staticInst, thisPC, curMacroop);
1124    }
1125#else
1126    instruction->traceData = NULL;
1127#endif
1128
1129    // Add instruction to the CPU's list of instructions.
1130    instruction->setInstListIt(cpu->addInst(instruction));
1131
1132    // Write the instruction to the first slot in the queue
1133    // that heads to decode.
1134    assert(numInst < fetchWidth);
1135    toDecode->insts[toDecode->size++] = instruction;
1136
1137    // Keep track of if we can take an interrupt at this boundary
1138    delayedCommit[tid] = instruction->isDelayedCommit();
1139
1140    return instruction;
1141}
1142
1143template<class Impl>
1144void
1145DefaultFetch<Impl>::fetch(bool &status_change)
1146{
1147    //////////////////////////////////////////
1148    // Start actual fetch
1149    //////////////////////////////////////////
1150    ThreadID tid = getFetchingThread(fetchPolicy);
1151
1152    if (tid == InvalidThreadID || drainPending) {
1153        // Breaks looping condition in tick()
1154        threadFetched = numFetchingThreads;
1155
1156        if (numThreads == 1) {  // @todo Per-thread stats
1157            profileStall(0);
1158        }
1159
1160        return;
1161    }
1162
1163    DPRINTF(Fetch, "Attempting to fetch from [tid:%i]\n", tid);
1164
1165    // The current PC.
1166    TheISA::PCState thisPC = pc[tid];
1167
1168    Addr pcOffset = fetchOffset[tid];
1169    Addr fetchAddr = (thisPC.instAddr() + pcOffset) & BaseCPU::PCMask;
1170
1171    bool inRom = isRomMicroPC(thisPC.microPC());
1172
1173    // If returning from the delay of a cache miss, then update the status
1174    // to running, otherwise do the cache access.  Possibly move this up
1175    // to tick() function.
1176    if (fetchStatus[tid] == IcacheAccessComplete) {
1177        DPRINTF(Fetch, "[tid:%i]: Icache miss is complete.\n", tid);
1178
1179        fetchStatus[tid] = Running;
1180        status_change = true;
1181    } else if (fetchStatus[tid] == Running) {
1182        // Align the fetch PC so its at the start of a cache block.
1183        Addr block_PC = icacheBlockAlignPC(fetchAddr);
1184
1185        // If buffer is no longer valid or fetchAddr has moved to point
1186        // to the next cache block, AND we have no remaining ucode
1187        // from a macro-op, then start fetch from icache.
1188        if (!(cacheDataValid[tid] && block_PC == cacheDataPC[tid])
1189            && !inRom && !macroop[tid]) {
1190            DPRINTF(Fetch, "[tid:%i]: Attempting to translate and read "
1191                    "instruction, starting at PC %s.\n", tid, thisPC);
1192
1193            fetchCacheLine(fetchAddr, tid, thisPC.instAddr());
1194
1195            if (fetchStatus[tid] == IcacheWaitResponse)
1196                ++icacheStallCycles;
1197            else if (fetchStatus[tid] == ItlbWait)
1198                ++fetchTlbCycles;
1199            else
1200                ++fetchMiscStallCycles;
1201            return;
1202        } else if ((checkInterrupt(thisPC.instAddr()) && !delayedCommit[tid])
1203                   || isSwitchedOut()) {
1204            // Stall CPU if an interrupt is posted and we're not issuing
1205            // an delayed commit micro-op currently (delayed commit instructions
1206            // are not interruptable by interrupts, only faults)
1207            ++fetchMiscStallCycles;
1208            return;
1209        }
1210    } else {
1211        if (fetchStatus[tid] == Idle) {
1212            ++fetchIdleCycles;
1213            DPRINTF(Fetch, "[tid:%i]: Fetch is idle!\n", tid);
1214        }
1215
1216        // Status is Idle, so fetch should do nothing.
1217        return;
1218    }
1219
1220    ++fetchCycles;
1221
1222    TheISA::PCState nextPC = thisPC;
1223
1224    StaticInstPtr staticInst = NULL;
1225    StaticInstPtr curMacroop = macroop[tid];
1226
1227    // If the read of the first instruction was successful, then grab the
1228    // instructions from the rest of the cache line and put them into the
1229    // queue heading to decode.
1230
1231    DPRINTF(Fetch, "[tid:%i]: Adding instructions to queue to "
1232            "decode.\n", tid);
1233
1234    // Need to keep track of whether or not a predicted branch
1235    // ended this fetch block.
1236    bool predictedBranch = false;
1237
1238    TheISA::MachInst *cacheInsts =
1239        reinterpret_cast<TheISA::MachInst *>(cacheData[tid]);
1240
1241    const unsigned numInsts = cacheBlkSize / instSize;
1242    unsigned blkOffset = (fetchAddr - cacheDataPC[tid]) / instSize;
1243
1244    // Loop through instruction memory from the cache.
1245    // Keep issuing while fetchWidth is available and branch is not
1246    // predicted taken
1247    while (numInst < fetchWidth && !predictedBranch) {
1248
1249        // We need to process more memory if we aren't going to get a
1250        // StaticInst from the rom, the current macroop, or what's already
1251        // in the predecoder.
1252        bool needMem = !inRom && !curMacroop && !predecoder.extMachInstReady();
1253
1254        if (needMem) {
1255            if (blkOffset >= numInsts) {
1256                // We need to process more memory, but we've run out of the
1257                // current block.
1258                break;
1259            }
1260
1261            if (ISA_HAS_DELAY_SLOT && pcOffset == 0) {
1262                // Walk past any annulled delay slot instructions.
1263                Addr pcAddr = thisPC.instAddr() & BaseCPU::PCMask;
1264                while (fetchAddr != pcAddr && blkOffset < numInsts) {
1265                    blkOffset++;
1266                    fetchAddr += instSize;
1267                }
1268                if (blkOffset >= numInsts)
1269                    break;
1270            }
1271            MachInst inst = TheISA::gtoh(cacheInsts[blkOffset]);
1272
1273            predecoder.setTC(cpu->thread[tid]->getTC());
1274            predecoder.moreBytes(thisPC, fetchAddr, inst);
1275
1276            if (predecoder.needMoreBytes()) {
1277                blkOffset++;
1278                fetchAddr += instSize;
1279                pcOffset += instSize;
1280            }
1281        }
1282
1283        // Extract as many instructions and/or microops as we can from
1284        // the memory we've processed so far.
1285        do {
1286            if (!(curMacroop || inRom)) {
1287                if (predecoder.extMachInstReady()) {
1288                    ExtMachInst extMachInst =
1289                        predecoder.getExtMachInst(thisPC);
1290                    staticInst =
1291                        decoder.decode(extMachInst, thisPC.instAddr());
1292
1293                    // Increment stat of fetched instructions.
1294                    ++fetchedInsts;
1295
1296                    if (staticInst->isMacroop()) {
1297                        curMacroop = staticInst;
1298                    } else {
1299                        pcOffset = 0;
1300                    }
1301                } else {
1302                    // We need more bytes for this instruction so blkOffset and
1303                    // pcOffset will be updated
1304                    break;
1305                }
1306            }
1307            // Whether we're moving to a new macroop because we're at the
1308            // end of the current one, or the branch predictor incorrectly
1309            // thinks we are...
1310            bool newMacro = false;
1311            if (curMacroop || inRom) {
1312                if (inRom) {
1313                    staticInst = cpu->microcodeRom.fetchMicroop(
1314                            thisPC.microPC(), curMacroop);
1315                } else {
1316                    staticInst = curMacroop->fetchMicroop(thisPC.microPC());
1317                }
1318                newMacro |= staticInst->isLastMicroop();
1319            }
1320
1321            DynInstPtr instruction =
1322                buildInst(tid, staticInst, curMacroop,
1323                          thisPC, nextPC, true);
1324
1325            numInst++;
1326
1327#if TRACING_ON
1328            instruction->fetchTick = curTick();
1329#endif
1330
1331            nextPC = thisPC;
1332
1333            // If we're branching after this instruction, quite fetching
1334            // from the same block then.
1335            predictedBranch |= thisPC.branching();
1336            predictedBranch |=
1337                lookupAndUpdateNextPC(instruction, nextPC);
1338            if (predictedBranch) {
1339                DPRINTF(Fetch, "Branch detected with PC = %s\n", thisPC);
1340            }
1341
1342            newMacro |= thisPC.instAddr() != nextPC.instAddr();
1343
1344            // Move to the next instruction, unless we have a branch.
1345            thisPC = nextPC;
1346
1347            if (newMacro) {
1348                fetchAddr = thisPC.instAddr() & BaseCPU::PCMask;
1349                blkOffset = (fetchAddr - cacheDataPC[tid]) / instSize;
1350                pcOffset = 0;
1351                curMacroop = NULL;
1352            }
1353
1354            if (instruction->isQuiesce()) {
1355                DPRINTF(Fetch,
1356                        "Quiesce instruction encountered, halting fetch!");
1357                fetchStatus[tid] = QuiescePending;
1358                status_change = true;
1359                break;
1360            }
1361        } while ((curMacroop || predecoder.extMachInstReady()) &&
1362                 numInst < fetchWidth);
1363    }
1364
1365    if (predictedBranch) {
1366        DPRINTF(Fetch, "[tid:%i]: Done fetching, predicted branch "
1367                "instruction encountered.\n", tid);
1368    } else if (numInst >= fetchWidth) {
1369        DPRINTF(Fetch, "[tid:%i]: Done fetching, reached fetch bandwidth "
1370                "for this cycle.\n", tid);
1371    } else if (blkOffset >= cacheBlkSize) {
1372        DPRINTF(Fetch, "[tid:%i]: Done fetching, reached the end of cache "
1373                "block.\n", tid);
1374    }
1375
1376    macroop[tid] = curMacroop;
1377    fetchOffset[tid] = pcOffset;
1378
1379    if (numInst > 0) {
1380        wroteToTimeBuffer = true;
1381    }
1382
1383    pc[tid] = thisPC;
1384
1385    // pipeline a fetch if we're crossing a cache boundary and not in
1386    // a state that would preclude fetching
1387    fetchAddr = (thisPC.instAddr() + pcOffset) & BaseCPU::PCMask;
1388    Addr block_PC = icacheBlockAlignPC(fetchAddr);
1389    issuePipelinedIfetch[tid] = block_PC != cacheDataPC[tid] &&
1390        fetchStatus[tid] != IcacheWaitResponse &&
1391        fetchStatus[tid] != ItlbWait &&
1392        fetchStatus[tid] != IcacheWaitRetry &&
1393        fetchStatus[tid] != QuiescePending &&
1394        !curMacroop;
1395}
1396
1397template<class Impl>
1398void
1399DefaultFetch<Impl>::recvRetry()
1400{
1401    if (retryPkt != NULL) {
1402        assert(cacheBlocked);
1403        assert(retryTid != InvalidThreadID);
1404        assert(fetchStatus[retryTid] == IcacheWaitRetry);
1405
1406        if (icachePort->sendTiming(retryPkt)) {
1407            fetchStatus[retryTid] = IcacheWaitResponse;
1408            retryPkt = NULL;
1409            retryTid = InvalidThreadID;
1410            cacheBlocked = false;
1411        }
1412    } else {
1413        assert(retryTid == InvalidThreadID);
1414        // Access has been squashed since it was sent out.  Just clear
1415        // the cache being blocked.
1416        cacheBlocked = false;
1417    }
1418}
1419
1420///////////////////////////////////////
1421//                                   //
1422//  SMT FETCH POLICY MAINTAINED HERE //
1423//                                   //
1424///////////////////////////////////////
1425template<class Impl>
1426ThreadID
1427DefaultFetch<Impl>::getFetchingThread(FetchPriority &fetch_priority)
1428{
1429    if (numThreads > 1) {
1430        switch (fetch_priority) {
1431
1432          case SingleThread:
1433            return 0;
1434
1435          case RoundRobin:
1436            return roundRobin();
1437
1438          case IQ:
1439            return iqCount();
1440
1441          case LSQ:
1442            return lsqCount();
1443
1444          case Branch:
1445            return branchCount();
1446
1447          default:
1448            return InvalidThreadID;
1449        }
1450    } else {
1451        list<ThreadID>::iterator thread = activeThreads->begin();
1452        if (thread == activeThreads->end()) {
1453            return InvalidThreadID;
1454        }
1455
1456        ThreadID tid = *thread;
1457
1458        if (fetchStatus[tid] == Running ||
1459            fetchStatus[tid] == IcacheAccessComplete ||
1460            fetchStatus[tid] == Idle) {
1461            return tid;
1462        } else {
1463            return InvalidThreadID;
1464        }
1465    }
1466}
1467
1468
1469template<class Impl>
1470ThreadID
1471DefaultFetch<Impl>::roundRobin()
1472{
1473    list<ThreadID>::iterator pri_iter = priorityList.begin();
1474    list<ThreadID>::iterator end      = priorityList.end();
1475
1476    ThreadID high_pri;
1477
1478    while (pri_iter != end) {
1479        high_pri = *pri_iter;
1480
1481        assert(high_pri <= numThreads);
1482
1483        if (fetchStatus[high_pri] == Running ||
1484            fetchStatus[high_pri] == IcacheAccessComplete ||
1485            fetchStatus[high_pri] == Idle) {
1486
1487            priorityList.erase(pri_iter);
1488            priorityList.push_back(high_pri);
1489
1490            return high_pri;
1491        }
1492
1493        pri_iter++;
1494    }
1495
1496    return InvalidThreadID;
1497}
1498
1499template<class Impl>
1500ThreadID
1501DefaultFetch<Impl>::iqCount()
1502{
1503    std::priority_queue<unsigned> PQ;
1504    std::map<unsigned, ThreadID> threadMap;
1505
1506    list<ThreadID>::iterator threads = activeThreads->begin();
1507    list<ThreadID>::iterator end = activeThreads->end();
1508
1509    while (threads != end) {
1510        ThreadID tid = *threads++;
1511        unsigned iqCount = fromIEW->iewInfo[tid].iqCount;
1512
1513        PQ.push(iqCount);
1514        threadMap[iqCount] = tid;
1515    }
1516
1517    while (!PQ.empty()) {
1518        ThreadID high_pri = threadMap[PQ.top()];
1519
1520        if (fetchStatus[high_pri] == Running ||
1521            fetchStatus[high_pri] == IcacheAccessComplete ||
1522            fetchStatus[high_pri] == Idle)
1523            return high_pri;
1524        else
1525            PQ.pop();
1526
1527    }
1528
1529    return InvalidThreadID;
1530}
1531
1532template<class Impl>
1533ThreadID
1534DefaultFetch<Impl>::lsqCount()
1535{
1536    std::priority_queue<unsigned> PQ;
1537    std::map<unsigned, ThreadID> threadMap;
1538
1539    list<ThreadID>::iterator threads = activeThreads->begin();
1540    list<ThreadID>::iterator end = activeThreads->end();
1541
1542    while (threads != end) {
1543        ThreadID tid = *threads++;
1544        unsigned ldstqCount = fromIEW->iewInfo[tid].ldstqCount;
1545
1546        PQ.push(ldstqCount);
1547        threadMap[ldstqCount] = tid;
1548    }
1549
1550    while (!PQ.empty()) {
1551        ThreadID high_pri = threadMap[PQ.top()];
1552
1553        if (fetchStatus[high_pri] == Running ||
1554            fetchStatus[high_pri] == IcacheAccessComplete ||
1555            fetchStatus[high_pri] == Idle)
1556            return high_pri;
1557        else
1558            PQ.pop();
1559    }
1560
1561    return InvalidThreadID;
1562}
1563
1564template<class Impl>
1565ThreadID
1566DefaultFetch<Impl>::branchCount()
1567{
1568#if 0
1569    list<ThreadID>::iterator thread = activeThreads->begin();
1570    assert(thread != activeThreads->end());
1571    ThreadID tid = *thread;
1572#endif
1573
1574    panic("Branch Count Fetch policy unimplemented\n");
1575    return InvalidThreadID;
1576}
1577
1578template<class Impl>
1579void
1580DefaultFetch<Impl>::pipelineIcacheAccesses(ThreadID tid)
1581{
1582    if (!issuePipelinedIfetch[tid]) {
1583        return;
1584    }
1585
1586    // The next PC to access.
1587    TheISA::PCState thisPC = pc[tid];
1588
1589    if (isRomMicroPC(thisPC.microPC())) {
1590        return;
1591    }
1592
1593    Addr pcOffset = fetchOffset[tid];
1594    Addr fetchAddr = (thisPC.instAddr() + pcOffset) & BaseCPU::PCMask;
1595
1596    // Align the fetch PC so its at the start of a cache block.
1597    Addr block_PC = icacheBlockAlignPC(fetchAddr);
1598
1599    // Unless buffer already got the block, fetch it from icache.
1600    if (!(cacheDataValid[tid] && block_PC == cacheDataPC[tid])) {
1601        DPRINTF(Fetch, "[tid:%i]: Issuing a pipelined I-cache access, "
1602                "starting at PC %s.\n", tid, thisPC);
1603
1604        fetchCacheLine(fetchAddr, tid, thisPC.instAddr());
1605    }
1606}
1607
1608template<class Impl>
1609void
1610DefaultFetch<Impl>::profileStall(ThreadID tid) {
1611    DPRINTF(Fetch,"There are no more threads available to fetch from.\n");
1612
1613    // @todo Per-thread stats
1614
1615    if (drainPending) {
1616        ++fetchPendingDrainCycles;
1617        DPRINTF(Fetch, "Fetch is waiting for a drain!\n");
1618    } else if (activeThreads->empty()) {
1619        ++fetchNoActiveThreadStallCycles;
1620        DPRINTF(Fetch, "Fetch has no active thread!\n");
1621    } else if (fetchStatus[tid] == Blocked) {
1622        ++fetchBlockedCycles;
1623        DPRINTF(Fetch, "[tid:%i]: Fetch is blocked!\n", tid);
1624    } else if (fetchStatus[tid] == Squashing) {
1625        ++fetchSquashCycles;
1626        DPRINTF(Fetch, "[tid:%i]: Fetch is squashing!\n", tid);
1627    } else if (fetchStatus[tid] == IcacheWaitResponse) {
1628        ++icacheStallCycles;
1629        DPRINTF(Fetch, "[tid:%i]: Fetch is waiting cache response!\n",
1630                tid);
1631    } else if (fetchStatus[tid] == ItlbWait) {
1632        ++fetchTlbCycles;
1633        DPRINTF(Fetch, "[tid:%i]: Fetch is waiting ITLB walk to "
1634                "finish!\n", tid);
1635    } else if (fetchStatus[tid] == TrapPending) {
1636        ++fetchPendingTrapStallCycles;
1637        DPRINTF(Fetch, "[tid:%i]: Fetch is waiting for a pending trap!\n",
1638                tid);
1639    } else if (fetchStatus[tid] == QuiescePending) {
1640        ++fetchPendingQuiesceStallCycles;
1641        DPRINTF(Fetch, "[tid:%i]: Fetch is waiting for a pending quiesce "
1642                "instruction!\n", tid);
1643    } else if (fetchStatus[tid] == IcacheWaitRetry) {
1644        ++fetchIcacheWaitRetryStallCycles;
1645        DPRINTF(Fetch, "[tid:%i]: Fetch is waiting for an I-cache retry!\n",
1646                tid);
1647    } else if (fetchStatus[tid] == NoGoodAddr) {
1648            DPRINTF(Fetch, "[tid:%i]: Fetch predicted non-executable address\n",
1649                    tid);
1650    } else {
1651        DPRINTF(Fetch, "[tid:%i]: Unexpected fetch stall reason (Status: %i).\n",
1652             tid, fetchStatus[tid]);
1653    }
1654}
1655