fetch_impl.hh revision 5982:de47df436ace
1/*
2 * Copyright (c) 2004-2006 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Kevin Lim
29 *          Korey Sewell
30 */
31
32#include <algorithm>
33#include <cstring>
34
35#include "config/use_checker.hh"
36
37#include "arch/isa_traits.hh"
38#include "arch/utility.hh"
39#include "cpu/checker/cpu.hh"
40#include "cpu/exetrace.hh"
41#include "cpu/o3/fetch.hh"
42#include "mem/packet.hh"
43#include "mem/request.hh"
44#include "sim/byteswap.hh"
45#include "sim/host.hh"
46#include "sim/core.hh"
47
48#if FULL_SYSTEM
49#include "arch/tlb.hh"
50#include "arch/vtophys.hh"
51#include "sim/system.hh"
52#endif // FULL_SYSTEM
53
54#include "params/DerivO3CPU.hh"
55
56template<class Impl>
57void
58DefaultFetch<Impl>::IcachePort::setPeer(Port *port)
59{
60    Port::setPeer(port);
61
62    fetch->setIcache();
63}
64
65template<class Impl>
66Tick
67DefaultFetch<Impl>::IcachePort::recvAtomic(PacketPtr pkt)
68{
69    panic("DefaultFetch doesn't expect recvAtomic callback!");
70    return curTick;
71}
72
73template<class Impl>
74void
75DefaultFetch<Impl>::IcachePort::recvFunctional(PacketPtr pkt)
76{
77    DPRINTF(Fetch, "DefaultFetch doesn't update its state from a "
78            "functional call.");
79}
80
81template<class Impl>
82void
83DefaultFetch<Impl>::IcachePort::recvStatusChange(Status status)
84{
85    if (status == RangeChange) {
86        if (!snoopRangeSent) {
87            snoopRangeSent = true;
88            sendStatusChange(Port::RangeChange);
89        }
90        return;
91    }
92
93    panic("DefaultFetch doesn't expect recvStatusChange callback!");
94}
95
96template<class Impl>
97bool
98DefaultFetch<Impl>::IcachePort::recvTiming(PacketPtr pkt)
99{
100    DPRINTF(Fetch, "Received timing\n");
101    if (pkt->isResponse()) {
102        fetch->processCacheCompletion(pkt);
103    }
104    //else Snooped a coherence request, just return
105    return true;
106}
107
108template<class Impl>
109void
110DefaultFetch<Impl>::IcachePort::recvRetry()
111{
112    fetch->recvRetry();
113}
114
115template<class Impl>
116DefaultFetch<Impl>::DefaultFetch(O3CPU *_cpu, DerivO3CPUParams *params)
117    : cpu(_cpu),
118      branchPred(params),
119      predecoder(NULL),
120      decodeToFetchDelay(params->decodeToFetchDelay),
121      renameToFetchDelay(params->renameToFetchDelay),
122      iewToFetchDelay(params->iewToFetchDelay),
123      commitToFetchDelay(params->commitToFetchDelay),
124      fetchWidth(params->fetchWidth),
125      cacheBlocked(false),
126      retryPkt(NULL),
127      retryTid(-1),
128      numThreads(params->numThreads),
129      numFetchingThreads(params->smtNumFetchingThreads),
130      interruptPending(false),
131      drainPending(false),
132      switchedOut(false)
133{
134    if (numThreads > Impl::MaxThreads)
135        fatal("numThreads (%d) is larger than compiled limit (%d),\n"
136              "\tincrease MaxThreads in src/cpu/o3/impl.hh\n",
137              numThreads, static_cast<int>(Impl::MaxThreads));
138
139    // Set fetch stage's status to inactive.
140    _status = Inactive;
141
142    std::string policy = params->smtFetchPolicy;
143
144    // Convert string to lowercase
145    std::transform(policy.begin(), policy.end(), policy.begin(),
146                   (int(*)(int)) tolower);
147
148    // Figure out fetch policy
149    if (policy == "singlethread") {
150        fetchPolicy = SingleThread;
151        if (numThreads > 1)
152            panic("Invalid Fetch Policy for a SMT workload.");
153    } else if (policy == "roundrobin") {
154        fetchPolicy = RoundRobin;
155        DPRINTF(Fetch, "Fetch policy set to Round Robin\n");
156    } else if (policy == "branch") {
157        fetchPolicy = Branch;
158        DPRINTF(Fetch, "Fetch policy set to Branch Count\n");
159    } else if (policy == "iqcount") {
160        fetchPolicy = IQ;
161        DPRINTF(Fetch, "Fetch policy set to IQ count\n");
162    } else if (policy == "lsqcount") {
163        fetchPolicy = LSQ;
164        DPRINTF(Fetch, "Fetch policy set to LSQ count\n");
165    } else {
166        fatal("Invalid Fetch Policy. Options Are: {SingleThread,"
167              " RoundRobin,LSQcount,IQcount}\n");
168    }
169
170    // Get the size of an instruction.
171    instSize = sizeof(TheISA::MachInst);
172
173    // Name is finally available, so create the port.
174    icachePort = new IcachePort(this);
175
176    icachePort->snoopRangeSent = false;
177
178#if USE_CHECKER
179    if (cpu->checker) {
180        cpu->checker->setIcachePort(icachePort);
181    }
182#endif
183}
184
185template <class Impl>
186std::string
187DefaultFetch<Impl>::name() const
188{
189    return cpu->name() + ".fetch";
190}
191
192template <class Impl>
193void
194DefaultFetch<Impl>::regStats()
195{
196    icacheStallCycles
197        .name(name() + ".icacheStallCycles")
198        .desc("Number of cycles fetch is stalled on an Icache miss")
199        .prereq(icacheStallCycles);
200
201    fetchedInsts
202        .name(name() + ".Insts")
203        .desc("Number of instructions fetch has processed")
204        .prereq(fetchedInsts);
205
206    fetchedBranches
207        .name(name() + ".Branches")
208        .desc("Number of branches that fetch encountered")
209        .prereq(fetchedBranches);
210
211    predictedBranches
212        .name(name() + ".predictedBranches")
213        .desc("Number of branches that fetch has predicted taken")
214        .prereq(predictedBranches);
215
216    fetchCycles
217        .name(name() + ".Cycles")
218        .desc("Number of cycles fetch has run and was not squashing or"
219              " blocked")
220        .prereq(fetchCycles);
221
222    fetchSquashCycles
223        .name(name() + ".SquashCycles")
224        .desc("Number of cycles fetch has spent squashing")
225        .prereq(fetchSquashCycles);
226
227    fetchIdleCycles
228        .name(name() + ".IdleCycles")
229        .desc("Number of cycles fetch was idle")
230        .prereq(fetchIdleCycles);
231
232    fetchBlockedCycles
233        .name(name() + ".BlockedCycles")
234        .desc("Number of cycles fetch has spent blocked")
235        .prereq(fetchBlockedCycles);
236
237    fetchedCacheLines
238        .name(name() + ".CacheLines")
239        .desc("Number of cache lines fetched")
240        .prereq(fetchedCacheLines);
241
242    fetchMiscStallCycles
243        .name(name() + ".MiscStallCycles")
244        .desc("Number of cycles fetch has spent waiting on interrupts, or "
245              "bad addresses, or out of MSHRs")
246        .prereq(fetchMiscStallCycles);
247
248    fetchIcacheSquashes
249        .name(name() + ".IcacheSquashes")
250        .desc("Number of outstanding Icache misses that were squashed")
251        .prereq(fetchIcacheSquashes);
252
253    fetchNisnDist
254        .init(/* base value */ 0,
255              /* last value */ fetchWidth,
256              /* bucket size */ 1)
257        .name(name() + ".rateDist")
258        .desc("Number of instructions fetched each cycle (Total)")
259        .flags(Stats::pdf);
260
261    idleRate
262        .name(name() + ".idleRate")
263        .desc("Percent of cycles fetch was idle")
264        .prereq(idleRate);
265    idleRate = fetchIdleCycles * 100 / cpu->numCycles;
266
267    branchRate
268        .name(name() + ".branchRate")
269        .desc("Number of branch fetches per cycle")
270        .flags(Stats::total);
271    branchRate = fetchedBranches / cpu->numCycles;
272
273    fetchRate
274        .name(name() + ".rate")
275        .desc("Number of inst fetches per cycle")
276        .flags(Stats::total);
277    fetchRate = fetchedInsts / cpu->numCycles;
278
279    branchPred.regStats();
280}
281
282template<class Impl>
283void
284DefaultFetch<Impl>::setTimeBuffer(TimeBuffer<TimeStruct> *time_buffer)
285{
286    timeBuffer = time_buffer;
287
288    // Create wires to get information from proper places in time buffer.
289    fromDecode = timeBuffer->getWire(-decodeToFetchDelay);
290    fromRename = timeBuffer->getWire(-renameToFetchDelay);
291    fromIEW = timeBuffer->getWire(-iewToFetchDelay);
292    fromCommit = timeBuffer->getWire(-commitToFetchDelay);
293}
294
295template<class Impl>
296void
297DefaultFetch<Impl>::setActiveThreads(std::list<unsigned> *at_ptr)
298{
299    activeThreads = at_ptr;
300}
301
302template<class Impl>
303void
304DefaultFetch<Impl>::setFetchQueue(TimeBuffer<FetchStruct> *fq_ptr)
305{
306    fetchQueue = fq_ptr;
307
308    // Create wire to write information to proper place in fetch queue.
309    toDecode = fetchQueue->getWire(0);
310}
311
312template<class Impl>
313void
314DefaultFetch<Impl>::initStage()
315{
316    // Setup PC and nextPC with initial state.
317    for (int tid = 0; tid < numThreads; tid++) {
318        PC[tid] = cpu->readPC(tid);
319        nextPC[tid] = cpu->readNextPC(tid);
320        microPC[tid] = cpu->readMicroPC(tid);
321    }
322
323    for (int tid=0; tid < numThreads; tid++) {
324
325        fetchStatus[tid] = Running;
326
327        priorityList.push_back(tid);
328
329        memReq[tid] = NULL;
330
331        stalls[tid].decode = false;
332        stalls[tid].rename = false;
333        stalls[tid].iew = false;
334        stalls[tid].commit = false;
335    }
336
337    // Schedule fetch to get the correct PC from the CPU
338    // scheduleFetchStartupEvent(1);
339
340    // Fetch needs to start fetching instructions at the very beginning,
341    // so it must start up in active state.
342    switchToActive();
343}
344
345template<class Impl>
346void
347DefaultFetch<Impl>::setIcache()
348{
349    // Size of cache block.
350    cacheBlkSize = icachePort->peerBlockSize();
351
352    // Create mask to get rid of offset bits.
353    cacheBlkMask = (cacheBlkSize - 1);
354
355    for (int tid=0; tid < numThreads; tid++) {
356        // Create space to store a cache line.
357        cacheData[tid] = new uint8_t[cacheBlkSize];
358        cacheDataPC[tid] = 0;
359        cacheDataValid[tid] = false;
360    }
361}
362
363template<class Impl>
364void
365DefaultFetch<Impl>::processCacheCompletion(PacketPtr pkt)
366{
367    unsigned tid = pkt->req->threadId();
368
369    DPRINTF(Fetch, "[tid:%u] Waking up from cache miss.\n",tid);
370
371    assert(!pkt->wasNacked());
372
373    // Only change the status if it's still waiting on the icache access
374    // to return.
375    if (fetchStatus[tid] != IcacheWaitResponse ||
376        pkt->req != memReq[tid] ||
377        isSwitchedOut()) {
378        ++fetchIcacheSquashes;
379        delete pkt->req;
380        delete pkt;
381        return;
382    }
383
384    memcpy(cacheData[tid], pkt->getPtr<uint8_t>(), cacheBlkSize);
385    cacheDataValid[tid] = true;
386
387    if (!drainPending) {
388        // Wake up the CPU (if it went to sleep and was waiting on
389        // this completion event).
390        cpu->wakeCPU();
391
392        DPRINTF(Activity, "[tid:%u] Activating fetch due to cache completion\n",
393                tid);
394
395        switchToActive();
396    }
397
398    // Only switch to IcacheAccessComplete if we're not stalled as well.
399    if (checkStall(tid)) {
400        fetchStatus[tid] = Blocked;
401    } else {
402        fetchStatus[tid] = IcacheAccessComplete;
403    }
404
405    // Reset the mem req to NULL.
406    delete pkt->req;
407    delete pkt;
408    memReq[tid] = NULL;
409}
410
411template <class Impl>
412bool
413DefaultFetch<Impl>::drain()
414{
415    // Fetch is ready to drain at any time.
416    cpu->signalDrained();
417    drainPending = true;
418    return true;
419}
420
421template <class Impl>
422void
423DefaultFetch<Impl>::resume()
424{
425    drainPending = false;
426}
427
428template <class Impl>
429void
430DefaultFetch<Impl>::switchOut()
431{
432    switchedOut = true;
433    // Branch predictor needs to have its state cleared.
434    branchPred.switchOut();
435}
436
437template <class Impl>
438void
439DefaultFetch<Impl>::takeOverFrom()
440{
441    // Reset all state
442    for (int i = 0; i < Impl::MaxThreads; ++i) {
443        stalls[i].decode = 0;
444        stalls[i].rename = 0;
445        stalls[i].iew = 0;
446        stalls[i].commit = 0;
447        PC[i] = cpu->readPC(i);
448        nextPC[i] = cpu->readNextPC(i);
449        microPC[i] = cpu->readMicroPC(i);
450        fetchStatus[i] = Running;
451    }
452    numInst = 0;
453    wroteToTimeBuffer = false;
454    _status = Inactive;
455    switchedOut = false;
456    interruptPending = false;
457    branchPred.takeOverFrom();
458}
459
460template <class Impl>
461void
462DefaultFetch<Impl>::wakeFromQuiesce()
463{
464    DPRINTF(Fetch, "Waking up from quiesce\n");
465    // Hopefully this is safe
466    // @todo: Allow other threads to wake from quiesce.
467    fetchStatus[0] = Running;
468}
469
470template <class Impl>
471inline void
472DefaultFetch<Impl>::switchToActive()
473{
474    if (_status == Inactive) {
475        DPRINTF(Activity, "Activating stage.\n");
476
477        cpu->activateStage(O3CPU::FetchIdx);
478
479        _status = Active;
480    }
481}
482
483template <class Impl>
484inline void
485DefaultFetch<Impl>::switchToInactive()
486{
487    if (_status == Active) {
488        DPRINTF(Activity, "Deactivating stage.\n");
489
490        cpu->deactivateStage(O3CPU::FetchIdx);
491
492        _status = Inactive;
493    }
494}
495
496template <class Impl>
497bool
498DefaultFetch<Impl>::lookupAndUpdateNextPC(DynInstPtr &inst, Addr &next_PC,
499                                          Addr &next_NPC, Addr &next_MicroPC)
500{
501    // Do branch prediction check here.
502    // A bit of a misnomer...next_PC is actually the current PC until
503    // this function updates it.
504    bool predict_taken;
505
506    if (!inst->isControl()) {
507        if (inst->isMicroop() && !inst->isLastMicroop()) {
508            next_MicroPC++;
509        } else {
510            next_PC  = next_NPC;
511            next_NPC = next_NPC + instSize;
512            next_MicroPC = 0;
513        }
514        inst->setPredTarg(next_PC, next_NPC, next_MicroPC);
515        inst->setPredTaken(false);
516        return false;
517    }
518
519    //Assume for now that all control flow is to a different macroop which
520    //would reset the micro pc to 0.
521    next_MicroPC = 0;
522
523    int tid = inst->threadNumber;
524    Addr pred_PC = next_PC;
525    predict_taken = branchPred.predict(inst, pred_PC, tid);
526
527/*    if (predict_taken) {
528        DPRINTF(Fetch, "[tid:%i]: Branch predicted to be taken to %#x.\n",
529                tid, pred_PC);
530    } else {
531        DPRINTF(Fetch, "[tid:%i]: Branch predicted to be not taken.\n", tid);
532    }*/
533
534#if ISA_HAS_DELAY_SLOT
535    next_PC = next_NPC;
536    if (predict_taken)
537        next_NPC = pred_PC;
538    else
539        next_NPC += instSize;
540#else
541    if (predict_taken)
542        next_PC = pred_PC;
543    else
544        next_PC += instSize;
545    next_NPC = next_PC + instSize;
546#endif
547/*    DPRINTF(Fetch, "[tid:%i]: Branch predicted to go to %#x and then %#x.\n",
548            tid, next_PC, next_NPC);*/
549    inst->setPredTarg(next_PC, next_NPC, next_MicroPC);
550    inst->setPredTaken(predict_taken);
551
552    ++fetchedBranches;
553
554    if (predict_taken) {
555        ++predictedBranches;
556    }
557
558    return predict_taken;
559}
560
561template <class Impl>
562bool
563DefaultFetch<Impl>::fetchCacheLine(Addr fetch_PC, Fault &ret_fault, unsigned tid)
564{
565    Fault fault = NoFault;
566
567    //AlphaDep
568    if (cacheBlocked) {
569        DPRINTF(Fetch, "[tid:%i] Can't fetch cache line, cache blocked\n",
570                tid);
571        return false;
572    } else if (isSwitchedOut()) {
573        DPRINTF(Fetch, "[tid:%i] Can't fetch cache line, switched out\n",
574                tid);
575        return false;
576    } else if (interruptPending && !(fetch_PC & 0x3)) {
577        // Hold off fetch from getting new instructions when:
578        // Cache is blocked, or
579        // while an interrupt is pending and we're not in PAL mode, or
580        // fetch is switched out.
581        DPRINTF(Fetch, "[tid:%i] Can't fetch cache line, interrupt pending\n",
582                tid);
583        return false;
584    }
585
586    // Align the fetch PC so it's at the start of a cache block.
587    Addr block_PC = icacheBlockAlignPC(fetch_PC);
588
589    // If we've already got the block, no need to try to fetch it again.
590    if (cacheDataValid[tid] && block_PC == cacheDataPC[tid]) {
591        return true;
592    }
593
594    // Setup the memReq to do a read of the first instruction's address.
595    // Set the appropriate read size and flags as well.
596    // Build request here.
597    RequestPtr mem_req = new Request(tid, block_PC, cacheBlkSize, 0,
598                                     fetch_PC, cpu->thread[tid]->contextId(),
599                                     tid);
600
601    memReq[tid] = mem_req;
602
603    // Translate the instruction request.
604    fault = cpu->itb->translateAtomic(mem_req, cpu->thread[tid]->getTC());
605
606    // In the case of faults, the fetch stage may need to stall and wait
607    // for the ITB miss to be handled.
608
609    // If translation was successful, attempt to read the first
610    // instruction.
611    if (fault == NoFault) {
612#if 0
613        if (cpu->system->memctrl->badaddr(memReq[tid]->paddr) ||
614            memReq[tid]->isUncacheable()) {
615            DPRINTF(Fetch, "Fetch: Bad address %#x (hopefully on a "
616                    "misspeculating path)!",
617                    memReq[tid]->paddr);
618            ret_fault = TheISA::genMachineCheckFault();
619            return false;
620        }
621#endif
622
623        // Build packet here.
624        PacketPtr data_pkt = new Packet(mem_req,
625                                        MemCmd::ReadReq, Packet::Broadcast);
626        data_pkt->dataDynamicArray(new uint8_t[cacheBlkSize]);
627
628        cacheDataPC[tid] = block_PC;
629        cacheDataValid[tid] = false;
630
631        DPRINTF(Fetch, "Fetch: Doing instruction read.\n");
632
633        fetchedCacheLines++;
634
635        // Now do the timing access to see whether or not the instruction
636        // exists within the cache.
637        if (!icachePort->sendTiming(data_pkt)) {
638            assert(retryPkt == NULL);
639            assert(retryTid == -1);
640            DPRINTF(Fetch, "[tid:%i] Out of MSHRs!\n", tid);
641            fetchStatus[tid] = IcacheWaitRetry;
642            retryPkt = data_pkt;
643            retryTid = tid;
644            cacheBlocked = true;
645            return false;
646        }
647
648        DPRINTF(Fetch, "[tid:%i]: Doing cache access.\n", tid);
649
650        lastIcacheStall[tid] = curTick;
651
652        DPRINTF(Activity, "[tid:%i]: Activity: Waiting on I-cache "
653                "response.\n", tid);
654
655        fetchStatus[tid] = IcacheWaitResponse;
656    } else {
657        delete mem_req;
658        memReq[tid] = NULL;
659    }
660
661    ret_fault = fault;
662    return true;
663}
664
665template <class Impl>
666inline void
667DefaultFetch<Impl>::doSquash(const Addr &new_PC,
668        const Addr &new_NPC, const Addr &new_microPC, unsigned tid)
669{
670    DPRINTF(Fetch, "[tid:%i]: Squashing, setting PC to: %#x, NPC to: %#x.\n",
671            tid, new_PC, new_NPC);
672
673    PC[tid] = new_PC;
674    nextPC[tid] = new_NPC;
675    microPC[tid] = new_microPC;
676
677    // Clear the icache miss if it's outstanding.
678    if (fetchStatus[tid] == IcacheWaitResponse) {
679        DPRINTF(Fetch, "[tid:%i]: Squashing outstanding Icache miss.\n",
680                tid);
681        memReq[tid] = NULL;
682    }
683
684    // Get rid of the retrying packet if it was from this thread.
685    if (retryTid == tid) {
686        assert(cacheBlocked);
687        if (retryPkt) {
688            delete retryPkt->req;
689            delete retryPkt;
690        }
691        retryPkt = NULL;
692        retryTid = -1;
693    }
694
695    fetchStatus[tid] = Squashing;
696
697    ++fetchSquashCycles;
698}
699
700template<class Impl>
701void
702DefaultFetch<Impl>::squashFromDecode(const Addr &new_PC, const Addr &new_NPC,
703                                     const Addr &new_MicroPC,
704                                     const InstSeqNum &seq_num, unsigned tid)
705{
706    DPRINTF(Fetch, "[tid:%i]: Squashing from decode.\n",tid);
707
708    doSquash(new_PC, new_NPC, new_MicroPC, tid);
709
710    // Tell the CPU to remove any instructions that are in flight between
711    // fetch and decode.
712    cpu->removeInstsUntil(seq_num, tid);
713}
714
715template<class Impl>
716bool
717DefaultFetch<Impl>::checkStall(unsigned tid) const
718{
719    bool ret_val = false;
720
721    if (cpu->contextSwitch) {
722        DPRINTF(Fetch,"[tid:%i]: Stalling for a context switch.\n",tid);
723        ret_val = true;
724    } else if (stalls[tid].decode) {
725        DPRINTF(Fetch,"[tid:%i]: Stall from Decode stage detected.\n",tid);
726        ret_val = true;
727    } else if (stalls[tid].rename) {
728        DPRINTF(Fetch,"[tid:%i]: Stall from Rename stage detected.\n",tid);
729        ret_val = true;
730    } else if (stalls[tid].iew) {
731        DPRINTF(Fetch,"[tid:%i]: Stall from IEW stage detected.\n",tid);
732        ret_val = true;
733    } else if (stalls[tid].commit) {
734        DPRINTF(Fetch,"[tid:%i]: Stall from Commit stage detected.\n",tid);
735        ret_val = true;
736    }
737
738    return ret_val;
739}
740
741template<class Impl>
742typename DefaultFetch<Impl>::FetchStatus
743DefaultFetch<Impl>::updateFetchStatus()
744{
745    //Check Running
746    std::list<unsigned>::iterator threads = activeThreads->begin();
747    std::list<unsigned>::iterator end = activeThreads->end();
748
749    while (threads != end) {
750        unsigned tid = *threads++;
751
752        if (fetchStatus[tid] == Running ||
753            fetchStatus[tid] == Squashing ||
754            fetchStatus[tid] == IcacheAccessComplete) {
755
756            if (_status == Inactive) {
757                DPRINTF(Activity, "[tid:%i]: Activating stage.\n",tid);
758
759                if (fetchStatus[tid] == IcacheAccessComplete) {
760                    DPRINTF(Activity, "[tid:%i]: Activating fetch due to cache"
761                            "completion\n",tid);
762                }
763
764                cpu->activateStage(O3CPU::FetchIdx);
765            }
766
767            return Active;
768        }
769    }
770
771    // Stage is switching from active to inactive, notify CPU of it.
772    if (_status == Active) {
773        DPRINTF(Activity, "Deactivating stage.\n");
774
775        cpu->deactivateStage(O3CPU::FetchIdx);
776    }
777
778    return Inactive;
779}
780
781template <class Impl>
782void
783DefaultFetch<Impl>::squash(const Addr &new_PC, const Addr &new_NPC,
784                           const Addr &new_MicroPC,
785                           const InstSeqNum &seq_num, unsigned tid)
786{
787    DPRINTF(Fetch, "[tid:%u]: Squash from commit.\n",tid);
788
789    doSquash(new_PC, new_NPC, new_MicroPC, tid);
790
791    // Tell the CPU to remove any instructions that are not in the ROB.
792    cpu->removeInstsNotInROB(tid);
793}
794
795template <class Impl>
796void
797DefaultFetch<Impl>::tick()
798{
799    std::list<unsigned>::iterator threads = activeThreads->begin();
800    std::list<unsigned>::iterator end = activeThreads->end();
801    bool status_change = false;
802
803    wroteToTimeBuffer = false;
804
805    while (threads != end) {
806        unsigned tid = *threads++;
807
808        // Check the signals for each thread to determine the proper status
809        // for each thread.
810        bool updated_status = checkSignalsAndUpdate(tid);
811        status_change =  status_change || updated_status;
812    }
813
814    DPRINTF(Fetch, "Running stage.\n");
815
816    // Reset the number of the instruction we're fetching.
817    numInst = 0;
818
819#if FULL_SYSTEM
820    if (fromCommit->commitInfo[0].interruptPending) {
821        interruptPending = true;
822    }
823
824    if (fromCommit->commitInfo[0].clearInterrupt) {
825        interruptPending = false;
826    }
827#endif
828
829    for (threadFetched = 0; threadFetched < numFetchingThreads;
830         threadFetched++) {
831        // Fetch each of the actively fetching threads.
832        fetch(status_change);
833    }
834
835    // Record number of instructions fetched this cycle for distribution.
836    fetchNisnDist.sample(numInst);
837
838    if (status_change) {
839        // Change the fetch stage status if there was a status change.
840        _status = updateFetchStatus();
841    }
842
843    // If there was activity this cycle, inform the CPU of it.
844    if (wroteToTimeBuffer || cpu->contextSwitch) {
845        DPRINTF(Activity, "Activity this cycle.\n");
846
847        cpu->activityThisCycle();
848    }
849}
850
851template <class Impl>
852bool
853DefaultFetch<Impl>::checkSignalsAndUpdate(unsigned tid)
854{
855    // Update the per thread stall statuses.
856    if (fromDecode->decodeBlock[tid]) {
857        stalls[tid].decode = true;
858    }
859
860    if (fromDecode->decodeUnblock[tid]) {
861        assert(stalls[tid].decode);
862        assert(!fromDecode->decodeBlock[tid]);
863        stalls[tid].decode = false;
864    }
865
866    if (fromRename->renameBlock[tid]) {
867        stalls[tid].rename = true;
868    }
869
870    if (fromRename->renameUnblock[tid]) {
871        assert(stalls[tid].rename);
872        assert(!fromRename->renameBlock[tid]);
873        stalls[tid].rename = false;
874    }
875
876    if (fromIEW->iewBlock[tid]) {
877        stalls[tid].iew = true;
878    }
879
880    if (fromIEW->iewUnblock[tid]) {
881        assert(stalls[tid].iew);
882        assert(!fromIEW->iewBlock[tid]);
883        stalls[tid].iew = false;
884    }
885
886    if (fromCommit->commitBlock[tid]) {
887        stalls[tid].commit = true;
888    }
889
890    if (fromCommit->commitUnblock[tid]) {
891        assert(stalls[tid].commit);
892        assert(!fromCommit->commitBlock[tid]);
893        stalls[tid].commit = false;
894    }
895
896    // Check squash signals from commit.
897    if (fromCommit->commitInfo[tid].squash) {
898
899        DPRINTF(Fetch, "[tid:%u]: Squashing instructions due to squash "
900                "from commit.\n",tid);
901        // In any case, squash.
902        squash(fromCommit->commitInfo[tid].nextPC,
903               fromCommit->commitInfo[tid].nextNPC,
904               fromCommit->commitInfo[tid].nextMicroPC,
905               fromCommit->commitInfo[tid].doneSeqNum,
906               tid);
907
908        // Also check if there's a mispredict that happened.
909        if (fromCommit->commitInfo[tid].branchMispredict) {
910            branchPred.squash(fromCommit->commitInfo[tid].doneSeqNum,
911                              fromCommit->commitInfo[tid].nextPC,
912                              fromCommit->commitInfo[tid].branchTaken,
913                              tid);
914        } else {
915            branchPred.squash(fromCommit->commitInfo[tid].doneSeqNum,
916                              tid);
917        }
918
919        return true;
920    } else if (fromCommit->commitInfo[tid].doneSeqNum) {
921        // Update the branch predictor if it wasn't a squashed instruction
922        // that was broadcasted.
923        branchPred.update(fromCommit->commitInfo[tid].doneSeqNum, tid);
924    }
925
926    // Check ROB squash signals from commit.
927    if (fromCommit->commitInfo[tid].robSquashing) {
928        DPRINTF(Fetch, "[tid:%u]: ROB is still squashing.\n", tid);
929
930        // Continue to squash.
931        fetchStatus[tid] = Squashing;
932
933        return true;
934    }
935
936    // Check squash signals from decode.
937    if (fromDecode->decodeInfo[tid].squash) {
938        DPRINTF(Fetch, "[tid:%u]: Squashing instructions due to squash "
939                "from decode.\n",tid);
940
941        // Update the branch predictor.
942        if (fromDecode->decodeInfo[tid].branchMispredict) {
943            branchPred.squash(fromDecode->decodeInfo[tid].doneSeqNum,
944                              fromDecode->decodeInfo[tid].nextPC,
945                              fromDecode->decodeInfo[tid].branchTaken,
946                              tid);
947        } else {
948            branchPred.squash(fromDecode->decodeInfo[tid].doneSeqNum,
949                              tid);
950        }
951
952        if (fetchStatus[tid] != Squashing) {
953
954            DPRINTF(Fetch, "Squashing from decode with PC = %#x, NPC = %#x\n",
955                    fromDecode->decodeInfo[tid].nextPC,
956                    fromDecode->decodeInfo[tid].nextNPC);
957            // Squash unless we're already squashing
958            squashFromDecode(fromDecode->decodeInfo[tid].nextPC,
959                             fromDecode->decodeInfo[tid].nextNPC,
960                             fromDecode->decodeInfo[tid].nextMicroPC,
961                             fromDecode->decodeInfo[tid].doneSeqNum,
962                             tid);
963
964            return true;
965        }
966    }
967
968    if (checkStall(tid) &&
969        fetchStatus[tid] != IcacheWaitResponse &&
970        fetchStatus[tid] != IcacheWaitRetry) {
971        DPRINTF(Fetch, "[tid:%i]: Setting to blocked\n",tid);
972
973        fetchStatus[tid] = Blocked;
974
975        return true;
976    }
977
978    if (fetchStatus[tid] == Blocked ||
979        fetchStatus[tid] == Squashing) {
980        // Switch status to running if fetch isn't being told to block or
981        // squash this cycle.
982        DPRINTF(Fetch, "[tid:%i]: Done squashing, switching to running.\n",
983                tid);
984
985        fetchStatus[tid] = Running;
986
987        return true;
988    }
989
990    // If we've reached this point, we have not gotten any signals that
991    // cause fetch to change its status.  Fetch remains the same as before.
992    return false;
993}
994
995template<class Impl>
996void
997DefaultFetch<Impl>::fetch(bool &status_change)
998{
999    //////////////////////////////////////////
1000    // Start actual fetch
1001    //////////////////////////////////////////
1002    int tid = getFetchingThread(fetchPolicy);
1003
1004    if (tid == -1 || drainPending) {
1005        DPRINTF(Fetch,"There are no more threads available to fetch from.\n");
1006
1007        // Breaks looping condition in tick()
1008        threadFetched = numFetchingThreads;
1009        return;
1010    }
1011
1012    DPRINTF(Fetch, "Attempting to fetch from [tid:%i]\n", tid);
1013
1014    // The current PC.
1015    Addr fetch_PC = PC[tid];
1016    Addr fetch_NPC = nextPC[tid];
1017    Addr fetch_MicroPC = microPC[tid];
1018
1019    // Fault code for memory access.
1020    Fault fault = NoFault;
1021
1022    // If returning from the delay of a cache miss, then update the status
1023    // to running, otherwise do the cache access.  Possibly move this up
1024    // to tick() function.
1025    if (fetchStatus[tid] == IcacheAccessComplete) {
1026        DPRINTF(Fetch, "[tid:%i]: Icache miss is complete.\n",
1027                tid);
1028
1029        fetchStatus[tid] = Running;
1030        status_change = true;
1031    } else if (fetchStatus[tid] == Running) {
1032        DPRINTF(Fetch, "[tid:%i]: Attempting to translate and read "
1033                "instruction, starting at PC %08p.\n",
1034                tid, fetch_PC);
1035
1036        bool fetch_success = fetchCacheLine(fetch_PC, fault, tid);
1037        if (!fetch_success) {
1038            if (cacheBlocked) {
1039                ++icacheStallCycles;
1040            } else {
1041                ++fetchMiscStallCycles;
1042            }
1043            return;
1044        }
1045    } else {
1046        if (fetchStatus[tid] == Idle) {
1047            ++fetchIdleCycles;
1048            DPRINTF(Fetch, "[tid:%i]: Fetch is idle!\n", tid);
1049        } else if (fetchStatus[tid] == Blocked) {
1050            ++fetchBlockedCycles;
1051            DPRINTF(Fetch, "[tid:%i]: Fetch is blocked!\n", tid);
1052        } else if (fetchStatus[tid] == Squashing) {
1053            ++fetchSquashCycles;
1054            DPRINTF(Fetch, "[tid:%i]: Fetch is squashing!\n", tid);
1055        } else if (fetchStatus[tid] == IcacheWaitResponse) {
1056            ++icacheStallCycles;
1057            DPRINTF(Fetch, "[tid:%i]: Fetch is waiting cache response!\n", tid);
1058        }
1059
1060        // Status is Idle, Squashing, Blocked, or IcacheWaitResponse, so
1061        // fetch should do nothing.
1062        return;
1063    }
1064
1065    ++fetchCycles;
1066
1067    // If we had a stall due to an icache miss, then return.
1068    if (fetchStatus[tid] == IcacheWaitResponse) {
1069        ++icacheStallCycles;
1070        status_change = true;
1071        return;
1072    }
1073
1074    Addr next_PC = fetch_PC;
1075    Addr next_NPC = fetch_NPC;
1076    Addr next_MicroPC = fetch_MicroPC;
1077
1078    InstSeqNum inst_seq;
1079    MachInst inst;
1080    ExtMachInst ext_inst;
1081    // @todo: Fix this hack.
1082    unsigned offset = (fetch_PC & cacheBlkMask) & ~3;
1083
1084    StaticInstPtr staticInst = NULL;
1085    StaticInstPtr macroop = NULL;
1086
1087    if (fault == NoFault) {
1088        // If the read of the first instruction was successful, then grab the
1089        // instructions from the rest of the cache line and put them into the
1090        // queue heading to decode.
1091
1092        DPRINTF(Fetch, "[tid:%i]: Adding instructions to queue to "
1093                "decode.\n",tid);
1094
1095        // Need to keep track of whether or not a predicted branch
1096        // ended this fetch block.
1097        bool predicted_branch = false;
1098
1099        while (offset < cacheBlkSize &&
1100               numInst < fetchWidth &&
1101               !predicted_branch) {
1102
1103            // If we're branching after this instruction, quite fetching
1104            // from the same block then.
1105            predicted_branch =
1106                (fetch_PC + sizeof(TheISA::MachInst) != fetch_NPC);
1107            if (predicted_branch) {
1108                DPRINTF(Fetch, "Branch detected with PC = %#x, NPC = %#x\n",
1109                        fetch_PC, fetch_NPC);
1110            }
1111
1112            // Make sure this is a valid index.
1113            assert(offset <= cacheBlkSize - instSize);
1114
1115            if (!macroop) {
1116                // Get the instruction from the array of the cache line.
1117                inst = TheISA::gtoh(*reinterpret_cast<TheISA::MachInst *>
1118                            (&cacheData[tid][offset]));
1119
1120                predecoder.setTC(cpu->thread[tid]->getTC());
1121                predecoder.moreBytes(fetch_PC, fetch_PC, inst);
1122
1123                ext_inst = predecoder.getExtMachInst();
1124                staticInst = StaticInstPtr(ext_inst, fetch_PC);
1125                if (staticInst->isMacroop())
1126                    macroop = staticInst;
1127            }
1128            do {
1129                if (macroop) {
1130                    staticInst = macroop->fetchMicroop(fetch_MicroPC);
1131                    if (staticInst->isLastMicroop())
1132                        macroop = NULL;
1133                }
1134
1135                // Get a sequence number.
1136                inst_seq = cpu->getAndIncrementInstSeq();
1137
1138                // Create a new DynInst from the instruction fetched.
1139                DynInstPtr instruction = new DynInst(staticInst,
1140                                                     fetch_PC, fetch_NPC, fetch_MicroPC,
1141                                                     next_PC, next_NPC, next_MicroPC,
1142                                                     inst_seq, cpu);
1143                instruction->setTid(tid);
1144
1145                instruction->setASID(tid);
1146
1147                instruction->setThreadState(cpu->thread[tid]);
1148
1149                DPRINTF(Fetch, "[tid:%i]: Instruction PC %#x created "
1150                        "[sn:%lli]\n",
1151                        tid, instruction->readPC(), inst_seq);
1152
1153                //DPRINTF(Fetch, "[tid:%i]: MachInst is %#x\n", tid, ext_inst);
1154
1155                DPRINTF(Fetch, "[tid:%i]: Instruction is: %s\n",
1156                        tid, instruction->staticInst->disassemble(fetch_PC));
1157
1158#if TRACING_ON
1159                instruction->traceData =
1160                    cpu->getTracer()->getInstRecord(curTick, cpu->tcBase(tid),
1161                            instruction->staticInst, instruction->readPC());
1162#else
1163                instruction->traceData = NULL;
1164#endif
1165
1166                ///FIXME This needs to be more robust in dealing with delay slots
1167                predicted_branch |=
1168                    lookupAndUpdateNextPC(instruction, next_PC, next_NPC, next_MicroPC);
1169
1170                // Add instruction to the CPU's list of instructions.
1171                instruction->setInstListIt(cpu->addInst(instruction));
1172
1173                // Write the instruction to the first slot in the queue
1174                // that heads to decode.
1175                toDecode->insts[numInst] = instruction;
1176
1177                toDecode->size++;
1178
1179                // Increment stat of fetched instructions.
1180                ++fetchedInsts;
1181
1182                // Move to the next instruction, unless we have a branch.
1183                fetch_PC = next_PC;
1184                fetch_NPC = next_NPC;
1185                fetch_MicroPC = next_MicroPC;
1186
1187                if (instruction->isQuiesce()) {
1188                    DPRINTF(Fetch, "Quiesce instruction encountered, halting fetch!",
1189                            curTick);
1190                    fetchStatus[tid] = QuiescePending;
1191                    ++numInst;
1192                    status_change = true;
1193                    break;
1194                }
1195
1196                ++numInst;
1197            } while (staticInst->isMicroop() &&
1198                     !staticInst->isLastMicroop() &&
1199                     numInst < fetchWidth);
1200            offset += instSize;
1201        }
1202
1203        if (predicted_branch) {
1204            DPRINTF(Fetch, "[tid:%i]: Done fetching, predicted branch "
1205                    "instruction encountered.\n", tid);
1206        } else if (numInst >= fetchWidth) {
1207            DPRINTF(Fetch, "[tid:%i]: Done fetching, reached fetch bandwidth "
1208                    "for this cycle.\n", tid);
1209        } else if (offset >= cacheBlkSize) {
1210            DPRINTF(Fetch, "[tid:%i]: Done fetching, reached the end of cache "
1211                    "block.\n", tid);
1212        }
1213    }
1214
1215    if (numInst > 0) {
1216        wroteToTimeBuffer = true;
1217    }
1218
1219    // Now that fetching is completed, update the PC to signify what the next
1220    // cycle will be.
1221    if (fault == NoFault) {
1222        PC[tid] = next_PC;
1223        nextPC[tid] = next_NPC;
1224        microPC[tid] = next_MicroPC;
1225        DPRINTF(Fetch, "[tid:%i]: Setting PC to %08p.\n", tid, next_PC);
1226    } else {
1227        // We shouldn't be in an icache miss and also have a fault (an ITB
1228        // miss)
1229        if (fetchStatus[tid] == IcacheWaitResponse) {
1230            panic("Fetch should have exited prior to this!");
1231        }
1232
1233        // Send the fault to commit.  This thread will not do anything
1234        // until commit handles the fault.  The only other way it can
1235        // wake up is if a squash comes along and changes the PC.
1236        assert(numInst < fetchWidth);
1237        // Get a sequence number.
1238        inst_seq = cpu->getAndIncrementInstSeq();
1239        // We will use a nop in order to carry the fault.
1240        ext_inst = TheISA::NoopMachInst;
1241
1242        // Create a new DynInst from the dummy nop.
1243        DynInstPtr instruction = new DynInst(ext_inst,
1244                                             fetch_PC, fetch_NPC, fetch_MicroPC,
1245                                             next_PC, next_NPC, next_MicroPC,
1246                                             inst_seq, cpu);
1247        instruction->setPredTarg(next_NPC, next_NPC + instSize, 0);
1248        instruction->setTid(tid);
1249
1250        instruction->setASID(tid);
1251
1252        instruction->setThreadState(cpu->thread[tid]);
1253
1254        instruction->traceData = NULL;
1255
1256        instruction->setInstListIt(cpu->addInst(instruction));
1257
1258        instruction->fault = fault;
1259
1260        toDecode->insts[numInst] = instruction;
1261        toDecode->size++;
1262
1263        DPRINTF(Fetch, "[tid:%i]: Blocked, need to handle the trap.\n",tid);
1264
1265        fetchStatus[tid] = TrapPending;
1266        status_change = true;
1267
1268        DPRINTF(Fetch, "[tid:%i]: fault (%s) detected @ PC %08p",
1269                tid, fault->name(), PC[tid]);
1270    }
1271}
1272
1273template<class Impl>
1274void
1275DefaultFetch<Impl>::recvRetry()
1276{
1277    if (retryPkt != NULL) {
1278        assert(cacheBlocked);
1279        assert(retryTid != -1);
1280        assert(fetchStatus[retryTid] == IcacheWaitRetry);
1281
1282        if (icachePort->sendTiming(retryPkt)) {
1283            fetchStatus[retryTid] = IcacheWaitResponse;
1284            retryPkt = NULL;
1285            retryTid = -1;
1286            cacheBlocked = false;
1287        }
1288    } else {
1289        assert(retryTid == -1);
1290        // Access has been squashed since it was sent out.  Just clear
1291        // the cache being blocked.
1292        cacheBlocked = false;
1293    }
1294}
1295
1296///////////////////////////////////////
1297//                                   //
1298//  SMT FETCH POLICY MAINTAINED HERE //
1299//                                   //
1300///////////////////////////////////////
1301template<class Impl>
1302int
1303DefaultFetch<Impl>::getFetchingThread(FetchPriority &fetch_priority)
1304{
1305    if (numThreads > 1) {
1306        switch (fetch_priority) {
1307
1308          case SingleThread:
1309            return 0;
1310
1311          case RoundRobin:
1312            return roundRobin();
1313
1314          case IQ:
1315            return iqCount();
1316
1317          case LSQ:
1318            return lsqCount();
1319
1320          case Branch:
1321            return branchCount();
1322
1323          default:
1324            return -1;
1325        }
1326    } else {
1327        std::list<unsigned>::iterator thread = activeThreads->begin();
1328        assert(thread != activeThreads->end());
1329        int tid = *thread;
1330
1331        if (fetchStatus[tid] == Running ||
1332            fetchStatus[tid] == IcacheAccessComplete ||
1333            fetchStatus[tid] == Idle) {
1334            return tid;
1335        } else {
1336            return -1;
1337        }
1338    }
1339
1340}
1341
1342
1343template<class Impl>
1344int
1345DefaultFetch<Impl>::roundRobin()
1346{
1347    std::list<unsigned>::iterator pri_iter = priorityList.begin();
1348    std::list<unsigned>::iterator end      = priorityList.end();
1349
1350    int high_pri;
1351
1352    while (pri_iter != end) {
1353        high_pri = *pri_iter;
1354
1355        assert(high_pri <= numThreads);
1356
1357        if (fetchStatus[high_pri] == Running ||
1358            fetchStatus[high_pri] == IcacheAccessComplete ||
1359            fetchStatus[high_pri] == Idle) {
1360
1361            priorityList.erase(pri_iter);
1362            priorityList.push_back(high_pri);
1363
1364            return high_pri;
1365        }
1366
1367        pri_iter++;
1368    }
1369
1370    return -1;
1371}
1372
1373template<class Impl>
1374int
1375DefaultFetch<Impl>::iqCount()
1376{
1377    std::priority_queue<unsigned> PQ;
1378
1379    std::list<unsigned>::iterator threads = activeThreads->begin();
1380    std::list<unsigned>::iterator end = activeThreads->end();
1381
1382    while (threads != end) {
1383        unsigned tid = *threads++;
1384
1385        PQ.push(fromIEW->iewInfo[tid].iqCount);
1386    }
1387
1388    while (!PQ.empty()) {
1389
1390        unsigned high_pri = PQ.top();
1391
1392        if (fetchStatus[high_pri] == Running ||
1393            fetchStatus[high_pri] == IcacheAccessComplete ||
1394            fetchStatus[high_pri] == Idle)
1395            return high_pri;
1396        else
1397            PQ.pop();
1398
1399    }
1400
1401    return -1;
1402}
1403
1404template<class Impl>
1405int
1406DefaultFetch<Impl>::lsqCount()
1407{
1408    std::priority_queue<unsigned> PQ;
1409
1410    std::list<unsigned>::iterator threads = activeThreads->begin();
1411    std::list<unsigned>::iterator end = activeThreads->end();
1412
1413    while (threads != end) {
1414        unsigned tid = *threads++;
1415
1416        PQ.push(fromIEW->iewInfo[tid].ldstqCount);
1417    }
1418
1419    while (!PQ.empty()) {
1420
1421        unsigned high_pri = PQ.top();
1422
1423        if (fetchStatus[high_pri] == Running ||
1424            fetchStatus[high_pri] == IcacheAccessComplete ||
1425            fetchStatus[high_pri] == Idle)
1426            return high_pri;
1427        else
1428            PQ.pop();
1429
1430    }
1431
1432    return -1;
1433}
1434
1435template<class Impl>
1436int
1437DefaultFetch<Impl>::branchCount()
1438{
1439    std::list<unsigned>::iterator thread = activeThreads->begin();
1440    assert(thread != activeThreads->end());
1441    unsigned tid = *thread;
1442
1443    panic("Branch Count Fetch policy unimplemented\n");
1444    return 0 * tid;
1445}
1446