fetch_impl.hh revision 8064:5b111ae7e7d4
1/*
2 * Copyright (c) 2010 ARM Limited
3 * All rights reserved.
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder.  You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2004-2006 The Regents of The University of Michigan
15 * All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions are
19 * met: redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer;
21 * redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution;
24 * neither the name of the copyright holders nor the names of its
25 * contributors may be used to endorse or promote products derived from
26 * this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 *
40 * Authors: Kevin Lim
41 *          Korey Sewell
42 */
43
44#include <algorithm>
45#include <cstring>
46
47#include "arch/isa_traits.hh"
48#include "arch/utility.hh"
49#include "base/types.hh"
50#include "config/the_isa.hh"
51#include "config/use_checker.hh"
52#include "cpu/checker/cpu.hh"
53#include "cpu/exetrace.hh"
54#include "cpu/o3/fetch.hh"
55#include "mem/packet.hh"
56#include "mem/request.hh"
57#include "params/DerivO3CPU.hh"
58#include "sim/byteswap.hh"
59#include "sim/core.hh"
60
61#if FULL_SYSTEM
62#include "arch/tlb.hh"
63#include "arch/vtophys.hh"
64#include "sim/system.hh"
65#endif // FULL_SYSTEM
66
67using namespace std;
68
69template<class Impl>
70void
71DefaultFetch<Impl>::IcachePort::setPeer(Port *port)
72{
73    Port::setPeer(port);
74
75    fetch->setIcache();
76}
77
78template<class Impl>
79Tick
80DefaultFetch<Impl>::IcachePort::recvAtomic(PacketPtr pkt)
81{
82    panic("DefaultFetch doesn't expect recvAtomic callback!");
83    return curTick();
84}
85
86template<class Impl>
87void
88DefaultFetch<Impl>::IcachePort::recvFunctional(PacketPtr pkt)
89{
90    DPRINTF(Fetch, "DefaultFetch doesn't update its state from a "
91            "functional call.");
92}
93
94template<class Impl>
95void
96DefaultFetch<Impl>::IcachePort::recvStatusChange(Status status)
97{
98    if (status == RangeChange) {
99        if (!snoopRangeSent) {
100            snoopRangeSent = true;
101            sendStatusChange(Port::RangeChange);
102        }
103        return;
104    }
105
106    panic("DefaultFetch doesn't expect recvStatusChange callback!");
107}
108
109template<class Impl>
110bool
111DefaultFetch<Impl>::IcachePort::recvTiming(PacketPtr pkt)
112{
113    DPRINTF(Fetch, "Received timing\n");
114    if (pkt->isResponse()) {
115        fetch->processCacheCompletion(pkt);
116    }
117    //else Snooped a coherence request, just return
118    return true;
119}
120
121template<class Impl>
122void
123DefaultFetch<Impl>::IcachePort::recvRetry()
124{
125    fetch->recvRetry();
126}
127
128template<class Impl>
129DefaultFetch<Impl>::DefaultFetch(O3CPU *_cpu, DerivO3CPUParams *params)
130    : cpu(_cpu),
131      branchPred(params),
132      predecoder(NULL),
133      decodeToFetchDelay(params->decodeToFetchDelay),
134      renameToFetchDelay(params->renameToFetchDelay),
135      iewToFetchDelay(params->iewToFetchDelay),
136      commitToFetchDelay(params->commitToFetchDelay),
137      fetchWidth(params->fetchWidth),
138      cacheBlocked(false),
139      retryPkt(NULL),
140      retryTid(InvalidThreadID),
141      numThreads(params->numThreads),
142      numFetchingThreads(params->smtNumFetchingThreads),
143      interruptPending(false),
144      drainPending(false),
145      switchedOut(false)
146{
147    if (numThreads > Impl::MaxThreads)
148        fatal("numThreads (%d) is larger than compiled limit (%d),\n"
149              "\tincrease MaxThreads in src/cpu/o3/impl.hh\n",
150              numThreads, static_cast<int>(Impl::MaxThreads));
151
152    // Set fetch stage's status to inactive.
153    _status = Inactive;
154
155    std::string policy = params->smtFetchPolicy;
156
157    // Convert string to lowercase
158    std::transform(policy.begin(), policy.end(), policy.begin(),
159                   (int(*)(int)) tolower);
160
161    // Figure out fetch policy
162    if (policy == "singlethread") {
163        fetchPolicy = SingleThread;
164        if (numThreads > 1)
165            panic("Invalid Fetch Policy for a SMT workload.");
166    } else if (policy == "roundrobin") {
167        fetchPolicy = RoundRobin;
168        DPRINTF(Fetch, "Fetch policy set to Round Robin\n");
169    } else if (policy == "branch") {
170        fetchPolicy = Branch;
171        DPRINTF(Fetch, "Fetch policy set to Branch Count\n");
172    } else if (policy == "iqcount") {
173        fetchPolicy = IQ;
174        DPRINTF(Fetch, "Fetch policy set to IQ count\n");
175    } else if (policy == "lsqcount") {
176        fetchPolicy = LSQ;
177        DPRINTF(Fetch, "Fetch policy set to LSQ count\n");
178    } else {
179        fatal("Invalid Fetch Policy. Options Are: {SingleThread,"
180              " RoundRobin,LSQcount,IQcount}\n");
181    }
182
183    // Get the size of an instruction.
184    instSize = sizeof(TheISA::MachInst);
185
186    // Name is finally available, so create the port.
187    icachePort = new IcachePort(this);
188
189    icachePort->snoopRangeSent = false;
190
191#if USE_CHECKER
192    if (cpu->checker) {
193        cpu->checker->setIcachePort(icachePort);
194    }
195#endif
196}
197
198template <class Impl>
199std::string
200DefaultFetch<Impl>::name() const
201{
202    return cpu->name() + ".fetch";
203}
204
205template <class Impl>
206void
207DefaultFetch<Impl>::regStats()
208{
209    icacheStallCycles
210        .name(name() + ".icacheStallCycles")
211        .desc("Number of cycles fetch is stalled on an Icache miss")
212        .prereq(icacheStallCycles);
213
214    fetchedInsts
215        .name(name() + ".Insts")
216        .desc("Number of instructions fetch has processed")
217        .prereq(fetchedInsts);
218
219    fetchedBranches
220        .name(name() + ".Branches")
221        .desc("Number of branches that fetch encountered")
222        .prereq(fetchedBranches);
223
224    predictedBranches
225        .name(name() + ".predictedBranches")
226        .desc("Number of branches that fetch has predicted taken")
227        .prereq(predictedBranches);
228
229    fetchCycles
230        .name(name() + ".Cycles")
231        .desc("Number of cycles fetch has run and was not squashing or"
232              " blocked")
233        .prereq(fetchCycles);
234
235    fetchSquashCycles
236        .name(name() + ".SquashCycles")
237        .desc("Number of cycles fetch has spent squashing")
238        .prereq(fetchSquashCycles);
239
240    fetchTlbCycles
241        .name(name() + ".TlbCycles")
242        .desc("Number of cycles fetch has spent waiting for tlb")
243        .prereq(fetchTlbCycles);
244
245    fetchIdleCycles
246        .name(name() + ".IdleCycles")
247        .desc("Number of cycles fetch was idle")
248        .prereq(fetchIdleCycles);
249
250    fetchBlockedCycles
251        .name(name() + ".BlockedCycles")
252        .desc("Number of cycles fetch has spent blocked")
253        .prereq(fetchBlockedCycles);
254
255    fetchedCacheLines
256        .name(name() + ".CacheLines")
257        .desc("Number of cache lines fetched")
258        .prereq(fetchedCacheLines);
259
260    fetchMiscStallCycles
261        .name(name() + ".MiscStallCycles")
262        .desc("Number of cycles fetch has spent waiting on interrupts, or "
263              "bad addresses, or out of MSHRs")
264        .prereq(fetchMiscStallCycles);
265
266    fetchIcacheSquashes
267        .name(name() + ".IcacheSquashes")
268        .desc("Number of outstanding Icache misses that were squashed")
269        .prereq(fetchIcacheSquashes);
270
271    fetchTlbSquashes
272        .name(name() + ".ItlbSquashes")
273        .desc("Number of outstanding ITLB misses that were squashed")
274        .prereq(fetchTlbSquashes);
275
276    fetchNisnDist
277        .init(/* base value */ 0,
278              /* last value */ fetchWidth,
279              /* bucket size */ 1)
280        .name(name() + ".rateDist")
281        .desc("Number of instructions fetched each cycle (Total)")
282        .flags(Stats::pdf);
283
284    idleRate
285        .name(name() + ".idleRate")
286        .desc("Percent of cycles fetch was idle")
287        .prereq(idleRate);
288    idleRate = fetchIdleCycles * 100 / cpu->numCycles;
289
290    branchRate
291        .name(name() + ".branchRate")
292        .desc("Number of branch fetches per cycle")
293        .flags(Stats::total);
294    branchRate = fetchedBranches / cpu->numCycles;
295
296    fetchRate
297        .name(name() + ".rate")
298        .desc("Number of inst fetches per cycle")
299        .flags(Stats::total);
300    fetchRate = fetchedInsts / cpu->numCycles;
301
302    branchPred.regStats();
303}
304
305template<class Impl>
306void
307DefaultFetch<Impl>::setTimeBuffer(TimeBuffer<TimeStruct> *time_buffer)
308{
309    timeBuffer = time_buffer;
310
311    // Create wires to get information from proper places in time buffer.
312    fromDecode = timeBuffer->getWire(-decodeToFetchDelay);
313    fromRename = timeBuffer->getWire(-renameToFetchDelay);
314    fromIEW = timeBuffer->getWire(-iewToFetchDelay);
315    fromCommit = timeBuffer->getWire(-commitToFetchDelay);
316}
317
318template<class Impl>
319void
320DefaultFetch<Impl>::setActiveThreads(std::list<ThreadID> *at_ptr)
321{
322    activeThreads = at_ptr;
323}
324
325template<class Impl>
326void
327DefaultFetch<Impl>::setFetchQueue(TimeBuffer<FetchStruct> *fq_ptr)
328{
329    fetchQueue = fq_ptr;
330
331    // Create wire to write information to proper place in fetch queue.
332    toDecode = fetchQueue->getWire(0);
333}
334
335template<class Impl>
336void
337DefaultFetch<Impl>::initStage()
338{
339    // Setup PC and nextPC with initial state.
340    for (ThreadID tid = 0; tid < numThreads; tid++) {
341        pc[tid] = cpu->pcState(tid);
342        fetchOffset[tid] = 0;
343        macroop[tid] = NULL;
344    }
345
346    for (ThreadID tid = 0; tid < numThreads; tid++) {
347
348        fetchStatus[tid] = Running;
349
350        priorityList.push_back(tid);
351
352        memReq[tid] = NULL;
353
354        stalls[tid].decode = false;
355        stalls[tid].rename = false;
356        stalls[tid].iew = false;
357        stalls[tid].commit = false;
358    }
359
360    // Schedule fetch to get the correct PC from the CPU
361    // scheduleFetchStartupEvent(1);
362
363    // Fetch needs to start fetching instructions at the very beginning,
364    // so it must start up in active state.
365    switchToActive();
366}
367
368template<class Impl>
369void
370DefaultFetch<Impl>::setIcache()
371{
372    // Size of cache block.
373    cacheBlkSize = icachePort->peerBlockSize();
374
375    // Create mask to get rid of offset bits.
376    cacheBlkMask = (cacheBlkSize - 1);
377
378    for (ThreadID tid = 0; tid < numThreads; tid++) {
379        // Create space to store a cache line.
380        cacheData[tid] = new uint8_t[cacheBlkSize];
381        cacheDataPC[tid] = 0;
382        cacheDataValid[tid] = false;
383    }
384}
385
386template<class Impl>
387void
388DefaultFetch<Impl>::processCacheCompletion(PacketPtr pkt)
389{
390    ThreadID tid = pkt->req->threadId();
391
392    DPRINTF(Fetch, "[tid:%u] Waking up from cache miss.\n", tid);
393
394    assert(!pkt->wasNacked());
395
396    // Only change the status if it's still waiting on the icache access
397    // to return.
398    if (fetchStatus[tid] != IcacheWaitResponse ||
399        pkt->req != memReq[tid] ||
400        isSwitchedOut()) {
401        ++fetchIcacheSquashes;
402        delete pkt->req;
403        delete pkt;
404        return;
405    }
406
407    memcpy(cacheData[tid], pkt->getPtr<uint8_t>(), cacheBlkSize);
408    cacheDataValid[tid] = true;
409
410    if (!drainPending) {
411        // Wake up the CPU (if it went to sleep and was waiting on
412        // this completion event).
413        cpu->wakeCPU();
414
415        DPRINTF(Activity, "[tid:%u] Activating fetch due to cache completion\n",
416                tid);
417
418        switchToActive();
419    }
420
421    // Only switch to IcacheAccessComplete if we're not stalled as well.
422    if (checkStall(tid)) {
423        fetchStatus[tid] = Blocked;
424    } else {
425        fetchStatus[tid] = IcacheAccessComplete;
426    }
427
428    // Reset the mem req to NULL.
429    delete pkt->req;
430    delete pkt;
431    memReq[tid] = NULL;
432}
433
434template <class Impl>
435bool
436DefaultFetch<Impl>::drain()
437{
438    // Fetch is ready to drain at any time.
439    cpu->signalDrained();
440    drainPending = true;
441    return true;
442}
443
444template <class Impl>
445void
446DefaultFetch<Impl>::resume()
447{
448    drainPending = false;
449}
450
451template <class Impl>
452void
453DefaultFetch<Impl>::switchOut()
454{
455    switchedOut = true;
456    // Branch predictor needs to have its state cleared.
457    branchPred.switchOut();
458}
459
460template <class Impl>
461void
462DefaultFetch<Impl>::takeOverFrom()
463{
464    // Reset all state
465    for (ThreadID i = 0; i < Impl::MaxThreads; ++i) {
466        stalls[i].decode = 0;
467        stalls[i].rename = 0;
468        stalls[i].iew = 0;
469        stalls[i].commit = 0;
470        pc[i] = cpu->pcState(i);
471        fetchStatus[i] = Running;
472    }
473    numInst = 0;
474    wroteToTimeBuffer = false;
475    _status = Inactive;
476    switchedOut = false;
477    interruptPending = false;
478    branchPred.takeOverFrom();
479}
480
481template <class Impl>
482void
483DefaultFetch<Impl>::wakeFromQuiesce()
484{
485    DPRINTF(Fetch, "Waking up from quiesce\n");
486    // Hopefully this is safe
487    // @todo: Allow other threads to wake from quiesce.
488    fetchStatus[0] = Running;
489}
490
491template <class Impl>
492inline void
493DefaultFetch<Impl>::switchToActive()
494{
495    if (_status == Inactive) {
496        DPRINTF(Activity, "Activating stage.\n");
497
498        cpu->activateStage(O3CPU::FetchIdx);
499
500        _status = Active;
501    }
502}
503
504template <class Impl>
505inline void
506DefaultFetch<Impl>::switchToInactive()
507{
508    if (_status == Active) {
509        DPRINTF(Activity, "Deactivating stage.\n");
510
511        cpu->deactivateStage(O3CPU::FetchIdx);
512
513        _status = Inactive;
514    }
515}
516
517template <class Impl>
518bool
519DefaultFetch<Impl>::lookupAndUpdateNextPC(
520        DynInstPtr &inst, TheISA::PCState &nextPC)
521{
522    // Do branch prediction check here.
523    // A bit of a misnomer...next_PC is actually the current PC until
524    // this function updates it.
525    bool predict_taken;
526
527    if (!inst->isControl()) {
528        TheISA::advancePC(nextPC, inst->staticInst);
529        inst->setPredTarg(nextPC);
530        inst->setPredTaken(false);
531        return false;
532    }
533
534    ThreadID tid = inst->threadNumber;
535    predict_taken = branchPred.predict(inst, nextPC, tid);
536
537    if (predict_taken) {
538        DPRINTF(Fetch, "[tid:%i]: [sn:%i]:  Branch predicted to be taken to %s.\n",
539                tid, inst->seqNum, nextPC);
540    } else {
541        DPRINTF(Fetch, "[tid:%i]: [sn:%i]:Branch predicted to be not taken.\n",
542                tid, inst->seqNum);
543    }
544
545    DPRINTF(Fetch, "[tid:%i]: [sn:%i] Branch predicted to go to %s.\n",
546            tid, inst->seqNum, nextPC);
547    inst->setPredTarg(nextPC);
548    inst->setPredTaken(predict_taken);
549
550    ++fetchedBranches;
551
552    if (predict_taken) {
553        ++predictedBranches;
554    }
555
556    return predict_taken;
557}
558
559template <class Impl>
560bool
561DefaultFetch<Impl>::fetchCacheLine(Addr vaddr, ThreadID tid, Addr pc)
562{
563    Fault fault = NoFault;
564
565    // @todo: not sure if these should block translation.
566    //AlphaDep
567    if (cacheBlocked) {
568        DPRINTF(Fetch, "[tid:%i] Can't fetch cache line, cache blocked\n",
569                tid);
570        return false;
571    } else if (isSwitchedOut()) {
572        DPRINTF(Fetch, "[tid:%i] Can't fetch cache line, switched out\n",
573                tid);
574        return false;
575    } else if (checkInterrupt(pc)) {
576        // Hold off fetch from getting new instructions when:
577        // Cache is blocked, or
578        // while an interrupt is pending and we're not in PAL mode, or
579        // fetch is switched out.
580        DPRINTF(Fetch, "[tid:%i] Can't fetch cache line, interrupt pending\n",
581                tid);
582        return false;
583    }
584
585    // Align the fetch address so it's at the start of a cache block.
586    Addr block_PC = icacheBlockAlignPC(vaddr);
587
588    DPRINTF(Fetch, "[tid:%i] Fetching cache line %#x for addr %#x\n",
589            tid, block_PC, vaddr);
590
591    // Setup the memReq to do a read of the first instruction's address.
592    // Set the appropriate read size and flags as well.
593    // Build request here.
594    RequestPtr mem_req =
595        new Request(tid, block_PC, cacheBlkSize, Request::INST_FETCH,
596                    pc, cpu->thread[tid]->contextId(), tid);
597
598    memReq[tid] = mem_req;
599
600    // Initiate translation of the icache block
601    fetchStatus[tid] = ItlbWait;
602    FetchTranslation *trans = new FetchTranslation(this);
603    cpu->itb->translateTiming(mem_req, cpu->thread[tid]->getTC(),
604                              trans, BaseTLB::Execute);
605    return true;
606}
607
608template <class Impl>
609void
610DefaultFetch<Impl>::finishTranslation(Fault fault, RequestPtr mem_req)
611{
612    ThreadID tid = mem_req->threadId();
613    Addr block_PC = mem_req->getVaddr();
614
615    // Wake up CPU if it was idle
616    cpu->wakeCPU();
617
618    if (fetchStatus[tid] != ItlbWait || mem_req != memReq[tid] ||
619        mem_req->getVaddr() != memReq[tid]->getVaddr() || isSwitchedOut()) {
620        DPRINTF(Fetch, "[tid:%i] Ignoring itlb completed after squash\n",
621                tid);
622        ++fetchTlbSquashes;
623        delete mem_req;
624        return;
625    }
626
627
628    // If translation was successful, attempt to read the icache block.
629    if (fault == NoFault) {
630        // Build packet here.
631        PacketPtr data_pkt = new Packet(mem_req,
632                                        MemCmd::ReadReq, Packet::Broadcast);
633        data_pkt->dataDynamicArray(new uint8_t[cacheBlkSize]);
634
635        cacheDataPC[tid] = block_PC;
636        cacheDataValid[tid] = false;
637        DPRINTF(Fetch, "Fetch: Doing instruction read.\n");
638
639        fetchedCacheLines++;
640
641        // Access the cache.
642        if (!icachePort->sendTiming(data_pkt)) {
643            assert(retryPkt == NULL);
644            assert(retryTid == InvalidThreadID);
645            DPRINTF(Fetch, "[tid:%i] Out of MSHRs!\n", tid);
646
647            fetchStatus[tid] = IcacheWaitRetry;
648            retryPkt = data_pkt;
649            retryTid = tid;
650            cacheBlocked = true;
651        } else {
652            DPRINTF(Fetch, "[tid:%i]: Doing Icache access.\n", tid);
653            DPRINTF(Activity, "[tid:%i]: Activity: Waiting on I-cache "
654                    "response.\n", tid);
655
656            lastIcacheStall[tid] = curTick();
657            fetchStatus[tid] = IcacheWaitResponse;
658        }
659    } else {
660        DPRINTF(Fetch, "[tid:%i] Got back req with addr %#x but expected %#x\n",
661                mem_req->getVaddr(), memReq[tid]->getVaddr());
662        // Translation faulted, icache request won't be sent.
663        delete mem_req;
664        memReq[tid] = NULL;
665
666        // Send the fault to commit.  This thread will not do anything
667        // until commit handles the fault.  The only other way it can
668        // wake up is if a squash comes along and changes the PC.
669        TheISA::PCState fetchPC = pc[tid];
670
671        DPRINTF(Fetch, "[tid:%i]: Translation faulted, building noop.\n", tid);
672        // We will use a nop in ordier to carry the fault.
673        DynInstPtr instruction = buildInst(tid,
674                StaticInstPtr(TheISA::NoopMachInst, fetchPC.instAddr()),
675                NULL, fetchPC, fetchPC, false);
676
677        instruction->setPredTarg(fetchPC);
678        instruction->fault = fault;
679        wroteToTimeBuffer = true;
680
681        DPRINTF(Activity, "Activity this cycle.\n");
682        cpu->activityThisCycle();
683
684        fetchStatus[tid] = TrapPending;
685
686        DPRINTF(Fetch, "[tid:%i]: Blocked, need to handle the trap.\n", tid);
687        DPRINTF(Fetch, "[tid:%i]: fault (%s) detected @ PC %s.\n",
688                tid, fault->name(), pc[tid]);
689    }
690    _status = updateFetchStatus();
691}
692
693template <class Impl>
694inline void
695DefaultFetch<Impl>::doSquash(const TheISA::PCState &newPC, ThreadID tid)
696{
697    DPRINTF(Fetch, "[tid:%i]: Squashing, setting PC to: %s.\n",
698            tid, newPC);
699
700    pc[tid] = newPC;
701    fetchOffset[tid] = 0;
702    macroop[tid] = NULL;
703    predecoder.reset();
704
705    // Clear the icache miss if it's outstanding.
706    if (fetchStatus[tid] == IcacheWaitResponse) {
707        DPRINTF(Fetch, "[tid:%i]: Squashing outstanding Icache miss.\n",
708                tid);
709        memReq[tid] = NULL;
710    } else if (fetchStatus[tid] == ItlbWait) {
711        DPRINTF(Fetch, "[tid:%i]: Squashing outstanding ITLB miss.\n",
712                tid);
713        memReq[tid] = NULL;
714    }
715
716    // Get rid of the retrying packet if it was from this thread.
717    if (retryTid == tid) {
718        assert(cacheBlocked);
719        if (retryPkt) {
720            delete retryPkt->req;
721            delete retryPkt;
722        }
723        retryPkt = NULL;
724        retryTid = InvalidThreadID;
725    }
726
727    fetchStatus[tid] = Squashing;
728
729    ++fetchSquashCycles;
730}
731
732template<class Impl>
733void
734DefaultFetch<Impl>::squashFromDecode(const TheISA::PCState &newPC,
735                                     const InstSeqNum &seq_num, ThreadID tid)
736{
737    DPRINTF(Fetch, "[tid:%i]: Squashing from decode.\n", tid);
738
739    doSquash(newPC, tid);
740
741    // Tell the CPU to remove any instructions that are in flight between
742    // fetch and decode.
743    cpu->removeInstsUntil(seq_num, tid);
744}
745
746template<class Impl>
747bool
748DefaultFetch<Impl>::checkStall(ThreadID tid) const
749{
750    bool ret_val = false;
751
752    if (cpu->contextSwitch) {
753        DPRINTF(Fetch,"[tid:%i]: Stalling for a context switch.\n",tid);
754        ret_val = true;
755    } else if (stalls[tid].decode) {
756        DPRINTF(Fetch,"[tid:%i]: Stall from Decode stage detected.\n",tid);
757        ret_val = true;
758    } else if (stalls[tid].rename) {
759        DPRINTF(Fetch,"[tid:%i]: Stall from Rename stage detected.\n",tid);
760        ret_val = true;
761    } else if (stalls[tid].iew) {
762        DPRINTF(Fetch,"[tid:%i]: Stall from IEW stage detected.\n",tid);
763        ret_val = true;
764    } else if (stalls[tid].commit) {
765        DPRINTF(Fetch,"[tid:%i]: Stall from Commit stage detected.\n",tid);
766        ret_val = true;
767    }
768
769    return ret_val;
770}
771
772template<class Impl>
773typename DefaultFetch<Impl>::FetchStatus
774DefaultFetch<Impl>::updateFetchStatus()
775{
776    //Check Running
777    list<ThreadID>::iterator threads = activeThreads->begin();
778    list<ThreadID>::iterator end = activeThreads->end();
779
780    while (threads != end) {
781        ThreadID tid = *threads++;
782
783        if (fetchStatus[tid] == Running ||
784            fetchStatus[tid] == Squashing ||
785            fetchStatus[tid] == IcacheAccessComplete) {
786
787            if (_status == Inactive) {
788                DPRINTF(Activity, "[tid:%i]: Activating stage.\n",tid);
789
790                if (fetchStatus[tid] == IcacheAccessComplete) {
791                    DPRINTF(Activity, "[tid:%i]: Activating fetch due to cache"
792                            "completion\n",tid);
793                }
794
795                cpu->activateStage(O3CPU::FetchIdx);
796            }
797
798            return Active;
799        }
800    }
801
802    // Stage is switching from active to inactive, notify CPU of it.
803    if (_status == Active) {
804        DPRINTF(Activity, "Deactivating stage.\n");
805
806        cpu->deactivateStage(O3CPU::FetchIdx);
807    }
808
809    return Inactive;
810}
811
812template <class Impl>
813void
814DefaultFetch<Impl>::squash(const TheISA::PCState &newPC,
815                           const InstSeqNum &seq_num, ThreadID tid)
816{
817    DPRINTF(Fetch, "[tid:%u]: Squash from commit.\n", tid);
818
819    doSquash(newPC, tid);
820
821    // Tell the CPU to remove any instructions that are not in the ROB.
822    cpu->removeInstsNotInROB(tid);
823}
824
825template <class Impl>
826void
827DefaultFetch<Impl>::tick()
828{
829    list<ThreadID>::iterator threads = activeThreads->begin();
830    list<ThreadID>::iterator end = activeThreads->end();
831    bool status_change = false;
832
833    wroteToTimeBuffer = false;
834
835    while (threads != end) {
836        ThreadID tid = *threads++;
837
838        // Check the signals for each thread to determine the proper status
839        // for each thread.
840        bool updated_status = checkSignalsAndUpdate(tid);
841        status_change =  status_change || updated_status;
842    }
843
844    DPRINTF(Fetch, "Running stage.\n");
845
846    // Reset the number of the instruction we're fetching.
847    numInst = 0;
848
849#if FULL_SYSTEM
850    if (fromCommit->commitInfo[0].interruptPending) {
851        interruptPending = true;
852    }
853
854    if (fromCommit->commitInfo[0].clearInterrupt) {
855        interruptPending = false;
856    }
857#endif
858
859    for (threadFetched = 0; threadFetched < numFetchingThreads;
860         threadFetched++) {
861        // Fetch each of the actively fetching threads.
862        fetch(status_change);
863    }
864
865    // Record number of instructions fetched this cycle for distribution.
866    fetchNisnDist.sample(numInst);
867
868    if (status_change) {
869        // Change the fetch stage status if there was a status change.
870        _status = updateFetchStatus();
871    }
872
873    // If there was activity this cycle, inform the CPU of it.
874    if (wroteToTimeBuffer || cpu->contextSwitch) {
875        DPRINTF(Activity, "Activity this cycle.\n");
876
877        cpu->activityThisCycle();
878    }
879}
880
881template <class Impl>
882bool
883DefaultFetch<Impl>::checkSignalsAndUpdate(ThreadID tid)
884{
885    // Update the per thread stall statuses.
886    if (fromDecode->decodeBlock[tid]) {
887        stalls[tid].decode = true;
888    }
889
890    if (fromDecode->decodeUnblock[tid]) {
891        assert(stalls[tid].decode);
892        assert(!fromDecode->decodeBlock[tid]);
893        stalls[tid].decode = false;
894    }
895
896    if (fromRename->renameBlock[tid]) {
897        stalls[tid].rename = true;
898    }
899
900    if (fromRename->renameUnblock[tid]) {
901        assert(stalls[tid].rename);
902        assert(!fromRename->renameBlock[tid]);
903        stalls[tid].rename = false;
904    }
905
906    if (fromIEW->iewBlock[tid]) {
907        stalls[tid].iew = true;
908    }
909
910    if (fromIEW->iewUnblock[tid]) {
911        assert(stalls[tid].iew);
912        assert(!fromIEW->iewBlock[tid]);
913        stalls[tid].iew = false;
914    }
915
916    if (fromCommit->commitBlock[tid]) {
917        stalls[tid].commit = true;
918    }
919
920    if (fromCommit->commitUnblock[tid]) {
921        assert(stalls[tid].commit);
922        assert(!fromCommit->commitBlock[tid]);
923        stalls[tid].commit = false;
924    }
925
926    // Check squash signals from commit.
927    if (fromCommit->commitInfo[tid].squash) {
928
929        DPRINTF(Fetch, "[tid:%u]: Squashing instructions due to squash "
930                "from commit.\n",tid);
931        // In any case, squash.
932        squash(fromCommit->commitInfo[tid].pc,
933               fromCommit->commitInfo[tid].doneSeqNum,
934               tid);
935
936        // If it was a branch mispredict on a control instruction, update the
937        // branch predictor with that instruction, otherwise just kill the
938        // invalid state we generated in after sequence number
939        assert(!fromCommit->commitInfo[tid].branchMispredict ||
940                fromCommit->commitInfo[tid].mispredictInst);
941
942        if (fromCommit->commitInfo[tid].branchMispredict &&
943            fromCommit->commitInfo[tid].mispredictInst->isControl()) {
944            branchPred.squash(fromCommit->commitInfo[tid].doneSeqNum,
945                              fromCommit->commitInfo[tid].pc,
946                              fromCommit->commitInfo[tid].branchTaken,
947                              tid);
948        } else {
949            branchPred.squash(fromCommit->commitInfo[tid].doneSeqNum,
950                              tid);
951        }
952
953        return true;
954    } else if (fromCommit->commitInfo[tid].doneSeqNum) {
955        // Update the branch predictor if it wasn't a squashed instruction
956        // that was broadcasted.
957        branchPred.update(fromCommit->commitInfo[tid].doneSeqNum, tid);
958    }
959
960    // Check ROB squash signals from commit.
961    if (fromCommit->commitInfo[tid].robSquashing) {
962        DPRINTF(Fetch, "[tid:%u]: ROB is still squashing.\n", tid);
963
964        // Continue to squash.
965        fetchStatus[tid] = Squashing;
966
967        return true;
968    }
969
970    // Check squash signals from decode.
971    if (fromDecode->decodeInfo[tid].squash) {
972        DPRINTF(Fetch, "[tid:%u]: Squashing instructions due to squash "
973                "from decode.\n",tid);
974
975        // Update the branch predictor.
976        if (fromDecode->decodeInfo[tid].branchMispredict) {
977            branchPred.squash(fromDecode->decodeInfo[tid].doneSeqNum,
978                              fromDecode->decodeInfo[tid].nextPC,
979                              fromDecode->decodeInfo[tid].branchTaken,
980                              tid);
981        } else {
982            branchPred.squash(fromDecode->decodeInfo[tid].doneSeqNum,
983                              tid);
984        }
985
986        if (fetchStatus[tid] != Squashing) {
987
988            TheISA::PCState nextPC = fromDecode->decodeInfo[tid].nextPC;
989            DPRINTF(Fetch, "Squashing from decode with PC = %s\n", nextPC);
990            // Squash unless we're already squashing
991            squashFromDecode(fromDecode->decodeInfo[tid].nextPC,
992                             fromDecode->decodeInfo[tid].doneSeqNum,
993                             tid);
994
995            return true;
996        }
997    }
998
999    if (checkStall(tid) &&
1000        fetchStatus[tid] != IcacheWaitResponse &&
1001        fetchStatus[tid] != IcacheWaitRetry) {
1002        DPRINTF(Fetch, "[tid:%i]: Setting to blocked\n",tid);
1003
1004        fetchStatus[tid] = Blocked;
1005
1006        return true;
1007    }
1008
1009    if (fetchStatus[tid] == Blocked ||
1010        fetchStatus[tid] == Squashing) {
1011        // Switch status to running if fetch isn't being told to block or
1012        // squash this cycle.
1013        DPRINTF(Fetch, "[tid:%i]: Done squashing, switching to running.\n",
1014                tid);
1015
1016        fetchStatus[tid] = Running;
1017
1018        return true;
1019    }
1020
1021    // If we've reached this point, we have not gotten any signals that
1022    // cause fetch to change its status.  Fetch remains the same as before.
1023    return false;
1024}
1025
1026template<class Impl>
1027typename Impl::DynInstPtr
1028DefaultFetch<Impl>::buildInst(ThreadID tid, StaticInstPtr staticInst,
1029                              StaticInstPtr curMacroop, TheISA::PCState thisPC,
1030                              TheISA::PCState nextPC, bool trace)
1031{
1032    // Get a sequence number.
1033    InstSeqNum seq = cpu->getAndIncrementInstSeq();
1034
1035    // Create a new DynInst from the instruction fetched.
1036    DynInstPtr instruction =
1037        new DynInst(staticInst, thisPC, nextPC, seq, cpu);
1038    instruction->setTid(tid);
1039
1040    instruction->setASID(tid);
1041
1042    instruction->setThreadState(cpu->thread[tid]);
1043
1044    DPRINTF(Fetch, "[tid:%i]: Instruction PC %#x (%d) created "
1045            "[sn:%lli].\n", tid, thisPC.instAddr(),
1046            thisPC.microPC(), seq);
1047
1048    DPRINTF(Fetch, "[tid:%i]: Instruction is: %s\n", tid,
1049            instruction->staticInst->
1050            disassemble(thisPC.instAddr()));
1051
1052#if TRACING_ON
1053    if (trace) {
1054        instruction->traceData =
1055            cpu->getTracer()->getInstRecord(curTick(), cpu->tcBase(tid),
1056                    instruction->staticInst, thisPC, curMacroop);
1057    }
1058#else
1059    instruction->traceData = NULL;
1060#endif
1061
1062    // Add instruction to the CPU's list of instructions.
1063    instruction->setInstListIt(cpu->addInst(instruction));
1064
1065    // Write the instruction to the first slot in the queue
1066    // that heads to decode.
1067    assert(numInst < fetchWidth);
1068    toDecode->insts[toDecode->size++] = instruction;
1069
1070    return instruction;
1071}
1072
1073template<class Impl>
1074void
1075DefaultFetch<Impl>::fetch(bool &status_change)
1076{
1077    //////////////////////////////////////////
1078    // Start actual fetch
1079    //////////////////////////////////////////
1080    ThreadID tid = getFetchingThread(fetchPolicy);
1081
1082    if (tid == InvalidThreadID || drainPending) {
1083        DPRINTF(Fetch,"There are no more threads available to fetch from.\n");
1084
1085        // Breaks looping condition in tick()
1086        threadFetched = numFetchingThreads;
1087        return;
1088    }
1089
1090    DPRINTF(Fetch, "Attempting to fetch from [tid:%i]\n", tid);
1091
1092    // The current PC.
1093    TheISA::PCState thisPC = pc[tid];
1094
1095    Addr pcOffset = fetchOffset[tid];
1096    Addr fetchAddr = (thisPC.instAddr() + pcOffset) & BaseCPU::PCMask;
1097
1098    bool inRom = isRomMicroPC(thisPC.microPC());
1099
1100    // If returning from the delay of a cache miss, then update the status
1101    // to running, otherwise do the cache access.  Possibly move this up
1102    // to tick() function.
1103    if (fetchStatus[tid] == IcacheAccessComplete) {
1104        DPRINTF(Fetch, "[tid:%i]: Icache miss is complete.\n", tid);
1105
1106        fetchStatus[tid] = Running;
1107        status_change = true;
1108    } else if (fetchStatus[tid] == Running) {
1109        // Align the fetch PC so its at the start of a cache block.
1110        Addr block_PC = icacheBlockAlignPC(fetchAddr);
1111
1112        // Unless buffer already got the block, fetch it from icache.
1113        if (!(cacheDataValid[tid] && block_PC == cacheDataPC[tid]) && !inRom) {
1114            DPRINTF(Fetch, "[tid:%i]: Attempting to translate and read "
1115                    "instruction, starting at PC %s.\n", tid, thisPC);
1116
1117            fetchCacheLine(fetchAddr, tid, thisPC.instAddr());
1118
1119            if (fetchStatus[tid] == IcacheWaitResponse)
1120                ++icacheStallCycles;
1121            else if (fetchStatus[tid] == ItlbWait)
1122                ++fetchTlbCycles;
1123            else
1124                ++fetchMiscStallCycles;
1125            return;
1126        } else if (checkInterrupt(thisPC.instAddr()) || isSwitchedOut()) {
1127            ++fetchMiscStallCycles;
1128            return;
1129        }
1130    } else {
1131        if (fetchStatus[tid] == Idle) {
1132            ++fetchIdleCycles;
1133            DPRINTF(Fetch, "[tid:%i]: Fetch is idle!\n", tid);
1134        } else if (fetchStatus[tid] == Blocked) {
1135            ++fetchBlockedCycles;
1136            DPRINTF(Fetch, "[tid:%i]: Fetch is blocked!\n", tid);
1137        } else if (fetchStatus[tid] == Squashing) {
1138            ++fetchSquashCycles;
1139            DPRINTF(Fetch, "[tid:%i]: Fetch is squashing!\n", tid);
1140        } else if (fetchStatus[tid] == IcacheWaitResponse) {
1141            ++icacheStallCycles;
1142            DPRINTF(Fetch, "[tid:%i]: Fetch is waiting cache response!\n",
1143                    tid);
1144        } else if (fetchStatus[tid] == ItlbWait) {
1145            DPRINTF(Fetch, "[tid:%i]: Fetch is waiting ITLB walk to "
1146                    "finish! \n", tid);
1147            ++fetchTlbCycles;
1148        } else if (fetchStatus[tid] == TrapPending) {
1149            DPRINTF(Fetch, "[tid:%i]: Fetch is waiting for a pending trap\n",
1150                    tid);
1151        }
1152
1153
1154        // Status is Idle, Squashing, Blocked, ItlbWait or IcacheWaitResponse
1155        // so fetch should do nothing.
1156        return;
1157    }
1158
1159    ++fetchCycles;
1160
1161    TheISA::PCState nextPC = thisPC;
1162
1163    StaticInstPtr staticInst = NULL;
1164    StaticInstPtr curMacroop = macroop[tid];
1165
1166    // If the read of the first instruction was successful, then grab the
1167    // instructions from the rest of the cache line and put them into the
1168    // queue heading to decode.
1169
1170    DPRINTF(Fetch, "[tid:%i]: Adding instructions to queue to "
1171            "decode.\n", tid);
1172
1173    // Need to keep track of whether or not a predicted branch
1174    // ended this fetch block.
1175    bool predictedBranch = false;
1176
1177    TheISA::MachInst *cacheInsts =
1178        reinterpret_cast<TheISA::MachInst *>(cacheData[tid]);
1179
1180    const unsigned numInsts = cacheBlkSize / instSize;
1181    unsigned blkOffset = (fetchAddr - cacheDataPC[tid]) / instSize;
1182
1183    // Loop through instruction memory from the cache.
1184    while (blkOffset < numInsts &&
1185           numInst < fetchWidth &&
1186           !predictedBranch) {
1187
1188        // If we need to process more memory, do it now.
1189        if (!(curMacroop || inRom) && !predecoder.extMachInstReady()) {
1190            if (ISA_HAS_DELAY_SLOT && pcOffset == 0) {
1191                // Walk past any annulled delay slot instructions.
1192                Addr pcAddr = thisPC.instAddr() & BaseCPU::PCMask;
1193                while (fetchAddr != pcAddr && blkOffset < numInsts) {
1194                    blkOffset++;
1195                    fetchAddr += instSize;
1196                }
1197                if (blkOffset >= numInsts)
1198                    break;
1199            }
1200            MachInst inst = TheISA::gtoh(cacheInsts[blkOffset]);
1201
1202            predecoder.setTC(cpu->thread[tid]->getTC());
1203            predecoder.moreBytes(thisPC, fetchAddr, inst);
1204
1205            if (predecoder.needMoreBytes()) {
1206                blkOffset++;
1207                fetchAddr += instSize;
1208                pcOffset += instSize;
1209            }
1210        }
1211
1212        // Extract as many instructions and/or microops as we can from
1213        // the memory we've processed so far.
1214        do {
1215            if (!(curMacroop || inRom)) {
1216                if (predecoder.extMachInstReady()) {
1217                    ExtMachInst extMachInst;
1218
1219                    extMachInst = predecoder.getExtMachInst(thisPC);
1220                    staticInst = StaticInstPtr(extMachInst,
1221                                               thisPC.instAddr());
1222
1223                    // Increment stat of fetched instructions.
1224                    ++fetchedInsts;
1225
1226                    if (staticInst->isMacroop()) {
1227                        curMacroop = staticInst;
1228                    } else {
1229                        pcOffset = 0;
1230                    }
1231                } else {
1232                    // We need more bytes for this instruction.
1233                    break;
1234                }
1235            }
1236            if (curMacroop || inRom) {
1237                if (inRom) {
1238                    staticInst = cpu->microcodeRom.fetchMicroop(
1239                            thisPC.microPC(), curMacroop);
1240                } else {
1241                    staticInst = curMacroop->fetchMicroop(thisPC.microPC());
1242                }
1243                if (staticInst->isLastMicroop()) {
1244                    curMacroop = NULL;
1245                    pcOffset = 0;
1246                }
1247            }
1248
1249            DynInstPtr instruction =
1250                buildInst(tid, staticInst, curMacroop,
1251                          thisPC, nextPC, true);
1252
1253            numInst++;
1254
1255            nextPC = thisPC;
1256
1257            // If we're branching after this instruction, quite fetching
1258            // from the same block then.
1259            predictedBranch |= thisPC.branching();
1260            predictedBranch |=
1261                lookupAndUpdateNextPC(instruction, nextPC);
1262            if (predictedBranch) {
1263                DPRINTF(Fetch, "Branch detected with PC = %s\n", thisPC);
1264            }
1265
1266            // Move to the next instruction, unless we have a branch.
1267            thisPC = nextPC;
1268
1269            if (instruction->isQuiesce()) {
1270                DPRINTF(Fetch,
1271                        "Quiesce instruction encountered, halting fetch!");
1272                fetchStatus[tid] = QuiescePending;
1273                status_change = true;
1274                break;
1275            }
1276        } while ((curMacroop || predecoder.extMachInstReady()) &&
1277                 numInst < fetchWidth);
1278    }
1279
1280    if (predictedBranch) {
1281        DPRINTF(Fetch, "[tid:%i]: Done fetching, predicted branch "
1282                "instruction encountered.\n", tid);
1283    } else if (numInst >= fetchWidth) {
1284        DPRINTF(Fetch, "[tid:%i]: Done fetching, reached fetch bandwidth "
1285                "for this cycle.\n", tid);
1286    } else if (blkOffset >= cacheBlkSize) {
1287        DPRINTF(Fetch, "[tid:%i]: Done fetching, reached the end of cache "
1288                "block.\n", tid);
1289    }
1290
1291    macroop[tid] = curMacroop;
1292    fetchOffset[tid] = pcOffset;
1293
1294    if (numInst > 0) {
1295        wroteToTimeBuffer = true;
1296    }
1297
1298    pc[tid] = thisPC;
1299}
1300
1301template<class Impl>
1302void
1303DefaultFetch<Impl>::recvRetry()
1304{
1305    if (retryPkt != NULL) {
1306        assert(cacheBlocked);
1307        assert(retryTid != InvalidThreadID);
1308        assert(fetchStatus[retryTid] == IcacheWaitRetry);
1309
1310        if (icachePort->sendTiming(retryPkt)) {
1311            fetchStatus[retryTid] = IcacheWaitResponse;
1312            retryPkt = NULL;
1313            retryTid = InvalidThreadID;
1314            cacheBlocked = false;
1315        }
1316    } else {
1317        assert(retryTid == InvalidThreadID);
1318        // Access has been squashed since it was sent out.  Just clear
1319        // the cache being blocked.
1320        cacheBlocked = false;
1321    }
1322}
1323
1324///////////////////////////////////////
1325//                                   //
1326//  SMT FETCH POLICY MAINTAINED HERE //
1327//                                   //
1328///////////////////////////////////////
1329template<class Impl>
1330ThreadID
1331DefaultFetch<Impl>::getFetchingThread(FetchPriority &fetch_priority)
1332{
1333    if (numThreads > 1) {
1334        switch (fetch_priority) {
1335
1336          case SingleThread:
1337            return 0;
1338
1339          case RoundRobin:
1340            return roundRobin();
1341
1342          case IQ:
1343            return iqCount();
1344
1345          case LSQ:
1346            return lsqCount();
1347
1348          case Branch:
1349            return branchCount();
1350
1351          default:
1352            return InvalidThreadID;
1353        }
1354    } else {
1355        list<ThreadID>::iterator thread = activeThreads->begin();
1356        if (thread == activeThreads->end()) {
1357            return InvalidThreadID;
1358        }
1359
1360        ThreadID tid = *thread;
1361
1362        if (fetchStatus[tid] == Running ||
1363            fetchStatus[tid] == IcacheAccessComplete ||
1364            fetchStatus[tid] == Idle) {
1365            return tid;
1366        } else {
1367            return InvalidThreadID;
1368        }
1369    }
1370}
1371
1372
1373template<class Impl>
1374ThreadID
1375DefaultFetch<Impl>::roundRobin()
1376{
1377    list<ThreadID>::iterator pri_iter = priorityList.begin();
1378    list<ThreadID>::iterator end      = priorityList.end();
1379
1380    ThreadID high_pri;
1381
1382    while (pri_iter != end) {
1383        high_pri = *pri_iter;
1384
1385        assert(high_pri <= numThreads);
1386
1387        if (fetchStatus[high_pri] == Running ||
1388            fetchStatus[high_pri] == IcacheAccessComplete ||
1389            fetchStatus[high_pri] == Idle) {
1390
1391            priorityList.erase(pri_iter);
1392            priorityList.push_back(high_pri);
1393
1394            return high_pri;
1395        }
1396
1397        pri_iter++;
1398    }
1399
1400    return InvalidThreadID;
1401}
1402
1403template<class Impl>
1404ThreadID
1405DefaultFetch<Impl>::iqCount()
1406{
1407    std::priority_queue<ThreadID> PQ;
1408
1409    list<ThreadID>::iterator threads = activeThreads->begin();
1410    list<ThreadID>::iterator end = activeThreads->end();
1411
1412    while (threads != end) {
1413        ThreadID tid = *threads++;
1414
1415        PQ.push(fromIEW->iewInfo[tid].iqCount);
1416    }
1417
1418    while (!PQ.empty()) {
1419        ThreadID high_pri = PQ.top();
1420
1421        if (fetchStatus[high_pri] == Running ||
1422            fetchStatus[high_pri] == IcacheAccessComplete ||
1423            fetchStatus[high_pri] == Idle)
1424            return high_pri;
1425        else
1426            PQ.pop();
1427
1428    }
1429
1430    return InvalidThreadID;
1431}
1432
1433template<class Impl>
1434ThreadID
1435DefaultFetch<Impl>::lsqCount()
1436{
1437    std::priority_queue<ThreadID> PQ;
1438
1439    list<ThreadID>::iterator threads = activeThreads->begin();
1440    list<ThreadID>::iterator end = activeThreads->end();
1441
1442    while (threads != end) {
1443        ThreadID tid = *threads++;
1444
1445        PQ.push(fromIEW->iewInfo[tid].ldstqCount);
1446    }
1447
1448    while (!PQ.empty()) {
1449        ThreadID high_pri = PQ.top();
1450
1451        if (fetchStatus[high_pri] == Running ||
1452            fetchStatus[high_pri] == IcacheAccessComplete ||
1453            fetchStatus[high_pri] == Idle)
1454            return high_pri;
1455        else
1456            PQ.pop();
1457    }
1458
1459    return InvalidThreadID;
1460}
1461
1462template<class Impl>
1463ThreadID
1464DefaultFetch<Impl>::branchCount()
1465{
1466#if 0
1467    list<ThreadID>::iterator thread = activeThreads->begin();
1468    assert(thread != activeThreads->end());
1469    ThreadID tid = *thread;
1470#endif
1471
1472    panic("Branch Count Fetch policy unimplemented\n");
1473    return InvalidThreadID;
1474}
1475