fetch_impl.hh revision 3349:fec4a86fa212
1/*
2 * Copyright (c) 2004-2006 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Kevin Lim
29 *          Korey Sewell
30 */
31
32#include "config/use_checker.hh"
33
34#include "arch/isa_traits.hh"
35#include "arch/utility.hh"
36#include "cpu/checker/cpu.hh"
37#include "cpu/exetrace.hh"
38#include "cpu/o3/fetch.hh"
39#include "mem/packet.hh"
40#include "mem/request.hh"
41#include "sim/byteswap.hh"
42#include "sim/host.hh"
43#include "sim/root.hh"
44
45#if FULL_SYSTEM
46#include "arch/tlb.hh"
47#include "arch/vtophys.hh"
48#include "base/remote_gdb.hh"
49#include "sim/system.hh"
50#endif // FULL_SYSTEM
51
52#include <algorithm>
53
54template<class Impl>
55Tick
56DefaultFetch<Impl>::IcachePort::recvAtomic(PacketPtr pkt)
57{
58    panic("DefaultFetch doesn't expect recvAtomic callback!");
59    return curTick;
60}
61
62template<class Impl>
63void
64DefaultFetch<Impl>::IcachePort::recvFunctional(PacketPtr pkt)
65{
66    warn("Default fetch doesn't update it's state from a functional call.");
67}
68
69template<class Impl>
70void
71DefaultFetch<Impl>::IcachePort::recvStatusChange(Status status)
72{
73    if (status == RangeChange)
74        return;
75
76    panic("DefaultFetch doesn't expect recvStatusChange callback!");
77}
78
79template<class Impl>
80bool
81DefaultFetch<Impl>::IcachePort::recvTiming(PacketPtr pkt)
82{
83    if (pkt->isResponse()) {
84        fetch->processCacheCompletion(pkt);
85    }
86    //else Snooped a coherence request, just return
87    return true;
88}
89
90template<class Impl>
91void
92DefaultFetch<Impl>::IcachePort::recvRetry()
93{
94    fetch->recvRetry();
95}
96
97template<class Impl>
98DefaultFetch<Impl>::DefaultFetch(Params *params)
99    : mem(params->mem),
100      branchPred(params),
101      decodeToFetchDelay(params->decodeToFetchDelay),
102      renameToFetchDelay(params->renameToFetchDelay),
103      iewToFetchDelay(params->iewToFetchDelay),
104      commitToFetchDelay(params->commitToFetchDelay),
105      fetchWidth(params->fetchWidth),
106      cacheBlocked(false),
107      retryPkt(NULL),
108      retryTid(-1),
109      numThreads(params->numberOfThreads),
110      numFetchingThreads(params->smtNumFetchingThreads),
111      interruptPending(false),
112      drainPending(false),
113      switchedOut(false)
114{
115    if (numThreads > Impl::MaxThreads)
116        fatal("numThreads is not a valid value\n");
117
118    // Set fetch stage's status to inactive.
119    _status = Inactive;
120
121    std::string policy = params->smtFetchPolicy;
122
123    // Convert string to lowercase
124    std::transform(policy.begin(), policy.end(), policy.begin(),
125                   (int(*)(int)) tolower);
126
127    // Figure out fetch policy
128    if (policy == "singlethread") {
129        fetchPolicy = SingleThread;
130        if (numThreads > 1)
131            panic("Invalid Fetch Policy for a SMT workload.");
132    } else if (policy == "roundrobin") {
133        fetchPolicy = RoundRobin;
134        DPRINTF(Fetch, "Fetch policy set to Round Robin\n");
135    } else if (policy == "branch") {
136        fetchPolicy = Branch;
137        DPRINTF(Fetch, "Fetch policy set to Branch Count\n");
138    } else if (policy == "iqcount") {
139        fetchPolicy = IQ;
140        DPRINTF(Fetch, "Fetch policy set to IQ count\n");
141    } else if (policy == "lsqcount") {
142        fetchPolicy = LSQ;
143        DPRINTF(Fetch, "Fetch policy set to LSQ count\n");
144    } else {
145        fatal("Invalid Fetch Policy. Options Are: {SingleThread,"
146              " RoundRobin,LSQcount,IQcount}\n");
147    }
148
149    // Size of cache block.
150    cacheBlkSize = 64;
151
152    // Create mask to get rid of offset bits.
153    cacheBlkMask = (cacheBlkSize - 1);
154
155    for (int tid=0; tid < numThreads; tid++) {
156
157        fetchStatus[tid] = Running;
158
159        priorityList.push_back(tid);
160
161        memReq[tid] = NULL;
162
163        // Create space to store a cache line.
164        cacheData[tid] = new uint8_t[cacheBlkSize];
165        cacheDataPC[tid] = 0;
166        cacheDataValid[tid] = false;
167
168        delaySlotInfo[tid].branchSeqNum = -1;
169        delaySlotInfo[tid].numInsts = 0;
170        delaySlotInfo[tid].targetAddr = 0;
171        delaySlotInfo[tid].targetReady = false;
172
173        stalls[tid].decode = false;
174        stalls[tid].rename = false;
175        stalls[tid].iew = false;
176        stalls[tid].commit = false;
177    }
178
179    // Get the size of an instruction.
180    instSize = sizeof(TheISA::MachInst);
181}
182
183template <class Impl>
184std::string
185DefaultFetch<Impl>::name() const
186{
187    return cpu->name() + ".fetch";
188}
189
190template <class Impl>
191void
192DefaultFetch<Impl>::regStats()
193{
194    icacheStallCycles
195        .name(name() + ".icacheStallCycles")
196        .desc("Number of cycles fetch is stalled on an Icache miss")
197        .prereq(icacheStallCycles);
198
199    fetchedInsts
200        .name(name() + ".Insts")
201        .desc("Number of instructions fetch has processed")
202        .prereq(fetchedInsts);
203
204    fetchedBranches
205        .name(name() + ".Branches")
206        .desc("Number of branches that fetch encountered")
207        .prereq(fetchedBranches);
208
209    predictedBranches
210        .name(name() + ".predictedBranches")
211        .desc("Number of branches that fetch has predicted taken")
212        .prereq(predictedBranches);
213
214    fetchCycles
215        .name(name() + ".Cycles")
216        .desc("Number of cycles fetch has run and was not squashing or"
217              " blocked")
218        .prereq(fetchCycles);
219
220    fetchSquashCycles
221        .name(name() + ".SquashCycles")
222        .desc("Number of cycles fetch has spent squashing")
223        .prereq(fetchSquashCycles);
224
225    fetchIdleCycles
226        .name(name() + ".IdleCycles")
227        .desc("Number of cycles fetch was idle")
228        .prereq(fetchIdleCycles);
229
230    fetchBlockedCycles
231        .name(name() + ".BlockedCycles")
232        .desc("Number of cycles fetch has spent blocked")
233        .prereq(fetchBlockedCycles);
234
235    fetchedCacheLines
236        .name(name() + ".CacheLines")
237        .desc("Number of cache lines fetched")
238        .prereq(fetchedCacheLines);
239
240    fetchMiscStallCycles
241        .name(name() + ".MiscStallCycles")
242        .desc("Number of cycles fetch has spent waiting on interrupts, or "
243              "bad addresses, or out of MSHRs")
244        .prereq(fetchMiscStallCycles);
245
246    fetchIcacheSquashes
247        .name(name() + ".IcacheSquashes")
248        .desc("Number of outstanding Icache misses that were squashed")
249        .prereq(fetchIcacheSquashes);
250
251    fetchNisnDist
252        .init(/* base value */ 0,
253              /* last value */ fetchWidth,
254              /* bucket size */ 1)
255        .name(name() + ".rateDist")
256        .desc("Number of instructions fetched each cycle (Total)")
257        .flags(Stats::pdf);
258
259    idleRate
260        .name(name() + ".idleRate")
261        .desc("Percent of cycles fetch was idle")
262        .prereq(idleRate);
263    idleRate = fetchIdleCycles * 100 / cpu->numCycles;
264
265    branchRate
266        .name(name() + ".branchRate")
267        .desc("Number of branch fetches per cycle")
268        .flags(Stats::total);
269    branchRate = fetchedBranches / cpu->numCycles;
270
271    fetchRate
272        .name(name() + ".rate")
273        .desc("Number of inst fetches per cycle")
274        .flags(Stats::total);
275    fetchRate = fetchedInsts / cpu->numCycles;
276
277    branchPred.regStats();
278}
279
280template<class Impl>
281void
282DefaultFetch<Impl>::setCPU(O3CPU *cpu_ptr)
283{
284    DPRINTF(Fetch, "Setting the CPU pointer.\n");
285    cpu = cpu_ptr;
286
287    // Name is finally available, so create the port.
288    icachePort = new IcachePort(this);
289
290#if USE_CHECKER
291    if (cpu->checker) {
292        cpu->checker->setIcachePort(icachePort);
293    }
294#endif
295
296    // Schedule fetch to get the correct PC from the CPU
297    // scheduleFetchStartupEvent(1);
298
299    // Fetch needs to start fetching instructions at the very beginning,
300    // so it must start up in active state.
301    switchToActive();
302}
303
304template<class Impl>
305void
306DefaultFetch<Impl>::setTimeBuffer(TimeBuffer<TimeStruct> *time_buffer)
307{
308    DPRINTF(Fetch, "Setting the time buffer pointer.\n");
309    timeBuffer = time_buffer;
310
311    // Create wires to get information from proper places in time buffer.
312    fromDecode = timeBuffer->getWire(-decodeToFetchDelay);
313    fromRename = timeBuffer->getWire(-renameToFetchDelay);
314    fromIEW = timeBuffer->getWire(-iewToFetchDelay);
315    fromCommit = timeBuffer->getWire(-commitToFetchDelay);
316}
317
318template<class Impl>
319void
320DefaultFetch<Impl>::setActiveThreads(std::list<unsigned> *at_ptr)
321{
322    DPRINTF(Fetch, "Setting active threads list pointer.\n");
323    activeThreads = at_ptr;
324}
325
326template<class Impl>
327void
328DefaultFetch<Impl>::setFetchQueue(TimeBuffer<FetchStruct> *fq_ptr)
329{
330    DPRINTF(Fetch, "Setting the fetch queue pointer.\n");
331    fetchQueue = fq_ptr;
332
333    // Create wire to write information to proper place in fetch queue.
334    toDecode = fetchQueue->getWire(0);
335}
336
337template<class Impl>
338void
339DefaultFetch<Impl>::initStage()
340{
341    // Setup PC and nextPC with initial state.
342    for (int tid = 0; tid < numThreads; tid++) {
343        PC[tid] = cpu->readPC(tid);
344        nextPC[tid] = cpu->readNextPC(tid);
345#if ISA_HAS_DELAY_SLOT
346        nextNPC[tid] = cpu->readNextNPC(tid);
347#endif
348    }
349}
350
351template<class Impl>
352void
353DefaultFetch<Impl>::processCacheCompletion(PacketPtr pkt)
354{
355    unsigned tid = pkt->req->getThreadNum();
356
357    DPRINTF(Fetch, "[tid:%u] Waking up from cache miss.\n",tid);
358
359    // Only change the status if it's still waiting on the icache access
360    // to return.
361    if (fetchStatus[tid] != IcacheWaitResponse ||
362        pkt->req != memReq[tid] ||
363        isSwitchedOut()) {
364        ++fetchIcacheSquashes;
365        delete pkt->req;
366        delete pkt;
367        return;
368    }
369
370    memcpy(cacheData[tid], pkt->getPtr<uint8_t *>(), cacheBlkSize);
371    cacheDataValid[tid] = true;
372
373    if (!drainPending) {
374        // Wake up the CPU (if it went to sleep and was waiting on
375        // this completion event).
376        cpu->wakeCPU();
377
378        DPRINTF(Activity, "[tid:%u] Activating fetch due to cache completion\n",
379                tid);
380
381        switchToActive();
382    }
383
384    // Only switch to IcacheAccessComplete if we're not stalled as well.
385    if (checkStall(tid)) {
386        fetchStatus[tid] = Blocked;
387    } else {
388        fetchStatus[tid] = IcacheAccessComplete;
389    }
390
391    // Reset the mem req to NULL.
392    delete pkt->req;
393    delete pkt;
394    memReq[tid] = NULL;
395}
396
397template <class Impl>
398bool
399DefaultFetch<Impl>::drain()
400{
401    // Fetch is ready to drain at any time.
402    cpu->signalDrained();
403    drainPending = true;
404    return true;
405}
406
407template <class Impl>
408void
409DefaultFetch<Impl>::resume()
410{
411    drainPending = false;
412}
413
414template <class Impl>
415void
416DefaultFetch<Impl>::switchOut()
417{
418    switchedOut = true;
419    // Branch predictor needs to have its state cleared.
420    branchPred.switchOut();
421}
422
423template <class Impl>
424void
425DefaultFetch<Impl>::takeOverFrom()
426{
427    // Reset all state
428    for (int i = 0; i < Impl::MaxThreads; ++i) {
429        stalls[i].decode = 0;
430        stalls[i].rename = 0;
431        stalls[i].iew = 0;
432        stalls[i].commit = 0;
433        PC[i] = cpu->readPC(i);
434        nextPC[i] = cpu->readNextPC(i);
435#if ISA_HAS_DELAY_SLOT
436        nextNPC[i] = cpu->readNextNPC(i);
437        delaySlotInfo[i].branchSeqNum = -1;
438        delaySlotInfo[i].numInsts = 0;
439        delaySlotInfo[i].targetAddr = 0;
440        delaySlotInfo[i].targetReady = false;
441#endif
442        fetchStatus[i] = Running;
443    }
444    numInst = 0;
445    wroteToTimeBuffer = false;
446    _status = Inactive;
447    switchedOut = false;
448    interruptPending = false;
449    branchPred.takeOverFrom();
450}
451
452template <class Impl>
453void
454DefaultFetch<Impl>::wakeFromQuiesce()
455{
456    DPRINTF(Fetch, "Waking up from quiesce\n");
457    // Hopefully this is safe
458    // @todo: Allow other threads to wake from quiesce.
459    fetchStatus[0] = Running;
460}
461
462template <class Impl>
463inline void
464DefaultFetch<Impl>::switchToActive()
465{
466    if (_status == Inactive) {
467        DPRINTF(Activity, "Activating stage.\n");
468
469        cpu->activateStage(O3CPU::FetchIdx);
470
471        _status = Active;
472    }
473}
474
475template <class Impl>
476inline void
477DefaultFetch<Impl>::switchToInactive()
478{
479    if (_status == Active) {
480        DPRINTF(Activity, "Deactivating stage.\n");
481
482        cpu->deactivateStage(O3CPU::FetchIdx);
483
484        _status = Inactive;
485    }
486}
487
488template <class Impl>
489bool
490DefaultFetch<Impl>::lookupAndUpdateNextPC(DynInstPtr &inst, Addr &next_PC,
491                                          Addr &next_NPC)
492{
493    // Do branch prediction check here.
494    // A bit of a misnomer...next_PC is actually the current PC until
495    // this function updates it.
496    bool predict_taken;
497
498    if (!inst->isControl()) {
499#if ISA_HAS_DELAY_SLOT
500        Addr cur_PC = next_PC;
501        next_PC  = cur_PC + instSize;      //next_NPC;
502        next_NPC = cur_PC + (2 * instSize);//next_NPC + instSize;
503        inst->setPredTarg(next_NPC);
504#else
505        next_PC = next_PC + instSize;
506        inst->setPredTarg(next_PC);
507#endif
508        return false;
509    }
510
511    int tid = inst->threadNumber;
512#if ISA_HAS_DELAY_SLOT
513    Addr pred_PC = next_PC;
514    predict_taken = branchPred.predict(inst, pred_PC, tid);
515
516    if (predict_taken) {
517        DPRINTF(Fetch, "[tid:%i]: Branch predicted to be true.\n", tid);
518    } else {
519        DPRINTF(Fetch, "[tid:%i]: Branch predicted to be false.\n", tid);
520    }
521
522    if (predict_taken) {
523        next_PC = next_NPC;
524        next_NPC = pred_PC;
525
526        // Update delay slot info
527        ++delaySlotInfo[tid].numInsts;
528        delaySlotInfo[tid].targetAddr = pred_PC;
529        DPRINTF(Fetch, "[tid:%i]: %i delay slot inst(s) to process.\n", tid,
530                delaySlotInfo[tid].numInsts);
531    } else { // !predict_taken
532        if (inst->isCondDelaySlot()) {
533            next_PC = pred_PC;
534            // The delay slot is skipped here if there is on
535            // prediction
536        } else {
537            next_PC = next_NPC;
538            // No need to declare a delay slot here since
539            // there is no for the pred. target to jump
540        }
541
542        next_NPC = next_NPC + instSize;
543    }
544#else
545    predict_taken = branchPred.predict(inst, next_PC, tid);
546#endif
547
548    ++fetchedBranches;
549
550    if (predict_taken) {
551        ++predictedBranches;
552    }
553
554    return predict_taken;
555}
556
557template <class Impl>
558bool
559DefaultFetch<Impl>::fetchCacheLine(Addr fetch_PC, Fault &ret_fault, unsigned tid)
560{
561    Fault fault = NoFault;
562
563#if FULL_SYSTEM
564    // Flag to say whether or not address is physical addr.
565    unsigned flags = cpu->inPalMode(fetch_PC) ? PHYSICAL : 0;
566#else
567    unsigned flags = 0;
568#endif // FULL_SYSTEM
569
570    if (cacheBlocked || isSwitchedOut() || (interruptPending && flags == 0)) {
571        // Hold off fetch from getting new instructions when:
572        // Cache is blocked, or
573        // while an interrupt is pending and we're not in PAL mode, or
574        // fetch is switched out.
575        return false;
576    }
577
578    // Align the fetch PC so it's at the start of a cache block.
579    fetch_PC = icacheBlockAlignPC(fetch_PC);
580
581    // If we've already got the block, no need to try to fetch it again.
582    if (cacheDataValid[tid] && fetch_PC == cacheDataPC[tid]) {
583        return true;
584    }
585
586    // Setup the memReq to do a read of the first instruction's address.
587    // Set the appropriate read size and flags as well.
588    // Build request here.
589    RequestPtr mem_req = new Request(tid, fetch_PC, cacheBlkSize, flags,
590                                     fetch_PC, cpu->readCpuId(), tid);
591
592    memReq[tid] = mem_req;
593
594    // Translate the instruction request.
595    fault = cpu->translateInstReq(mem_req, cpu->thread[tid]);
596
597    // In the case of faults, the fetch stage may need to stall and wait
598    // for the ITB miss to be handled.
599
600    // If translation was successful, attempt to read the first
601    // instruction.
602    if (fault == NoFault) {
603#if 0
604        if (cpu->system->memctrl->badaddr(memReq[tid]->paddr) ||
605            memReq[tid]->isUncacheable()) {
606            DPRINTF(Fetch, "Fetch: Bad address %#x (hopefully on a "
607                    "misspeculating path)!",
608                    memReq[tid]->paddr);
609            ret_fault = TheISA::genMachineCheckFault();
610            return false;
611        }
612#endif
613
614        // Build packet here.
615        PacketPtr data_pkt = new Packet(mem_req,
616                                        Packet::ReadReq, Packet::Broadcast);
617        data_pkt->dataDynamicArray(new uint8_t[cacheBlkSize]);
618
619        cacheDataPC[tid] = fetch_PC;
620        cacheDataValid[tid] = false;
621
622        DPRINTF(Fetch, "Fetch: Doing instruction read.\n");
623
624        fetchedCacheLines++;
625
626        // Now do the timing access to see whether or not the instruction
627        // exists within the cache.
628        if (!icachePort->sendTiming(data_pkt)) {
629            if (data_pkt->result == Packet::BadAddress) {
630                fault = TheISA::genMachineCheckFault();
631                delete mem_req;
632                memReq[tid] = NULL;
633            }
634            assert(retryPkt == NULL);
635            assert(retryTid == -1);
636            DPRINTF(Fetch, "[tid:%i] Out of MSHRs!\n", tid);
637            fetchStatus[tid] = IcacheWaitRetry;
638            retryPkt = data_pkt;
639            retryTid = tid;
640            cacheBlocked = true;
641            return false;
642        }
643
644        DPRINTF(Fetch, "[tid:%i]: Doing cache access.\n", tid);
645
646        lastIcacheStall[tid] = curTick;
647
648        DPRINTF(Activity, "[tid:%i]: Activity: Waiting on I-cache "
649                "response.\n", tid);
650
651        fetchStatus[tid] = IcacheWaitResponse;
652    } else {
653        delete mem_req;
654        memReq[tid] = NULL;
655    }
656
657    ret_fault = fault;
658    return true;
659}
660
661template <class Impl>
662inline void
663DefaultFetch<Impl>::doSquash(const Addr &new_PC, unsigned tid)
664{
665    DPRINTF(Fetch, "[tid:%i]: Squashing, setting PC to: %#x.\n",
666            tid, new_PC);
667
668    PC[tid] = new_PC;
669    nextPC[tid] = new_PC + instSize;
670    nextNPC[tid] = new_PC + (2 * instSize);
671
672    // Clear the icache miss if it's outstanding.
673    if (fetchStatus[tid] == IcacheWaitResponse) {
674        DPRINTF(Fetch, "[tid:%i]: Squashing outstanding Icache miss.\n",
675                tid);
676        memReq[tid] = NULL;
677    }
678
679    // Get rid of the retrying packet if it was from this thread.
680    if (retryTid == tid) {
681        assert(cacheBlocked);
682        cacheBlocked = false;
683        retryTid = -1;
684        delete retryPkt->req;
685        delete retryPkt;
686        retryPkt = NULL;
687    }
688
689    fetchStatus[tid] = Squashing;
690
691    ++fetchSquashCycles;
692}
693
694template<class Impl>
695void
696DefaultFetch<Impl>::squashFromDecode(const Addr &new_PC,
697                                     const InstSeqNum &seq_num,
698                                     unsigned tid)
699{
700    DPRINTF(Fetch, "[tid:%i]: Squashing from decode.\n",tid);
701
702    doSquash(new_PC, tid);
703
704#if ISA_HAS_DELAY_SLOT
705    if (seq_num <=  delaySlotInfo[tid].branchSeqNum) {
706        delaySlotInfo[tid].numInsts = 0;
707        delaySlotInfo[tid].targetAddr = 0;
708        delaySlotInfo[tid].targetReady = false;
709    }
710#endif
711
712    // Tell the CPU to remove any instructions that are in flight between
713    // fetch and decode.
714    cpu->removeInstsUntil(seq_num, tid);
715}
716
717template<class Impl>
718bool
719DefaultFetch<Impl>::checkStall(unsigned tid) const
720{
721    bool ret_val = false;
722
723    if (cpu->contextSwitch) {
724        DPRINTF(Fetch,"[tid:%i]: Stalling for a context switch.\n",tid);
725        ret_val = true;
726    } else if (stalls[tid].decode) {
727        DPRINTF(Fetch,"[tid:%i]: Stall from Decode stage detected.\n",tid);
728        ret_val = true;
729    } else if (stalls[tid].rename) {
730        DPRINTF(Fetch,"[tid:%i]: Stall from Rename stage detected.\n",tid);
731        ret_val = true;
732    } else if (stalls[tid].iew) {
733        DPRINTF(Fetch,"[tid:%i]: Stall from IEW stage detected.\n",tid);
734        ret_val = true;
735    } else if (stalls[tid].commit) {
736        DPRINTF(Fetch,"[tid:%i]: Stall from Commit stage detected.\n",tid);
737        ret_val = true;
738    }
739
740    return ret_val;
741}
742
743template<class Impl>
744typename DefaultFetch<Impl>::FetchStatus
745DefaultFetch<Impl>::updateFetchStatus()
746{
747    //Check Running
748    std::list<unsigned>::iterator threads = (*activeThreads).begin();
749
750    while (threads != (*activeThreads).end()) {
751
752        unsigned tid = *threads++;
753
754        if (fetchStatus[tid] == Running ||
755            fetchStatus[tid] == Squashing ||
756            fetchStatus[tid] == IcacheAccessComplete) {
757
758            if (_status == Inactive) {
759                DPRINTF(Activity, "[tid:%i]: Activating stage.\n",tid);
760
761                if (fetchStatus[tid] == IcacheAccessComplete) {
762                    DPRINTF(Activity, "[tid:%i]: Activating fetch due to cache"
763                            "completion\n",tid);
764                }
765
766                cpu->activateStage(O3CPU::FetchIdx);
767            }
768
769            return Active;
770        }
771    }
772
773    // Stage is switching from active to inactive, notify CPU of it.
774    if (_status == Active) {
775        DPRINTF(Activity, "Deactivating stage.\n");
776
777        cpu->deactivateStage(O3CPU::FetchIdx);
778    }
779
780    return Inactive;
781}
782
783template <class Impl>
784void
785DefaultFetch<Impl>::squash(const Addr &new_PC, const InstSeqNum &seq_num,
786                           bool squash_delay_slot, unsigned tid)
787{
788    DPRINTF(Fetch, "[tid:%u]: Squash from commit.\n",tid);
789
790    doSquash(new_PC, tid);
791
792#if ISA_HAS_DELAY_SLOT
793    if (seq_num <=  delaySlotInfo[tid].branchSeqNum) {
794        delaySlotInfo[tid].numInsts = 0;
795        delaySlotInfo[tid].targetAddr = 0;
796        delaySlotInfo[tid].targetReady = false;
797    }
798
799    // Tell the CPU to remove any instructions that are not in the ROB.
800    cpu->removeInstsNotInROB(tid, squash_delay_slot, seq_num);
801#else
802    // Tell the CPU to remove any instructions that are not in the ROB.
803    cpu->removeInstsNotInROB(tid, true, 0);
804#endif
805}
806
807template <class Impl>
808void
809DefaultFetch<Impl>::tick()
810{
811    std::list<unsigned>::iterator threads = (*activeThreads).begin();
812    bool status_change = false;
813
814    wroteToTimeBuffer = false;
815
816    while (threads != (*activeThreads).end()) {
817        unsigned tid = *threads++;
818
819        // Check the signals for each thread to determine the proper status
820        // for each thread.
821        bool updated_status = checkSignalsAndUpdate(tid);
822        status_change =  status_change || updated_status;
823    }
824
825    DPRINTF(Fetch, "Running stage.\n");
826
827    // Reset the number of the instruction we're fetching.
828    numInst = 0;
829
830#if FULL_SYSTEM
831    if (fromCommit->commitInfo[0].interruptPending) {
832        interruptPending = true;
833    }
834
835    if (fromCommit->commitInfo[0].clearInterrupt) {
836        interruptPending = false;
837    }
838#endif
839
840    for (threadFetched = 0; threadFetched < numFetchingThreads;
841         threadFetched++) {
842        // Fetch each of the actively fetching threads.
843        fetch(status_change);
844    }
845
846    // Record number of instructions fetched this cycle for distribution.
847    fetchNisnDist.sample(numInst);
848
849    if (status_change) {
850        // Change the fetch stage status if there was a status change.
851        _status = updateFetchStatus();
852    }
853
854    // If there was activity this cycle, inform the CPU of it.
855    if (wroteToTimeBuffer || cpu->contextSwitch) {
856        DPRINTF(Activity, "Activity this cycle.\n");
857
858        cpu->activityThisCycle();
859    }
860}
861
862template <class Impl>
863bool
864DefaultFetch<Impl>::checkSignalsAndUpdate(unsigned tid)
865{
866    // Update the per thread stall statuses.
867    if (fromDecode->decodeBlock[tid]) {
868        stalls[tid].decode = true;
869    }
870
871    if (fromDecode->decodeUnblock[tid]) {
872        assert(stalls[tid].decode);
873        assert(!fromDecode->decodeBlock[tid]);
874        stalls[tid].decode = false;
875    }
876
877    if (fromRename->renameBlock[tid]) {
878        stalls[tid].rename = true;
879    }
880
881    if (fromRename->renameUnblock[tid]) {
882        assert(stalls[tid].rename);
883        assert(!fromRename->renameBlock[tid]);
884        stalls[tid].rename = false;
885    }
886
887    if (fromIEW->iewBlock[tid]) {
888        stalls[tid].iew = true;
889    }
890
891    if (fromIEW->iewUnblock[tid]) {
892        assert(stalls[tid].iew);
893        assert(!fromIEW->iewBlock[tid]);
894        stalls[tid].iew = false;
895    }
896
897    if (fromCommit->commitBlock[tid]) {
898        stalls[tid].commit = true;
899    }
900
901    if (fromCommit->commitUnblock[tid]) {
902        assert(stalls[tid].commit);
903        assert(!fromCommit->commitBlock[tid]);
904        stalls[tid].commit = false;
905    }
906
907    // Check squash signals from commit.
908    if (fromCommit->commitInfo[tid].squash) {
909
910        DPRINTF(Fetch, "[tid:%u]: Squashing instructions due to squash "
911                "from commit.\n",tid);
912
913#if ISA_HAS_DELAY_SLOT
914    InstSeqNum doneSeqNum = fromCommit->commitInfo[tid].bdelayDoneSeqNum;
915#else
916    InstSeqNum doneSeqNum = fromCommit->commitInfo[tid].doneSeqNum;
917#endif
918        // In any case, squash.
919        squash(fromCommit->commitInfo[tid].nextPC,
920               doneSeqNum,
921               fromCommit->commitInfo[tid].squashDelaySlot,
922               tid);
923
924        // Also check if there's a mispredict that happened.
925        if (fromCommit->commitInfo[tid].branchMispredict) {
926            branchPred.squash(fromCommit->commitInfo[tid].doneSeqNum,
927                              fromCommit->commitInfo[tid].nextPC,
928                              fromCommit->commitInfo[tid].branchTaken,
929                              tid);
930        } else {
931            branchPred.squash(fromCommit->commitInfo[tid].doneSeqNum,
932                              tid);
933        }
934
935        return true;
936    } else if (fromCommit->commitInfo[tid].doneSeqNum) {
937        // Update the branch predictor if it wasn't a squashed instruction
938        // that was broadcasted.
939        branchPred.update(fromCommit->commitInfo[tid].doneSeqNum, tid);
940    }
941
942    // Check ROB squash signals from commit.
943    if (fromCommit->commitInfo[tid].robSquashing) {
944        DPRINTF(Fetch, "[tid:%u]: ROB is still squashing.\n", tid);
945
946        // Continue to squash.
947        fetchStatus[tid] = Squashing;
948
949        return true;
950    }
951
952    // Check squash signals from decode.
953    if (fromDecode->decodeInfo[tid].squash) {
954        DPRINTF(Fetch, "[tid:%u]: Squashing instructions due to squash "
955                "from decode.\n",tid);
956
957        // Update the branch predictor.
958        if (fromDecode->decodeInfo[tid].branchMispredict) {
959            branchPred.squash(fromDecode->decodeInfo[tid].doneSeqNum,
960                              fromDecode->decodeInfo[tid].nextPC,
961                              fromDecode->decodeInfo[tid].branchTaken,
962                              tid);
963        } else {
964            branchPred.squash(fromDecode->decodeInfo[tid].doneSeqNum,
965                              tid);
966        }
967
968        if (fetchStatus[tid] != Squashing) {
969
970#if ISA_HAS_DELAY_SLOT
971            InstSeqNum doneSeqNum = fromDecode->decodeInfo[tid].bdelayDoneSeqNum;
972#else
973            InstSeqNum doneSeqNum = fromDecode->decodeInfo[tid].doneSeqNum;
974#endif
975            // Squash unless we're already squashing
976            squashFromDecode(fromDecode->decodeInfo[tid].nextPC,
977                             doneSeqNum,
978                             tid);
979
980            return true;
981        }
982    }
983
984    if (checkStall(tid) && fetchStatus[tid] != IcacheWaitResponse) {
985        DPRINTF(Fetch, "[tid:%i]: Setting to blocked\n",tid);
986
987        fetchStatus[tid] = Blocked;
988
989        return true;
990    }
991
992    if (fetchStatus[tid] == Blocked ||
993        fetchStatus[tid] == Squashing) {
994        // Switch status to running if fetch isn't being told to block or
995        // squash this cycle.
996        DPRINTF(Fetch, "[tid:%i]: Done squashing, switching to running.\n",
997                tid);
998
999        fetchStatus[tid] = Running;
1000
1001        return true;
1002    }
1003
1004    // If we've reached this point, we have not gotten any signals that
1005    // cause fetch to change its status.  Fetch remains the same as before.
1006    return false;
1007}
1008
1009template<class Impl>
1010void
1011DefaultFetch<Impl>::fetch(bool &status_change)
1012{
1013    //////////////////////////////////////////
1014    // Start actual fetch
1015    //////////////////////////////////////////
1016    int tid = getFetchingThread(fetchPolicy);
1017
1018    if (tid == -1 || drainPending) {
1019        DPRINTF(Fetch,"There are no more threads available to fetch from.\n");
1020
1021        // Breaks looping condition in tick()
1022        threadFetched = numFetchingThreads;
1023        return;
1024    }
1025
1026    DPRINTF(Fetch, "Attempting to fetch from [tid:%i]\n", tid);
1027
1028    // The current PC.
1029    Addr &fetch_PC = PC[tid];
1030
1031    // Fault code for memory access.
1032    Fault fault = NoFault;
1033
1034    // If returning from the delay of a cache miss, then update the status
1035    // to running, otherwise do the cache access.  Possibly move this up
1036    // to tick() function.
1037    if (fetchStatus[tid] == IcacheAccessComplete) {
1038        DPRINTF(Fetch, "[tid:%i]: Icache miss is complete.\n",
1039                tid);
1040
1041        fetchStatus[tid] = Running;
1042        status_change = true;
1043    } else if (fetchStatus[tid] == Running) {
1044        DPRINTF(Fetch, "[tid:%i]: Attempting to translate and read "
1045                "instruction, starting at PC %08p.\n",
1046                tid, fetch_PC);
1047
1048        bool fetch_success = fetchCacheLine(fetch_PC, fault, tid);
1049        if (!fetch_success) {
1050            if (cacheBlocked) {
1051                ++icacheStallCycles;
1052            } else {
1053                ++fetchMiscStallCycles;
1054            }
1055            return;
1056        }
1057    } else {
1058        if (fetchStatus[tid] == Idle) {
1059            ++fetchIdleCycles;
1060        } else if (fetchStatus[tid] == Blocked) {
1061            ++fetchBlockedCycles;
1062        } else if (fetchStatus[tid] == Squashing) {
1063            ++fetchSquashCycles;
1064        } else if (fetchStatus[tid] == IcacheWaitResponse) {
1065            ++icacheStallCycles;
1066        }
1067
1068        // Status is Idle, Squashing, Blocked, or IcacheWaitResponse, so
1069        // fetch should do nothing.
1070        return;
1071    }
1072
1073    ++fetchCycles;
1074
1075    // If we had a stall due to an icache miss, then return.
1076    if (fetchStatus[tid] == IcacheWaitResponse) {
1077        ++icacheStallCycles;
1078        status_change = true;
1079        return;
1080    }
1081
1082    Addr next_PC = fetch_PC;
1083    Addr next_NPC = next_PC + instSize;
1084    InstSeqNum inst_seq;
1085    MachInst inst;
1086    ExtMachInst ext_inst;
1087    // @todo: Fix this hack.
1088    unsigned offset = (fetch_PC & cacheBlkMask) & ~3;
1089
1090    if (fault == NoFault) {
1091        // If the read of the first instruction was successful, then grab the
1092        // instructions from the rest of the cache line and put them into the
1093        // queue heading to decode.
1094
1095        DPRINTF(Fetch, "[tid:%i]: Adding instructions to queue to "
1096                "decode.\n",tid);
1097
1098        // Need to keep track of whether or not a predicted branch
1099        // ended this fetch block.
1100        bool predicted_branch = false;
1101
1102        // Need to keep track of whether or not a delay slot
1103        // instruction has been fetched
1104
1105        for (;
1106             offset < cacheBlkSize &&
1107                 numInst < fetchWidth &&
1108                 (!predicted_branch || delaySlotInfo[tid].numInsts > 0);
1109             ++numInst) {
1110
1111            // Get a sequence number.
1112            inst_seq = cpu->getAndIncrementInstSeq();
1113
1114            // Make sure this is a valid index.
1115            assert(offset <= cacheBlkSize - instSize);
1116
1117            // Get the instruction from the array of the cache line.
1118            inst = TheISA::gtoh(*reinterpret_cast<TheISA::MachInst *>
1119                        (&cacheData[tid][offset]));
1120
1121            ext_inst = TheISA::makeExtMI(inst, fetch_PC);
1122
1123            // Create a new DynInst from the instruction fetched.
1124            DynInstPtr instruction = new DynInst(ext_inst, fetch_PC,
1125                                                 next_PC,
1126                                                 inst_seq, cpu);
1127            instruction->setTid(tid);
1128
1129            instruction->setASID(tid);
1130
1131            instruction->setThreadState(cpu->thread[tid]);
1132
1133            DPRINTF(Fetch, "[tid:%i]: Instruction PC %#x created "
1134                    "[sn:%lli]\n",
1135                    tid, instruction->readPC(), inst_seq);
1136
1137            DPRINTF(Fetch, "[tid:%i]: Instruction is: %s\n",
1138                    tid, instruction->staticInst->disassemble(fetch_PC));
1139
1140            instruction->traceData =
1141                Trace::getInstRecord(curTick, cpu->tcBase(tid),
1142                                     instruction->staticInst,
1143                                     instruction->readPC());
1144
1145            predicted_branch = lookupAndUpdateNextPC(instruction, next_PC,
1146                                                     next_NPC);
1147
1148            // Add instruction to the CPU's list of instructions.
1149            instruction->setInstListIt(cpu->addInst(instruction));
1150
1151            // Write the instruction to the first slot in the queue
1152            // that heads to decode.
1153            toDecode->insts[numInst] = instruction;
1154
1155            toDecode->size++;
1156
1157            // Increment stat of fetched instructions.
1158            ++fetchedInsts;
1159
1160            // Move to the next instruction, unless we have a branch.
1161            fetch_PC = next_PC;
1162
1163            if (instruction->isQuiesce()) {
1164//                warn("%lli: Quiesce instruction encountered, halting fetch!",
1165//                     curTick);
1166                fetchStatus[tid] = QuiescePending;
1167                ++numInst;
1168                status_change = true;
1169                break;
1170            }
1171
1172            offset += instSize;
1173
1174#if ISA_HAS_DELAY_SLOT
1175            if (predicted_branch) {
1176                delaySlotInfo[tid].branchSeqNum = inst_seq;
1177
1178                DPRINTF(Fetch, "[tid:%i]: Delay slot branch set to [sn:%i]\n",
1179                        tid, inst_seq);
1180                continue;
1181            } else if (delaySlotInfo[tid].numInsts > 0) {
1182                --delaySlotInfo[tid].numInsts;
1183
1184                // It's OK to set PC to target of branch
1185                if (delaySlotInfo[tid].numInsts == 0) {
1186                    delaySlotInfo[tid].targetReady = true;
1187
1188                    // Break the looping condition
1189                    predicted_branch = true;
1190                }
1191
1192                DPRINTF(Fetch, "[tid:%i]: %i delay slot inst(s) left to"
1193                        " process.\n", tid, delaySlotInfo[tid].numInsts);
1194            }
1195#endif
1196        }
1197
1198        if (offset >= cacheBlkSize) {
1199            DPRINTF(Fetch, "[tid:%i]: Done fetching, reached the end of cache "
1200                    "block.\n", tid);
1201        } else if (numInst >= fetchWidth) {
1202            DPRINTF(Fetch, "[tid:%i]: Done fetching, reached fetch bandwidth "
1203                    "for this cycle.\n", tid);
1204        } else if (predicted_branch && delaySlotInfo[tid].numInsts <= 0) {
1205            DPRINTF(Fetch, "[tid:%i]: Done fetching, predicted branch "
1206                    "instruction encountered.\n", tid);
1207        }
1208    }
1209
1210    if (numInst > 0) {
1211        wroteToTimeBuffer = true;
1212    }
1213
1214    // Now that fetching is completed, update the PC to signify what the next
1215    // cycle will be.
1216    if (fault == NoFault) {
1217#if ISA_HAS_DELAY_SLOT
1218        if (delaySlotInfo[tid].targetReady &&
1219            delaySlotInfo[tid].numInsts == 0) {
1220            // Set PC to target
1221            PC[tid] = delaySlotInfo[tid].targetAddr; //next_PC
1222            nextPC[tid] = next_PC + instSize;        //next_NPC
1223            nextNPC[tid] = next_PC + (2 * instSize);
1224
1225            delaySlotInfo[tid].targetReady = false;
1226        } else {
1227            PC[tid] = next_PC;
1228            nextPC[tid] = next_NPC;
1229            nextNPC[tid] = next_NPC + instSize;
1230        }
1231
1232        DPRINTF(Fetch, "[tid:%i]: Setting PC to %08p.\n", tid, PC[tid]);
1233#else
1234        DPRINTF(Fetch, "[tid:%i]: Setting PC to %08p.\n",tid, next_PC);
1235        PC[tid] = next_PC;
1236        nextPC[tid] = next_PC + instSize;
1237#endif
1238    } else {
1239        // We shouldn't be in an icache miss and also have a fault (an ITB
1240        // miss)
1241        if (fetchStatus[tid] == IcacheWaitResponse) {
1242            panic("Fetch should have exited prior to this!");
1243        }
1244
1245        // Send the fault to commit.  This thread will not do anything
1246        // until commit handles the fault.  The only other way it can
1247        // wake up is if a squash comes along and changes the PC.
1248#if FULL_SYSTEM
1249        assert(numInst != fetchWidth);
1250        // Get a sequence number.
1251        inst_seq = cpu->getAndIncrementInstSeq();
1252        // We will use a nop in order to carry the fault.
1253        ext_inst = TheISA::NoopMachInst;
1254
1255        // Create a new DynInst from the dummy nop.
1256        DynInstPtr instruction = new DynInst(ext_inst, fetch_PC,
1257                                             next_PC,
1258                                             inst_seq, cpu);
1259        instruction->setPredTarg(next_PC + instSize);
1260        instruction->setTid(tid);
1261
1262        instruction->setASID(tid);
1263
1264        instruction->setThreadState(cpu->thread[tid]);
1265
1266        instruction->traceData = NULL;
1267
1268        instruction->setInstListIt(cpu->addInst(instruction));
1269
1270        instruction->fault = fault;
1271
1272        toDecode->insts[numInst] = instruction;
1273        toDecode->size++;
1274
1275        DPRINTF(Fetch, "[tid:%i]: Blocked, need to handle the trap.\n",tid);
1276
1277        fetchStatus[tid] = TrapPending;
1278        status_change = true;
1279
1280//        warn("%lli fault (%d) detected @ PC %08p", curTick, fault, PC[tid]);
1281#else // !FULL_SYSTEM
1282        warn("cycle %lli: fault (%s) detected @ PC %08p", curTick, fault->name(), PC[tid]);
1283#endif // FULL_SYSTEM
1284    }
1285}
1286
1287template<class Impl>
1288void
1289DefaultFetch<Impl>::recvRetry()
1290{
1291    if (retryPkt != NULL) {
1292        assert(cacheBlocked);
1293        assert(retryTid != -1);
1294        assert(fetchStatus[retryTid] == IcacheWaitRetry);
1295
1296        if (icachePort->sendTiming(retryPkt)) {
1297            fetchStatus[retryTid] = IcacheWaitResponse;
1298            retryPkt = NULL;
1299            retryTid = -1;
1300            cacheBlocked = false;
1301        }
1302    } else {
1303        assert(retryTid == -1);
1304        // Access has been squashed since it was sent out.  Just clear
1305        // the cache being blocked.
1306        cacheBlocked = false;
1307    }
1308}
1309
1310///////////////////////////////////////
1311//                                   //
1312//  SMT FETCH POLICY MAINTAINED HERE //
1313//                                   //
1314///////////////////////////////////////
1315template<class Impl>
1316int
1317DefaultFetch<Impl>::getFetchingThread(FetchPriority &fetch_priority)
1318{
1319    if (numThreads > 1) {
1320        switch (fetch_priority) {
1321
1322          case SingleThread:
1323            return 0;
1324
1325          case RoundRobin:
1326            return roundRobin();
1327
1328          case IQ:
1329            return iqCount();
1330
1331          case LSQ:
1332            return lsqCount();
1333
1334          case Branch:
1335            return branchCount();
1336
1337          default:
1338            return -1;
1339        }
1340    } else {
1341        int tid = *((*activeThreads).begin());
1342
1343        if (fetchStatus[tid] == Running ||
1344            fetchStatus[tid] == IcacheAccessComplete ||
1345            fetchStatus[tid] == Idle) {
1346            return tid;
1347        } else {
1348            return -1;
1349        }
1350    }
1351
1352}
1353
1354
1355template<class Impl>
1356int
1357DefaultFetch<Impl>::roundRobin()
1358{
1359    std::list<unsigned>::iterator pri_iter = priorityList.begin();
1360    std::list<unsigned>::iterator end      = priorityList.end();
1361
1362    int high_pri;
1363
1364    while (pri_iter != end) {
1365        high_pri = *pri_iter;
1366
1367        assert(high_pri <= numThreads);
1368
1369        if (fetchStatus[high_pri] == Running ||
1370            fetchStatus[high_pri] == IcacheAccessComplete ||
1371            fetchStatus[high_pri] == Idle) {
1372
1373            priorityList.erase(pri_iter);
1374            priorityList.push_back(high_pri);
1375
1376            return high_pri;
1377        }
1378
1379        pri_iter++;
1380    }
1381
1382    return -1;
1383}
1384
1385template<class Impl>
1386int
1387DefaultFetch<Impl>::iqCount()
1388{
1389    std::priority_queue<unsigned> PQ;
1390
1391    std::list<unsigned>::iterator threads = (*activeThreads).begin();
1392
1393    while (threads != (*activeThreads).end()) {
1394        unsigned tid = *threads++;
1395
1396        PQ.push(fromIEW->iewInfo[tid].iqCount);
1397    }
1398
1399    while (!PQ.empty()) {
1400
1401        unsigned high_pri = PQ.top();
1402
1403        if (fetchStatus[high_pri] == Running ||
1404            fetchStatus[high_pri] == IcacheAccessComplete ||
1405            fetchStatus[high_pri] == Idle)
1406            return high_pri;
1407        else
1408            PQ.pop();
1409
1410    }
1411
1412    return -1;
1413}
1414
1415template<class Impl>
1416int
1417DefaultFetch<Impl>::lsqCount()
1418{
1419    std::priority_queue<unsigned> PQ;
1420
1421
1422    std::list<unsigned>::iterator threads = (*activeThreads).begin();
1423
1424    while (threads != (*activeThreads).end()) {
1425        unsigned tid = *threads++;
1426
1427        PQ.push(fromIEW->iewInfo[tid].ldstqCount);
1428    }
1429
1430    while (!PQ.empty()) {
1431
1432        unsigned high_pri = PQ.top();
1433
1434        if (fetchStatus[high_pri] == Running ||
1435            fetchStatus[high_pri] == IcacheAccessComplete ||
1436            fetchStatus[high_pri] == Idle)
1437            return high_pri;
1438        else
1439            PQ.pop();
1440
1441    }
1442
1443    return -1;
1444}
1445
1446template<class Impl>
1447int
1448DefaultFetch<Impl>::branchCount()
1449{
1450    std::list<unsigned>::iterator threads = (*activeThreads).begin();
1451    panic("Branch Count Fetch policy unimplemented\n");
1452    return *threads;
1453}
1454