fetch_impl.hh revision 4284:c8800319ed0c
1/*
2 * Copyright (c) 2004-2006 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Kevin Lim
29 *          Korey Sewell
30 */
31
32#include "config/use_checker.hh"
33
34#include "arch/isa_traits.hh"
35#include "arch/utility.hh"
36#include "cpu/checker/cpu.hh"
37#include "cpu/exetrace.hh"
38#include "cpu/o3/fetch.hh"
39#include "mem/packet.hh"
40#include "mem/request.hh"
41#include "sim/byteswap.hh"
42#include "sim/host.hh"
43#include "sim/core.hh"
44
45#if FULL_SYSTEM
46#include "arch/tlb.hh"
47#include "arch/vtophys.hh"
48#include "sim/system.hh"
49#endif // FULL_SYSTEM
50
51#include <algorithm>
52
53template<class Impl>
54Tick
55DefaultFetch<Impl>::IcachePort::recvAtomic(PacketPtr pkt)
56{
57    panic("DefaultFetch doesn't expect recvAtomic callback!");
58    return curTick;
59}
60
61template<class Impl>
62void
63DefaultFetch<Impl>::IcachePort::recvFunctional(PacketPtr pkt)
64{
65    DPRINTF(Fetch, "DefaultFetch doesn't update its state from a "
66            "functional call.");
67}
68
69template<class Impl>
70void
71DefaultFetch<Impl>::IcachePort::recvStatusChange(Status status)
72{
73    if (status == RangeChange) {
74        if (!snoopRangeSent) {
75            snoopRangeSent = true;
76            sendStatusChange(Port::RangeChange);
77        }
78        return;
79    }
80
81    panic("DefaultFetch doesn't expect recvStatusChange callback!");
82}
83
84template<class Impl>
85bool
86DefaultFetch<Impl>::IcachePort::recvTiming(PacketPtr pkt)
87{
88    DPRINTF(Fetch, "Received timing\n");
89    if (pkt->isResponse()) {
90        fetch->processCacheCompletion(pkt);
91    }
92    //else Snooped a coherence request, just return
93    return true;
94}
95
96template<class Impl>
97void
98DefaultFetch<Impl>::IcachePort::recvRetry()
99{
100    fetch->recvRetry();
101}
102
103template<class Impl>
104DefaultFetch<Impl>::DefaultFetch(Params *params)
105    : branchPred(params),
106      predecoder(NULL),
107      decodeToFetchDelay(params->decodeToFetchDelay),
108      renameToFetchDelay(params->renameToFetchDelay),
109      iewToFetchDelay(params->iewToFetchDelay),
110      commitToFetchDelay(params->commitToFetchDelay),
111      fetchWidth(params->fetchWidth),
112      cacheBlocked(false),
113      retryPkt(NULL),
114      retryTid(-1),
115      numThreads(params->numberOfThreads),
116      numFetchingThreads(params->smtNumFetchingThreads),
117      interruptPending(false),
118      drainPending(false),
119      switchedOut(false)
120{
121    if (numThreads > Impl::MaxThreads)
122        fatal("numThreads is not a valid value\n");
123
124    // Set fetch stage's status to inactive.
125    _status = Inactive;
126
127    std::string policy = params->smtFetchPolicy;
128
129    // Convert string to lowercase
130    std::transform(policy.begin(), policy.end(), policy.begin(),
131                   (int(*)(int)) tolower);
132
133    // Figure out fetch policy
134    if (policy == "singlethread") {
135        fetchPolicy = SingleThread;
136        if (numThreads > 1)
137            panic("Invalid Fetch Policy for a SMT workload.");
138    } else if (policy == "roundrobin") {
139        fetchPolicy = RoundRobin;
140        DPRINTF(Fetch, "Fetch policy set to Round Robin\n");
141    } else if (policy == "branch") {
142        fetchPolicy = Branch;
143        DPRINTF(Fetch, "Fetch policy set to Branch Count\n");
144    } else if (policy == "iqcount") {
145        fetchPolicy = IQ;
146        DPRINTF(Fetch, "Fetch policy set to IQ count\n");
147    } else if (policy == "lsqcount") {
148        fetchPolicy = LSQ;
149        DPRINTF(Fetch, "Fetch policy set to LSQ count\n");
150    } else {
151        fatal("Invalid Fetch Policy. Options Are: {SingleThread,"
152              " RoundRobin,LSQcount,IQcount}\n");
153    }
154
155    // Get the size of an instruction.
156    instSize = sizeof(TheISA::MachInst);
157}
158
159template <class Impl>
160std::string
161DefaultFetch<Impl>::name() const
162{
163    return cpu->name() + ".fetch";
164}
165
166template <class Impl>
167void
168DefaultFetch<Impl>::regStats()
169{
170    icacheStallCycles
171        .name(name() + ".icacheStallCycles")
172        .desc("Number of cycles fetch is stalled on an Icache miss")
173        .prereq(icacheStallCycles);
174
175    fetchedInsts
176        .name(name() + ".Insts")
177        .desc("Number of instructions fetch has processed")
178        .prereq(fetchedInsts);
179
180    fetchedBranches
181        .name(name() + ".Branches")
182        .desc("Number of branches that fetch encountered")
183        .prereq(fetchedBranches);
184
185    predictedBranches
186        .name(name() + ".predictedBranches")
187        .desc("Number of branches that fetch has predicted taken")
188        .prereq(predictedBranches);
189
190    fetchCycles
191        .name(name() + ".Cycles")
192        .desc("Number of cycles fetch has run and was not squashing or"
193              " blocked")
194        .prereq(fetchCycles);
195
196    fetchSquashCycles
197        .name(name() + ".SquashCycles")
198        .desc("Number of cycles fetch has spent squashing")
199        .prereq(fetchSquashCycles);
200
201    fetchIdleCycles
202        .name(name() + ".IdleCycles")
203        .desc("Number of cycles fetch was idle")
204        .prereq(fetchIdleCycles);
205
206    fetchBlockedCycles
207        .name(name() + ".BlockedCycles")
208        .desc("Number of cycles fetch has spent blocked")
209        .prereq(fetchBlockedCycles);
210
211    fetchedCacheLines
212        .name(name() + ".CacheLines")
213        .desc("Number of cache lines fetched")
214        .prereq(fetchedCacheLines);
215
216    fetchMiscStallCycles
217        .name(name() + ".MiscStallCycles")
218        .desc("Number of cycles fetch has spent waiting on interrupts, or "
219              "bad addresses, or out of MSHRs")
220        .prereq(fetchMiscStallCycles);
221
222    fetchIcacheSquashes
223        .name(name() + ".IcacheSquashes")
224        .desc("Number of outstanding Icache misses that were squashed")
225        .prereq(fetchIcacheSquashes);
226
227    fetchNisnDist
228        .init(/* base value */ 0,
229              /* last value */ fetchWidth,
230              /* bucket size */ 1)
231        .name(name() + ".rateDist")
232        .desc("Number of instructions fetched each cycle (Total)")
233        .flags(Stats::pdf);
234
235    idleRate
236        .name(name() + ".idleRate")
237        .desc("Percent of cycles fetch was idle")
238        .prereq(idleRate);
239    idleRate = fetchIdleCycles * 100 / cpu->numCycles;
240
241    branchRate
242        .name(name() + ".branchRate")
243        .desc("Number of branch fetches per cycle")
244        .flags(Stats::total);
245    branchRate = fetchedBranches / cpu->numCycles;
246
247    fetchRate
248        .name(name() + ".rate")
249        .desc("Number of inst fetches per cycle")
250        .flags(Stats::total);
251    fetchRate = fetchedInsts / cpu->numCycles;
252
253    branchPred.regStats();
254}
255
256template<class Impl>
257void
258DefaultFetch<Impl>::setCPU(O3CPU *cpu_ptr)
259{
260    DPRINTF(Fetch, "Setting the CPU pointer.\n");
261    cpu = cpu_ptr;
262
263    // Name is finally available, so create the port.
264    icachePort = new IcachePort(this);
265
266    icachePort->snoopRangeSent = false;
267
268#if USE_CHECKER
269    if (cpu->checker) {
270        cpu->checker->setIcachePort(icachePort);
271    }
272#endif
273
274    // Schedule fetch to get the correct PC from the CPU
275    // scheduleFetchStartupEvent(1);
276
277    // Fetch needs to start fetching instructions at the very beginning,
278    // so it must start up in active state.
279    switchToActive();
280}
281
282template<class Impl>
283void
284DefaultFetch<Impl>::setTimeBuffer(TimeBuffer<TimeStruct> *time_buffer)
285{
286    DPRINTF(Fetch, "Setting the time buffer pointer.\n");
287    timeBuffer = time_buffer;
288
289    // Create wires to get information from proper places in time buffer.
290    fromDecode = timeBuffer->getWire(-decodeToFetchDelay);
291    fromRename = timeBuffer->getWire(-renameToFetchDelay);
292    fromIEW = timeBuffer->getWire(-iewToFetchDelay);
293    fromCommit = timeBuffer->getWire(-commitToFetchDelay);
294}
295
296template<class Impl>
297void
298DefaultFetch<Impl>::setActiveThreads(std::list<unsigned> *at_ptr)
299{
300    DPRINTF(Fetch, "Setting active threads list pointer.\n");
301    activeThreads = at_ptr;
302}
303
304template<class Impl>
305void
306DefaultFetch<Impl>::setFetchQueue(TimeBuffer<FetchStruct> *fq_ptr)
307{
308    DPRINTF(Fetch, "Setting the fetch queue pointer.\n");
309    fetchQueue = fq_ptr;
310
311    // Create wire to write information to proper place in fetch queue.
312    toDecode = fetchQueue->getWire(0);
313}
314
315template<class Impl>
316void
317DefaultFetch<Impl>::initStage()
318{
319    // Setup PC and nextPC with initial state.
320    for (int tid = 0; tid < numThreads; tid++) {
321        PC[tid] = cpu->readPC(tid);
322        nextPC[tid] = cpu->readNextPC(tid);
323        nextNPC[tid] = cpu->readNextNPC(tid);
324    }
325
326    // Size of cache block.
327    cacheBlkSize = icachePort->peerBlockSize();
328
329    // Create mask to get rid of offset bits.
330    cacheBlkMask = (cacheBlkSize - 1);
331
332    for (int tid=0; tid < numThreads; tid++) {
333
334        fetchStatus[tid] = Running;
335
336        priorityList.push_back(tid);
337
338        memReq[tid] = NULL;
339
340        // Create space to store a cache line.
341        cacheData[tid] = new uint8_t[cacheBlkSize];
342        cacheDataPC[tid] = 0;
343        cacheDataValid[tid] = false;
344
345        stalls[tid].decode = false;
346        stalls[tid].rename = false;
347        stalls[tid].iew = false;
348        stalls[tid].commit = false;
349    }
350}
351
352template<class Impl>
353void
354DefaultFetch<Impl>::processCacheCompletion(PacketPtr pkt)
355{
356    unsigned tid = pkt->req->getThreadNum();
357
358    DPRINTF(Fetch, "[tid:%u] Waking up from cache miss.\n",tid);
359
360    // Only change the status if it's still waiting on the icache access
361    // to return.
362    if (fetchStatus[tid] != IcacheWaitResponse ||
363        pkt->req != memReq[tid] ||
364        isSwitchedOut()) {
365        ++fetchIcacheSquashes;
366        delete pkt->req;
367        delete pkt;
368        return;
369    }
370
371    memcpy(cacheData[tid], pkt->getPtr<uint8_t *>(), cacheBlkSize);
372    cacheDataValid[tid] = true;
373
374    if (!drainPending) {
375        // Wake up the CPU (if it went to sleep and was waiting on
376        // this completion event).
377        cpu->wakeCPU();
378
379        DPRINTF(Activity, "[tid:%u] Activating fetch due to cache completion\n",
380                tid);
381
382        switchToActive();
383    }
384
385    // Only switch to IcacheAccessComplete if we're not stalled as well.
386    if (checkStall(tid)) {
387        fetchStatus[tid] = Blocked;
388    } else {
389        fetchStatus[tid] = IcacheAccessComplete;
390    }
391
392    // Reset the mem req to NULL.
393    delete pkt->req;
394    delete pkt;
395    memReq[tid] = NULL;
396}
397
398template <class Impl>
399bool
400DefaultFetch<Impl>::drain()
401{
402    // Fetch is ready to drain at any time.
403    cpu->signalDrained();
404    drainPending = true;
405    return true;
406}
407
408template <class Impl>
409void
410DefaultFetch<Impl>::resume()
411{
412    drainPending = false;
413}
414
415template <class Impl>
416void
417DefaultFetch<Impl>::switchOut()
418{
419    switchedOut = true;
420    // Branch predictor needs to have its state cleared.
421    branchPred.switchOut();
422}
423
424template <class Impl>
425void
426DefaultFetch<Impl>::takeOverFrom()
427{
428    // Reset all state
429    for (int i = 0; i < Impl::MaxThreads; ++i) {
430        stalls[i].decode = 0;
431        stalls[i].rename = 0;
432        stalls[i].iew = 0;
433        stalls[i].commit = 0;
434        PC[i] = cpu->readPC(i);
435        nextPC[i] = cpu->readNextPC(i);
436#if ISA_HAS_DELAY_SLOT
437        nextNPC[i] = cpu->readNextNPC(i);
438#else
439        nextNPC[i] = nextPC[i] + sizeof(TheISA::MachInst);
440#endif
441        fetchStatus[i] = Running;
442    }
443    numInst = 0;
444    wroteToTimeBuffer = false;
445    _status = Inactive;
446    switchedOut = false;
447    interruptPending = false;
448    branchPred.takeOverFrom();
449}
450
451template <class Impl>
452void
453DefaultFetch<Impl>::wakeFromQuiesce()
454{
455    DPRINTF(Fetch, "Waking up from quiesce\n");
456    // Hopefully this is safe
457    // @todo: Allow other threads to wake from quiesce.
458    fetchStatus[0] = Running;
459}
460
461template <class Impl>
462inline void
463DefaultFetch<Impl>::switchToActive()
464{
465    if (_status == Inactive) {
466        DPRINTF(Activity, "Activating stage.\n");
467
468        cpu->activateStage(O3CPU::FetchIdx);
469
470        _status = Active;
471    }
472}
473
474template <class Impl>
475inline void
476DefaultFetch<Impl>::switchToInactive()
477{
478    if (_status == Active) {
479        DPRINTF(Activity, "Deactivating stage.\n");
480
481        cpu->deactivateStage(O3CPU::FetchIdx);
482
483        _status = Inactive;
484    }
485}
486
487template <class Impl>
488bool
489DefaultFetch<Impl>::lookupAndUpdateNextPC(DynInstPtr &inst, Addr &next_PC,
490                                          Addr &next_NPC)
491{
492    // Do branch prediction check here.
493    // A bit of a misnomer...next_PC is actually the current PC until
494    // this function updates it.
495    bool predict_taken;
496
497    if (!inst->isControl()) {
498        next_PC  = next_NPC;
499        next_NPC = next_NPC + instSize;
500        inst->setPredTarg(next_PC, next_NPC);
501        inst->setPredTaken(false);
502        return false;
503    }
504
505    int tid = inst->threadNumber;
506    Addr pred_PC = next_PC;
507    predict_taken = branchPred.predict(inst, pred_PC, tid);
508
509/*    if (predict_taken) {
510        DPRINTF(Fetch, "[tid:%i]: Branch predicted to be taken to %#x.\n",
511                tid, pred_PC);
512    } else {
513        DPRINTF(Fetch, "[tid:%i]: Branch predicted to be not taken.\n", tid);
514    }*/
515
516#if ISA_HAS_DELAY_SLOT
517    next_PC = next_NPC;
518    if (predict_taken)
519        next_NPC = pred_PC;
520    else
521        next_NPC += instSize;
522#else
523    if (predict_taken)
524        next_PC = pred_PC;
525    else
526        next_PC += instSize;
527    next_NPC = next_PC + instSize;
528#endif
529/*    DPRINTF(Fetch, "[tid:%i]: Branch predicted to go to %#x and then %#x.\n",
530            tid, next_PC, next_NPC);*/
531    inst->setPredTarg(next_PC, next_NPC);
532    inst->setPredTaken(predict_taken);
533
534    ++fetchedBranches;
535
536    if (predict_taken) {
537        ++predictedBranches;
538    }
539
540    return predict_taken;
541}
542
543template <class Impl>
544bool
545DefaultFetch<Impl>::fetchCacheLine(Addr fetch_PC, Fault &ret_fault, unsigned tid)
546{
547    Fault fault = NoFault;
548
549    //AlphaDep
550    if (cacheBlocked) {
551        DPRINTF(Fetch, "[tid:%i] Can't fetch cache line, cache blocked\n",
552                tid);
553        return false;
554    } else if (isSwitchedOut()) {
555        DPRINTF(Fetch, "[tid:%i] Can't fetch cache line, switched out\n",
556                tid);
557        return false;
558    } else if (interruptPending && !(fetch_PC & 0x3)) {
559        // Hold off fetch from getting new instructions when:
560        // Cache is blocked, or
561        // while an interrupt is pending and we're not in PAL mode, or
562        // fetch is switched out.
563        DPRINTF(Fetch, "[tid:%i] Can't fetch cache line, interrupt pending\n",
564                tid);
565        return false;
566    }
567
568    // Align the fetch PC so it's at the start of a cache block.
569    Addr block_PC = icacheBlockAlignPC(fetch_PC);
570
571    // If we've already got the block, no need to try to fetch it again.
572    if (cacheDataValid[tid] && block_PC == cacheDataPC[tid]) {
573        return true;
574    }
575
576    // Setup the memReq to do a read of the first instruction's address.
577    // Set the appropriate read size and flags as well.
578    // Build request here.
579    RequestPtr mem_req = new Request(tid, block_PC, cacheBlkSize, 0,
580                                     fetch_PC, cpu->readCpuId(), tid);
581
582    memReq[tid] = mem_req;
583
584    // Translate the instruction request.
585    fault = cpu->translateInstReq(mem_req, cpu->thread[tid]);
586
587    // In the case of faults, the fetch stage may need to stall and wait
588    // for the ITB miss to be handled.
589
590    // If translation was successful, attempt to read the first
591    // instruction.
592    if (fault == NoFault) {
593#if 0
594        if (cpu->system->memctrl->badaddr(memReq[tid]->paddr) ||
595            memReq[tid]->isUncacheable()) {
596            DPRINTF(Fetch, "Fetch: Bad address %#x (hopefully on a "
597                    "misspeculating path)!",
598                    memReq[tid]->paddr);
599            ret_fault = TheISA::genMachineCheckFault();
600            return false;
601        }
602#endif
603
604        // Build packet here.
605        PacketPtr data_pkt = new Packet(mem_req,
606                                        MemCmd::ReadReq, Packet::Broadcast);
607        data_pkt->dataDynamicArray(new uint8_t[cacheBlkSize]);
608
609        cacheDataPC[tid] = block_PC;
610        cacheDataValid[tid] = false;
611
612        DPRINTF(Fetch, "Fetch: Doing instruction read.\n");
613
614        fetchedCacheLines++;
615
616        // Now do the timing access to see whether or not the instruction
617        // exists within the cache.
618        if (!icachePort->sendTiming(data_pkt)) {
619            if (data_pkt->result == Packet::BadAddress) {
620                fault = TheISA::genMachineCheckFault();
621                delete mem_req;
622                memReq[tid] = NULL;
623                warn("Bad address!\n");
624            }
625            assert(retryPkt == NULL);
626            assert(retryTid == -1);
627            DPRINTF(Fetch, "[tid:%i] Out of MSHRs!\n", tid);
628            fetchStatus[tid] = IcacheWaitRetry;
629            retryPkt = data_pkt;
630            retryTid = tid;
631            cacheBlocked = true;
632            return false;
633        }
634
635        DPRINTF(Fetch, "[tid:%i]: Doing cache access.\n", tid);
636
637        lastIcacheStall[tid] = curTick;
638
639        DPRINTF(Activity, "[tid:%i]: Activity: Waiting on I-cache "
640                "response.\n", tid);
641
642        fetchStatus[tid] = IcacheWaitResponse;
643    } else {
644        delete mem_req;
645        memReq[tid] = NULL;
646    }
647
648    ret_fault = fault;
649    return true;
650}
651
652template <class Impl>
653inline void
654DefaultFetch<Impl>::doSquash(const Addr &new_PC,
655        const Addr &new_NPC, unsigned tid)
656{
657    DPRINTF(Fetch, "[tid:%i]: Squashing, setting PC to: %#x, NPC to: %#x.\n",
658            tid, new_PC, new_NPC);
659
660    PC[tid] = new_PC;
661    nextPC[tid] = new_NPC;
662    nextNPC[tid] = new_NPC + instSize;
663
664    // Clear the icache miss if it's outstanding.
665    if (fetchStatus[tid] == IcacheWaitResponse) {
666        DPRINTF(Fetch, "[tid:%i]: Squashing outstanding Icache miss.\n",
667                tid);
668        memReq[tid] = NULL;
669    }
670
671    // Get rid of the retrying packet if it was from this thread.
672    if (retryTid == tid) {
673        assert(cacheBlocked);
674        if (retryPkt) {
675            delete retryPkt->req;
676            delete retryPkt;
677        }
678        retryPkt = NULL;
679        retryTid = -1;
680    }
681
682    fetchStatus[tid] = Squashing;
683
684    ++fetchSquashCycles;
685}
686
687template<class Impl>
688void
689DefaultFetch<Impl>::squashFromDecode(const Addr &new_PC, const Addr &new_NPC,
690                                     const InstSeqNum &seq_num,
691                                     unsigned tid)
692{
693    DPRINTF(Fetch, "[tid:%i]: Squashing from decode.\n",tid);
694
695    doSquash(new_PC, new_NPC, tid);
696
697    // Tell the CPU to remove any instructions that are in flight between
698    // fetch and decode.
699    cpu->removeInstsUntil(seq_num, tid);
700}
701
702template<class Impl>
703bool
704DefaultFetch<Impl>::checkStall(unsigned tid) const
705{
706    bool ret_val = false;
707
708    if (cpu->contextSwitch) {
709        DPRINTF(Fetch,"[tid:%i]: Stalling for a context switch.\n",tid);
710        ret_val = true;
711    } else if (stalls[tid].decode) {
712        DPRINTF(Fetch,"[tid:%i]: Stall from Decode stage detected.\n",tid);
713        ret_val = true;
714    } else if (stalls[tid].rename) {
715        DPRINTF(Fetch,"[tid:%i]: Stall from Rename stage detected.\n",tid);
716        ret_val = true;
717    } else if (stalls[tid].iew) {
718        DPRINTF(Fetch,"[tid:%i]: Stall from IEW stage detected.\n",tid);
719        ret_val = true;
720    } else if (stalls[tid].commit) {
721        DPRINTF(Fetch,"[tid:%i]: Stall from Commit stage detected.\n",tid);
722        ret_val = true;
723    }
724
725    return ret_val;
726}
727
728template<class Impl>
729typename DefaultFetch<Impl>::FetchStatus
730DefaultFetch<Impl>::updateFetchStatus()
731{
732    //Check Running
733    std::list<unsigned>::iterator threads = activeThreads->begin();
734    std::list<unsigned>::iterator end = activeThreads->end();
735
736    while (threads != end) {
737        unsigned tid = *threads++;
738
739        if (fetchStatus[tid] == Running ||
740            fetchStatus[tid] == Squashing ||
741            fetchStatus[tid] == IcacheAccessComplete) {
742
743            if (_status == Inactive) {
744                DPRINTF(Activity, "[tid:%i]: Activating stage.\n",tid);
745
746                if (fetchStatus[tid] == IcacheAccessComplete) {
747                    DPRINTF(Activity, "[tid:%i]: Activating fetch due to cache"
748                            "completion\n",tid);
749                }
750
751                cpu->activateStage(O3CPU::FetchIdx);
752            }
753
754            return Active;
755        }
756    }
757
758    // Stage is switching from active to inactive, notify CPU of it.
759    if (_status == Active) {
760        DPRINTF(Activity, "Deactivating stage.\n");
761
762        cpu->deactivateStage(O3CPU::FetchIdx);
763    }
764
765    return Inactive;
766}
767
768template <class Impl>
769void
770DefaultFetch<Impl>::squash(const Addr &new_PC, const Addr &new_NPC,
771                           const InstSeqNum &seq_num,
772                           bool squash_delay_slot, unsigned tid)
773{
774    DPRINTF(Fetch, "[tid:%u]: Squash from commit.\n",tid);
775
776    doSquash(new_PC, new_NPC, tid);
777
778#if ISA_HAS_DELAY_SLOT
779    // Tell the CPU to remove any instructions that are not in the ROB.
780    cpu->removeInstsNotInROB(tid, squash_delay_slot, seq_num);
781#else
782    // Tell the CPU to remove any instructions that are not in the ROB.
783    cpu->removeInstsNotInROB(tid, true, 0);
784#endif
785}
786
787template <class Impl>
788void
789DefaultFetch<Impl>::tick()
790{
791    std::list<unsigned>::iterator threads = activeThreads->begin();
792    std::list<unsigned>::iterator end = activeThreads->end();
793    bool status_change = false;
794
795    wroteToTimeBuffer = false;
796
797    while (threads != end) {
798        unsigned tid = *threads++;
799
800        // Check the signals for each thread to determine the proper status
801        // for each thread.
802        bool updated_status = checkSignalsAndUpdate(tid);
803        status_change =  status_change || updated_status;
804    }
805
806    DPRINTF(Fetch, "Running stage.\n");
807
808    // Reset the number of the instruction we're fetching.
809    numInst = 0;
810
811#if FULL_SYSTEM
812    if (fromCommit->commitInfo[0].interruptPending) {
813        interruptPending = true;
814    }
815
816    if (fromCommit->commitInfo[0].clearInterrupt) {
817        interruptPending = false;
818    }
819#endif
820
821    for (threadFetched = 0; threadFetched < numFetchingThreads;
822         threadFetched++) {
823        // Fetch each of the actively fetching threads.
824        fetch(status_change);
825    }
826
827    // Record number of instructions fetched this cycle for distribution.
828    fetchNisnDist.sample(numInst);
829
830    if (status_change) {
831        // Change the fetch stage status if there was a status change.
832        _status = updateFetchStatus();
833    }
834
835    // If there was activity this cycle, inform the CPU of it.
836    if (wroteToTimeBuffer || cpu->contextSwitch) {
837        DPRINTF(Activity, "Activity this cycle.\n");
838
839        cpu->activityThisCycle();
840    }
841}
842
843template <class Impl>
844bool
845DefaultFetch<Impl>::checkSignalsAndUpdate(unsigned tid)
846{
847    // Update the per thread stall statuses.
848    if (fromDecode->decodeBlock[tid]) {
849        stalls[tid].decode = true;
850    }
851
852    if (fromDecode->decodeUnblock[tid]) {
853        assert(stalls[tid].decode);
854        assert(!fromDecode->decodeBlock[tid]);
855        stalls[tid].decode = false;
856    }
857
858    if (fromRename->renameBlock[tid]) {
859        stalls[tid].rename = true;
860    }
861
862    if (fromRename->renameUnblock[tid]) {
863        assert(stalls[tid].rename);
864        assert(!fromRename->renameBlock[tid]);
865        stalls[tid].rename = false;
866    }
867
868    if (fromIEW->iewBlock[tid]) {
869        stalls[tid].iew = true;
870    }
871
872    if (fromIEW->iewUnblock[tid]) {
873        assert(stalls[tid].iew);
874        assert(!fromIEW->iewBlock[tid]);
875        stalls[tid].iew = false;
876    }
877
878    if (fromCommit->commitBlock[tid]) {
879        stalls[tid].commit = true;
880    }
881
882    if (fromCommit->commitUnblock[tid]) {
883        assert(stalls[tid].commit);
884        assert(!fromCommit->commitBlock[tid]);
885        stalls[tid].commit = false;
886    }
887
888    // Check squash signals from commit.
889    if (fromCommit->commitInfo[tid].squash) {
890
891        DPRINTF(Fetch, "[tid:%u]: Squashing instructions due to squash "
892                "from commit.\n",tid);
893
894#if ISA_HAS_DELAY_SLOT
895    InstSeqNum doneSeqNum = fromCommit->commitInfo[tid].bdelayDoneSeqNum;
896#else
897    InstSeqNum doneSeqNum = fromCommit->commitInfo[tid].doneSeqNum;
898#endif
899        // In any case, squash.
900        squash(fromCommit->commitInfo[tid].nextPC,
901               fromCommit->commitInfo[tid].nextNPC,
902               doneSeqNum,
903               fromCommit->commitInfo[tid].squashDelaySlot,
904               tid);
905
906        // Also check if there's a mispredict that happened.
907        if (fromCommit->commitInfo[tid].branchMispredict) {
908            branchPred.squash(fromCommit->commitInfo[tid].doneSeqNum,
909                              fromCommit->commitInfo[tid].nextPC,
910                              fromCommit->commitInfo[tid].branchTaken,
911                              tid);
912        } else {
913            branchPred.squash(fromCommit->commitInfo[tid].doneSeqNum,
914                              tid);
915        }
916
917        return true;
918    } else if (fromCommit->commitInfo[tid].doneSeqNum) {
919        // Update the branch predictor if it wasn't a squashed instruction
920        // that was broadcasted.
921        branchPred.update(fromCommit->commitInfo[tid].doneSeqNum, tid);
922    }
923
924    // Check ROB squash signals from commit.
925    if (fromCommit->commitInfo[tid].robSquashing) {
926        DPRINTF(Fetch, "[tid:%u]: ROB is still squashing.\n", tid);
927
928        // Continue to squash.
929        fetchStatus[tid] = Squashing;
930
931        return true;
932    }
933
934    // Check squash signals from decode.
935    if (fromDecode->decodeInfo[tid].squash) {
936        DPRINTF(Fetch, "[tid:%u]: Squashing instructions due to squash "
937                "from decode.\n",tid);
938
939        // Update the branch predictor.
940        if (fromDecode->decodeInfo[tid].branchMispredict) {
941            branchPred.squash(fromDecode->decodeInfo[tid].doneSeqNum,
942                              fromDecode->decodeInfo[tid].nextPC,
943                              fromDecode->decodeInfo[tid].branchTaken,
944                              tid);
945        } else {
946            branchPred.squash(fromDecode->decodeInfo[tid].doneSeqNum,
947                              tid);
948        }
949
950        if (fetchStatus[tid] != Squashing) {
951
952#if ISA_HAS_DELAY_SLOT
953            InstSeqNum doneSeqNum = fromDecode->decodeInfo[tid].bdelayDoneSeqNum;
954#else
955            InstSeqNum doneSeqNum = fromDecode->decodeInfo[tid].doneSeqNum;
956#endif
957            DPRINTF(Fetch, "Squashing from decode with PC = %#x, NPC = %#x\n",
958                    fromDecode->decodeInfo[tid].nextPC,
959                    fromDecode->decodeInfo[tid].nextNPC);
960            // Squash unless we're already squashing
961            squashFromDecode(fromDecode->decodeInfo[tid].nextPC,
962                             fromDecode->decodeInfo[tid].nextNPC,
963                             doneSeqNum,
964                             tid);
965
966            return true;
967        }
968    }
969
970    if (checkStall(tid) &&
971        fetchStatus[tid] != IcacheWaitResponse &&
972        fetchStatus[tid] != IcacheWaitRetry) {
973        DPRINTF(Fetch, "[tid:%i]: Setting to blocked\n",tid);
974
975        fetchStatus[tid] = Blocked;
976
977        return true;
978    }
979
980    if (fetchStatus[tid] == Blocked ||
981        fetchStatus[tid] == Squashing) {
982        // Switch status to running if fetch isn't being told to block or
983        // squash this cycle.
984        DPRINTF(Fetch, "[tid:%i]: Done squashing, switching to running.\n",
985                tid);
986
987        fetchStatus[tid] = Running;
988
989        return true;
990    }
991
992    // If we've reached this point, we have not gotten any signals that
993    // cause fetch to change its status.  Fetch remains the same as before.
994    return false;
995}
996
997template<class Impl>
998void
999DefaultFetch<Impl>::fetch(bool &status_change)
1000{
1001    //////////////////////////////////////////
1002    // Start actual fetch
1003    //////////////////////////////////////////
1004    int tid = getFetchingThread(fetchPolicy);
1005
1006    if (tid == -1 || drainPending) {
1007        DPRINTF(Fetch,"There are no more threads available to fetch from.\n");
1008
1009        // Breaks looping condition in tick()
1010        threadFetched = numFetchingThreads;
1011        return;
1012    }
1013
1014    DPRINTF(Fetch, "Attempting to fetch from [tid:%i]\n", tid);
1015
1016    // The current PC.
1017    Addr &fetch_PC = PC[tid];
1018
1019    Addr &fetch_NPC = nextPC[tid];
1020
1021    // Fault code for memory access.
1022    Fault fault = NoFault;
1023
1024    // If returning from the delay of a cache miss, then update the status
1025    // to running, otherwise do the cache access.  Possibly move this up
1026    // to tick() function.
1027    if (fetchStatus[tid] == IcacheAccessComplete) {
1028        DPRINTF(Fetch, "[tid:%i]: Icache miss is complete.\n",
1029                tid);
1030
1031        fetchStatus[tid] = Running;
1032        status_change = true;
1033    } else if (fetchStatus[tid] == Running) {
1034        DPRINTF(Fetch, "[tid:%i]: Attempting to translate and read "
1035                "instruction, starting at PC %08p.\n",
1036                tid, fetch_PC);
1037
1038        bool fetch_success = fetchCacheLine(fetch_PC, fault, tid);
1039        if (!fetch_success) {
1040            if (cacheBlocked) {
1041                ++icacheStallCycles;
1042            } else {
1043                ++fetchMiscStallCycles;
1044            }
1045            return;
1046        }
1047    } else {
1048        if (fetchStatus[tid] == Idle) {
1049            ++fetchIdleCycles;
1050            DPRINTF(Fetch, "[tid:%i]: Fetch is idle!\n", tid);
1051        } else if (fetchStatus[tid] == Blocked) {
1052            ++fetchBlockedCycles;
1053            DPRINTF(Fetch, "[tid:%i]: Fetch is blocked!\n", tid);
1054        } else if (fetchStatus[tid] == Squashing) {
1055            ++fetchSquashCycles;
1056            DPRINTF(Fetch, "[tid:%i]: Fetch is squashing!\n", tid);
1057        } else if (fetchStatus[tid] == IcacheWaitResponse) {
1058            ++icacheStallCycles;
1059            DPRINTF(Fetch, "[tid:%i]: Fetch is waiting cache response!\n", tid);
1060        }
1061
1062        // Status is Idle, Squashing, Blocked, or IcacheWaitResponse, so
1063        // fetch should do nothing.
1064        return;
1065    }
1066
1067    ++fetchCycles;
1068
1069    // If we had a stall due to an icache miss, then return.
1070    if (fetchStatus[tid] == IcacheWaitResponse) {
1071        ++icacheStallCycles;
1072        status_change = true;
1073        return;
1074    }
1075
1076    Addr next_PC = fetch_PC;
1077    Addr next_NPC = fetch_NPC;
1078
1079    InstSeqNum inst_seq;
1080    MachInst inst;
1081    ExtMachInst ext_inst;
1082    // @todo: Fix this hack.
1083    unsigned offset = (fetch_PC & cacheBlkMask) & ~3;
1084
1085    if (fault == NoFault) {
1086        // If the read of the first instruction was successful, then grab the
1087        // instructions from the rest of the cache line and put them into the
1088        // queue heading to decode.
1089
1090        DPRINTF(Fetch, "[tid:%i]: Adding instructions to queue to "
1091                "decode.\n",tid);
1092
1093        // Need to keep track of whether or not a predicted branch
1094        // ended this fetch block.
1095        bool predicted_branch = false;
1096
1097        for (;
1098             offset < cacheBlkSize &&
1099                 numInst < fetchWidth &&
1100                 !predicted_branch;
1101             ++numInst) {
1102
1103            // If we're branching after this instruction, quite fetching
1104            // from the same block then.
1105            predicted_branch =
1106                (fetch_PC + sizeof(TheISA::MachInst) != fetch_NPC);
1107            if (predicted_branch) {
1108                DPRINTF(Fetch, "Branch detected with PC = %#x, NPC = %#x\n",
1109                        fetch_PC, fetch_NPC);
1110            }
1111
1112
1113            // Get a sequence number.
1114            inst_seq = cpu->getAndIncrementInstSeq();
1115
1116            // Make sure this is a valid index.
1117            assert(offset <= cacheBlkSize - instSize);
1118
1119            // Get the instruction from the array of the cache line.
1120            inst = TheISA::gtoh(*reinterpret_cast<TheISA::MachInst *>
1121                        (&cacheData[tid][offset]));
1122
1123            predecoder.setTC(cpu->thread[tid]->getTC());
1124            predecoder.moreBytes(fetch_PC, 0, inst);
1125
1126            ext_inst = predecoder.getExtMachInst();
1127
1128            // Create a new DynInst from the instruction fetched.
1129            DynInstPtr instruction = new DynInst(ext_inst,
1130                                                 fetch_PC, fetch_NPC,
1131                                                 next_PC, next_NPC,
1132                                                 inst_seq, cpu);
1133            instruction->setTid(tid);
1134
1135            instruction->setASID(tid);
1136
1137            instruction->setThreadState(cpu->thread[tid]);
1138
1139            DPRINTF(Fetch, "[tid:%i]: Instruction PC %#x created "
1140                    "[sn:%lli]\n",
1141                    tid, instruction->readPC(), inst_seq);
1142
1143            //DPRINTF(Fetch, "[tid:%i]: MachInst is %#x\n", tid, ext_inst);
1144
1145            DPRINTF(Fetch, "[tid:%i]: Instruction is: %s\n",
1146                    tid, instruction->staticInst->disassemble(fetch_PC));
1147
1148            instruction->traceData =
1149                Trace::getInstRecord(curTick, cpu->tcBase(tid),
1150                                     instruction->staticInst,
1151                                     instruction->readPC());
1152
1153            ///FIXME This needs to be more robust in dealing with delay slots
1154#if !ISA_HAS_DELAY_SLOT
1155//	    predicted_branch |=
1156#endif
1157            lookupAndUpdateNextPC(instruction, next_PC, next_NPC);
1158            predicted_branch |= (next_PC != fetch_NPC);
1159
1160            // Add instruction to the CPU's list of instructions.
1161            instruction->setInstListIt(cpu->addInst(instruction));
1162
1163            // Write the instruction to the first slot in the queue
1164            // that heads to decode.
1165            toDecode->insts[numInst] = instruction;
1166
1167            toDecode->size++;
1168
1169            // Increment stat of fetched instructions.
1170            ++fetchedInsts;
1171
1172            // Move to the next instruction, unless we have a branch.
1173            fetch_PC = next_PC;
1174            fetch_NPC = next_NPC;
1175
1176            if (instruction->isQuiesce()) {
1177                DPRINTF(Fetch, "Quiesce instruction encountered, halting fetch!",
1178                        curTick);
1179                fetchStatus[tid] = QuiescePending;
1180                ++numInst;
1181                status_change = true;
1182                break;
1183            }
1184
1185            offset += instSize;
1186        }
1187
1188        if (offset >= cacheBlkSize) {
1189            DPRINTF(Fetch, "[tid:%i]: Done fetching, reached the end of cache "
1190                    "block.\n", tid);
1191        } else if (numInst >= fetchWidth) {
1192            DPRINTF(Fetch, "[tid:%i]: Done fetching, reached fetch bandwidth "
1193                    "for this cycle.\n", tid);
1194        } else if (predicted_branch) {
1195            DPRINTF(Fetch, "[tid:%i]: Done fetching, predicted branch "
1196                    "instruction encountered.\n", tid);
1197        }
1198    }
1199
1200    if (numInst > 0) {
1201        wroteToTimeBuffer = true;
1202    }
1203
1204    // Now that fetching is completed, update the PC to signify what the next
1205    // cycle will be.
1206    if (fault == NoFault) {
1207        PC[tid] = next_PC;
1208        nextPC[tid] = next_NPC;
1209        nextNPC[tid] = next_NPC + instSize;
1210#if ISA_HAS_DELAY_SLOT
1211        DPRINTF(Fetch, "[tid:%i]: Setting PC to %08p.\n", tid, PC[tid]);
1212#else
1213        DPRINTF(Fetch, "[tid:%i]: Setting PC to %08p.\n", tid, next_PC);
1214#endif
1215    } else {
1216        // We shouldn't be in an icache miss and also have a fault (an ITB
1217        // miss)
1218        if (fetchStatus[tid] == IcacheWaitResponse) {
1219            panic("Fetch should have exited prior to this!");
1220        }
1221
1222        // Send the fault to commit.  This thread will not do anything
1223        // until commit handles the fault.  The only other way it can
1224        // wake up is if a squash comes along and changes the PC.
1225#if FULL_SYSTEM
1226        assert(numInst < fetchWidth);
1227        // Get a sequence number.
1228        inst_seq = cpu->getAndIncrementInstSeq();
1229        // We will use a nop in order to carry the fault.
1230        ext_inst = TheISA::NoopMachInst;
1231
1232        // Create a new DynInst from the dummy nop.
1233        DynInstPtr instruction = new DynInst(ext_inst,
1234                                             fetch_PC, fetch_NPC,
1235                                             next_PC, next_NPC,
1236                                             inst_seq, cpu);
1237        instruction->setPredTarg(next_PC, next_NPC);
1238        instruction->setTid(tid);
1239
1240        instruction->setASID(tid);
1241
1242        instruction->setThreadState(cpu->thread[tid]);
1243
1244        instruction->traceData = NULL;
1245
1246        instruction->setInstListIt(cpu->addInst(instruction));
1247
1248        instruction->fault = fault;
1249
1250        toDecode->insts[numInst] = instruction;
1251        toDecode->size++;
1252
1253        DPRINTF(Fetch, "[tid:%i]: Blocked, need to handle the trap.\n",tid);
1254
1255        fetchStatus[tid] = TrapPending;
1256        status_change = true;
1257#else // !FULL_SYSTEM
1258        fetchStatus[tid] = TrapPending;
1259        status_change = true;
1260
1261#endif // FULL_SYSTEM
1262        DPRINTF(Fetch, "[tid:%i]: fault (%s) detected @ PC %08p",
1263                tid, fault->name(), PC[tid]);
1264    }
1265}
1266
1267template<class Impl>
1268void
1269DefaultFetch<Impl>::recvRetry()
1270{
1271    if (retryPkt != NULL) {
1272        assert(cacheBlocked);
1273        assert(retryTid != -1);
1274        assert(fetchStatus[retryTid] == IcacheWaitRetry);
1275
1276        if (icachePort->sendTiming(retryPkt)) {
1277            fetchStatus[retryTid] = IcacheWaitResponse;
1278            retryPkt = NULL;
1279            retryTid = -1;
1280            cacheBlocked = false;
1281        }
1282    } else {
1283        assert(retryTid == -1);
1284        // Access has been squashed since it was sent out.  Just clear
1285        // the cache being blocked.
1286        cacheBlocked = false;
1287    }
1288}
1289
1290///////////////////////////////////////
1291//                                   //
1292//  SMT FETCH POLICY MAINTAINED HERE //
1293//                                   //
1294///////////////////////////////////////
1295template<class Impl>
1296int
1297DefaultFetch<Impl>::getFetchingThread(FetchPriority &fetch_priority)
1298{
1299    if (numThreads > 1) {
1300        switch (fetch_priority) {
1301
1302          case SingleThread:
1303            return 0;
1304
1305          case RoundRobin:
1306            return roundRobin();
1307
1308          case IQ:
1309            return iqCount();
1310
1311          case LSQ:
1312            return lsqCount();
1313
1314          case Branch:
1315            return branchCount();
1316
1317          default:
1318            return -1;
1319        }
1320    } else {
1321        std::list<unsigned>::iterator thread = activeThreads->begin();
1322        assert(thread != activeThreads->end());
1323        int tid = *thread;
1324
1325        if (fetchStatus[tid] == Running ||
1326            fetchStatus[tid] == IcacheAccessComplete ||
1327            fetchStatus[tid] == Idle) {
1328            return tid;
1329        } else {
1330            return -1;
1331        }
1332    }
1333
1334}
1335
1336
1337template<class Impl>
1338int
1339DefaultFetch<Impl>::roundRobin()
1340{
1341    std::list<unsigned>::iterator pri_iter = priorityList.begin();
1342    std::list<unsigned>::iterator end      = priorityList.end();
1343
1344    int high_pri;
1345
1346    while (pri_iter != end) {
1347        high_pri = *pri_iter;
1348
1349        assert(high_pri <= numThreads);
1350
1351        if (fetchStatus[high_pri] == Running ||
1352            fetchStatus[high_pri] == IcacheAccessComplete ||
1353            fetchStatus[high_pri] == Idle) {
1354
1355            priorityList.erase(pri_iter);
1356            priorityList.push_back(high_pri);
1357
1358            return high_pri;
1359        }
1360
1361        pri_iter++;
1362    }
1363
1364    return -1;
1365}
1366
1367template<class Impl>
1368int
1369DefaultFetch<Impl>::iqCount()
1370{
1371    std::priority_queue<unsigned> PQ;
1372
1373    std::list<unsigned>::iterator threads = activeThreads->begin();
1374    std::list<unsigned>::iterator end = activeThreads->end();
1375
1376    while (threads != end) {
1377        unsigned tid = *threads++;
1378
1379        PQ.push(fromIEW->iewInfo[tid].iqCount);
1380    }
1381
1382    while (!PQ.empty()) {
1383
1384        unsigned high_pri = PQ.top();
1385
1386        if (fetchStatus[high_pri] == Running ||
1387            fetchStatus[high_pri] == IcacheAccessComplete ||
1388            fetchStatus[high_pri] == Idle)
1389            return high_pri;
1390        else
1391            PQ.pop();
1392
1393    }
1394
1395    return -1;
1396}
1397
1398template<class Impl>
1399int
1400DefaultFetch<Impl>::lsqCount()
1401{
1402    std::priority_queue<unsigned> PQ;
1403
1404    std::list<unsigned>::iterator threads = activeThreads->begin();
1405    std::list<unsigned>::iterator end = activeThreads->end();
1406
1407    while (threads != end) {
1408        unsigned tid = *threads++;
1409
1410        PQ.push(fromIEW->iewInfo[tid].ldstqCount);
1411    }
1412
1413    while (!PQ.empty()) {
1414
1415        unsigned high_pri = PQ.top();
1416
1417        if (fetchStatus[high_pri] == Running ||
1418            fetchStatus[high_pri] == IcacheAccessComplete ||
1419            fetchStatus[high_pri] == Idle)
1420            return high_pri;
1421        else
1422            PQ.pop();
1423
1424    }
1425
1426    return -1;
1427}
1428
1429template<class Impl>
1430int
1431DefaultFetch<Impl>::branchCount()
1432{
1433    std::list<unsigned>::iterator thread = activeThreads->begin();
1434    assert(thread != activeThreads->end());
1435    unsigned tid = *thread;
1436
1437    panic("Branch Count Fetch policy unimplemented\n");
1438    return 0 * tid;
1439}
1440