fetch_impl.hh revision 5712:199d31b47f7b
1/*
2 * Copyright (c) 2004-2006 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Kevin Lim
29 *          Korey Sewell
30 */
31
32#include <algorithm>
33#include <cstring>
34
35#include "config/use_checker.hh"
36
37#include "arch/isa_traits.hh"
38#include "arch/utility.hh"
39#include "cpu/checker/cpu.hh"
40#include "cpu/exetrace.hh"
41#include "cpu/o3/fetch.hh"
42#include "mem/packet.hh"
43#include "mem/request.hh"
44#include "sim/byteswap.hh"
45#include "sim/host.hh"
46#include "sim/core.hh"
47
48#if FULL_SYSTEM
49#include "arch/tlb.hh"
50#include "arch/vtophys.hh"
51#include "sim/system.hh"
52#endif // FULL_SYSTEM
53
54#include "params/DerivO3CPU.hh"
55
56template<class Impl>
57void
58DefaultFetch<Impl>::IcachePort::setPeer(Port *port)
59{
60    Port::setPeer(port);
61
62    fetch->setIcache();
63}
64
65template<class Impl>
66Tick
67DefaultFetch<Impl>::IcachePort::recvAtomic(PacketPtr pkt)
68{
69    panic("DefaultFetch doesn't expect recvAtomic callback!");
70    return curTick;
71}
72
73template<class Impl>
74void
75DefaultFetch<Impl>::IcachePort::recvFunctional(PacketPtr pkt)
76{
77    DPRINTF(Fetch, "DefaultFetch doesn't update its state from a "
78            "functional call.");
79}
80
81template<class Impl>
82void
83DefaultFetch<Impl>::IcachePort::recvStatusChange(Status status)
84{
85    if (status == RangeChange) {
86        if (!snoopRangeSent) {
87            snoopRangeSent = true;
88            sendStatusChange(Port::RangeChange);
89        }
90        return;
91    }
92
93    panic("DefaultFetch doesn't expect recvStatusChange callback!");
94}
95
96template<class Impl>
97bool
98DefaultFetch<Impl>::IcachePort::recvTiming(PacketPtr pkt)
99{
100    DPRINTF(Fetch, "Received timing\n");
101    if (pkt->isResponse()) {
102        fetch->processCacheCompletion(pkt);
103    }
104    //else Snooped a coherence request, just return
105    return true;
106}
107
108template<class Impl>
109void
110DefaultFetch<Impl>::IcachePort::recvRetry()
111{
112    fetch->recvRetry();
113}
114
115template<class Impl>
116DefaultFetch<Impl>::DefaultFetch(O3CPU *_cpu, DerivO3CPUParams *params)
117    : cpu(_cpu),
118      branchPred(params),
119      predecoder(NULL),
120      decodeToFetchDelay(params->decodeToFetchDelay),
121      renameToFetchDelay(params->renameToFetchDelay),
122      iewToFetchDelay(params->iewToFetchDelay),
123      commitToFetchDelay(params->commitToFetchDelay),
124      fetchWidth(params->fetchWidth),
125      cacheBlocked(false),
126      retryPkt(NULL),
127      retryTid(-1),
128      numThreads(params->numThreads),
129      numFetchingThreads(params->smtNumFetchingThreads),
130      interruptPending(false),
131      drainPending(false),
132      switchedOut(false)
133{
134    if (numThreads > Impl::MaxThreads)
135        fatal("numThreads is not a valid value\n");
136
137    // Set fetch stage's status to inactive.
138    _status = Inactive;
139
140    std::string policy = params->smtFetchPolicy;
141
142    // Convert string to lowercase
143    std::transform(policy.begin(), policy.end(), policy.begin(),
144                   (int(*)(int)) tolower);
145
146    // Figure out fetch policy
147    if (policy == "singlethread") {
148        fetchPolicy = SingleThread;
149        if (numThreads > 1)
150            panic("Invalid Fetch Policy for a SMT workload.");
151    } else if (policy == "roundrobin") {
152        fetchPolicy = RoundRobin;
153        DPRINTF(Fetch, "Fetch policy set to Round Robin\n");
154    } else if (policy == "branch") {
155        fetchPolicy = Branch;
156        DPRINTF(Fetch, "Fetch policy set to Branch Count\n");
157    } else if (policy == "iqcount") {
158        fetchPolicy = IQ;
159        DPRINTF(Fetch, "Fetch policy set to IQ count\n");
160    } else if (policy == "lsqcount") {
161        fetchPolicy = LSQ;
162        DPRINTF(Fetch, "Fetch policy set to LSQ count\n");
163    } else {
164        fatal("Invalid Fetch Policy. Options Are: {SingleThread,"
165              " RoundRobin,LSQcount,IQcount}\n");
166    }
167
168    // Get the size of an instruction.
169    instSize = sizeof(TheISA::MachInst);
170
171    // Name is finally available, so create the port.
172    icachePort = new IcachePort(this);
173
174    icachePort->snoopRangeSent = false;
175
176#if USE_CHECKER
177    if (cpu->checker) {
178        cpu->checker->setIcachePort(icachePort);
179    }
180#endif
181}
182
183template <class Impl>
184std::string
185DefaultFetch<Impl>::name() const
186{
187    return cpu->name() + ".fetch";
188}
189
190template <class Impl>
191void
192DefaultFetch<Impl>::regStats()
193{
194    icacheStallCycles
195        .name(name() + ".icacheStallCycles")
196        .desc("Number of cycles fetch is stalled on an Icache miss")
197        .prereq(icacheStallCycles);
198
199    fetchedInsts
200        .name(name() + ".Insts")
201        .desc("Number of instructions fetch has processed")
202        .prereq(fetchedInsts);
203
204    fetchedBranches
205        .name(name() + ".Branches")
206        .desc("Number of branches that fetch encountered")
207        .prereq(fetchedBranches);
208
209    predictedBranches
210        .name(name() + ".predictedBranches")
211        .desc("Number of branches that fetch has predicted taken")
212        .prereq(predictedBranches);
213
214    fetchCycles
215        .name(name() + ".Cycles")
216        .desc("Number of cycles fetch has run and was not squashing or"
217              " blocked")
218        .prereq(fetchCycles);
219
220    fetchSquashCycles
221        .name(name() + ".SquashCycles")
222        .desc("Number of cycles fetch has spent squashing")
223        .prereq(fetchSquashCycles);
224
225    fetchIdleCycles
226        .name(name() + ".IdleCycles")
227        .desc("Number of cycles fetch was idle")
228        .prereq(fetchIdleCycles);
229
230    fetchBlockedCycles
231        .name(name() + ".BlockedCycles")
232        .desc("Number of cycles fetch has spent blocked")
233        .prereq(fetchBlockedCycles);
234
235    fetchedCacheLines
236        .name(name() + ".CacheLines")
237        .desc("Number of cache lines fetched")
238        .prereq(fetchedCacheLines);
239
240    fetchMiscStallCycles
241        .name(name() + ".MiscStallCycles")
242        .desc("Number of cycles fetch has spent waiting on interrupts, or "
243              "bad addresses, or out of MSHRs")
244        .prereq(fetchMiscStallCycles);
245
246    fetchIcacheSquashes
247        .name(name() + ".IcacheSquashes")
248        .desc("Number of outstanding Icache misses that were squashed")
249        .prereq(fetchIcacheSquashes);
250
251    fetchNisnDist
252        .init(/* base value */ 0,
253              /* last value */ fetchWidth,
254              /* bucket size */ 1)
255        .name(name() + ".rateDist")
256        .desc("Number of instructions fetched each cycle (Total)")
257        .flags(Stats::pdf);
258
259    idleRate
260        .name(name() + ".idleRate")
261        .desc("Percent of cycles fetch was idle")
262        .prereq(idleRate);
263    idleRate = fetchIdleCycles * 100 / cpu->numCycles;
264
265    branchRate
266        .name(name() + ".branchRate")
267        .desc("Number of branch fetches per cycle")
268        .flags(Stats::total);
269    branchRate = fetchedBranches / cpu->numCycles;
270
271    fetchRate
272        .name(name() + ".rate")
273        .desc("Number of inst fetches per cycle")
274        .flags(Stats::total);
275    fetchRate = fetchedInsts / cpu->numCycles;
276
277    branchPred.regStats();
278}
279
280template<class Impl>
281void
282DefaultFetch<Impl>::setTimeBuffer(TimeBuffer<TimeStruct> *time_buffer)
283{
284    timeBuffer = time_buffer;
285
286    // Create wires to get information from proper places in time buffer.
287    fromDecode = timeBuffer->getWire(-decodeToFetchDelay);
288    fromRename = timeBuffer->getWire(-renameToFetchDelay);
289    fromIEW = timeBuffer->getWire(-iewToFetchDelay);
290    fromCommit = timeBuffer->getWire(-commitToFetchDelay);
291}
292
293template<class Impl>
294void
295DefaultFetch<Impl>::setActiveThreads(std::list<unsigned> *at_ptr)
296{
297    activeThreads = at_ptr;
298}
299
300template<class Impl>
301void
302DefaultFetch<Impl>::setFetchQueue(TimeBuffer<FetchStruct> *fq_ptr)
303{
304    fetchQueue = fq_ptr;
305
306    // Create wire to write information to proper place in fetch queue.
307    toDecode = fetchQueue->getWire(0);
308}
309
310template<class Impl>
311void
312DefaultFetch<Impl>::initStage()
313{
314    // Setup PC and nextPC with initial state.
315    for (int tid = 0; tid < numThreads; tid++) {
316        PC[tid] = cpu->readPC(tid);
317        nextPC[tid] = cpu->readNextPC(tid);
318        microPC[tid] = cpu->readMicroPC(tid);
319    }
320
321    for (int tid=0; tid < numThreads; tid++) {
322
323        fetchStatus[tid] = Running;
324
325        priorityList.push_back(tid);
326
327        memReq[tid] = NULL;
328
329        stalls[tid].decode = false;
330        stalls[tid].rename = false;
331        stalls[tid].iew = false;
332        stalls[tid].commit = false;
333    }
334
335    // Schedule fetch to get the correct PC from the CPU
336    // scheduleFetchStartupEvent(1);
337
338    // Fetch needs to start fetching instructions at the very beginning,
339    // so it must start up in active state.
340    switchToActive();
341}
342
343template<class Impl>
344void
345DefaultFetch<Impl>::setIcache()
346{
347    // Size of cache block.
348    cacheBlkSize = icachePort->peerBlockSize();
349
350    // Create mask to get rid of offset bits.
351    cacheBlkMask = (cacheBlkSize - 1);
352
353    for (int tid=0; tid < numThreads; tid++) {
354        // Create space to store a cache line.
355        cacheData[tid] = new uint8_t[cacheBlkSize];
356        cacheDataPC[tid] = 0;
357        cacheDataValid[tid] = false;
358    }
359}
360
361template<class Impl>
362void
363DefaultFetch<Impl>::processCacheCompletion(PacketPtr pkt)
364{
365    unsigned tid = pkt->req->getThreadNum();
366
367    DPRINTF(Fetch, "[tid:%u] Waking up from cache miss.\n",tid);
368
369    assert(!pkt->wasNacked());
370
371    // Only change the status if it's still waiting on the icache access
372    // to return.
373    if (fetchStatus[tid] != IcacheWaitResponse ||
374        pkt->req != memReq[tid] ||
375        isSwitchedOut()) {
376        ++fetchIcacheSquashes;
377        delete pkt->req;
378        delete pkt;
379        return;
380    }
381
382    memcpy(cacheData[tid], pkt->getPtr<uint8_t>(), cacheBlkSize);
383    cacheDataValid[tid] = true;
384
385    if (!drainPending) {
386        // Wake up the CPU (if it went to sleep and was waiting on
387        // this completion event).
388        cpu->wakeCPU();
389
390        DPRINTF(Activity, "[tid:%u] Activating fetch due to cache completion\n",
391                tid);
392
393        switchToActive();
394    }
395
396    // Only switch to IcacheAccessComplete if we're not stalled as well.
397    if (checkStall(tid)) {
398        fetchStatus[tid] = Blocked;
399    } else {
400        fetchStatus[tid] = IcacheAccessComplete;
401    }
402
403    // Reset the mem req to NULL.
404    delete pkt->req;
405    delete pkt;
406    memReq[tid] = NULL;
407}
408
409template <class Impl>
410bool
411DefaultFetch<Impl>::drain()
412{
413    // Fetch is ready to drain at any time.
414    cpu->signalDrained();
415    drainPending = true;
416    return true;
417}
418
419template <class Impl>
420void
421DefaultFetch<Impl>::resume()
422{
423    drainPending = false;
424}
425
426template <class Impl>
427void
428DefaultFetch<Impl>::switchOut()
429{
430    switchedOut = true;
431    // Branch predictor needs to have its state cleared.
432    branchPred.switchOut();
433}
434
435template <class Impl>
436void
437DefaultFetch<Impl>::takeOverFrom()
438{
439    // Reset all state
440    for (int i = 0; i < Impl::MaxThreads; ++i) {
441        stalls[i].decode = 0;
442        stalls[i].rename = 0;
443        stalls[i].iew = 0;
444        stalls[i].commit = 0;
445        PC[i] = cpu->readPC(i);
446        nextPC[i] = cpu->readNextPC(i);
447        microPC[i] = cpu->readMicroPC(i);
448        fetchStatus[i] = Running;
449    }
450    numInst = 0;
451    wroteToTimeBuffer = false;
452    _status = Inactive;
453    switchedOut = false;
454    interruptPending = false;
455    branchPred.takeOverFrom();
456}
457
458template <class Impl>
459void
460DefaultFetch<Impl>::wakeFromQuiesce()
461{
462    DPRINTF(Fetch, "Waking up from quiesce\n");
463    // Hopefully this is safe
464    // @todo: Allow other threads to wake from quiesce.
465    fetchStatus[0] = Running;
466}
467
468template <class Impl>
469inline void
470DefaultFetch<Impl>::switchToActive()
471{
472    if (_status == Inactive) {
473        DPRINTF(Activity, "Activating stage.\n");
474
475        cpu->activateStage(O3CPU::FetchIdx);
476
477        _status = Active;
478    }
479}
480
481template <class Impl>
482inline void
483DefaultFetch<Impl>::switchToInactive()
484{
485    if (_status == Active) {
486        DPRINTF(Activity, "Deactivating stage.\n");
487
488        cpu->deactivateStage(O3CPU::FetchIdx);
489
490        _status = Inactive;
491    }
492}
493
494template <class Impl>
495bool
496DefaultFetch<Impl>::lookupAndUpdateNextPC(DynInstPtr &inst, Addr &next_PC,
497                                          Addr &next_NPC, Addr &next_MicroPC)
498{
499    // Do branch prediction check here.
500    // A bit of a misnomer...next_PC is actually the current PC until
501    // this function updates it.
502    bool predict_taken;
503
504    if (!inst->isControl()) {
505        if (inst->isMicroop() && !inst->isLastMicroop()) {
506            next_MicroPC++;
507        } else {
508            next_PC  = next_NPC;
509            next_NPC = next_NPC + instSize;
510            next_MicroPC = 0;
511        }
512        inst->setPredTarg(next_PC, next_NPC, next_MicroPC);
513        inst->setPredTaken(false);
514        return false;
515    }
516
517    //Assume for now that all control flow is to a different macroop which
518    //would reset the micro pc to 0.
519    next_MicroPC = 0;
520
521    int tid = inst->threadNumber;
522    Addr pred_PC = next_PC;
523    predict_taken = branchPred.predict(inst, pred_PC, tid);
524
525/*    if (predict_taken) {
526        DPRINTF(Fetch, "[tid:%i]: Branch predicted to be taken to %#x.\n",
527                tid, pred_PC);
528    } else {
529        DPRINTF(Fetch, "[tid:%i]: Branch predicted to be not taken.\n", tid);
530    }*/
531
532#if ISA_HAS_DELAY_SLOT
533    next_PC = next_NPC;
534    if (predict_taken)
535        next_NPC = pred_PC;
536    else
537        next_NPC += instSize;
538#else
539    if (predict_taken)
540        next_PC = pred_PC;
541    else
542        next_PC += instSize;
543    next_NPC = next_PC + instSize;
544#endif
545/*    DPRINTF(Fetch, "[tid:%i]: Branch predicted to go to %#x and then %#x.\n",
546            tid, next_PC, next_NPC);*/
547    inst->setPredTarg(next_PC, next_NPC, next_MicroPC);
548    inst->setPredTaken(predict_taken);
549
550    ++fetchedBranches;
551
552    if (predict_taken) {
553        ++predictedBranches;
554    }
555
556    return predict_taken;
557}
558
559template <class Impl>
560bool
561DefaultFetch<Impl>::fetchCacheLine(Addr fetch_PC, Fault &ret_fault, unsigned tid)
562{
563    Fault fault = NoFault;
564
565    //AlphaDep
566    if (cacheBlocked) {
567        DPRINTF(Fetch, "[tid:%i] Can't fetch cache line, cache blocked\n",
568                tid);
569        return false;
570    } else if (isSwitchedOut()) {
571        DPRINTF(Fetch, "[tid:%i] Can't fetch cache line, switched out\n",
572                tid);
573        return false;
574    } else if (interruptPending && !(fetch_PC & 0x3)) {
575        // Hold off fetch from getting new instructions when:
576        // Cache is blocked, or
577        // while an interrupt is pending and we're not in PAL mode, or
578        // fetch is switched out.
579        DPRINTF(Fetch, "[tid:%i] Can't fetch cache line, interrupt pending\n",
580                tid);
581        return false;
582    }
583
584    // Align the fetch PC so it's at the start of a cache block.
585    Addr block_PC = icacheBlockAlignPC(fetch_PC);
586
587    // If we've already got the block, no need to try to fetch it again.
588    if (cacheDataValid[tid] && block_PC == cacheDataPC[tid]) {
589        return true;
590    }
591
592    // Setup the memReq to do a read of the first instruction's address.
593    // Set the appropriate read size and flags as well.
594    // Build request here.
595    RequestPtr mem_req = new Request(tid, block_PC, cacheBlkSize, 0,
596                                     fetch_PC, cpu->cpuId(), tid);
597
598    memReq[tid] = mem_req;
599
600    // Translate the instruction request.
601    fault = cpu->translateInstReq(mem_req, cpu->thread[tid]);
602
603    // In the case of faults, the fetch stage may need to stall and wait
604    // for the ITB miss to be handled.
605
606    // If translation was successful, attempt to read the first
607    // instruction.
608    if (fault == NoFault) {
609#if 0
610        if (cpu->system->memctrl->badaddr(memReq[tid]->paddr) ||
611            memReq[tid]->isUncacheable()) {
612            DPRINTF(Fetch, "Fetch: Bad address %#x (hopefully on a "
613                    "misspeculating path)!",
614                    memReq[tid]->paddr);
615            ret_fault = TheISA::genMachineCheckFault();
616            return false;
617        }
618#endif
619
620        // Build packet here.
621        PacketPtr data_pkt = new Packet(mem_req,
622                                        MemCmd::ReadReq, Packet::Broadcast);
623        data_pkt->dataDynamicArray(new uint8_t[cacheBlkSize]);
624
625        cacheDataPC[tid] = block_PC;
626        cacheDataValid[tid] = false;
627
628        DPRINTF(Fetch, "Fetch: Doing instruction read.\n");
629
630        fetchedCacheLines++;
631
632        // Now do the timing access to see whether or not the instruction
633        // exists within the cache.
634        if (!icachePort->sendTiming(data_pkt)) {
635            assert(retryPkt == NULL);
636            assert(retryTid == -1);
637            DPRINTF(Fetch, "[tid:%i] Out of MSHRs!\n", tid);
638            fetchStatus[tid] = IcacheWaitRetry;
639            retryPkt = data_pkt;
640            retryTid = tid;
641            cacheBlocked = true;
642            return false;
643        }
644
645        DPRINTF(Fetch, "[tid:%i]: Doing cache access.\n", tid);
646
647        lastIcacheStall[tid] = curTick;
648
649        DPRINTF(Activity, "[tid:%i]: Activity: Waiting on I-cache "
650                "response.\n", tid);
651
652        fetchStatus[tid] = IcacheWaitResponse;
653    } else {
654        delete mem_req;
655        memReq[tid] = NULL;
656    }
657
658    ret_fault = fault;
659    return true;
660}
661
662template <class Impl>
663inline void
664DefaultFetch<Impl>::doSquash(const Addr &new_PC,
665        const Addr &new_NPC, const Addr &new_microPC, unsigned tid)
666{
667    DPRINTF(Fetch, "[tid:%i]: Squashing, setting PC to: %#x, NPC to: %#x.\n",
668            tid, new_PC, new_NPC);
669
670    PC[tid] = new_PC;
671    nextPC[tid] = new_NPC;
672    microPC[tid] = new_microPC;
673
674    // Clear the icache miss if it's outstanding.
675    if (fetchStatus[tid] == IcacheWaitResponse) {
676        DPRINTF(Fetch, "[tid:%i]: Squashing outstanding Icache miss.\n",
677                tid);
678        memReq[tid] = NULL;
679    }
680
681    // Get rid of the retrying packet if it was from this thread.
682    if (retryTid == tid) {
683        assert(cacheBlocked);
684        if (retryPkt) {
685            delete retryPkt->req;
686            delete retryPkt;
687        }
688        retryPkt = NULL;
689        retryTid = -1;
690    }
691
692    fetchStatus[tid] = Squashing;
693
694    ++fetchSquashCycles;
695}
696
697template<class Impl>
698void
699DefaultFetch<Impl>::squashFromDecode(const Addr &new_PC, const Addr &new_NPC,
700                                     const Addr &new_MicroPC,
701                                     const InstSeqNum &seq_num, unsigned tid)
702{
703    DPRINTF(Fetch, "[tid:%i]: Squashing from decode.\n",tid);
704
705    doSquash(new_PC, new_NPC, new_MicroPC, tid);
706
707    // Tell the CPU to remove any instructions that are in flight between
708    // fetch and decode.
709    cpu->removeInstsUntil(seq_num, tid);
710}
711
712template<class Impl>
713bool
714DefaultFetch<Impl>::checkStall(unsigned tid) const
715{
716    bool ret_val = false;
717
718    if (cpu->contextSwitch) {
719        DPRINTF(Fetch,"[tid:%i]: Stalling for a context switch.\n",tid);
720        ret_val = true;
721    } else if (stalls[tid].decode) {
722        DPRINTF(Fetch,"[tid:%i]: Stall from Decode stage detected.\n",tid);
723        ret_val = true;
724    } else if (stalls[tid].rename) {
725        DPRINTF(Fetch,"[tid:%i]: Stall from Rename stage detected.\n",tid);
726        ret_val = true;
727    } else if (stalls[tid].iew) {
728        DPRINTF(Fetch,"[tid:%i]: Stall from IEW stage detected.\n",tid);
729        ret_val = true;
730    } else if (stalls[tid].commit) {
731        DPRINTF(Fetch,"[tid:%i]: Stall from Commit stage detected.\n",tid);
732        ret_val = true;
733    }
734
735    return ret_val;
736}
737
738template<class Impl>
739typename DefaultFetch<Impl>::FetchStatus
740DefaultFetch<Impl>::updateFetchStatus()
741{
742    //Check Running
743    std::list<unsigned>::iterator threads = activeThreads->begin();
744    std::list<unsigned>::iterator end = activeThreads->end();
745
746    while (threads != end) {
747        unsigned tid = *threads++;
748
749        if (fetchStatus[tid] == Running ||
750            fetchStatus[tid] == Squashing ||
751            fetchStatus[tid] == IcacheAccessComplete) {
752
753            if (_status == Inactive) {
754                DPRINTF(Activity, "[tid:%i]: Activating stage.\n",tid);
755
756                if (fetchStatus[tid] == IcacheAccessComplete) {
757                    DPRINTF(Activity, "[tid:%i]: Activating fetch due to cache"
758                            "completion\n",tid);
759                }
760
761                cpu->activateStage(O3CPU::FetchIdx);
762            }
763
764            return Active;
765        }
766    }
767
768    // Stage is switching from active to inactive, notify CPU of it.
769    if (_status == Active) {
770        DPRINTF(Activity, "Deactivating stage.\n");
771
772        cpu->deactivateStage(O3CPU::FetchIdx);
773    }
774
775    return Inactive;
776}
777
778template <class Impl>
779void
780DefaultFetch<Impl>::squash(const Addr &new_PC, const Addr &new_NPC,
781                           const Addr &new_MicroPC,
782                           const InstSeqNum &seq_num, unsigned tid)
783{
784    DPRINTF(Fetch, "[tid:%u]: Squash from commit.\n",tid);
785
786    doSquash(new_PC, new_NPC, new_MicroPC, tid);
787
788    // Tell the CPU to remove any instructions that are not in the ROB.
789    cpu->removeInstsNotInROB(tid);
790}
791
792template <class Impl>
793void
794DefaultFetch<Impl>::tick()
795{
796    std::list<unsigned>::iterator threads = activeThreads->begin();
797    std::list<unsigned>::iterator end = activeThreads->end();
798    bool status_change = false;
799
800    wroteToTimeBuffer = false;
801
802    while (threads != end) {
803        unsigned tid = *threads++;
804
805        // Check the signals for each thread to determine the proper status
806        // for each thread.
807        bool updated_status = checkSignalsAndUpdate(tid);
808        status_change =  status_change || updated_status;
809    }
810
811    DPRINTF(Fetch, "Running stage.\n");
812
813    // Reset the number of the instruction we're fetching.
814    numInst = 0;
815
816#if FULL_SYSTEM
817    if (fromCommit->commitInfo[0].interruptPending) {
818        interruptPending = true;
819    }
820
821    if (fromCommit->commitInfo[0].clearInterrupt) {
822        interruptPending = false;
823    }
824#endif
825
826    for (threadFetched = 0; threadFetched < numFetchingThreads;
827         threadFetched++) {
828        // Fetch each of the actively fetching threads.
829        fetch(status_change);
830    }
831
832    // Record number of instructions fetched this cycle for distribution.
833    fetchNisnDist.sample(numInst);
834
835    if (status_change) {
836        // Change the fetch stage status if there was a status change.
837        _status = updateFetchStatus();
838    }
839
840    // If there was activity this cycle, inform the CPU of it.
841    if (wroteToTimeBuffer || cpu->contextSwitch) {
842        DPRINTF(Activity, "Activity this cycle.\n");
843
844        cpu->activityThisCycle();
845    }
846}
847
848template <class Impl>
849bool
850DefaultFetch<Impl>::checkSignalsAndUpdate(unsigned tid)
851{
852    // Update the per thread stall statuses.
853    if (fromDecode->decodeBlock[tid]) {
854        stalls[tid].decode = true;
855    }
856
857    if (fromDecode->decodeUnblock[tid]) {
858        assert(stalls[tid].decode);
859        assert(!fromDecode->decodeBlock[tid]);
860        stalls[tid].decode = false;
861    }
862
863    if (fromRename->renameBlock[tid]) {
864        stalls[tid].rename = true;
865    }
866
867    if (fromRename->renameUnblock[tid]) {
868        assert(stalls[tid].rename);
869        assert(!fromRename->renameBlock[tid]);
870        stalls[tid].rename = false;
871    }
872
873    if (fromIEW->iewBlock[tid]) {
874        stalls[tid].iew = true;
875    }
876
877    if (fromIEW->iewUnblock[tid]) {
878        assert(stalls[tid].iew);
879        assert(!fromIEW->iewBlock[tid]);
880        stalls[tid].iew = false;
881    }
882
883    if (fromCommit->commitBlock[tid]) {
884        stalls[tid].commit = true;
885    }
886
887    if (fromCommit->commitUnblock[tid]) {
888        assert(stalls[tid].commit);
889        assert(!fromCommit->commitBlock[tid]);
890        stalls[tid].commit = false;
891    }
892
893    // Check squash signals from commit.
894    if (fromCommit->commitInfo[tid].squash) {
895
896        DPRINTF(Fetch, "[tid:%u]: Squashing instructions due to squash "
897                "from commit.\n",tid);
898        // In any case, squash.
899        squash(fromCommit->commitInfo[tid].nextPC,
900               fromCommit->commitInfo[tid].nextNPC,
901               fromCommit->commitInfo[tid].nextMicroPC,
902               fromCommit->commitInfo[tid].doneSeqNum,
903               tid);
904
905        // Also check if there's a mispredict that happened.
906        if (fromCommit->commitInfo[tid].branchMispredict) {
907            branchPred.squash(fromCommit->commitInfo[tid].doneSeqNum,
908                              fromCommit->commitInfo[tid].nextPC,
909                              fromCommit->commitInfo[tid].branchTaken,
910                              tid);
911        } else {
912            branchPred.squash(fromCommit->commitInfo[tid].doneSeqNum,
913                              tid);
914        }
915
916        return true;
917    } else if (fromCommit->commitInfo[tid].doneSeqNum) {
918        // Update the branch predictor if it wasn't a squashed instruction
919        // that was broadcasted.
920        branchPred.update(fromCommit->commitInfo[tid].doneSeqNum, tid);
921    }
922
923    // Check ROB squash signals from commit.
924    if (fromCommit->commitInfo[tid].robSquashing) {
925        DPRINTF(Fetch, "[tid:%u]: ROB is still squashing.\n", tid);
926
927        // Continue to squash.
928        fetchStatus[tid] = Squashing;
929
930        return true;
931    }
932
933    // Check squash signals from decode.
934    if (fromDecode->decodeInfo[tid].squash) {
935        DPRINTF(Fetch, "[tid:%u]: Squashing instructions due to squash "
936                "from decode.\n",tid);
937
938        // Update the branch predictor.
939        if (fromDecode->decodeInfo[tid].branchMispredict) {
940            branchPred.squash(fromDecode->decodeInfo[tid].doneSeqNum,
941                              fromDecode->decodeInfo[tid].nextPC,
942                              fromDecode->decodeInfo[tid].branchTaken,
943                              tid);
944        } else {
945            branchPred.squash(fromDecode->decodeInfo[tid].doneSeqNum,
946                              tid);
947        }
948
949        if (fetchStatus[tid] != Squashing) {
950
951            DPRINTF(Fetch, "Squashing from decode with PC = %#x, NPC = %#x\n",
952                    fromDecode->decodeInfo[tid].nextPC,
953                    fromDecode->decodeInfo[tid].nextNPC);
954            // Squash unless we're already squashing
955            squashFromDecode(fromDecode->decodeInfo[tid].nextPC,
956                             fromDecode->decodeInfo[tid].nextNPC,
957                             fromDecode->decodeInfo[tid].nextMicroPC,
958                             fromDecode->decodeInfo[tid].doneSeqNum,
959                             tid);
960
961            return true;
962        }
963    }
964
965    if (checkStall(tid) &&
966        fetchStatus[tid] != IcacheWaitResponse &&
967        fetchStatus[tid] != IcacheWaitRetry) {
968        DPRINTF(Fetch, "[tid:%i]: Setting to blocked\n",tid);
969
970        fetchStatus[tid] = Blocked;
971
972        return true;
973    }
974
975    if (fetchStatus[tid] == Blocked ||
976        fetchStatus[tid] == Squashing) {
977        // Switch status to running if fetch isn't being told to block or
978        // squash this cycle.
979        DPRINTF(Fetch, "[tid:%i]: Done squashing, switching to running.\n",
980                tid);
981
982        fetchStatus[tid] = Running;
983
984        return true;
985    }
986
987    // If we've reached this point, we have not gotten any signals that
988    // cause fetch to change its status.  Fetch remains the same as before.
989    return false;
990}
991
992template<class Impl>
993void
994DefaultFetch<Impl>::fetch(bool &status_change)
995{
996    //////////////////////////////////////////
997    // Start actual fetch
998    //////////////////////////////////////////
999    int tid = getFetchingThread(fetchPolicy);
1000
1001    if (tid == -1 || drainPending) {
1002        DPRINTF(Fetch,"There are no more threads available to fetch from.\n");
1003
1004        // Breaks looping condition in tick()
1005        threadFetched = numFetchingThreads;
1006        return;
1007    }
1008
1009    DPRINTF(Fetch, "Attempting to fetch from [tid:%i]\n", tid);
1010
1011    // The current PC.
1012    Addr fetch_PC = PC[tid];
1013    Addr fetch_NPC = nextPC[tid];
1014    Addr fetch_MicroPC = microPC[tid];
1015
1016    // Fault code for memory access.
1017    Fault fault = NoFault;
1018
1019    // If returning from the delay of a cache miss, then update the status
1020    // to running, otherwise do the cache access.  Possibly move this up
1021    // to tick() function.
1022    if (fetchStatus[tid] == IcacheAccessComplete) {
1023        DPRINTF(Fetch, "[tid:%i]: Icache miss is complete.\n",
1024                tid);
1025
1026        fetchStatus[tid] = Running;
1027        status_change = true;
1028    } else if (fetchStatus[tid] == Running) {
1029        DPRINTF(Fetch, "[tid:%i]: Attempting to translate and read "
1030                "instruction, starting at PC %08p.\n",
1031                tid, fetch_PC);
1032
1033        bool fetch_success = fetchCacheLine(fetch_PC, fault, tid);
1034        if (!fetch_success) {
1035            if (cacheBlocked) {
1036                ++icacheStallCycles;
1037            } else {
1038                ++fetchMiscStallCycles;
1039            }
1040            return;
1041        }
1042    } else {
1043        if (fetchStatus[tid] == Idle) {
1044            ++fetchIdleCycles;
1045            DPRINTF(Fetch, "[tid:%i]: Fetch is idle!\n", tid);
1046        } else if (fetchStatus[tid] == Blocked) {
1047            ++fetchBlockedCycles;
1048            DPRINTF(Fetch, "[tid:%i]: Fetch is blocked!\n", tid);
1049        } else if (fetchStatus[tid] == Squashing) {
1050            ++fetchSquashCycles;
1051            DPRINTF(Fetch, "[tid:%i]: Fetch is squashing!\n", tid);
1052        } else if (fetchStatus[tid] == IcacheWaitResponse) {
1053            ++icacheStallCycles;
1054            DPRINTF(Fetch, "[tid:%i]: Fetch is waiting cache response!\n", tid);
1055        }
1056
1057        // Status is Idle, Squashing, Blocked, or IcacheWaitResponse, so
1058        // fetch should do nothing.
1059        return;
1060    }
1061
1062    ++fetchCycles;
1063
1064    // If we had a stall due to an icache miss, then return.
1065    if (fetchStatus[tid] == IcacheWaitResponse) {
1066        ++icacheStallCycles;
1067        status_change = true;
1068        return;
1069    }
1070
1071    Addr next_PC = fetch_PC;
1072    Addr next_NPC = fetch_NPC;
1073    Addr next_MicroPC = fetch_MicroPC;
1074
1075    InstSeqNum inst_seq;
1076    MachInst inst;
1077    ExtMachInst ext_inst;
1078    // @todo: Fix this hack.
1079    unsigned offset = (fetch_PC & cacheBlkMask) & ~3;
1080
1081    StaticInstPtr staticInst = NULL;
1082    StaticInstPtr macroop = NULL;
1083
1084    if (fault == NoFault) {
1085        // If the read of the first instruction was successful, then grab the
1086        // instructions from the rest of the cache line and put them into the
1087        // queue heading to decode.
1088
1089        DPRINTF(Fetch, "[tid:%i]: Adding instructions to queue to "
1090                "decode.\n",tid);
1091
1092        // Need to keep track of whether or not a predicted branch
1093        // ended this fetch block.
1094        bool predicted_branch = false;
1095
1096        while (offset < cacheBlkSize &&
1097               numInst < fetchWidth &&
1098               !predicted_branch) {
1099
1100            // If we're branching after this instruction, quite fetching
1101            // from the same block then.
1102            predicted_branch =
1103                (fetch_PC + sizeof(TheISA::MachInst) != fetch_NPC);
1104            if (predicted_branch) {
1105                DPRINTF(Fetch, "Branch detected with PC = %#x, NPC = %#x\n",
1106                        fetch_PC, fetch_NPC);
1107            }
1108
1109            // Make sure this is a valid index.
1110            assert(offset <= cacheBlkSize - instSize);
1111
1112            if (!macroop) {
1113                // Get the instruction from the array of the cache line.
1114                inst = TheISA::gtoh(*reinterpret_cast<TheISA::MachInst *>
1115                            (&cacheData[tid][offset]));
1116
1117                predecoder.setTC(cpu->thread[tid]->getTC());
1118                predecoder.moreBytes(fetch_PC, fetch_PC, inst);
1119
1120                ext_inst = predecoder.getExtMachInst();
1121                staticInst = StaticInstPtr(ext_inst, fetch_PC);
1122                if (staticInst->isMacroop())
1123                    macroop = staticInst;
1124            }
1125            do {
1126                if (macroop) {
1127                    staticInst = macroop->fetchMicroop(fetch_MicroPC);
1128                    if (staticInst->isLastMicroop())
1129                        macroop = NULL;
1130                }
1131
1132                // Get a sequence number.
1133                inst_seq = cpu->getAndIncrementInstSeq();
1134
1135                // Create a new DynInst from the instruction fetched.
1136                DynInstPtr instruction = new DynInst(staticInst,
1137                                                     fetch_PC, fetch_NPC, fetch_MicroPC,
1138                                                     next_PC, next_NPC, next_MicroPC,
1139                                                     inst_seq, cpu);
1140                instruction->setTid(tid);
1141
1142                instruction->setASID(tid);
1143
1144                instruction->setThreadState(cpu->thread[tid]);
1145
1146                DPRINTF(Fetch, "[tid:%i]: Instruction PC %#x created "
1147                        "[sn:%lli]\n",
1148                        tid, instruction->readPC(), inst_seq);
1149
1150                //DPRINTF(Fetch, "[tid:%i]: MachInst is %#x\n", tid, ext_inst);
1151
1152                DPRINTF(Fetch, "[tid:%i]: Instruction is: %s\n",
1153                        tid, instruction->staticInst->disassemble(fetch_PC));
1154
1155#if TRACING_ON
1156                instruction->traceData =
1157                    cpu->getTracer()->getInstRecord(curTick, cpu->tcBase(tid),
1158                            instruction->staticInst, instruction->readPC());
1159#else
1160                instruction->traceData = NULL;
1161#endif
1162
1163                ///FIXME This needs to be more robust in dealing with delay slots
1164                predicted_branch |=
1165                    lookupAndUpdateNextPC(instruction, next_PC, next_NPC, next_MicroPC);
1166
1167                // Add instruction to the CPU's list of instructions.
1168                instruction->setInstListIt(cpu->addInst(instruction));
1169
1170                // Write the instruction to the first slot in the queue
1171                // that heads to decode.
1172                toDecode->insts[numInst] = instruction;
1173
1174                toDecode->size++;
1175
1176                // Increment stat of fetched instructions.
1177                ++fetchedInsts;
1178
1179                // Move to the next instruction, unless we have a branch.
1180                fetch_PC = next_PC;
1181                fetch_NPC = next_NPC;
1182                fetch_MicroPC = next_MicroPC;
1183
1184                if (instruction->isQuiesce()) {
1185                    DPRINTF(Fetch, "Quiesce instruction encountered, halting fetch!",
1186                            curTick);
1187                    fetchStatus[tid] = QuiescePending;
1188                    ++numInst;
1189                    status_change = true;
1190                    break;
1191                }
1192
1193                ++numInst;
1194            } while (staticInst->isMicroop() &&
1195                     !staticInst->isLastMicroop() &&
1196                     numInst < fetchWidth);
1197            offset += instSize;
1198        }
1199
1200        if (predicted_branch) {
1201            DPRINTF(Fetch, "[tid:%i]: Done fetching, predicted branch "
1202                    "instruction encountered.\n", tid);
1203        } else if (numInst >= fetchWidth) {
1204            DPRINTF(Fetch, "[tid:%i]: Done fetching, reached fetch bandwidth "
1205                    "for this cycle.\n", tid);
1206        } else if (offset >= cacheBlkSize) {
1207            DPRINTF(Fetch, "[tid:%i]: Done fetching, reached the end of cache "
1208                    "block.\n", tid);
1209        }
1210    }
1211
1212    if (numInst > 0) {
1213        wroteToTimeBuffer = true;
1214    }
1215
1216    // Now that fetching is completed, update the PC to signify what the next
1217    // cycle will be.
1218    if (fault == NoFault) {
1219        PC[tid] = next_PC;
1220        nextPC[tid] = next_NPC;
1221        microPC[tid] = next_MicroPC;
1222        DPRINTF(Fetch, "[tid:%i]: Setting PC to %08p.\n", tid, next_PC);
1223    } else {
1224        // We shouldn't be in an icache miss and also have a fault (an ITB
1225        // miss)
1226        if (fetchStatus[tid] == IcacheWaitResponse) {
1227            panic("Fetch should have exited prior to this!");
1228        }
1229
1230        // Send the fault to commit.  This thread will not do anything
1231        // until commit handles the fault.  The only other way it can
1232        // wake up is if a squash comes along and changes the PC.
1233        assert(numInst < fetchWidth);
1234        // Get a sequence number.
1235        inst_seq = cpu->getAndIncrementInstSeq();
1236        // We will use a nop in order to carry the fault.
1237        ext_inst = TheISA::NoopMachInst;
1238
1239        // Create a new DynInst from the dummy nop.
1240        DynInstPtr instruction = new DynInst(ext_inst,
1241                                             fetch_PC, fetch_NPC, fetch_MicroPC,
1242                                             next_PC, next_NPC, next_MicroPC,
1243                                             inst_seq, cpu);
1244        instruction->setPredTarg(next_NPC, next_NPC + instSize, 0);
1245        instruction->setTid(tid);
1246
1247        instruction->setASID(tid);
1248
1249        instruction->setThreadState(cpu->thread[tid]);
1250
1251        instruction->traceData = NULL;
1252
1253        instruction->setInstListIt(cpu->addInst(instruction));
1254
1255        instruction->fault = fault;
1256
1257        toDecode->insts[numInst] = instruction;
1258        toDecode->size++;
1259
1260        DPRINTF(Fetch, "[tid:%i]: Blocked, need to handle the trap.\n",tid);
1261
1262        fetchStatus[tid] = TrapPending;
1263        status_change = true;
1264
1265        DPRINTF(Fetch, "[tid:%i]: fault (%s) detected @ PC %08p",
1266                tid, fault->name(), PC[tid]);
1267    }
1268}
1269
1270template<class Impl>
1271void
1272DefaultFetch<Impl>::recvRetry()
1273{
1274    if (retryPkt != NULL) {
1275        assert(cacheBlocked);
1276        assert(retryTid != -1);
1277        assert(fetchStatus[retryTid] == IcacheWaitRetry);
1278
1279        if (icachePort->sendTiming(retryPkt)) {
1280            fetchStatus[retryTid] = IcacheWaitResponse;
1281            retryPkt = NULL;
1282            retryTid = -1;
1283            cacheBlocked = false;
1284        }
1285    } else {
1286        assert(retryTid == -1);
1287        // Access has been squashed since it was sent out.  Just clear
1288        // the cache being blocked.
1289        cacheBlocked = false;
1290    }
1291}
1292
1293///////////////////////////////////////
1294//                                   //
1295//  SMT FETCH POLICY MAINTAINED HERE //
1296//                                   //
1297///////////////////////////////////////
1298template<class Impl>
1299int
1300DefaultFetch<Impl>::getFetchingThread(FetchPriority &fetch_priority)
1301{
1302    if (numThreads > 1) {
1303        switch (fetch_priority) {
1304
1305          case SingleThread:
1306            return 0;
1307
1308          case RoundRobin:
1309            return roundRobin();
1310
1311          case IQ:
1312            return iqCount();
1313
1314          case LSQ:
1315            return lsqCount();
1316
1317          case Branch:
1318            return branchCount();
1319
1320          default:
1321            return -1;
1322        }
1323    } else {
1324        std::list<unsigned>::iterator thread = activeThreads->begin();
1325        assert(thread != activeThreads->end());
1326        int tid = *thread;
1327
1328        if (fetchStatus[tid] == Running ||
1329            fetchStatus[tid] == IcacheAccessComplete ||
1330            fetchStatus[tid] == Idle) {
1331            return tid;
1332        } else {
1333            return -1;
1334        }
1335    }
1336
1337}
1338
1339
1340template<class Impl>
1341int
1342DefaultFetch<Impl>::roundRobin()
1343{
1344    std::list<unsigned>::iterator pri_iter = priorityList.begin();
1345    std::list<unsigned>::iterator end      = priorityList.end();
1346
1347    int high_pri;
1348
1349    while (pri_iter != end) {
1350        high_pri = *pri_iter;
1351
1352        assert(high_pri <= numThreads);
1353
1354        if (fetchStatus[high_pri] == Running ||
1355            fetchStatus[high_pri] == IcacheAccessComplete ||
1356            fetchStatus[high_pri] == Idle) {
1357
1358            priorityList.erase(pri_iter);
1359            priorityList.push_back(high_pri);
1360
1361            return high_pri;
1362        }
1363
1364        pri_iter++;
1365    }
1366
1367    return -1;
1368}
1369
1370template<class Impl>
1371int
1372DefaultFetch<Impl>::iqCount()
1373{
1374    std::priority_queue<unsigned> PQ;
1375
1376    std::list<unsigned>::iterator threads = activeThreads->begin();
1377    std::list<unsigned>::iterator end = activeThreads->end();
1378
1379    while (threads != end) {
1380        unsigned tid = *threads++;
1381
1382        PQ.push(fromIEW->iewInfo[tid].iqCount);
1383    }
1384
1385    while (!PQ.empty()) {
1386
1387        unsigned high_pri = PQ.top();
1388
1389        if (fetchStatus[high_pri] == Running ||
1390            fetchStatus[high_pri] == IcacheAccessComplete ||
1391            fetchStatus[high_pri] == Idle)
1392            return high_pri;
1393        else
1394            PQ.pop();
1395
1396    }
1397
1398    return -1;
1399}
1400
1401template<class Impl>
1402int
1403DefaultFetch<Impl>::lsqCount()
1404{
1405    std::priority_queue<unsigned> PQ;
1406
1407    std::list<unsigned>::iterator threads = activeThreads->begin();
1408    std::list<unsigned>::iterator end = activeThreads->end();
1409
1410    while (threads != end) {
1411        unsigned tid = *threads++;
1412
1413        PQ.push(fromIEW->iewInfo[tid].ldstqCount);
1414    }
1415
1416    while (!PQ.empty()) {
1417
1418        unsigned high_pri = PQ.top();
1419
1420        if (fetchStatus[high_pri] == Running ||
1421            fetchStatus[high_pri] == IcacheAccessComplete ||
1422            fetchStatus[high_pri] == Idle)
1423            return high_pri;
1424        else
1425            PQ.pop();
1426
1427    }
1428
1429    return -1;
1430}
1431
1432template<class Impl>
1433int
1434DefaultFetch<Impl>::branchCount()
1435{
1436    std::list<unsigned>::iterator thread = activeThreads->begin();
1437    assert(thread != activeThreads->end());
1438    unsigned tid = *thread;
1439
1440    panic("Branch Count Fetch policy unimplemented\n");
1441    return 0 * tid;
1442}
1443