fetch_impl.hh revision 4513:ad010b9fb1dc
1/*
2 * Copyright (c) 2004-2006 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Kevin Lim
29 *          Korey Sewell
30 */
31
32#include "config/use_checker.hh"
33
34#include "arch/isa_traits.hh"
35#include "arch/utility.hh"
36#include "cpu/checker/cpu.hh"
37#include "cpu/exetrace.hh"
38#include "cpu/o3/fetch.hh"
39#include "mem/packet.hh"
40#include "mem/request.hh"
41#include "sim/byteswap.hh"
42#include "sim/host.hh"
43#include "sim/core.hh"
44
45#if FULL_SYSTEM
46#include "arch/tlb.hh"
47#include "arch/vtophys.hh"
48#include "sim/system.hh"
49#endif // FULL_SYSTEM
50
51#include <algorithm>
52
53template<class Impl>
54void
55DefaultFetch<Impl>::IcachePort::setPeer(Port *port)
56{
57    Port::setPeer(port);
58
59    fetch->setIcache();
60}
61
62template<class Impl>
63Tick
64DefaultFetch<Impl>::IcachePort::recvAtomic(PacketPtr pkt)
65{
66    panic("DefaultFetch doesn't expect recvAtomic callback!");
67    return curTick;
68}
69
70template<class Impl>
71void
72DefaultFetch<Impl>::IcachePort::recvFunctional(PacketPtr pkt)
73{
74    DPRINTF(Fetch, "DefaultFetch doesn't update its state from a "
75            "functional call.");
76}
77
78template<class Impl>
79void
80DefaultFetch<Impl>::IcachePort::recvStatusChange(Status status)
81{
82    if (status == RangeChange) {
83        if (!snoopRangeSent) {
84            snoopRangeSent = true;
85            sendStatusChange(Port::RangeChange);
86        }
87        return;
88    }
89
90    panic("DefaultFetch doesn't expect recvStatusChange callback!");
91}
92
93template<class Impl>
94bool
95DefaultFetch<Impl>::IcachePort::recvTiming(PacketPtr pkt)
96{
97    DPRINTF(Fetch, "Received timing\n");
98    if (pkt->isResponse()) {
99        fetch->processCacheCompletion(pkt);
100    }
101    //else Snooped a coherence request, just return
102    return true;
103}
104
105template<class Impl>
106void
107DefaultFetch<Impl>::IcachePort::recvRetry()
108{
109    fetch->recvRetry();
110}
111
112template<class Impl>
113DefaultFetch<Impl>::DefaultFetch(O3CPU *_cpu, Params *params)
114    : cpu(_cpu),
115      branchPred(params),
116      predecoder(NULL),
117      decodeToFetchDelay(params->decodeToFetchDelay),
118      renameToFetchDelay(params->renameToFetchDelay),
119      iewToFetchDelay(params->iewToFetchDelay),
120      commitToFetchDelay(params->commitToFetchDelay),
121      fetchWidth(params->fetchWidth),
122      cacheBlocked(false),
123      retryPkt(NULL),
124      retryTid(-1),
125      numThreads(params->numberOfThreads),
126      numFetchingThreads(params->smtNumFetchingThreads),
127      interruptPending(false),
128      drainPending(false),
129      switchedOut(false)
130{
131    if (numThreads > Impl::MaxThreads)
132        fatal("numThreads is not a valid value\n");
133
134    // Set fetch stage's status to inactive.
135    _status = Inactive;
136
137    std::string policy = params->smtFetchPolicy;
138
139    // Convert string to lowercase
140    std::transform(policy.begin(), policy.end(), policy.begin(),
141                   (int(*)(int)) tolower);
142
143    // Figure out fetch policy
144    if (policy == "singlethread") {
145        fetchPolicy = SingleThread;
146        if (numThreads > 1)
147            panic("Invalid Fetch Policy for a SMT workload.");
148    } else if (policy == "roundrobin") {
149        fetchPolicy = RoundRobin;
150        DPRINTF(Fetch, "Fetch policy set to Round Robin\n");
151    } else if (policy == "branch") {
152        fetchPolicy = Branch;
153        DPRINTF(Fetch, "Fetch policy set to Branch Count\n");
154    } else if (policy == "iqcount") {
155        fetchPolicy = IQ;
156        DPRINTF(Fetch, "Fetch policy set to IQ count\n");
157    } else if (policy == "lsqcount") {
158        fetchPolicy = LSQ;
159        DPRINTF(Fetch, "Fetch policy set to LSQ count\n");
160    } else {
161        fatal("Invalid Fetch Policy. Options Are: {SingleThread,"
162              " RoundRobin,LSQcount,IQcount}\n");
163    }
164
165    // Get the size of an instruction.
166    instSize = sizeof(TheISA::MachInst);
167
168    // Name is finally available, so create the port.
169    icachePort = new IcachePort(this);
170
171    icachePort->snoopRangeSent = false;
172
173#if USE_CHECKER
174    if (cpu->checker) {
175        cpu->checker->setIcachePort(icachePort);
176    }
177#endif
178}
179
180template <class Impl>
181std::string
182DefaultFetch<Impl>::name() const
183{
184    return cpu->name() + ".fetch";
185}
186
187template <class Impl>
188void
189DefaultFetch<Impl>::regStats()
190{
191    icacheStallCycles
192        .name(name() + ".icacheStallCycles")
193        .desc("Number of cycles fetch is stalled on an Icache miss")
194        .prereq(icacheStallCycles);
195
196    fetchedInsts
197        .name(name() + ".Insts")
198        .desc("Number of instructions fetch has processed")
199        .prereq(fetchedInsts);
200
201    fetchedBranches
202        .name(name() + ".Branches")
203        .desc("Number of branches that fetch encountered")
204        .prereq(fetchedBranches);
205
206    predictedBranches
207        .name(name() + ".predictedBranches")
208        .desc("Number of branches that fetch has predicted taken")
209        .prereq(predictedBranches);
210
211    fetchCycles
212        .name(name() + ".Cycles")
213        .desc("Number of cycles fetch has run and was not squashing or"
214              " blocked")
215        .prereq(fetchCycles);
216
217    fetchSquashCycles
218        .name(name() + ".SquashCycles")
219        .desc("Number of cycles fetch has spent squashing")
220        .prereq(fetchSquashCycles);
221
222    fetchIdleCycles
223        .name(name() + ".IdleCycles")
224        .desc("Number of cycles fetch was idle")
225        .prereq(fetchIdleCycles);
226
227    fetchBlockedCycles
228        .name(name() + ".BlockedCycles")
229        .desc("Number of cycles fetch has spent blocked")
230        .prereq(fetchBlockedCycles);
231
232    fetchedCacheLines
233        .name(name() + ".CacheLines")
234        .desc("Number of cache lines fetched")
235        .prereq(fetchedCacheLines);
236
237    fetchMiscStallCycles
238        .name(name() + ".MiscStallCycles")
239        .desc("Number of cycles fetch has spent waiting on interrupts, or "
240              "bad addresses, or out of MSHRs")
241        .prereq(fetchMiscStallCycles);
242
243    fetchIcacheSquashes
244        .name(name() + ".IcacheSquashes")
245        .desc("Number of outstanding Icache misses that were squashed")
246        .prereq(fetchIcacheSquashes);
247
248    fetchNisnDist
249        .init(/* base value */ 0,
250              /* last value */ fetchWidth,
251              /* bucket size */ 1)
252        .name(name() + ".rateDist")
253        .desc("Number of instructions fetched each cycle (Total)")
254        .flags(Stats::pdf);
255
256    idleRate
257        .name(name() + ".idleRate")
258        .desc("Percent of cycles fetch was idle")
259        .prereq(idleRate);
260    idleRate = fetchIdleCycles * 100 / cpu->numCycles;
261
262    branchRate
263        .name(name() + ".branchRate")
264        .desc("Number of branch fetches per cycle")
265        .flags(Stats::total);
266    branchRate = fetchedBranches / cpu->numCycles;
267
268    fetchRate
269        .name(name() + ".rate")
270        .desc("Number of inst fetches per cycle")
271        .flags(Stats::total);
272    fetchRate = fetchedInsts / cpu->numCycles;
273
274    branchPred.regStats();
275}
276
277template<class Impl>
278void
279DefaultFetch<Impl>::setTimeBuffer(TimeBuffer<TimeStruct> *time_buffer)
280{
281    timeBuffer = time_buffer;
282
283    // Create wires to get information from proper places in time buffer.
284    fromDecode = timeBuffer->getWire(-decodeToFetchDelay);
285    fromRename = timeBuffer->getWire(-renameToFetchDelay);
286    fromIEW = timeBuffer->getWire(-iewToFetchDelay);
287    fromCommit = timeBuffer->getWire(-commitToFetchDelay);
288}
289
290template<class Impl>
291void
292DefaultFetch<Impl>::setActiveThreads(std::list<unsigned> *at_ptr)
293{
294    activeThreads = at_ptr;
295}
296
297template<class Impl>
298void
299DefaultFetch<Impl>::setFetchQueue(TimeBuffer<FetchStruct> *fq_ptr)
300{
301    fetchQueue = fq_ptr;
302
303    // Create wire to write information to proper place in fetch queue.
304    toDecode = fetchQueue->getWire(0);
305}
306
307template<class Impl>
308void
309DefaultFetch<Impl>::initStage()
310{
311    // Setup PC and nextPC with initial state.
312    for (int tid = 0; tid < numThreads; tid++) {
313        PC[tid] = cpu->readPC(tid);
314        nextPC[tid] = cpu->readNextPC(tid);
315        nextNPC[tid] = cpu->readNextNPC(tid);
316    }
317
318    for (int tid=0; tid < numThreads; tid++) {
319
320        fetchStatus[tid] = Running;
321
322        priorityList.push_back(tid);
323
324        memReq[tid] = NULL;
325
326        stalls[tid].decode = false;
327        stalls[tid].rename = false;
328        stalls[tid].iew = false;
329        stalls[tid].commit = false;
330    }
331
332    // Schedule fetch to get the correct PC from the CPU
333    // scheduleFetchStartupEvent(1);
334
335    // Fetch needs to start fetching instructions at the very beginning,
336    // so it must start up in active state.
337    switchToActive();
338}
339
340template<class Impl>
341void
342DefaultFetch<Impl>::setIcache()
343{
344    // Size of cache block.
345    cacheBlkSize = icachePort->peerBlockSize();
346
347    // Create mask to get rid of offset bits.
348    cacheBlkMask = (cacheBlkSize - 1);
349
350    for (int tid=0; tid < numThreads; tid++) {
351        // Create space to store a cache line.
352        cacheData[tid] = new uint8_t[cacheBlkSize];
353        cacheDataPC[tid] = 0;
354        cacheDataValid[tid] = false;
355    }
356}
357
358template<class Impl>
359void
360DefaultFetch<Impl>::processCacheCompletion(PacketPtr pkt)
361{
362    unsigned tid = pkt->req->getThreadNum();
363
364    DPRINTF(Fetch, "[tid:%u] Waking up from cache miss.\n",tid);
365
366    // Only change the status if it's still waiting on the icache access
367    // to return.
368    if (fetchStatus[tid] != IcacheWaitResponse ||
369        pkt->req != memReq[tid] ||
370        isSwitchedOut()) {
371        ++fetchIcacheSquashes;
372        delete pkt->req;
373        delete pkt;
374        return;
375    }
376
377    memcpy(cacheData[tid], pkt->getPtr<uint8_t *>(), cacheBlkSize);
378    cacheDataValid[tid] = true;
379
380    if (!drainPending) {
381        // Wake up the CPU (if it went to sleep and was waiting on
382        // this completion event).
383        cpu->wakeCPU();
384
385        DPRINTF(Activity, "[tid:%u] Activating fetch due to cache completion\n",
386                tid);
387
388        switchToActive();
389    }
390
391    // Only switch to IcacheAccessComplete if we're not stalled as well.
392    if (checkStall(tid)) {
393        fetchStatus[tid] = Blocked;
394    } else {
395        fetchStatus[tid] = IcacheAccessComplete;
396    }
397
398    // Reset the mem req to NULL.
399    delete pkt->req;
400    delete pkt;
401    memReq[tid] = NULL;
402}
403
404template <class Impl>
405bool
406DefaultFetch<Impl>::drain()
407{
408    // Fetch is ready to drain at any time.
409    cpu->signalDrained();
410    drainPending = true;
411    return true;
412}
413
414template <class Impl>
415void
416DefaultFetch<Impl>::resume()
417{
418    drainPending = false;
419}
420
421template <class Impl>
422void
423DefaultFetch<Impl>::switchOut()
424{
425    switchedOut = true;
426    // Branch predictor needs to have its state cleared.
427    branchPred.switchOut();
428}
429
430template <class Impl>
431void
432DefaultFetch<Impl>::takeOverFrom()
433{
434    // Reset all state
435    for (int i = 0; i < Impl::MaxThreads; ++i) {
436        stalls[i].decode = 0;
437        stalls[i].rename = 0;
438        stalls[i].iew = 0;
439        stalls[i].commit = 0;
440        PC[i] = cpu->readPC(i);
441        nextPC[i] = cpu->readNextPC(i);
442#if ISA_HAS_DELAY_SLOT
443        nextNPC[i] = cpu->readNextNPC(i);
444#else
445        nextNPC[i] = nextPC[i] + sizeof(TheISA::MachInst);
446#endif
447        fetchStatus[i] = Running;
448    }
449    numInst = 0;
450    wroteToTimeBuffer = false;
451    _status = Inactive;
452    switchedOut = false;
453    interruptPending = false;
454    branchPred.takeOverFrom();
455}
456
457template <class Impl>
458void
459DefaultFetch<Impl>::wakeFromQuiesce()
460{
461    DPRINTF(Fetch, "Waking up from quiesce\n");
462    // Hopefully this is safe
463    // @todo: Allow other threads to wake from quiesce.
464    fetchStatus[0] = Running;
465}
466
467template <class Impl>
468inline void
469DefaultFetch<Impl>::switchToActive()
470{
471    if (_status == Inactive) {
472        DPRINTF(Activity, "Activating stage.\n");
473
474        cpu->activateStage(O3CPU::FetchIdx);
475
476        _status = Active;
477    }
478}
479
480template <class Impl>
481inline void
482DefaultFetch<Impl>::switchToInactive()
483{
484    if (_status == Active) {
485        DPRINTF(Activity, "Deactivating stage.\n");
486
487        cpu->deactivateStage(O3CPU::FetchIdx);
488
489        _status = Inactive;
490    }
491}
492
493template <class Impl>
494bool
495DefaultFetch<Impl>::lookupAndUpdateNextPC(DynInstPtr &inst, Addr &next_PC,
496                                          Addr &next_NPC)
497{
498    // Do branch prediction check here.
499    // A bit of a misnomer...next_PC is actually the current PC until
500    // this function updates it.
501    bool predict_taken;
502
503    if (!inst->isControl()) {
504        next_PC  = next_NPC;
505        next_NPC = next_NPC + instSize;
506        inst->setPredTarg(next_PC, next_NPC);
507        inst->setPredTaken(false);
508        return false;
509    }
510
511    int tid = inst->threadNumber;
512    Addr pred_PC = next_PC;
513    predict_taken = branchPred.predict(inst, pred_PC, tid);
514
515/*    if (predict_taken) {
516        DPRINTF(Fetch, "[tid:%i]: Branch predicted to be taken to %#x.\n",
517                tid, pred_PC);
518    } else {
519        DPRINTF(Fetch, "[tid:%i]: Branch predicted to be not taken.\n", tid);
520    }*/
521
522#if ISA_HAS_DELAY_SLOT
523    next_PC = next_NPC;
524    if (predict_taken)
525        next_NPC = pred_PC;
526    else
527        next_NPC += instSize;
528#else
529    if (predict_taken)
530        next_PC = pred_PC;
531    else
532        next_PC += instSize;
533    next_NPC = next_PC + instSize;
534#endif
535/*    DPRINTF(Fetch, "[tid:%i]: Branch predicted to go to %#x and then %#x.\n",
536            tid, next_PC, next_NPC);*/
537    inst->setPredTarg(next_PC, next_NPC);
538    inst->setPredTaken(predict_taken);
539
540    ++fetchedBranches;
541
542    if (predict_taken) {
543        ++predictedBranches;
544    }
545
546    return predict_taken;
547}
548
549template <class Impl>
550bool
551DefaultFetch<Impl>::fetchCacheLine(Addr fetch_PC, Fault &ret_fault, unsigned tid)
552{
553    Fault fault = NoFault;
554
555    //AlphaDep
556    if (cacheBlocked) {
557        DPRINTF(Fetch, "[tid:%i] Can't fetch cache line, cache blocked\n",
558                tid);
559        return false;
560    } else if (isSwitchedOut()) {
561        DPRINTF(Fetch, "[tid:%i] Can't fetch cache line, switched out\n",
562                tid);
563        return false;
564    } else if (interruptPending && !(fetch_PC & 0x3)) {
565        // Hold off fetch from getting new instructions when:
566        // Cache is blocked, or
567        // while an interrupt is pending and we're not in PAL mode, or
568        // fetch is switched out.
569        DPRINTF(Fetch, "[tid:%i] Can't fetch cache line, interrupt pending\n",
570                tid);
571        return false;
572    }
573
574    // Align the fetch PC so it's at the start of a cache block.
575    Addr block_PC = icacheBlockAlignPC(fetch_PC);
576
577    // If we've already got the block, no need to try to fetch it again.
578    if (cacheDataValid[tid] && block_PC == cacheDataPC[tid]) {
579        return true;
580    }
581
582    // Setup the memReq to do a read of the first instruction's address.
583    // Set the appropriate read size and flags as well.
584    // Build request here.
585    RequestPtr mem_req = new Request(tid, block_PC, cacheBlkSize, 0,
586                                     fetch_PC, cpu->readCpuId(), tid);
587
588    memReq[tid] = mem_req;
589
590    // Translate the instruction request.
591    fault = cpu->translateInstReq(mem_req, cpu->thread[tid]);
592
593    // In the case of faults, the fetch stage may need to stall and wait
594    // for the ITB miss to be handled.
595
596    // If translation was successful, attempt to read the first
597    // instruction.
598    if (fault == NoFault) {
599#if 0
600        if (cpu->system->memctrl->badaddr(memReq[tid]->paddr) ||
601            memReq[tid]->isUncacheable()) {
602            DPRINTF(Fetch, "Fetch: Bad address %#x (hopefully on a "
603                    "misspeculating path)!",
604                    memReq[tid]->paddr);
605            ret_fault = TheISA::genMachineCheckFault();
606            return false;
607        }
608#endif
609
610        // Build packet here.
611        PacketPtr data_pkt = new Packet(mem_req,
612                                        MemCmd::ReadReq, Packet::Broadcast);
613        data_pkt->dataDynamicArray(new uint8_t[cacheBlkSize]);
614
615        cacheDataPC[tid] = block_PC;
616        cacheDataValid[tid] = false;
617
618        DPRINTF(Fetch, "Fetch: Doing instruction read.\n");
619
620        fetchedCacheLines++;
621
622        // Now do the timing access to see whether or not the instruction
623        // exists within the cache.
624        if (!icachePort->sendTiming(data_pkt)) {
625            if (data_pkt->result == Packet::BadAddress) {
626                fault = TheISA::genMachineCheckFault();
627                delete mem_req;
628                memReq[tid] = NULL;
629                warn("Bad address!\n");
630            }
631            assert(retryPkt == NULL);
632            assert(retryTid == -1);
633            DPRINTF(Fetch, "[tid:%i] Out of MSHRs!\n", tid);
634            fetchStatus[tid] = IcacheWaitRetry;
635            retryPkt = data_pkt;
636            retryTid = tid;
637            cacheBlocked = true;
638            return false;
639        }
640
641        DPRINTF(Fetch, "[tid:%i]: Doing cache access.\n", tid);
642
643        lastIcacheStall[tid] = curTick;
644
645        DPRINTF(Activity, "[tid:%i]: Activity: Waiting on I-cache "
646                "response.\n", tid);
647
648        fetchStatus[tid] = IcacheWaitResponse;
649    } else {
650        delete mem_req;
651        memReq[tid] = NULL;
652    }
653
654    ret_fault = fault;
655    return true;
656}
657
658template <class Impl>
659inline void
660DefaultFetch<Impl>::doSquash(const Addr &new_PC,
661        const Addr &new_NPC, unsigned tid)
662{
663    DPRINTF(Fetch, "[tid:%i]: Squashing, setting PC to: %#x, NPC to: %#x.\n",
664            tid, new_PC, new_NPC);
665
666    PC[tid] = new_PC;
667    nextPC[tid] = new_NPC;
668    nextNPC[tid] = new_NPC + instSize;
669
670    // Clear the icache miss if it's outstanding.
671    if (fetchStatus[tid] == IcacheWaitResponse) {
672        DPRINTF(Fetch, "[tid:%i]: Squashing outstanding Icache miss.\n",
673                tid);
674        memReq[tid] = NULL;
675    }
676
677    // Get rid of the retrying packet if it was from this thread.
678    if (retryTid == tid) {
679        assert(cacheBlocked);
680        if (retryPkt) {
681            delete retryPkt->req;
682            delete retryPkt;
683        }
684        retryPkt = NULL;
685        retryTid = -1;
686    }
687
688    fetchStatus[tid] = Squashing;
689
690    ++fetchSquashCycles;
691}
692
693template<class Impl>
694void
695DefaultFetch<Impl>::squashFromDecode(const Addr &new_PC, const Addr &new_NPC,
696                                     const InstSeqNum &seq_num,
697                                     unsigned tid)
698{
699    DPRINTF(Fetch, "[tid:%i]: Squashing from decode.\n",tid);
700
701    doSquash(new_PC, new_NPC, tid);
702
703    // Tell the CPU to remove any instructions that are in flight between
704    // fetch and decode.
705    cpu->removeInstsUntil(seq_num, tid);
706}
707
708template<class Impl>
709bool
710DefaultFetch<Impl>::checkStall(unsigned tid) const
711{
712    bool ret_val = false;
713
714    if (cpu->contextSwitch) {
715        DPRINTF(Fetch,"[tid:%i]: Stalling for a context switch.\n",tid);
716        ret_val = true;
717    } else if (stalls[tid].decode) {
718        DPRINTF(Fetch,"[tid:%i]: Stall from Decode stage detected.\n",tid);
719        ret_val = true;
720    } else if (stalls[tid].rename) {
721        DPRINTF(Fetch,"[tid:%i]: Stall from Rename stage detected.\n",tid);
722        ret_val = true;
723    } else if (stalls[tid].iew) {
724        DPRINTF(Fetch,"[tid:%i]: Stall from IEW stage detected.\n",tid);
725        ret_val = true;
726    } else if (stalls[tid].commit) {
727        DPRINTF(Fetch,"[tid:%i]: Stall from Commit stage detected.\n",tid);
728        ret_val = true;
729    }
730
731    return ret_val;
732}
733
734template<class Impl>
735typename DefaultFetch<Impl>::FetchStatus
736DefaultFetch<Impl>::updateFetchStatus()
737{
738    //Check Running
739    std::list<unsigned>::iterator threads = activeThreads->begin();
740    std::list<unsigned>::iterator end = activeThreads->end();
741
742    while (threads != end) {
743        unsigned tid = *threads++;
744
745        if (fetchStatus[tid] == Running ||
746            fetchStatus[tid] == Squashing ||
747            fetchStatus[tid] == IcacheAccessComplete) {
748
749            if (_status == Inactive) {
750                DPRINTF(Activity, "[tid:%i]: Activating stage.\n",tid);
751
752                if (fetchStatus[tid] == IcacheAccessComplete) {
753                    DPRINTF(Activity, "[tid:%i]: Activating fetch due to cache"
754                            "completion\n",tid);
755                }
756
757                cpu->activateStage(O3CPU::FetchIdx);
758            }
759
760            return Active;
761        }
762    }
763
764    // Stage is switching from active to inactive, notify CPU of it.
765    if (_status == Active) {
766        DPRINTF(Activity, "Deactivating stage.\n");
767
768        cpu->deactivateStage(O3CPU::FetchIdx);
769    }
770
771    return Inactive;
772}
773
774template <class Impl>
775void
776DefaultFetch<Impl>::squash(const Addr &new_PC, const Addr &new_NPC,
777                           const InstSeqNum &seq_num,
778                           bool squash_delay_slot, unsigned tid)
779{
780    DPRINTF(Fetch, "[tid:%u]: Squash from commit.\n",tid);
781
782    doSquash(new_PC, new_NPC, tid);
783
784#if ISA_HAS_DELAY_SLOT
785    // Tell the CPU to remove any instructions that are not in the ROB.
786    cpu->removeInstsNotInROB(tid, squash_delay_slot, seq_num);
787#else
788    // Tell the CPU to remove any instructions that are not in the ROB.
789    cpu->removeInstsNotInROB(tid, true, 0);
790#endif
791}
792
793template <class Impl>
794void
795DefaultFetch<Impl>::tick()
796{
797    std::list<unsigned>::iterator threads = activeThreads->begin();
798    std::list<unsigned>::iterator end = activeThreads->end();
799    bool status_change = false;
800
801    wroteToTimeBuffer = false;
802
803    while (threads != end) {
804        unsigned tid = *threads++;
805
806        // Check the signals for each thread to determine the proper status
807        // for each thread.
808        bool updated_status = checkSignalsAndUpdate(tid);
809        status_change =  status_change || updated_status;
810    }
811
812    DPRINTF(Fetch, "Running stage.\n");
813
814    // Reset the number of the instruction we're fetching.
815    numInst = 0;
816
817#if FULL_SYSTEM
818    if (fromCommit->commitInfo[0].interruptPending) {
819        interruptPending = true;
820    }
821
822    if (fromCommit->commitInfo[0].clearInterrupt) {
823        interruptPending = false;
824    }
825#endif
826
827    for (threadFetched = 0; threadFetched < numFetchingThreads;
828         threadFetched++) {
829        // Fetch each of the actively fetching threads.
830        fetch(status_change);
831    }
832
833    // Record number of instructions fetched this cycle for distribution.
834    fetchNisnDist.sample(numInst);
835
836    if (status_change) {
837        // Change the fetch stage status if there was a status change.
838        _status = updateFetchStatus();
839    }
840
841    // If there was activity this cycle, inform the CPU of it.
842    if (wroteToTimeBuffer || cpu->contextSwitch) {
843        DPRINTF(Activity, "Activity this cycle.\n");
844
845        cpu->activityThisCycle();
846    }
847}
848
849template <class Impl>
850bool
851DefaultFetch<Impl>::checkSignalsAndUpdate(unsigned tid)
852{
853    // Update the per thread stall statuses.
854    if (fromDecode->decodeBlock[tid]) {
855        stalls[tid].decode = true;
856    }
857
858    if (fromDecode->decodeUnblock[tid]) {
859        assert(stalls[tid].decode);
860        assert(!fromDecode->decodeBlock[tid]);
861        stalls[tid].decode = false;
862    }
863
864    if (fromRename->renameBlock[tid]) {
865        stalls[tid].rename = true;
866    }
867
868    if (fromRename->renameUnblock[tid]) {
869        assert(stalls[tid].rename);
870        assert(!fromRename->renameBlock[tid]);
871        stalls[tid].rename = false;
872    }
873
874    if (fromIEW->iewBlock[tid]) {
875        stalls[tid].iew = true;
876    }
877
878    if (fromIEW->iewUnblock[tid]) {
879        assert(stalls[tid].iew);
880        assert(!fromIEW->iewBlock[tid]);
881        stalls[tid].iew = false;
882    }
883
884    if (fromCommit->commitBlock[tid]) {
885        stalls[tid].commit = true;
886    }
887
888    if (fromCommit->commitUnblock[tid]) {
889        assert(stalls[tid].commit);
890        assert(!fromCommit->commitBlock[tid]);
891        stalls[tid].commit = false;
892    }
893
894    // Check squash signals from commit.
895    if (fromCommit->commitInfo[tid].squash) {
896
897        DPRINTF(Fetch, "[tid:%u]: Squashing instructions due to squash "
898                "from commit.\n",tid);
899
900#if ISA_HAS_DELAY_SLOT
901    InstSeqNum doneSeqNum = fromCommit->commitInfo[tid].bdelayDoneSeqNum;
902#else
903    InstSeqNum doneSeqNum = fromCommit->commitInfo[tid].doneSeqNum;
904#endif
905        // In any case, squash.
906        squash(fromCommit->commitInfo[tid].nextPC,
907               fromCommit->commitInfo[tid].nextNPC,
908               doneSeqNum,
909               fromCommit->commitInfo[tid].squashDelaySlot,
910               tid);
911
912        // Also check if there's a mispredict that happened.
913        if (fromCommit->commitInfo[tid].branchMispredict) {
914            branchPred.squash(fromCommit->commitInfo[tid].doneSeqNum,
915                              fromCommit->commitInfo[tid].nextPC,
916                              fromCommit->commitInfo[tid].branchTaken,
917                              tid);
918        } else {
919            branchPred.squash(fromCommit->commitInfo[tid].doneSeqNum,
920                              tid);
921        }
922
923        return true;
924    } else if (fromCommit->commitInfo[tid].doneSeqNum) {
925        // Update the branch predictor if it wasn't a squashed instruction
926        // that was broadcasted.
927        branchPred.update(fromCommit->commitInfo[tid].doneSeqNum, tid);
928    }
929
930    // Check ROB squash signals from commit.
931    if (fromCommit->commitInfo[tid].robSquashing) {
932        DPRINTF(Fetch, "[tid:%u]: ROB is still squashing.\n", tid);
933
934        // Continue to squash.
935        fetchStatus[tid] = Squashing;
936
937        return true;
938    }
939
940    // Check squash signals from decode.
941    if (fromDecode->decodeInfo[tid].squash) {
942        DPRINTF(Fetch, "[tid:%u]: Squashing instructions due to squash "
943                "from decode.\n",tid);
944
945        // Update the branch predictor.
946        if (fromDecode->decodeInfo[tid].branchMispredict) {
947            branchPred.squash(fromDecode->decodeInfo[tid].doneSeqNum,
948                              fromDecode->decodeInfo[tid].nextPC,
949                              fromDecode->decodeInfo[tid].branchTaken,
950                              tid);
951        } else {
952            branchPred.squash(fromDecode->decodeInfo[tid].doneSeqNum,
953                              tid);
954        }
955
956        if (fetchStatus[tid] != Squashing) {
957
958#if ISA_HAS_DELAY_SLOT
959            InstSeqNum doneSeqNum = fromDecode->decodeInfo[tid].bdelayDoneSeqNum;
960#else
961            InstSeqNum doneSeqNum = fromDecode->decodeInfo[tid].doneSeqNum;
962#endif
963            DPRINTF(Fetch, "Squashing from decode with PC = %#x, NPC = %#x\n",
964                    fromDecode->decodeInfo[tid].nextPC,
965                    fromDecode->decodeInfo[tid].nextNPC);
966            // Squash unless we're already squashing
967            squashFromDecode(fromDecode->decodeInfo[tid].nextPC,
968                             fromDecode->decodeInfo[tid].nextNPC,
969                             doneSeqNum,
970                             tid);
971
972            return true;
973        }
974    }
975
976    if (checkStall(tid) &&
977        fetchStatus[tid] != IcacheWaitResponse &&
978        fetchStatus[tid] != IcacheWaitRetry) {
979        DPRINTF(Fetch, "[tid:%i]: Setting to blocked\n",tid);
980
981        fetchStatus[tid] = Blocked;
982
983        return true;
984    }
985
986    if (fetchStatus[tid] == Blocked ||
987        fetchStatus[tid] == Squashing) {
988        // Switch status to running if fetch isn't being told to block or
989        // squash this cycle.
990        DPRINTF(Fetch, "[tid:%i]: Done squashing, switching to running.\n",
991                tid);
992
993        fetchStatus[tid] = Running;
994
995        return true;
996    }
997
998    // If we've reached this point, we have not gotten any signals that
999    // cause fetch to change its status.  Fetch remains the same as before.
1000    return false;
1001}
1002
1003template<class Impl>
1004void
1005DefaultFetch<Impl>::fetch(bool &status_change)
1006{
1007    //////////////////////////////////////////
1008    // Start actual fetch
1009    //////////////////////////////////////////
1010    int tid = getFetchingThread(fetchPolicy);
1011
1012    if (tid == -1 || drainPending) {
1013        DPRINTF(Fetch,"There are no more threads available to fetch from.\n");
1014
1015        // Breaks looping condition in tick()
1016        threadFetched = numFetchingThreads;
1017        return;
1018    }
1019
1020    DPRINTF(Fetch, "Attempting to fetch from [tid:%i]\n", tid);
1021
1022    // The current PC.
1023    Addr &fetch_PC = PC[tid];
1024
1025    Addr &fetch_NPC = nextPC[tid];
1026
1027    // Fault code for memory access.
1028    Fault fault = NoFault;
1029
1030    // If returning from the delay of a cache miss, then update the status
1031    // to running, otherwise do the cache access.  Possibly move this up
1032    // to tick() function.
1033    if (fetchStatus[tid] == IcacheAccessComplete) {
1034        DPRINTF(Fetch, "[tid:%i]: Icache miss is complete.\n",
1035                tid);
1036
1037        fetchStatus[tid] = Running;
1038        status_change = true;
1039    } else if (fetchStatus[tid] == Running) {
1040        DPRINTF(Fetch, "[tid:%i]: Attempting to translate and read "
1041                "instruction, starting at PC %08p.\n",
1042                tid, fetch_PC);
1043
1044        bool fetch_success = fetchCacheLine(fetch_PC, fault, tid);
1045        if (!fetch_success) {
1046            if (cacheBlocked) {
1047                ++icacheStallCycles;
1048            } else {
1049                ++fetchMiscStallCycles;
1050            }
1051            return;
1052        }
1053    } else {
1054        if (fetchStatus[tid] == Idle) {
1055            ++fetchIdleCycles;
1056            DPRINTF(Fetch, "[tid:%i]: Fetch is idle!\n", tid);
1057        } else if (fetchStatus[tid] == Blocked) {
1058            ++fetchBlockedCycles;
1059            DPRINTF(Fetch, "[tid:%i]: Fetch is blocked!\n", tid);
1060        } else if (fetchStatus[tid] == Squashing) {
1061            ++fetchSquashCycles;
1062            DPRINTF(Fetch, "[tid:%i]: Fetch is squashing!\n", tid);
1063        } else if (fetchStatus[tid] == IcacheWaitResponse) {
1064            ++icacheStallCycles;
1065            DPRINTF(Fetch, "[tid:%i]: Fetch is waiting cache response!\n", tid);
1066        }
1067
1068        // Status is Idle, Squashing, Blocked, or IcacheWaitResponse, so
1069        // fetch should do nothing.
1070        return;
1071    }
1072
1073    ++fetchCycles;
1074
1075    // If we had a stall due to an icache miss, then return.
1076    if (fetchStatus[tid] == IcacheWaitResponse) {
1077        ++icacheStallCycles;
1078        status_change = true;
1079        return;
1080    }
1081
1082    Addr next_PC = fetch_PC;
1083    Addr next_NPC = fetch_NPC;
1084
1085    InstSeqNum inst_seq;
1086    MachInst inst;
1087    ExtMachInst ext_inst;
1088    // @todo: Fix this hack.
1089    unsigned offset = (fetch_PC & cacheBlkMask) & ~3;
1090
1091    if (fault == NoFault) {
1092        // If the read of the first instruction was successful, then grab the
1093        // instructions from the rest of the cache line and put them into the
1094        // queue heading to decode.
1095
1096        DPRINTF(Fetch, "[tid:%i]: Adding instructions to queue to "
1097                "decode.\n",tid);
1098
1099        // Need to keep track of whether or not a predicted branch
1100        // ended this fetch block.
1101        bool predicted_branch = false;
1102
1103        for (;
1104             offset < cacheBlkSize &&
1105                 numInst < fetchWidth &&
1106                 !predicted_branch;
1107             ++numInst) {
1108
1109            // If we're branching after this instruction, quite fetching
1110            // from the same block then.
1111            predicted_branch =
1112                (fetch_PC + sizeof(TheISA::MachInst) != fetch_NPC);
1113            if (predicted_branch) {
1114                DPRINTF(Fetch, "Branch detected with PC = %#x, NPC = %#x\n",
1115                        fetch_PC, fetch_NPC);
1116            }
1117
1118
1119            // Get a sequence number.
1120            inst_seq = cpu->getAndIncrementInstSeq();
1121
1122            // Make sure this is a valid index.
1123            assert(offset <= cacheBlkSize - instSize);
1124
1125            // Get the instruction from the array of the cache line.
1126            inst = TheISA::gtoh(*reinterpret_cast<TheISA::MachInst *>
1127                        (&cacheData[tid][offset]));
1128
1129            predecoder.setTC(cpu->thread[tid]->getTC());
1130            predecoder.moreBytes(fetch_PC, 0, inst);
1131
1132            ext_inst = predecoder.getExtMachInst();
1133
1134            // Create a new DynInst from the instruction fetched.
1135            DynInstPtr instruction = new DynInst(ext_inst,
1136                                                 fetch_PC, fetch_NPC,
1137                                                 next_PC, next_NPC,
1138                                                 inst_seq, cpu);
1139            instruction->setTid(tid);
1140
1141            instruction->setASID(tid);
1142
1143            instruction->setThreadState(cpu->thread[tid]);
1144
1145            DPRINTF(Fetch, "[tid:%i]: Instruction PC %#x created "
1146                    "[sn:%lli]\n",
1147                    tid, instruction->readPC(), inst_seq);
1148
1149            //DPRINTF(Fetch, "[tid:%i]: MachInst is %#x\n", tid, ext_inst);
1150
1151            DPRINTF(Fetch, "[tid:%i]: Instruction is: %s\n",
1152                    tid, instruction->staticInst->disassemble(fetch_PC));
1153
1154#if TRACING_ON
1155            instruction->traceData =
1156                Trace::getInstRecord(curTick, cpu->tcBase(tid),
1157                                     instruction->staticInst,
1158                                     instruction->readPC());
1159#elif
1160            instruction->traceData = NULL;
1161#endif
1162
1163            ///FIXME This needs to be more robust in dealing with delay slots
1164#if !ISA_HAS_DELAY_SLOT
1165//	    predicted_branch |=
1166#endif
1167            lookupAndUpdateNextPC(instruction, next_PC, next_NPC);
1168            predicted_branch |= (next_PC != fetch_NPC);
1169
1170            // Add instruction to the CPU's list of instructions.
1171            instruction->setInstListIt(cpu->addInst(instruction));
1172
1173            // Write the instruction to the first slot in the queue
1174            // that heads to decode.
1175            toDecode->insts[numInst] = instruction;
1176
1177            toDecode->size++;
1178
1179            // Increment stat of fetched instructions.
1180            ++fetchedInsts;
1181
1182            // Move to the next instruction, unless we have a branch.
1183            fetch_PC = next_PC;
1184            fetch_NPC = next_NPC;
1185
1186            if (instruction->isQuiesce()) {
1187                DPRINTF(Fetch, "Quiesce instruction encountered, halting fetch!",
1188                        curTick);
1189                fetchStatus[tid] = QuiescePending;
1190                ++numInst;
1191                status_change = true;
1192                break;
1193            }
1194
1195            offset += instSize;
1196        }
1197
1198        if (offset >= cacheBlkSize) {
1199            DPRINTF(Fetch, "[tid:%i]: Done fetching, reached the end of cache "
1200                    "block.\n", tid);
1201        } else if (numInst >= fetchWidth) {
1202            DPRINTF(Fetch, "[tid:%i]: Done fetching, reached fetch bandwidth "
1203                    "for this cycle.\n", tid);
1204        } else if (predicted_branch) {
1205            DPRINTF(Fetch, "[tid:%i]: Done fetching, predicted branch "
1206                    "instruction encountered.\n", tid);
1207        }
1208    }
1209
1210    if (numInst > 0) {
1211        wroteToTimeBuffer = true;
1212    }
1213
1214    // Now that fetching is completed, update the PC to signify what the next
1215    // cycle will be.
1216    if (fault == NoFault) {
1217        PC[tid] = next_PC;
1218        nextPC[tid] = next_NPC;
1219        nextNPC[tid] = next_NPC + instSize;
1220#if ISA_HAS_DELAY_SLOT
1221        DPRINTF(Fetch, "[tid:%i]: Setting PC to %08p.\n", tid, PC[tid]);
1222#else
1223        DPRINTF(Fetch, "[tid:%i]: Setting PC to %08p.\n", tid, next_PC);
1224#endif
1225    } else {
1226        // We shouldn't be in an icache miss and also have a fault (an ITB
1227        // miss)
1228        if (fetchStatus[tid] == IcacheWaitResponse) {
1229            panic("Fetch should have exited prior to this!");
1230        }
1231
1232        // Send the fault to commit.  This thread will not do anything
1233        // until commit handles the fault.  The only other way it can
1234        // wake up is if a squash comes along and changes the PC.
1235#if FULL_SYSTEM
1236        assert(numInst < fetchWidth);
1237        // Get a sequence number.
1238        inst_seq = cpu->getAndIncrementInstSeq();
1239        // We will use a nop in order to carry the fault.
1240        ext_inst = TheISA::NoopMachInst;
1241
1242        // Create a new DynInst from the dummy nop.
1243        DynInstPtr instruction = new DynInst(ext_inst,
1244                                             fetch_PC, fetch_NPC,
1245                                             next_PC, next_NPC,
1246                                             inst_seq, cpu);
1247        instruction->setPredTarg(next_PC, next_NPC);
1248        instruction->setTid(tid);
1249
1250        instruction->setASID(tid);
1251
1252        instruction->setThreadState(cpu->thread[tid]);
1253
1254        instruction->traceData = NULL;
1255
1256        instruction->setInstListIt(cpu->addInst(instruction));
1257
1258        instruction->fault = fault;
1259
1260        toDecode->insts[numInst] = instruction;
1261        toDecode->size++;
1262
1263        DPRINTF(Fetch, "[tid:%i]: Blocked, need to handle the trap.\n",tid);
1264
1265        fetchStatus[tid] = TrapPending;
1266        status_change = true;
1267#else // !FULL_SYSTEM
1268        fetchStatus[tid] = TrapPending;
1269        status_change = true;
1270
1271#endif // FULL_SYSTEM
1272        DPRINTF(Fetch, "[tid:%i]: fault (%s) detected @ PC %08p",
1273                tid, fault->name(), PC[tid]);
1274    }
1275}
1276
1277template<class Impl>
1278void
1279DefaultFetch<Impl>::recvRetry()
1280{
1281    if (retryPkt != NULL) {
1282        assert(cacheBlocked);
1283        assert(retryTid != -1);
1284        assert(fetchStatus[retryTid] == IcacheWaitRetry);
1285
1286        if (icachePort->sendTiming(retryPkt)) {
1287            fetchStatus[retryTid] = IcacheWaitResponse;
1288            retryPkt = NULL;
1289            retryTid = -1;
1290            cacheBlocked = false;
1291        }
1292    } else {
1293        assert(retryTid == -1);
1294        // Access has been squashed since it was sent out.  Just clear
1295        // the cache being blocked.
1296        cacheBlocked = false;
1297    }
1298}
1299
1300///////////////////////////////////////
1301//                                   //
1302//  SMT FETCH POLICY MAINTAINED HERE //
1303//                                   //
1304///////////////////////////////////////
1305template<class Impl>
1306int
1307DefaultFetch<Impl>::getFetchingThread(FetchPriority &fetch_priority)
1308{
1309    if (numThreads > 1) {
1310        switch (fetch_priority) {
1311
1312          case SingleThread:
1313            return 0;
1314
1315          case RoundRobin:
1316            return roundRobin();
1317
1318          case IQ:
1319            return iqCount();
1320
1321          case LSQ:
1322            return lsqCount();
1323
1324          case Branch:
1325            return branchCount();
1326
1327          default:
1328            return -1;
1329        }
1330    } else {
1331        std::list<unsigned>::iterator thread = activeThreads->begin();
1332        assert(thread != activeThreads->end());
1333        int tid = *thread;
1334
1335        if (fetchStatus[tid] == Running ||
1336            fetchStatus[tid] == IcacheAccessComplete ||
1337            fetchStatus[tid] == Idle) {
1338            return tid;
1339        } else {
1340            return -1;
1341        }
1342    }
1343
1344}
1345
1346
1347template<class Impl>
1348int
1349DefaultFetch<Impl>::roundRobin()
1350{
1351    std::list<unsigned>::iterator pri_iter = priorityList.begin();
1352    std::list<unsigned>::iterator end      = priorityList.end();
1353
1354    int high_pri;
1355
1356    while (pri_iter != end) {
1357        high_pri = *pri_iter;
1358
1359        assert(high_pri <= numThreads);
1360
1361        if (fetchStatus[high_pri] == Running ||
1362            fetchStatus[high_pri] == IcacheAccessComplete ||
1363            fetchStatus[high_pri] == Idle) {
1364
1365            priorityList.erase(pri_iter);
1366            priorityList.push_back(high_pri);
1367
1368            return high_pri;
1369        }
1370
1371        pri_iter++;
1372    }
1373
1374    return -1;
1375}
1376
1377template<class Impl>
1378int
1379DefaultFetch<Impl>::iqCount()
1380{
1381    std::priority_queue<unsigned> PQ;
1382
1383    std::list<unsigned>::iterator threads = activeThreads->begin();
1384    std::list<unsigned>::iterator end = activeThreads->end();
1385
1386    while (threads != end) {
1387        unsigned tid = *threads++;
1388
1389        PQ.push(fromIEW->iewInfo[tid].iqCount);
1390    }
1391
1392    while (!PQ.empty()) {
1393
1394        unsigned high_pri = PQ.top();
1395
1396        if (fetchStatus[high_pri] == Running ||
1397            fetchStatus[high_pri] == IcacheAccessComplete ||
1398            fetchStatus[high_pri] == Idle)
1399            return high_pri;
1400        else
1401            PQ.pop();
1402
1403    }
1404
1405    return -1;
1406}
1407
1408template<class Impl>
1409int
1410DefaultFetch<Impl>::lsqCount()
1411{
1412    std::priority_queue<unsigned> PQ;
1413
1414    std::list<unsigned>::iterator threads = activeThreads->begin();
1415    std::list<unsigned>::iterator end = activeThreads->end();
1416
1417    while (threads != end) {
1418        unsigned tid = *threads++;
1419
1420        PQ.push(fromIEW->iewInfo[tid].ldstqCount);
1421    }
1422
1423    while (!PQ.empty()) {
1424
1425        unsigned high_pri = PQ.top();
1426
1427        if (fetchStatus[high_pri] == Running ||
1428            fetchStatus[high_pri] == IcacheAccessComplete ||
1429            fetchStatus[high_pri] == Idle)
1430            return high_pri;
1431        else
1432            PQ.pop();
1433
1434    }
1435
1436    return -1;
1437}
1438
1439template<class Impl>
1440int
1441DefaultFetch<Impl>::branchCount()
1442{
1443    std::list<unsigned>::iterator thread = activeThreads->begin();
1444    assert(thread != activeThreads->end());
1445    unsigned tid = *thread;
1446
1447    panic("Branch Count Fetch policy unimplemented\n");
1448    return 0 * tid;
1449}
1450