fetch_impl.hh revision 8138:f08692f2932e
1/*
2 * Copyright (c) 2010 ARM Limited
3 * All rights reserved.
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder.  You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2004-2006 The Regents of The University of Michigan
15 * All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions are
19 * met: redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer;
21 * redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution;
24 * neither the name of the copyright holders nor the names of its
25 * contributors may be used to endorse or promote products derived from
26 * this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 *
40 * Authors: Kevin Lim
41 *          Korey Sewell
42 */
43
44#include <algorithm>
45#include <cstring>
46
47#include "arch/isa_traits.hh"
48#include "arch/utility.hh"
49#include "base/types.hh"
50#include "config/the_isa.hh"
51#include "config/use_checker.hh"
52#include "cpu/checker/cpu.hh"
53#include "cpu/exetrace.hh"
54#include "cpu/o3/fetch.hh"
55#include "mem/packet.hh"
56#include "mem/request.hh"
57#include "params/DerivO3CPU.hh"
58#include "sim/byteswap.hh"
59#include "sim/core.hh"
60
61#if FULL_SYSTEM
62#include "arch/tlb.hh"
63#include "arch/vtophys.hh"
64#include "sim/system.hh"
65#endif // FULL_SYSTEM
66
67using namespace std;
68
69template<class Impl>
70void
71DefaultFetch<Impl>::IcachePort::setPeer(Port *port)
72{
73    Port::setPeer(port);
74
75    fetch->setIcache();
76}
77
78template<class Impl>
79Tick
80DefaultFetch<Impl>::IcachePort::recvAtomic(PacketPtr pkt)
81{
82    panic("DefaultFetch doesn't expect recvAtomic callback!");
83    return curTick();
84}
85
86template<class Impl>
87void
88DefaultFetch<Impl>::IcachePort::recvFunctional(PacketPtr pkt)
89{
90    DPRINTF(Fetch, "DefaultFetch doesn't update its state from a "
91            "functional call.");
92}
93
94template<class Impl>
95void
96DefaultFetch<Impl>::IcachePort::recvStatusChange(Status status)
97{
98    if (status == RangeChange) {
99        if (!snoopRangeSent) {
100            snoopRangeSent = true;
101            sendStatusChange(Port::RangeChange);
102        }
103        return;
104    }
105
106    panic("DefaultFetch doesn't expect recvStatusChange callback!");
107}
108
109template<class Impl>
110bool
111DefaultFetch<Impl>::IcachePort::recvTiming(PacketPtr pkt)
112{
113    DPRINTF(Fetch, "Received timing\n");
114    if (pkt->isResponse()) {
115        // We shouldn't ever get a block in ownership state
116        assert(!(pkt->memInhibitAsserted() && !pkt->sharedAsserted()));
117
118        fetch->processCacheCompletion(pkt);
119    }
120    //else Snooped a coherence request, just return
121    return true;
122}
123
124template<class Impl>
125void
126DefaultFetch<Impl>::IcachePort::recvRetry()
127{
128    fetch->recvRetry();
129}
130
131template<class Impl>
132DefaultFetch<Impl>::DefaultFetch(O3CPU *_cpu, DerivO3CPUParams *params)
133    : cpu(_cpu),
134      branchPred(params),
135      predecoder(NULL),
136      decodeToFetchDelay(params->decodeToFetchDelay),
137      renameToFetchDelay(params->renameToFetchDelay),
138      iewToFetchDelay(params->iewToFetchDelay),
139      commitToFetchDelay(params->commitToFetchDelay),
140      fetchWidth(params->fetchWidth),
141      cacheBlocked(false),
142      retryPkt(NULL),
143      retryTid(InvalidThreadID),
144      numThreads(params->numThreads),
145      numFetchingThreads(params->smtNumFetchingThreads),
146      interruptPending(false),
147      drainPending(false),
148      switchedOut(false)
149{
150    if (numThreads > Impl::MaxThreads)
151        fatal("numThreads (%d) is larger than compiled limit (%d),\n"
152              "\tincrease MaxThreads in src/cpu/o3/impl.hh\n",
153              numThreads, static_cast<int>(Impl::MaxThreads));
154
155    // Set fetch stage's status to inactive.
156    _status = Inactive;
157
158    std::string policy = params->smtFetchPolicy;
159
160    // Convert string to lowercase
161    std::transform(policy.begin(), policy.end(), policy.begin(),
162                   (int(*)(int)) tolower);
163
164    // Figure out fetch policy
165    if (policy == "singlethread") {
166        fetchPolicy = SingleThread;
167        if (numThreads > 1)
168            panic("Invalid Fetch Policy for a SMT workload.");
169    } else if (policy == "roundrobin") {
170        fetchPolicy = RoundRobin;
171        DPRINTF(Fetch, "Fetch policy set to Round Robin\n");
172    } else if (policy == "branch") {
173        fetchPolicy = Branch;
174        DPRINTF(Fetch, "Fetch policy set to Branch Count\n");
175    } else if (policy == "iqcount") {
176        fetchPolicy = IQ;
177        DPRINTF(Fetch, "Fetch policy set to IQ count\n");
178    } else if (policy == "lsqcount") {
179        fetchPolicy = LSQ;
180        DPRINTF(Fetch, "Fetch policy set to LSQ count\n");
181    } else {
182        fatal("Invalid Fetch Policy. Options Are: {SingleThread,"
183              " RoundRobin,LSQcount,IQcount}\n");
184    }
185
186    // Get the size of an instruction.
187    instSize = sizeof(TheISA::MachInst);
188
189    // Name is finally available, so create the port.
190    icachePort = new IcachePort(this);
191
192    icachePort->snoopRangeSent = false;
193
194#if USE_CHECKER
195    if (cpu->checker) {
196        cpu->checker->setIcachePort(icachePort);
197    }
198#endif
199}
200
201template <class Impl>
202std::string
203DefaultFetch<Impl>::name() const
204{
205    return cpu->name() + ".fetch";
206}
207
208template <class Impl>
209void
210DefaultFetch<Impl>::regStats()
211{
212    icacheStallCycles
213        .name(name() + ".icacheStallCycles")
214        .desc("Number of cycles fetch is stalled on an Icache miss")
215        .prereq(icacheStallCycles);
216
217    fetchedInsts
218        .name(name() + ".Insts")
219        .desc("Number of instructions fetch has processed")
220        .prereq(fetchedInsts);
221
222    fetchedBranches
223        .name(name() + ".Branches")
224        .desc("Number of branches that fetch encountered")
225        .prereq(fetchedBranches);
226
227    predictedBranches
228        .name(name() + ".predictedBranches")
229        .desc("Number of branches that fetch has predicted taken")
230        .prereq(predictedBranches);
231
232    fetchCycles
233        .name(name() + ".Cycles")
234        .desc("Number of cycles fetch has run and was not squashing or"
235              " blocked")
236        .prereq(fetchCycles);
237
238    fetchSquashCycles
239        .name(name() + ".SquashCycles")
240        .desc("Number of cycles fetch has spent squashing")
241        .prereq(fetchSquashCycles);
242
243    fetchTlbCycles
244        .name(name() + ".TlbCycles")
245        .desc("Number of cycles fetch has spent waiting for tlb")
246        .prereq(fetchTlbCycles);
247
248    fetchIdleCycles
249        .name(name() + ".IdleCycles")
250        .desc("Number of cycles fetch was idle")
251        .prereq(fetchIdleCycles);
252
253    fetchBlockedCycles
254        .name(name() + ".BlockedCycles")
255        .desc("Number of cycles fetch has spent blocked")
256        .prereq(fetchBlockedCycles);
257
258    fetchedCacheLines
259        .name(name() + ".CacheLines")
260        .desc("Number of cache lines fetched")
261        .prereq(fetchedCacheLines);
262
263    fetchMiscStallCycles
264        .name(name() + ".MiscStallCycles")
265        .desc("Number of cycles fetch has spent waiting on interrupts, or "
266              "bad addresses, or out of MSHRs")
267        .prereq(fetchMiscStallCycles);
268
269    fetchIcacheSquashes
270        .name(name() + ".IcacheSquashes")
271        .desc("Number of outstanding Icache misses that were squashed")
272        .prereq(fetchIcacheSquashes);
273
274    fetchTlbSquashes
275        .name(name() + ".ItlbSquashes")
276        .desc("Number of outstanding ITLB misses that were squashed")
277        .prereq(fetchTlbSquashes);
278
279    fetchNisnDist
280        .init(/* base value */ 0,
281              /* last value */ fetchWidth,
282              /* bucket size */ 1)
283        .name(name() + ".rateDist")
284        .desc("Number of instructions fetched each cycle (Total)")
285        .flags(Stats::pdf);
286
287    idleRate
288        .name(name() + ".idleRate")
289        .desc("Percent of cycles fetch was idle")
290        .prereq(idleRate);
291    idleRate = fetchIdleCycles * 100 / cpu->numCycles;
292
293    branchRate
294        .name(name() + ".branchRate")
295        .desc("Number of branch fetches per cycle")
296        .flags(Stats::total);
297    branchRate = fetchedBranches / cpu->numCycles;
298
299    fetchRate
300        .name(name() + ".rate")
301        .desc("Number of inst fetches per cycle")
302        .flags(Stats::total);
303    fetchRate = fetchedInsts / cpu->numCycles;
304
305    branchPred.regStats();
306}
307
308template<class Impl>
309void
310DefaultFetch<Impl>::setTimeBuffer(TimeBuffer<TimeStruct> *time_buffer)
311{
312    timeBuffer = time_buffer;
313
314    // Create wires to get information from proper places in time buffer.
315    fromDecode = timeBuffer->getWire(-decodeToFetchDelay);
316    fromRename = timeBuffer->getWire(-renameToFetchDelay);
317    fromIEW = timeBuffer->getWire(-iewToFetchDelay);
318    fromCommit = timeBuffer->getWire(-commitToFetchDelay);
319}
320
321template<class Impl>
322void
323DefaultFetch<Impl>::setActiveThreads(std::list<ThreadID> *at_ptr)
324{
325    activeThreads = at_ptr;
326}
327
328template<class Impl>
329void
330DefaultFetch<Impl>::setFetchQueue(TimeBuffer<FetchStruct> *fq_ptr)
331{
332    fetchQueue = fq_ptr;
333
334    // Create wire to write information to proper place in fetch queue.
335    toDecode = fetchQueue->getWire(0);
336}
337
338template<class Impl>
339void
340DefaultFetch<Impl>::initStage()
341{
342    // Setup PC and nextPC with initial state.
343    for (ThreadID tid = 0; tid < numThreads; tid++) {
344        pc[tid] = cpu->pcState(tid);
345        fetchOffset[tid] = 0;
346        macroop[tid] = NULL;
347    }
348
349    for (ThreadID tid = 0; tid < numThreads; tid++) {
350
351        fetchStatus[tid] = Running;
352
353        priorityList.push_back(tid);
354
355        memReq[tid] = NULL;
356
357        stalls[tid].decode = false;
358        stalls[tid].rename = false;
359        stalls[tid].iew = false;
360        stalls[tid].commit = false;
361    }
362
363    // Schedule fetch to get the correct PC from the CPU
364    // scheduleFetchStartupEvent(1);
365
366    // Fetch needs to start fetching instructions at the very beginning,
367    // so it must start up in active state.
368    switchToActive();
369}
370
371template<class Impl>
372void
373DefaultFetch<Impl>::setIcache()
374{
375    // Size of cache block.
376    cacheBlkSize = icachePort->peerBlockSize();
377
378    // Create mask to get rid of offset bits.
379    cacheBlkMask = (cacheBlkSize - 1);
380
381    for (ThreadID tid = 0; tid < numThreads; tid++) {
382        // Create space to store a cache line.
383        cacheData[tid] = new uint8_t[cacheBlkSize];
384        cacheDataPC[tid] = 0;
385        cacheDataValid[tid] = false;
386    }
387}
388
389template<class Impl>
390void
391DefaultFetch<Impl>::processCacheCompletion(PacketPtr pkt)
392{
393    ThreadID tid = pkt->req->threadId();
394
395    DPRINTF(Fetch, "[tid:%u] Waking up from cache miss.\n", tid);
396
397    assert(!pkt->wasNacked());
398
399    // Only change the status if it's still waiting on the icache access
400    // to return.
401    if (fetchStatus[tid] != IcacheWaitResponse ||
402        pkt->req != memReq[tid] ||
403        isSwitchedOut()) {
404        ++fetchIcacheSquashes;
405        delete pkt->req;
406        delete pkt;
407        return;
408    }
409
410    memcpy(cacheData[tid], pkt->getPtr<uint8_t>(), cacheBlkSize);
411    cacheDataValid[tid] = true;
412
413    if (!drainPending) {
414        // Wake up the CPU (if it went to sleep and was waiting on
415        // this completion event).
416        cpu->wakeCPU();
417
418        DPRINTF(Activity, "[tid:%u] Activating fetch due to cache completion\n",
419                tid);
420
421        switchToActive();
422    }
423
424    // Only switch to IcacheAccessComplete if we're not stalled as well.
425    if (checkStall(tid)) {
426        fetchStatus[tid] = Blocked;
427    } else {
428        fetchStatus[tid] = IcacheAccessComplete;
429    }
430
431    // Reset the mem req to NULL.
432    delete pkt->req;
433    delete pkt;
434    memReq[tid] = NULL;
435}
436
437template <class Impl>
438bool
439DefaultFetch<Impl>::drain()
440{
441    // Fetch is ready to drain at any time.
442    cpu->signalDrained();
443    drainPending = true;
444    return true;
445}
446
447template <class Impl>
448void
449DefaultFetch<Impl>::resume()
450{
451    drainPending = false;
452}
453
454template <class Impl>
455void
456DefaultFetch<Impl>::switchOut()
457{
458    switchedOut = true;
459    // Branch predictor needs to have its state cleared.
460    branchPred.switchOut();
461}
462
463template <class Impl>
464void
465DefaultFetch<Impl>::takeOverFrom()
466{
467    // Reset all state
468    for (ThreadID i = 0; i < Impl::MaxThreads; ++i) {
469        stalls[i].decode = 0;
470        stalls[i].rename = 0;
471        stalls[i].iew = 0;
472        stalls[i].commit = 0;
473        pc[i] = cpu->pcState(i);
474        fetchStatus[i] = Running;
475    }
476    numInst = 0;
477    wroteToTimeBuffer = false;
478    _status = Inactive;
479    switchedOut = false;
480    interruptPending = false;
481    branchPred.takeOverFrom();
482}
483
484template <class Impl>
485void
486DefaultFetch<Impl>::wakeFromQuiesce()
487{
488    DPRINTF(Fetch, "Waking up from quiesce\n");
489    // Hopefully this is safe
490    // @todo: Allow other threads to wake from quiesce.
491    fetchStatus[0] = Running;
492}
493
494template <class Impl>
495inline void
496DefaultFetch<Impl>::switchToActive()
497{
498    if (_status == Inactive) {
499        DPRINTF(Activity, "Activating stage.\n");
500
501        cpu->activateStage(O3CPU::FetchIdx);
502
503        _status = Active;
504    }
505}
506
507template <class Impl>
508inline void
509DefaultFetch<Impl>::switchToInactive()
510{
511    if (_status == Active) {
512        DPRINTF(Activity, "Deactivating stage.\n");
513
514        cpu->deactivateStage(O3CPU::FetchIdx);
515
516        _status = Inactive;
517    }
518}
519
520template <class Impl>
521bool
522DefaultFetch<Impl>::lookupAndUpdateNextPC(
523        DynInstPtr &inst, TheISA::PCState &nextPC)
524{
525    // Do branch prediction check here.
526    // A bit of a misnomer...next_PC is actually the current PC until
527    // this function updates it.
528    bool predict_taken;
529
530    if (!inst->isControl()) {
531        TheISA::advancePC(nextPC, inst->staticInst);
532        inst->setPredTarg(nextPC);
533        inst->setPredTaken(false);
534        return false;
535    }
536
537    ThreadID tid = inst->threadNumber;
538    predict_taken = branchPred.predict(inst, nextPC, tid);
539
540    if (predict_taken) {
541        DPRINTF(Fetch, "[tid:%i]: [sn:%i]:  Branch predicted to be taken to %s.\n",
542                tid, inst->seqNum, nextPC);
543    } else {
544        DPRINTF(Fetch, "[tid:%i]: [sn:%i]:Branch predicted to be not taken.\n",
545                tid, inst->seqNum);
546    }
547
548    DPRINTF(Fetch, "[tid:%i]: [sn:%i] Branch predicted to go to %s.\n",
549            tid, inst->seqNum, nextPC);
550    inst->setPredTarg(nextPC);
551    inst->setPredTaken(predict_taken);
552
553    ++fetchedBranches;
554
555    if (predict_taken) {
556        ++predictedBranches;
557    }
558
559    return predict_taken;
560}
561
562template <class Impl>
563bool
564DefaultFetch<Impl>::fetchCacheLine(Addr vaddr, ThreadID tid, Addr pc)
565{
566    Fault fault = NoFault;
567
568    // @todo: not sure if these should block translation.
569    //AlphaDep
570    if (cacheBlocked) {
571        DPRINTF(Fetch, "[tid:%i] Can't fetch cache line, cache blocked\n",
572                tid);
573        return false;
574    } else if (isSwitchedOut()) {
575        DPRINTF(Fetch, "[tid:%i] Can't fetch cache line, switched out\n",
576                tid);
577        return false;
578    } else if (checkInterrupt(pc)) {
579        // Hold off fetch from getting new instructions when:
580        // Cache is blocked, or
581        // while an interrupt is pending and we're not in PAL mode, or
582        // fetch is switched out.
583        DPRINTF(Fetch, "[tid:%i] Can't fetch cache line, interrupt pending\n",
584                tid);
585        return false;
586    }
587
588    // Align the fetch address so it's at the start of a cache block.
589    Addr block_PC = icacheBlockAlignPC(vaddr);
590
591    DPRINTF(Fetch, "[tid:%i] Fetching cache line %#x for addr %#x\n",
592            tid, block_PC, vaddr);
593
594    // Setup the memReq to do a read of the first instruction's address.
595    // Set the appropriate read size and flags as well.
596    // Build request here.
597    RequestPtr mem_req =
598        new Request(tid, block_PC, cacheBlkSize, Request::INST_FETCH,
599                    pc, cpu->thread[tid]->contextId(), tid);
600
601    memReq[tid] = mem_req;
602
603    // Initiate translation of the icache block
604    fetchStatus[tid] = ItlbWait;
605    FetchTranslation *trans = new FetchTranslation(this);
606    cpu->itb->translateTiming(mem_req, cpu->thread[tid]->getTC(),
607                              trans, BaseTLB::Execute);
608    return true;
609}
610
611template <class Impl>
612void
613DefaultFetch<Impl>::finishTranslation(Fault fault, RequestPtr mem_req)
614{
615    ThreadID tid = mem_req->threadId();
616    Addr block_PC = mem_req->getVaddr();
617
618    // Wake up CPU if it was idle
619    cpu->wakeCPU();
620
621    if (fetchStatus[tid] != ItlbWait || mem_req != memReq[tid] ||
622        mem_req->getVaddr() != memReq[tid]->getVaddr() || isSwitchedOut()) {
623        DPRINTF(Fetch, "[tid:%i] Ignoring itlb completed after squash\n",
624                tid);
625        ++fetchTlbSquashes;
626        delete mem_req;
627        return;
628    }
629
630
631    // If translation was successful, attempt to read the icache block.
632    if (fault == NoFault) {
633        // Build packet here.
634        PacketPtr data_pkt = new Packet(mem_req,
635                                        MemCmd::ReadReq, Packet::Broadcast);
636        data_pkt->dataDynamicArray(new uint8_t[cacheBlkSize]);
637
638        cacheDataPC[tid] = block_PC;
639        cacheDataValid[tid] = false;
640        DPRINTF(Fetch, "Fetch: Doing instruction read.\n");
641
642        fetchedCacheLines++;
643
644        // Access the cache.
645        if (!icachePort->sendTiming(data_pkt)) {
646            assert(retryPkt == NULL);
647            assert(retryTid == InvalidThreadID);
648            DPRINTF(Fetch, "[tid:%i] Out of MSHRs!\n", tid);
649
650            fetchStatus[tid] = IcacheWaitRetry;
651            retryPkt = data_pkt;
652            retryTid = tid;
653            cacheBlocked = true;
654        } else {
655            DPRINTF(Fetch, "[tid:%i]: Doing Icache access.\n", tid);
656            DPRINTF(Activity, "[tid:%i]: Activity: Waiting on I-cache "
657                    "response.\n", tid);
658
659            lastIcacheStall[tid] = curTick();
660            fetchStatus[tid] = IcacheWaitResponse;
661        }
662    } else {
663        DPRINTF(Fetch, "[tid:%i] Got back req with addr %#x but expected %#x\n",
664                mem_req->getVaddr(), memReq[tid]->getVaddr());
665        // Translation faulted, icache request won't be sent.
666        delete mem_req;
667        memReq[tid] = NULL;
668
669        // Send the fault to commit.  This thread will not do anything
670        // until commit handles the fault.  The only other way it can
671        // wake up is if a squash comes along and changes the PC.
672        TheISA::PCState fetchPC = pc[tid];
673
674        DPRINTF(Fetch, "[tid:%i]: Translation faulted, building noop.\n", tid);
675        // We will use a nop in ordier to carry the fault.
676        DynInstPtr instruction = buildInst(tid,
677                StaticInstPtr(TheISA::NoopMachInst, fetchPC.instAddr()),
678                NULL, fetchPC, fetchPC, false);
679
680        instruction->setPredTarg(fetchPC);
681        instruction->fault = fault;
682        wroteToTimeBuffer = true;
683
684        DPRINTF(Activity, "Activity this cycle.\n");
685        cpu->activityThisCycle();
686
687        fetchStatus[tid] = TrapPending;
688
689        DPRINTF(Fetch, "[tid:%i]: Blocked, need to handle the trap.\n", tid);
690        DPRINTF(Fetch, "[tid:%i]: fault (%s) detected @ PC %s.\n",
691                tid, fault->name(), pc[tid]);
692    }
693    _status = updateFetchStatus();
694}
695
696template <class Impl>
697inline void
698DefaultFetch<Impl>::doSquash(const TheISA::PCState &newPC, ThreadID tid)
699{
700    DPRINTF(Fetch, "[tid:%i]: Squashing, setting PC to: %s.\n",
701            tid, newPC);
702
703    pc[tid] = newPC;
704    fetchOffset[tid] = 0;
705    macroop[tid] = NULL;
706    predecoder.reset();
707
708    // Clear the icache miss if it's outstanding.
709    if (fetchStatus[tid] == IcacheWaitResponse) {
710        DPRINTF(Fetch, "[tid:%i]: Squashing outstanding Icache miss.\n",
711                tid);
712        memReq[tid] = NULL;
713    } else if (fetchStatus[tid] == ItlbWait) {
714        DPRINTF(Fetch, "[tid:%i]: Squashing outstanding ITLB miss.\n",
715                tid);
716        memReq[tid] = NULL;
717    }
718
719    // Get rid of the retrying packet if it was from this thread.
720    if (retryTid == tid) {
721        assert(cacheBlocked);
722        if (retryPkt) {
723            delete retryPkt->req;
724            delete retryPkt;
725        }
726        retryPkt = NULL;
727        retryTid = InvalidThreadID;
728    }
729
730    fetchStatus[tid] = Squashing;
731
732    ++fetchSquashCycles;
733}
734
735template<class Impl>
736void
737DefaultFetch<Impl>::squashFromDecode(const TheISA::PCState &newPC,
738                                     const InstSeqNum &seq_num, ThreadID tid)
739{
740    DPRINTF(Fetch, "[tid:%i]: Squashing from decode.\n", tid);
741
742    doSquash(newPC, tid);
743
744    // Tell the CPU to remove any instructions that are in flight between
745    // fetch and decode.
746    cpu->removeInstsUntil(seq_num, tid);
747}
748
749template<class Impl>
750bool
751DefaultFetch<Impl>::checkStall(ThreadID tid) const
752{
753    bool ret_val = false;
754
755    if (cpu->contextSwitch) {
756        DPRINTF(Fetch,"[tid:%i]: Stalling for a context switch.\n",tid);
757        ret_val = true;
758    } else if (stalls[tid].decode) {
759        DPRINTF(Fetch,"[tid:%i]: Stall from Decode stage detected.\n",tid);
760        ret_val = true;
761    } else if (stalls[tid].rename) {
762        DPRINTF(Fetch,"[tid:%i]: Stall from Rename stage detected.\n",tid);
763        ret_val = true;
764    } else if (stalls[tid].iew) {
765        DPRINTF(Fetch,"[tid:%i]: Stall from IEW stage detected.\n",tid);
766        ret_val = true;
767    } else if (stalls[tid].commit) {
768        DPRINTF(Fetch,"[tid:%i]: Stall from Commit stage detected.\n",tid);
769        ret_val = true;
770    }
771
772    return ret_val;
773}
774
775template<class Impl>
776typename DefaultFetch<Impl>::FetchStatus
777DefaultFetch<Impl>::updateFetchStatus()
778{
779    //Check Running
780    list<ThreadID>::iterator threads = activeThreads->begin();
781    list<ThreadID>::iterator end = activeThreads->end();
782
783    while (threads != end) {
784        ThreadID tid = *threads++;
785
786        if (fetchStatus[tid] == Running ||
787            fetchStatus[tid] == Squashing ||
788            fetchStatus[tid] == IcacheAccessComplete) {
789
790            if (_status == Inactive) {
791                DPRINTF(Activity, "[tid:%i]: Activating stage.\n",tid);
792
793                if (fetchStatus[tid] == IcacheAccessComplete) {
794                    DPRINTF(Activity, "[tid:%i]: Activating fetch due to cache"
795                            "completion\n",tid);
796                }
797
798                cpu->activateStage(O3CPU::FetchIdx);
799            }
800
801            return Active;
802        }
803    }
804
805    // Stage is switching from active to inactive, notify CPU of it.
806    if (_status == Active) {
807        DPRINTF(Activity, "Deactivating stage.\n");
808
809        cpu->deactivateStage(O3CPU::FetchIdx);
810    }
811
812    return Inactive;
813}
814
815template <class Impl>
816void
817DefaultFetch<Impl>::squash(const TheISA::PCState &newPC,
818                           const InstSeqNum &seq_num, DynInstPtr &squashInst,
819                           ThreadID tid)
820{
821    DPRINTF(Fetch, "[tid:%u]: Squash from commit.\n", tid);
822
823    doSquash(newPC, tid);
824    if (squashInst)
825        predecoder.reset(squashInst->staticInst->machInst);
826
827    // Tell the CPU to remove any instructions that are not in the ROB.
828    cpu->removeInstsNotInROB(tid);
829}
830
831template <class Impl>
832void
833DefaultFetch<Impl>::tick()
834{
835    list<ThreadID>::iterator threads = activeThreads->begin();
836    list<ThreadID>::iterator end = activeThreads->end();
837    bool status_change = false;
838
839    wroteToTimeBuffer = false;
840
841    while (threads != end) {
842        ThreadID tid = *threads++;
843
844        // Check the signals for each thread to determine the proper status
845        // for each thread.
846        bool updated_status = checkSignalsAndUpdate(tid);
847        status_change =  status_change || updated_status;
848    }
849
850    DPRINTF(Fetch, "Running stage.\n");
851
852    // Reset the number of the instruction we're fetching.
853    numInst = 0;
854
855#if FULL_SYSTEM
856    if (fromCommit->commitInfo[0].interruptPending) {
857        interruptPending = true;
858    }
859
860    if (fromCommit->commitInfo[0].clearInterrupt) {
861        interruptPending = false;
862    }
863#endif
864
865    for (threadFetched = 0; threadFetched < numFetchingThreads;
866         threadFetched++) {
867        // Fetch each of the actively fetching threads.
868        fetch(status_change);
869    }
870
871    // Record number of instructions fetched this cycle for distribution.
872    fetchNisnDist.sample(numInst);
873
874    if (status_change) {
875        // Change the fetch stage status if there was a status change.
876        _status = updateFetchStatus();
877    }
878
879    // If there was activity this cycle, inform the CPU of it.
880    if (wroteToTimeBuffer || cpu->contextSwitch) {
881        DPRINTF(Activity, "Activity this cycle.\n");
882
883        cpu->activityThisCycle();
884    }
885}
886
887template <class Impl>
888bool
889DefaultFetch<Impl>::checkSignalsAndUpdate(ThreadID tid)
890{
891    // Update the per thread stall statuses.
892    if (fromDecode->decodeBlock[tid]) {
893        stalls[tid].decode = true;
894    }
895
896    if (fromDecode->decodeUnblock[tid]) {
897        assert(stalls[tid].decode);
898        assert(!fromDecode->decodeBlock[tid]);
899        stalls[tid].decode = false;
900    }
901
902    if (fromRename->renameBlock[tid]) {
903        stalls[tid].rename = true;
904    }
905
906    if (fromRename->renameUnblock[tid]) {
907        assert(stalls[tid].rename);
908        assert(!fromRename->renameBlock[tid]);
909        stalls[tid].rename = false;
910    }
911
912    if (fromIEW->iewBlock[tid]) {
913        stalls[tid].iew = true;
914    }
915
916    if (fromIEW->iewUnblock[tid]) {
917        assert(stalls[tid].iew);
918        assert(!fromIEW->iewBlock[tid]);
919        stalls[tid].iew = false;
920    }
921
922    if (fromCommit->commitBlock[tid]) {
923        stalls[tid].commit = true;
924    }
925
926    if (fromCommit->commitUnblock[tid]) {
927        assert(stalls[tid].commit);
928        assert(!fromCommit->commitBlock[tid]);
929        stalls[tid].commit = false;
930    }
931
932    // Check squash signals from commit.
933    if (fromCommit->commitInfo[tid].squash) {
934
935        DPRINTF(Fetch, "[tid:%u]: Squashing instructions due to squash "
936                "from commit.\n",tid);
937        // In any case, squash.
938        squash(fromCommit->commitInfo[tid].pc,
939               fromCommit->commitInfo[tid].doneSeqNum,
940               fromCommit->commitInfo[tid].squashInst, tid);
941
942        // If it was a branch mispredict on a control instruction, update the
943        // branch predictor with that instruction, otherwise just kill the
944        // invalid state we generated in after sequence number
945        if (fromCommit->commitInfo[tid].mispredictInst &&
946            fromCommit->commitInfo[tid].mispredictInst->isControl()) {
947            branchPred.squash(fromCommit->commitInfo[tid].doneSeqNum,
948                              fromCommit->commitInfo[tid].pc,
949                              fromCommit->commitInfo[tid].branchTaken,
950                              tid);
951        } else {
952            branchPred.squash(fromCommit->commitInfo[tid].doneSeqNum,
953                              tid);
954        }
955
956        return true;
957    } else if (fromCommit->commitInfo[tid].doneSeqNum) {
958        // Update the branch predictor if it wasn't a squashed instruction
959        // that was broadcasted.
960        branchPred.update(fromCommit->commitInfo[tid].doneSeqNum, tid);
961    }
962
963    // Check ROB squash signals from commit.
964    if (fromCommit->commitInfo[tid].robSquashing) {
965        DPRINTF(Fetch, "[tid:%u]: ROB is still squashing.\n", tid);
966
967        // Continue to squash.
968        fetchStatus[tid] = Squashing;
969
970        return true;
971    }
972
973    // Check squash signals from decode.
974    if (fromDecode->decodeInfo[tid].squash) {
975        DPRINTF(Fetch, "[tid:%u]: Squashing instructions due to squash "
976                "from decode.\n",tid);
977
978        // Update the branch predictor.
979        if (fromDecode->decodeInfo[tid].branchMispredict) {
980            branchPred.squash(fromDecode->decodeInfo[tid].doneSeqNum,
981                              fromDecode->decodeInfo[tid].nextPC,
982                              fromDecode->decodeInfo[tid].branchTaken,
983                              tid);
984        } else {
985            branchPred.squash(fromDecode->decodeInfo[tid].doneSeqNum,
986                              tid);
987        }
988
989        if (fetchStatus[tid] != Squashing) {
990
991            TheISA::PCState nextPC = fromDecode->decodeInfo[tid].nextPC;
992            DPRINTF(Fetch, "Squashing from decode with PC = %s\n", nextPC);
993            // Squash unless we're already squashing
994            squashFromDecode(fromDecode->decodeInfo[tid].nextPC,
995                             fromDecode->decodeInfo[tid].doneSeqNum,
996                             tid);
997
998            return true;
999        }
1000    }
1001
1002    if (checkStall(tid) &&
1003        fetchStatus[tid] != IcacheWaitResponse &&
1004        fetchStatus[tid] != IcacheWaitRetry) {
1005        DPRINTF(Fetch, "[tid:%i]: Setting to blocked\n",tid);
1006
1007        fetchStatus[tid] = Blocked;
1008
1009        return true;
1010    }
1011
1012    if (fetchStatus[tid] == Blocked ||
1013        fetchStatus[tid] == Squashing) {
1014        // Switch status to running if fetch isn't being told to block or
1015        // squash this cycle.
1016        DPRINTF(Fetch, "[tid:%i]: Done squashing, switching to running.\n",
1017                tid);
1018
1019        fetchStatus[tid] = Running;
1020
1021        return true;
1022    }
1023
1024    // If we've reached this point, we have not gotten any signals that
1025    // cause fetch to change its status.  Fetch remains the same as before.
1026    return false;
1027}
1028
1029template<class Impl>
1030typename Impl::DynInstPtr
1031DefaultFetch<Impl>::buildInst(ThreadID tid, StaticInstPtr staticInst,
1032                              StaticInstPtr curMacroop, TheISA::PCState thisPC,
1033                              TheISA::PCState nextPC, bool trace)
1034{
1035    // Get a sequence number.
1036    InstSeqNum seq = cpu->getAndIncrementInstSeq();
1037
1038    // Create a new DynInst from the instruction fetched.
1039    DynInstPtr instruction =
1040        new DynInst(staticInst, thisPC, nextPC, seq, cpu);
1041    instruction->setTid(tid);
1042
1043    instruction->setASID(tid);
1044
1045    instruction->setThreadState(cpu->thread[tid]);
1046
1047    DPRINTF(Fetch, "[tid:%i]: Instruction PC %#x (%d) created "
1048            "[sn:%lli].\n", tid, thisPC.instAddr(),
1049            thisPC.microPC(), seq);
1050
1051    DPRINTF(Fetch, "[tid:%i]: Instruction is: %s\n", tid,
1052            instruction->staticInst->
1053            disassemble(thisPC.instAddr()));
1054
1055#if TRACING_ON
1056    if (trace) {
1057        instruction->traceData =
1058            cpu->getTracer()->getInstRecord(curTick(), cpu->tcBase(tid),
1059                    instruction->staticInst, thisPC, curMacroop);
1060    }
1061#else
1062    instruction->traceData = NULL;
1063#endif
1064
1065    // Add instruction to the CPU's list of instructions.
1066    instruction->setInstListIt(cpu->addInst(instruction));
1067
1068    // Write the instruction to the first slot in the queue
1069    // that heads to decode.
1070    assert(numInst < fetchWidth);
1071    toDecode->insts[toDecode->size++] = instruction;
1072
1073    return instruction;
1074}
1075
1076template<class Impl>
1077void
1078DefaultFetch<Impl>::fetch(bool &status_change)
1079{
1080    //////////////////////////////////////////
1081    // Start actual fetch
1082    //////////////////////////////////////////
1083    ThreadID tid = getFetchingThread(fetchPolicy);
1084
1085    if (tid == InvalidThreadID || drainPending) {
1086        DPRINTF(Fetch,"There are no more threads available to fetch from.\n");
1087
1088        // Breaks looping condition in tick()
1089        threadFetched = numFetchingThreads;
1090        return;
1091    }
1092
1093    DPRINTF(Fetch, "Attempting to fetch from [tid:%i]\n", tid);
1094
1095    // The current PC.
1096    TheISA::PCState thisPC = pc[tid];
1097
1098    Addr pcOffset = fetchOffset[tid];
1099    Addr fetchAddr = (thisPC.instAddr() + pcOffset) & BaseCPU::PCMask;
1100
1101    bool inRom = isRomMicroPC(thisPC.microPC());
1102
1103    // If returning from the delay of a cache miss, then update the status
1104    // to running, otherwise do the cache access.  Possibly move this up
1105    // to tick() function.
1106    if (fetchStatus[tid] == IcacheAccessComplete) {
1107        DPRINTF(Fetch, "[tid:%i]: Icache miss is complete.\n", tid);
1108
1109        fetchStatus[tid] = Running;
1110        status_change = true;
1111    } else if (fetchStatus[tid] == Running) {
1112        // Align the fetch PC so its at the start of a cache block.
1113        Addr block_PC = icacheBlockAlignPC(fetchAddr);
1114
1115        // Unless buffer already got the block, fetch it from icache.
1116        if (!(cacheDataValid[tid] && block_PC == cacheDataPC[tid]) && !inRom) {
1117            DPRINTF(Fetch, "[tid:%i]: Attempting to translate and read "
1118                    "instruction, starting at PC %s.\n", tid, thisPC);
1119
1120            fetchCacheLine(fetchAddr, tid, thisPC.instAddr());
1121
1122            if (fetchStatus[tid] == IcacheWaitResponse)
1123                ++icacheStallCycles;
1124            else if (fetchStatus[tid] == ItlbWait)
1125                ++fetchTlbCycles;
1126            else
1127                ++fetchMiscStallCycles;
1128            return;
1129        } else if (checkInterrupt(thisPC.instAddr()) || isSwitchedOut()) {
1130            ++fetchMiscStallCycles;
1131            return;
1132        }
1133    } else {
1134        if (fetchStatus[tid] == Idle) {
1135            ++fetchIdleCycles;
1136            DPRINTF(Fetch, "[tid:%i]: Fetch is idle!\n", tid);
1137        } else if (fetchStatus[tid] == Blocked) {
1138            ++fetchBlockedCycles;
1139            DPRINTF(Fetch, "[tid:%i]: Fetch is blocked!\n", tid);
1140        } else if (fetchStatus[tid] == Squashing) {
1141            ++fetchSquashCycles;
1142            DPRINTF(Fetch, "[tid:%i]: Fetch is squashing!\n", tid);
1143        } else if (fetchStatus[tid] == IcacheWaitResponse) {
1144            ++icacheStallCycles;
1145            DPRINTF(Fetch, "[tid:%i]: Fetch is waiting cache response!\n",
1146                    tid);
1147        } else if (fetchStatus[tid] == ItlbWait) {
1148            DPRINTF(Fetch, "[tid:%i]: Fetch is waiting ITLB walk to "
1149                    "finish! \n", tid);
1150            ++fetchTlbCycles;
1151        } else if (fetchStatus[tid] == TrapPending) {
1152            DPRINTF(Fetch, "[tid:%i]: Fetch is waiting for a pending trap\n",
1153                    tid);
1154        }
1155
1156
1157        // Status is Idle, Squashing, Blocked, ItlbWait or IcacheWaitResponse
1158        // so fetch should do nothing.
1159        return;
1160    }
1161
1162    ++fetchCycles;
1163
1164    TheISA::PCState nextPC = thisPC;
1165
1166    StaticInstPtr staticInst = NULL;
1167    StaticInstPtr curMacroop = macroop[tid];
1168
1169    // If the read of the first instruction was successful, then grab the
1170    // instructions from the rest of the cache line and put them into the
1171    // queue heading to decode.
1172
1173    DPRINTF(Fetch, "[tid:%i]: Adding instructions to queue to "
1174            "decode.\n", tid);
1175
1176    // Need to keep track of whether or not a predicted branch
1177    // ended this fetch block.
1178    bool predictedBranch = false;
1179
1180    TheISA::MachInst *cacheInsts =
1181        reinterpret_cast<TheISA::MachInst *>(cacheData[tid]);
1182
1183    const unsigned numInsts = cacheBlkSize / instSize;
1184    unsigned blkOffset = (fetchAddr - cacheDataPC[tid]) / instSize;
1185
1186    // Loop through instruction memory from the cache.
1187    while (blkOffset < numInsts &&
1188           numInst < fetchWidth &&
1189           !predictedBranch) {
1190
1191        // If we need to process more memory, do it now.
1192        if (!(curMacroop || inRom) && !predecoder.extMachInstReady()) {
1193            if (ISA_HAS_DELAY_SLOT && pcOffset == 0) {
1194                // Walk past any annulled delay slot instructions.
1195                Addr pcAddr = thisPC.instAddr() & BaseCPU::PCMask;
1196                while (fetchAddr != pcAddr && blkOffset < numInsts) {
1197                    blkOffset++;
1198                    fetchAddr += instSize;
1199                }
1200                if (blkOffset >= numInsts)
1201                    break;
1202            }
1203            MachInst inst = TheISA::gtoh(cacheInsts[blkOffset]);
1204
1205            predecoder.setTC(cpu->thread[tid]->getTC());
1206            predecoder.moreBytes(thisPC, fetchAddr, inst);
1207
1208            if (predecoder.needMoreBytes()) {
1209                blkOffset++;
1210                fetchAddr += instSize;
1211                pcOffset += instSize;
1212            }
1213        }
1214
1215        // Extract as many instructions and/or microops as we can from
1216        // the memory we've processed so far.
1217        do {
1218            if (!(curMacroop || inRom)) {
1219                if (predecoder.extMachInstReady()) {
1220                    ExtMachInst extMachInst;
1221
1222                    extMachInst = predecoder.getExtMachInst(thisPC);
1223                    staticInst = StaticInstPtr(extMachInst,
1224                                               thisPC.instAddr());
1225
1226                    // Increment stat of fetched instructions.
1227                    ++fetchedInsts;
1228
1229                    if (staticInst->isMacroop()) {
1230                        curMacroop = staticInst;
1231                    } else {
1232                        pcOffset = 0;
1233                    }
1234                } else {
1235                    // We need more bytes for this instruction.
1236                    break;
1237                }
1238            }
1239            if (curMacroop || inRom) {
1240                if (inRom) {
1241                    staticInst = cpu->microcodeRom.fetchMicroop(
1242                            thisPC.microPC(), curMacroop);
1243                } else {
1244                    staticInst = curMacroop->fetchMicroop(thisPC.microPC());
1245                }
1246                if (staticInst->isLastMicroop()) {
1247                    curMacroop = NULL;
1248                    pcOffset = 0;
1249                }
1250            }
1251
1252            DynInstPtr instruction =
1253                buildInst(tid, staticInst, curMacroop,
1254                          thisPC, nextPC, true);
1255
1256            numInst++;
1257
1258            nextPC = thisPC;
1259
1260            // If we're branching after this instruction, quite fetching
1261            // from the same block then.
1262            predictedBranch |= thisPC.branching();
1263            predictedBranch |=
1264                lookupAndUpdateNextPC(instruction, nextPC);
1265            if (predictedBranch) {
1266                DPRINTF(Fetch, "Branch detected with PC = %s\n", thisPC);
1267            }
1268
1269            // Move to the next instruction, unless we have a branch.
1270            thisPC = nextPC;
1271
1272            if (instruction->isQuiesce()) {
1273                DPRINTF(Fetch,
1274                        "Quiesce instruction encountered, halting fetch!");
1275                fetchStatus[tid] = QuiescePending;
1276                status_change = true;
1277                break;
1278            }
1279        } while ((curMacroop || predecoder.extMachInstReady()) &&
1280                 numInst < fetchWidth);
1281    }
1282
1283    if (predictedBranch) {
1284        DPRINTF(Fetch, "[tid:%i]: Done fetching, predicted branch "
1285                "instruction encountered.\n", tid);
1286    } else if (numInst >= fetchWidth) {
1287        DPRINTF(Fetch, "[tid:%i]: Done fetching, reached fetch bandwidth "
1288                "for this cycle.\n", tid);
1289    } else if (blkOffset >= cacheBlkSize) {
1290        DPRINTF(Fetch, "[tid:%i]: Done fetching, reached the end of cache "
1291                "block.\n", tid);
1292    }
1293
1294    macroop[tid] = curMacroop;
1295    fetchOffset[tid] = pcOffset;
1296
1297    if (numInst > 0) {
1298        wroteToTimeBuffer = true;
1299    }
1300
1301    pc[tid] = thisPC;
1302}
1303
1304template<class Impl>
1305void
1306DefaultFetch<Impl>::recvRetry()
1307{
1308    if (retryPkt != NULL) {
1309        assert(cacheBlocked);
1310        assert(retryTid != InvalidThreadID);
1311        assert(fetchStatus[retryTid] == IcacheWaitRetry);
1312
1313        if (icachePort->sendTiming(retryPkt)) {
1314            fetchStatus[retryTid] = IcacheWaitResponse;
1315            retryPkt = NULL;
1316            retryTid = InvalidThreadID;
1317            cacheBlocked = false;
1318        }
1319    } else {
1320        assert(retryTid == InvalidThreadID);
1321        // Access has been squashed since it was sent out.  Just clear
1322        // the cache being blocked.
1323        cacheBlocked = false;
1324    }
1325}
1326
1327///////////////////////////////////////
1328//                                   //
1329//  SMT FETCH POLICY MAINTAINED HERE //
1330//                                   //
1331///////////////////////////////////////
1332template<class Impl>
1333ThreadID
1334DefaultFetch<Impl>::getFetchingThread(FetchPriority &fetch_priority)
1335{
1336    if (numThreads > 1) {
1337        switch (fetch_priority) {
1338
1339          case SingleThread:
1340            return 0;
1341
1342          case RoundRobin:
1343            return roundRobin();
1344
1345          case IQ:
1346            return iqCount();
1347
1348          case LSQ:
1349            return lsqCount();
1350
1351          case Branch:
1352            return branchCount();
1353
1354          default:
1355            return InvalidThreadID;
1356        }
1357    } else {
1358        list<ThreadID>::iterator thread = activeThreads->begin();
1359        if (thread == activeThreads->end()) {
1360            return InvalidThreadID;
1361        }
1362
1363        ThreadID tid = *thread;
1364
1365        if (fetchStatus[tid] == Running ||
1366            fetchStatus[tid] == IcacheAccessComplete ||
1367            fetchStatus[tid] == Idle) {
1368            return tid;
1369        } else {
1370            return InvalidThreadID;
1371        }
1372    }
1373}
1374
1375
1376template<class Impl>
1377ThreadID
1378DefaultFetch<Impl>::roundRobin()
1379{
1380    list<ThreadID>::iterator pri_iter = priorityList.begin();
1381    list<ThreadID>::iterator end      = priorityList.end();
1382
1383    ThreadID high_pri;
1384
1385    while (pri_iter != end) {
1386        high_pri = *pri_iter;
1387
1388        assert(high_pri <= numThreads);
1389
1390        if (fetchStatus[high_pri] == Running ||
1391            fetchStatus[high_pri] == IcacheAccessComplete ||
1392            fetchStatus[high_pri] == Idle) {
1393
1394            priorityList.erase(pri_iter);
1395            priorityList.push_back(high_pri);
1396
1397            return high_pri;
1398        }
1399
1400        pri_iter++;
1401    }
1402
1403    return InvalidThreadID;
1404}
1405
1406template<class Impl>
1407ThreadID
1408DefaultFetch<Impl>::iqCount()
1409{
1410    std::priority_queue<unsigned> PQ;
1411    std::map<unsigned, ThreadID> threadMap;
1412
1413    list<ThreadID>::iterator threads = activeThreads->begin();
1414    list<ThreadID>::iterator end = activeThreads->end();
1415
1416    while (threads != end) {
1417        ThreadID tid = *threads++;
1418        unsigned iqCount = fromIEW->iewInfo[tid].iqCount;
1419
1420        PQ.push(iqCount);
1421        threadMap[iqCount] = tid;
1422    }
1423
1424    while (!PQ.empty()) {
1425        ThreadID high_pri = threadMap[PQ.top()];
1426
1427        if (fetchStatus[high_pri] == Running ||
1428            fetchStatus[high_pri] == IcacheAccessComplete ||
1429            fetchStatus[high_pri] == Idle)
1430            return high_pri;
1431        else
1432            PQ.pop();
1433
1434    }
1435
1436    return InvalidThreadID;
1437}
1438
1439template<class Impl>
1440ThreadID
1441DefaultFetch<Impl>::lsqCount()
1442{
1443    std::priority_queue<unsigned> PQ;
1444    std::map<unsigned, ThreadID> threadMap;
1445
1446    list<ThreadID>::iterator threads = activeThreads->begin();
1447    list<ThreadID>::iterator end = activeThreads->end();
1448
1449    while (threads != end) {
1450        ThreadID tid = *threads++;
1451        unsigned ldstqCount = fromIEW->iewInfo[tid].ldstqCount;
1452
1453        PQ.push(ldstqCount);
1454        threadMap[ldstqCount] = tid;
1455    }
1456
1457    while (!PQ.empty()) {
1458        ThreadID high_pri = threadMap[PQ.top()];
1459
1460        if (fetchStatus[high_pri] == Running ||
1461            fetchStatus[high_pri] == IcacheAccessComplete ||
1462            fetchStatus[high_pri] == Idle)
1463            return high_pri;
1464        else
1465            PQ.pop();
1466    }
1467
1468    return InvalidThreadID;
1469}
1470
1471template<class Impl>
1472ThreadID
1473DefaultFetch<Impl>::branchCount()
1474{
1475#if 0
1476    list<ThreadID>::iterator thread = activeThreads->begin();
1477    assert(thread != activeThreads->end());
1478    ThreadID tid = *thread;
1479#endif
1480
1481    panic("Branch Count Fetch policy unimplemented\n");
1482    return InvalidThreadID;
1483}
1484